Antibacterial Activity and Phytochemical Screening of Some Medicinal Plants of Nepal

A Dissertation Submitted for the Partial Fulfillment of the Requirements for the M. Sc. in Botany

> By Madhaba Prasad Pandey Roll No.: 1234 Batch: 2005/07 T. U. Regd. No.: 5-1-49-78-99

Central Department of Botany

Tribhuvan University, Kirtipur,

Kathmandu, Nepal

July, 2009

TRIBHUVAN UNIVERSITY

INSTITUTE OF SCIENCE AND TECHNOLOGY

CENTRAL DEPARTMENT OF BOTANY

Ref. No.

Kirtipur, Kathmandu

NEPAL

CERTIFICATE

This is to certify that **Mr. Madhaba Prasad Pandey** has carried out the dissertation work entitled **"Antibacterial Effects and Phytochemical Screening of Some Medicinal Plants of Nepal"** under my supervision. As to my knowledge, the result he acquired is not submitted or published for any other academic degree. So I recommend this dissertation to be accepted for the partial fulfillment of Master of Science in Botany.

Supervisor

Dr. Sanu Devi Joshi

Professor

Central Department of Botany

T. U., Kirtipur, Kathmandu, Nepal.

Date: 13th July 2009

ACKNOWLEDGMENTS

First of all I would like to express my deep gratitude to my research supervisor Prof. Dr. Sanu Devi Joshi, for providing me all the facilities needed, valuable suggestions and constant encouragement throughout the research period.

I want to thank the head, Prof. Dr. Krishna Kumar Shrestha, Central Department of Botany for giving me permission to commence this thesis, to do necessary research work and to use departmental resources. My special thanks also go to Prof. Dr. R. P. Chaudhary for helping me to conduct a part of the work. Cornell Nepal Study Program (CNSP) is acknowledged for providing partial financial support for this research. Similarly, I want to make a special note of thanks to the Head, Central Department of Microbiology for providing identified bacterial strains.

In this regard, I cannot remain without giving thanks to my friends Bikash, EN, Tara, Bimla, and Khila for being good classmates and helping a friend in need especially during initializing my experiment.

My utmost thanks go to the all teaching and non-teaching staffs of Central Department of Botany, who helped me during my research period in the way as they can do.

In this particular juncture of my academic career, I must extend my absolute gratitude to my parents, my Mother Parbati Pandey, Father Pem Narayan Pandey and other family members.

Madhaba Prasad Pandey <u>madhavpparag@yahoo.com</u> Central Department of Botany T. U., Kirtipur, Kathmandu.

ABSTRACT

Eighteen different medicinal plants which were being used to treat the bacterial diseases in Nepal were selected. The medicinal plants were extracted in methanol by soaking method. The *Drymaria cordata* gave the highest yield (20%) whereas *Urtica dioica* gave lowest yield (4%). The methanol extract of these plants were evaluated for antibacterial activity against medically important bacteria viz. *Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhi, Proteus vulgaris, Escherichia coli,* and *Staphylococcus aureus*. The *in vitro* antibacterial activity was performed by agar disc diffusion method.

Among 18 medicinal plants tested, in the present study, all plants showed activity against at least two bacteria. *Phyllanthus amarus* and *Rhus javanica* inhibited all the tested bacteria. Similarly, *Drymaria cordata* was effective against 83% of tested bacteria. Nine plants (*Bauhinia purpurea*, *Ageratum conyzoides*, *Urtica dioica*, *Lantana camara*, *Cinnamomum tamala*, *Melia azedarach*, *Vitex negundo*, *Oxalis corniculata*, and *Zizyphus mauritiana*) inhibited the growth of 67% and five plants (*Euphorbia hirta*, *Taraxacum officinale*, *Achyranthes bidentata*, *Mimosa pudica*, and *Cissampelos pareira*) were effective against only 50% of screened bacteria and remaining one plant *Ficus religiosa* inhibited growth of 33% of the screened bacteria.

The most susceptible bacteria were *Staphylococcus aureus* whose growth was inhibited by 17 out of 18 plants screened whereas *Escherichia coli* were found to be the most resistant bacteria being susceptible to only five plants. The gram-positive bacteria were found to be more susceptible as compared to gram-negative bacteria.

Phytochemical screening was also performed on all these plants on aqueous and alcoholic extract by their color reaction with different reagents and chemicals to detect the presence of alkaloids, glycosides, saponins, terpenoids, and tannins. Most of the plants contain these secondary metabolites but on varying concentration. Among the screened plants, 67% of plants contain alkaloids, 78% plants found to contain glycosides, saponins and terpenoids each and 72% plants showed the presence of tannins.

The medicinal plants which were used against bacterial disease were found to have antibacterial principles and were found to be rich in different phytochemicals.

CONTENTS

List of Tables, Figures and Photographs

List of Abbreviations and Acronyms

Abstract

Contents

CHAPTER-ONE

INTRODUCTION		
1.1	General Background	1
1.1.1	Antibacterial Activity of Plants	2
1.1.2	Development of Antibacterial Resistance	2
1.1.3	Natural Products from Plants	3
1.2	Objectives	4
1.2.1	General Objective	4
1.2.2	Specific Objectives	4
1.3	Rationale of the Study	5
1.4	Limitations of the Study	5
	CHAPTER-TWO	
LITERATURE REVIEW		6-12
2.1	Plants and Plant Products Used in Medicine	6
2.1.1	Work Outside the Country	7
2.1.2	Work Inside the Country	10
	CHAPTER-THREE	
MATERIALS AND METHODS		
3.1	Sample Material Preparation	13

3.1.1	Selection of Medicinal Plants	13
3.1.2	Collection of Plant Materials	13
3.1.3	Plant Identification	13
3.1.4	Packaging and Storage	13
3.1.5	Grinding	14
3.2	Antibacterial Test	14
3.2.1	Preparation of Extract	14
3.2.2	Collection of Test Organisms	14
3.2.3	Preparation of the Test Discs	14
3.2.4	Preparation of Culture Media	15
3.2.4.1 Nutrient Agar 15		15
3.2.4.2 Nutrient Broth		15
3.2.5	Preparation of Standard Culture Inoculums	15
3.2.6	Transfer of Bacteria on Petri Plates	15
3.2.7	Placing Test Discs	16
3.2.8	Observation of Result	16
3.3	Phytochemical Test	16
3.3.1	Test for Alkaloids	16
3.3.2	Test for Glycosides	17
3.3.3	Test for Saponins	17
3.3.4	Test for Tannins	17
3.3.5	Test for Terpenoids (Salkowski Test)	17
	CHAPTER-FOUR	

RESULTS		19-28
4.1	Yield of Methanol Crude Extracts of Medicinal Plants	19

4.2	Screening of Medicinal Plants for Antibacterial Activity	19
4.3	Evaluation of Antibacterial Activity of Medicinal Plants	20
4.4	Evaluation of Susceptibility of the Tested Bacteria	24
4.5	Phytochemical Screening of Medicinal Plants	26
4.5.1	Alkaloids	26
4.5.2	Glycosides	26
4.5.3	Saponins	26
4.5.4	Tannins	26
4.5.5	Terpenoids	28
	CHAPTER-FIVE	
DISCUSSION		29-35
5.1	Extraction of Medicinal Plants	30
5.2	Screening of Antibacterial Activities	30
5.3	Evaluation of Antibacterial Activities	32
	Evaluation of Anubacterial Activities	32
5.4	Phytochemical Analysis	32 34
5.4		
	Phytochemical Analysis	
	Phytochemical Analysis CHAPTER-SIX	34

REFERENCES

APPENDICES

LIST OF ABBREVIATIONS AND ACRONYMS

alt.	Altitude
e.g.	Exempli gratia: for example
ed., eds.	Editor, editors
et al.	Et alii: and others
fig.,figs.	Figure, figures
Gm +ve	Gram positive
Gm –ve	Gram negative
lb, lbs	pound, pounds
MIC	Minimum inhibitory concentration
mL	Milliliter
NA	Nutrient agar
NB	Nutrient broth
Nep.	Nepali
p., pp.	page, pages
T. U.	Tribhuvan University
TUCH	Tribhuvan University Central Herbarium
viz.	Namely
W	West
С	Central
E	East
ZOI	Zone of inhibition
rpm	Revolutions per minute

LIST OF TABLES, FIGURES AND PHOTOGRAPHS

TABLES

- Table 1: Percentage yields of crude methanol extract of medicinal plants
- Table 2: Antibacterial property of methanolic extracts of different medicinal plants against tested bacteria
- Table 3: Number of microorganisms inhibited by tested medicinal plants.
- Table 4: Mean Zone of Inhibition (ZOI) shown by different medicinal Plants against tested bacteria
- Table 5: Chemical constituents of medicinal plants
- Table 6: Number of plants constituting respective phytochemicals

FIGURES

- Fig 1: Zone of inhibition for bacterium Pseudomonas aeruginosa
- Fig 2: Zone of inhibition for bacterium Staphylococcus aureus
- Fig 3: Zone of inhibition for bacterium Escherichia coli
- Fig 4: Zone of inhibition for bacterium Salmonella typhi
- Fig 5: Zone of inhibition for bacterium Bacillus subtilis
- Fig 6: Zone of inhibition for bacterium Proteus vulgaris

PHOTOGRAPHS

Photoplate I: Medicinal Plants

- Photo#: 1 Urtica dioica
- Photo#: 2 Lantana camara
- Photo#: 3 Drymaria cordata
- Photo#: 4 Oxalis corniculata
- Photo#: 5 *Phyllanthus amarus*
- Photo#: 6 *Cinnamomum tamala*
- Photo#: 7 Ziziphus mauritiana
- Photo#: 8 *Mimosa pudica*

Photoplate II: Medicinal Plants

- Photo#: 1 *Vitex negundo*
- Photo#: 2 *Taraxacum officinale*
- Photo#: 3 Melia azedarach
- Photo#: 4 Ageratum conyzoides
- Photo#: 5 *Rhus javanica*
- Photo#: 6 Cissampelos pareira
- Photo#: 7 Ficus religiosa
- Photo#: 8 Euphorbia hirta

Photoplate III: Antibacterial and Phytochemical Test

- Photo#: 1 Methanol extracts of plants
- Photo#: 2 ZOI shown by plant extracts on *Proteus vulgaris*
- Photo#: 3 ZOI shown by plant extracts on *Staphylococcus aureus*
- Photo#: 4 ZOI shown by plant extracts on *Bacillus subtilis*
- Photo#: 5 Test for terpenoids
- Photo#: 6 Test for saponins
- Photo#: 7 Test for alkaloids
- Photo#: 8 Test for glycosides