ISOLATION AND CHARACTERIZATION OF Escherichia coli FROM DRINKING WATER OF KATHMANDU WITH RESPECT TO ANTIBIOTIC SUSCEPTIBILITY AND HEAVY METALS RESISTANCE PATTERN

A DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY (ENVIRONMENT AND PUBLIC HEALTH)

BY GEETA PANDEY

CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KIRTIPUR, KATHMANDU NEPAL 2009

RECOMMENDATION

This is to certify that **Ms. Geeta Pandey** has completed this dissertation work entitled "ISOLATION AND CHARACTERIZATION OF *Escherichia coli* FROM DRINKING WATER OF KATHMANDU WITH RESPECT TO ANTIBIOTIC SUSCEPTIBILITY AND HEAVY METALS RESISTANCE PATTERN" as a partial fulfillment of M.Sc. Degree in Microbiology under my supervision. To my knowledge this thesis work has not been submitted for any other degree.

> **Dr. Dwij Raj Bhatta** Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu.

Date:-....

CERTIFICATE OF APPROVAL

This dissertation work by Ms. Geeta Pandey entitled "ISOLATION AND CHARACTERIZATION OF *Escherichia coli* FROM DRINKING WATER OF KATHMANDU WITH RESPECT TO ANTIBIOTIC SUSCEPTIBILITY AND HEAVY METALS RESISTANCE PATTERN" has been approved for the examination and is submitted to the Tribhuvan University in Partial fulfillment of the requirement for M.Sc. Degree in Microbiology.

Dr. Dwij Raj Bhatta Head of Department Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu

Date:-....

BOARD OF EXAMINERS

Recommended by:

Dr. Dwij Raj Bhatta Supervisor

Dr. Dwij Raj Bhatta Head of Department

Approved by:

Examined by:

Mr.Gyanendra B.Karki

Chief, Water Quality Section Kathmandu Upatyaka Khanepani Limited (KUKL),Sundarighat, Kritipur, Kathmandu (External Examiner)

> **Mr. Binod Lekhak** Assistant Professor, Tribhuvan University

(Internal Examiner)

Date:....

ACKNOWLEDGEMENT

I express my heartfelt appreciation to all the people who helped me in completion of my thesis work. First of all, I would like to express my sincere gratitude to my supervisor Dr. Dwij Raj Bhatta, Head of Department, Central Department of Microbiology, Tribhuvan University for his regular supervision, valuable advices and constant encouragement.

I acknowledge profound gratitude to the Central Department of Microbiology for providing Laboratory facilities and valuable suggestions. I want to express my heartfelt gratitude and feeling of indebtness to Mr. Dev Raj Joshi, Assistant Professor/Lecturer, for providing valuable suggestions.

I would like to acknowledge all respected teachers and staffs of Central Department of Microbiology, Tribhuvan University. My special thanks to my friends Saurav, Esha, Nanu, Smiriti, Shiv for their kind help.

I would like to express my deepest gratitude to my family for their whole hearted support and inspiration in my whole academic career.

Geeta Pandey

Date:....

ABSTRACT

Water deficit and deteriorating of water quality in Kathmandu is of great concern. The pollution of drinking water is responsible for a large number of mortalities and morbidities due to water–borne diseases. A study was carried out to evaluate the quality of drinking water of Kathmandu valley, was conducted from August 2008 to March 2009 in the laboratory of Central Department of Microbiology, Kirtipur. A total of 102 tap water samples were randomly collected from different areas of Kathmandu. These samples were analysed for physicochemical and microbiological parameters to assess the drinking water quality. *E. coli* isolated from these water samples were subjected to antibiotic susceptibility testing and heavy metals resistance pattern.

The seasonal variation in temperature was observed with the highest and the lowest temperature being 25.7° C and 11.8° C respectively. No variation was seen in the pH values of the water samples with all the values lying within the WHO recommended limit (6.5-8.5).

Out of 102 water samples 86.2% and 19.6% of the samples were found to contain total coliform and thermotolerant coliform respectively beyond the guideline value as recommended by the WHO (0 CFU/100 ml). A total of 20 *E. coli* isolates were obtained. Antibiotic susceptibility testing revealed resistance of *E. coli* isolates mainly towards Cephalexin (65%) followed by Amoxycillin (45%) and Tetracycline (15%). All the isolates were 100% sensitive to Co-trimoxazole, Amikacin, Chloramphenicol, Ceftriaxone, Ciprofloxacin, Nalidixic Acid and Gentamicin. The study of heavy metals resistance pattern revealed that 66.6% of *E. coli* isolates that exhibited resistance to more than one antibiotics had high MIC values for a set of heavy metals. All isolates exhibited high resistance to Zinc with average MIC 679.2 μ g/ml and low resistance to Mercury with average MIC 58.3 μ g/ml.

TABLE OF CONTENTS

Title page	
Recommendation	i
Certificate of approval	ii
Board of Examiners	iii
Acknowledgement	iv
Abstract	V
Table of contents	vi
Lists of abbreviations	ix
List of tables	xi
List of photographs	xii
List of appendices	xiii

CHAPTER I

1 INTRODUCTION	1-3

CHAPTER II

2 OBJECTIVES	4
2.1 General objectives	4
2.2 Specific objectives	4

CHAPTER III 3 LITERATURE

LITERATURE REVIEW	5-40
3.1 Water pollution	5
3.2 Sources of water pollution	6
3.3 Effects of water pollution	6
3.4 Water supply system of Kathmandu valley	7
3.5 Outbreak of waterborne diseases in Nepal	8
3.6 Physicochemical parameters of water	10
3.6.1 Temperature	10
3.6.2 pH	11
3.7 Water purification	12
3.8 Microbial indicators of water quality	12
3.8.1 Coliform bacteria	12
3.8.2 Thermotolerant coliform bacteria	13
3.8.3 Faecal streptococci	13
3.8.4 Clostridium perfringens	13
3.8.5 Escherichia coli	14
3.8.6 Other members of coliform group	16

17
19
21
27
28
33
34
36
38

CHAPTER IV

4 MATERIALS AND METHOD	41-45
4.1 Materials	41
4.2 Methods	41
4.2.1 Study area	35
4.2.2 Collection of water samples	35
4.2.3 Transportation and preservation of sample	41
4.2.4 Physicochemical parameters of samples	42
4.2.5 Total coliform and thermotolerant coliform count	43
4.2.6 Isolation and identification of E. coli	43
4.2.7 Study of antibiotic susceptibility of E. coli isolates	44
4.2.7.1 Preparation of swab	44
4.2.7.2 Preparation of barium sulphate standard	44
4.2.8 Study of heavy metals resistance of <i>E. coli</i> isolates	45

CHAPTER V 5 RESULTS

RESULTS	46-54
5.1 Physico-chemical parameters of water	46
5.1.1 Temperature	46
5.1.2 pH	46
5.2 Bacteriological quality of water	47
5.2.1 Total coliform count and thermotolerant coliform count	47
5.2.2 Isolation and identification of <i>E. coli</i>	49
5.3 Antibiotic susceptibility pattern of E. coli isolates	50

5.4 Minimum inhibitory concentration of heavy metals to E. coli isolates	52
CHAPTER VI	
6 DISCUSSION AND CONCLUSION	54-62
6.1 Discussion	54
6.2 Conclusion	61
CHAPTER VII	
7 SUMMARY AND RECOMMENDATION	63-64
7.1 Summary	63
7.2 Recommendations	64
REFERENCES	65-76
APPENDICES	I-XXV

LIST OF TABLES

		Page No
Table 4.1	Biochemical tests performed for identification of E. coli isolates	38
Table 5.1	Location wise result for physico-chemical parameters	42
Table 5.2	Total coliform count exceeding WHO guideline value	43
Table 5.3	Location wise total coliform count exceeding WHO guideline	43
	value	
Table 5.4	Thermotolerant coliform count exceeding WHO guideline value	43
Table 5.5	Location wise thermotolerant coliform count exceeding WHO	
	Guideline value	44
Table 5.6	Location wise isolation of E. coli	45
Table 5.7	Antibiotic susceptibility pattern of E. coli	46
Table 5.8	Percentage of antibiotic susceptibility of E. coli isolates	47
Table 5.9	Frequency of antibiotic and multiple-antibiotic resistance	48
	among E. coli	
Table 5.10	Minimum Inhibitory Concentration of heavy metals to isolates	55

LIST OF PHOTOGRAPHS

Photograph 1	Total coliform on M-endo agar
Photograph 2	Thermotolerant coliform on M-endo agar
Photograph 3	Biochemical tests of E. coli
Photograph 4	Antibiotic susceptibility pattern of E. coli
Photograph 5	Copper resistant E.coli isolated on NA incorporated with 100
	microgram/ml copper.
Photograph 6	Zinc resistant E. coli isolated on NA incorporated with 100 microgram/ml
	zinc
Photograph 7	Lead resistant E. coli isolated on NA incorporated with 100 microgram/ml
	lead

LIST OF APPENDICES

Appendix I	Lists of materials
Appendix II	Sampling sites and their codes
Appendix III	Physico-chemical analysis of tap water samples
Appendix IV	Bacteriological analysis of tap water samples
Appendix V	Chart for identification of <i>E. coli</i> isolates
Appendix VI Appendix VII	WHO guideline value for bacteriological quality of drinking water Zone Size Interpretative Chart of Antibiotic Susceptibility Testing
**	

LIST OF ABBREVIATIONS

APHA	-	American Public Health Association	
ATCC	-	American Type Culture Collection	
ATPase	-	Adenosine Tri- Phosphatase	
ATSDR	-	Agency for Toxic Substances and Disease Registry	
BOD	-	Biochemical Oxygen Demand	
CBS	-	Central Bureas of Statistics	
$CdCl_2$	-	Cadmium Chloride	
CEDA	-	Centre for Economic Development and Administration	
CFU	-	Colony forming unit	
Conc	-	Concentrated	
CuSO ₄	-	Copper Sulphate	
DISVI	-	Italian International Co-operation	
DNA	-	Deoxyribonucleic acid	
DoHS	-	Development of Health Services	
ENPHO	-	Environment and Public Health Organization	
HgCl ₂	-	Mercurous Chloride	
HMG	-	His Majesty's Government	
H_2S	-	Hydrogen Sulphide	
ICIMOD	-	International Centre for Integrated Mountain Development	
IOCC	-	International Office of Cocca, Chocolate and Sugar Confectionery	
JICA	-	Japanese International Co-operation Agency	
MHA	-	Mueller Hinton Agar	
MIC	-	Minimum Inhibitory Concentration	
MF	-	Membrane Filter	
Pb(NO ₃₎	-	Lead Nitrate	
Spp	-	Species	
TSI	-	Triple Sugar Iron Agar	
UNEP	-	United Nations Environmental Programme	
UNICEF	-	United Nations International Children Emergency Fund	
USEPA	-	United States Environmental Protection Agency	
WHO	-	World Health Organization	

W/V	-	Weight by volume
$ZnCl_2$	-	Zinc Chloride
μg		Microgram