Cultivation of *Lentinus sajor-caju* using different agricultural waste products

A Dissertation Submitted to

Central Department of Botany, Tribhuvan University For the Partial Fulfillment of the Requirements for Masters of Science in Botany

Submitted by NEELAM KALYAN

Exam Roll No.: 249 Batch: 063/064 (2007) T.U. Regd. No.: 37969-95

CENTRAL DEPARTMENT OF BOTANY TRIBHUVAN UNIVERSITY, KIRTIPUR, KATHMANDU, NEPAL July 2010

TRIBHUVAN UNIVERSITY institute of science and technolohy CENTRAL DEPARTMENT OF BOTANY kirtipur, kathmandu

RECOMMENDATION

This is to certify that Ms.Neelam Kalyan has carried out the dissertation work entitled "**Cultivation of** *Lentinus sajor-caju* **using different agricultural waste products**" under our supervision. This result has not been submitted elsewhere for any other academic degree. We, therefore, recommend this dissertation for the partial fulfillment of Master's Degree in Botany from Tribhuvan University, Nepal.

.....

Prof. Dr. Usha Budathoki

(Supervisor)

Central Department of Botany Tribhuvan University Kirtipur, Nepal

Dr. Chandra Prasad Pokhrel

(Joint supervisor)

Central Department of Botany Tribhuvan University Kirtipur, Nepal

Date of Submission: 27 July, 2010

TRIBHUVAN UNIVERSITY institute of science and technolohy CENTRAL DEPARTMENT OF BOTANY kirtipur, kathmandu

LETTER OF APPROVAL

This dissertation paper submitted by Ms. Neelam Kalyan entitled "**Cultivation of** *Lentinus sajor-caju* using different agricultural waste products" has been accepted as a partial fulfillment of M.Sc. Degree of Botany.

EXAMINATION COMMITTEE

.....

Supervisor Prof. Dr. Usha Budathoki Central Department of Botany Tribhuvan University Kirtipur, Nepal Joint supervisor Dr. Chandra P. Pokhrel Central Department of Botany Tribhuvan University Kirtipur, Nepal

.....

.....

Head of Department Prof. Dr. Krishna K. Shrestha Central Department of Botany Tribhuvan University Kirtipur, Nepal

.....

External examiner

Dr. Mahesh K. Adhikari Senior Mycologist Natural History Museum Shyambhu, Nepal Internal examiner Mr. Shiva Devkota Assistant Lecturer Central Department of Botany Tribhuvan University, Nepal

.....

Date of Viva: 02 September, 2010

ACKNOWLEDGEMENTS

I am deeply indebted to my supervisor Dr. Usha Budhathoki, Professor of Central Department of Botany, T.U. for the valuable guidance and also for providing all kind of facilities during the course of this investigation. I express my heartfelt gratitude to my respected joint supervisor Dr. Chandra Prasad Pokhrel, Lecturer of Central Department of Botany for his scholastic inspirations and continuous expert guidance throughout my research work.

I am sincerely grateful to Dr. Krishna Kumar Shrestha, Professor and Head of Central Department of Botany, T.U. for providing the necessary provisions and laboratory facility for my dissertation.

I would like to express my gratitude to Dr. Ram Kailash Yadav, Leturer of Central Department of Botany, T.U. for his help and co-operation during statistics analysis of my work. I am grateful to Mr. Shiva Devkota, Assistant Lecturer of the Central Department of Botany, T.U. for his suggestions and encouragement during thesis work.

I am also grateful to Dr. Buddhi Ranta Khadgi, Mr. Harish Chandra Bastola, Senior Scientist of NARC, Khumaltar for their valuable suggestions and providing research articles throughout the course of my experiment.

I am thankful to Cornell Nepal Study Program for providing me partial financial support to conduct my thesis work.

I wound like to thank all of my friends who helped me directly or indirectly during my work.

Lastly but not least, I would like to express my deep sense of gratitude to my parents who encouraged me to reach up to this stage.

.....

Neelam Kalyan

ABSTRACT

Oyster mushroom, *Lentinus sajor-caju was* cultivated on selected agricultural waste products such as maize stalk, banana leaves and pea wastes. The experiment was conducted at CDB, T.U. Kirtipur, with an objective to find out low cost substrates and appropriate supplements for the cultivation of *L. sajor-caju*. The experiment was laid out in a complete randomized design (CRD) with three to five replications. The data was analyzed on various aspects like spawn running, appearance of pin heads, mushroom yield, biological efficiency, size and number of fruiting body. Mycelial extension was also measured weekly (between seven days interval) during spawn running.

Altogether nine treatments of mixtures of selected substrates with supplements were tested. Each substrate was supplemented with 10 % of rice bran and 10 % of chicken manure. The substrate without supplement was considered as control. The chemical analyses of the substrates were not done. Out of three substrates, highest yield of *L. sajor-caju* was obtained in maize stalk followed by pea waste and banana leaves respectively.

The extension of mycelial growth was found fastest in maize stalk supplemented with rice bran 6.04 cm/week and slowest growth in banana leaves without supplement 3.84 cm/week. The fastest colonization period (22.80 days), primordial formation period (29.00 days) and first harvest period (32.80 days) was found in maize stalk supplemented with rice bran.

The biological efficiency of maize stalk supplemented with rice bran was higher (87.03 %) followed by control (70.16 %) and chicken manure supplement (67.89 %) respectively. However, in case of pea waste, the biological efficiency with rice bran supplement was 74.88 % followed by chicken manure supplement, 58.57 % and control, 56.06 %. Similarly, the biological efficiency in banana leaves with rice bran supplement was 38.37 % followed chicken manure supplement, 32.82 % and control, 23.72 %.

The study result showed that maize stalk is the best among the all substrate while it is supplemented with rice bran.

CONTENTS

Title	e page	
Reco	ommendations	
Ack	nowledgements	
Abst	tract	
Con	tents	
Acro	onyms	
CHA	APTER ONE: INTRODUCTION	1-4
1.1	Background	1
1.2	Justification	4
1.3	Objectives	4
1.4	Limitation	4
CHA	APTER TWO: LITERATURE REVIEW	5-13
2.1	Morphology of Lentinus sajo - caju	5
2.2	Historical review of mushroom cultivation	5
2.3	Factors affecting oyster mushroom production	6
	2.3.1 Temperature and relative humidity	6
	2.3.2 Room condition	7
	2.3.3 Substrates and ingredients	7
2.4	Cultivation	8
	2.4.1 Spawn preparation	8
	2.4.2 Methods of substrate preparation	9
	2.4.3 Spawning and incubation	10
2.5	Growth and yield of oyster mushroom	10
	2.5.1 Mycelium development and primordial formation	10
	2.5.2 Harvesting	11
2.6	Diseases and pests	11
2.7	Mushrooms and their research status in Nepal	11
CHA	APTER THREE: MATERIALS AND METHODS	14-18
3.1	Experimental site	14
3.2	Mushroom spawn	14
3.3	Treatments	14
3.4	Disinfection of room	15
3.4	Substrate preparation	15
	3.4.1 Chopping and soaking of substrates	15
	3.4.2 Sterilization	15
	3.4.3 Spawning (Inoculation)	15

	3.4.4	Incubation	16	
	3.4.5	Bag removal	16	
	3.4.6	Watering	16	
3.5	Harves	16		
3.6	Moistu	17		
3.7	Data c	Data collection		
	3.7.1	Mycelial growth increment	17	
	3.7.2	Colonization period	17	
	3.7.3	Pin head days	17	
	3.7.4	Number of mushroom harvested	17	
	3.7.5	Weight of harvested mushroom	17	
3.8	Statist	ical analysis	18	
CHAPTER FOUR: RESULT			19-26	
4.1	Mycel	ia development period	19	
4.2	Number of fruiting bodies and size of mushroom			
4.3	Yield of fruiting bodies			
4.4	Moisture content (%)26			
CHAPTER FIVE: DISCUSSION			28-30	
5.1	Effect	of mycelium growth	28	
5.2	Fruiting bodies formation			
5.3	Yield	of mushroom	29	
5.4	Moistu	re content (%) in fruiting bodies	30	
CHA	PTER	SIX: CONCLUSION & RECOMMENDATIONS	31	
6.1	Conclu	ision	31	
6.2	Recon	nmendations	31	
REFERENCES				

PLATES

LIST OF FIGURES

Figure No. 1: Distribution of mushroom seeds (spawn) through Plant Pathology	
Division, Khumaltar	13
Figure No. 2: Moisture content (%) of fruiting bodies after harvest in different	
treatments	27

LIST OF TABLES

Table No. 1:	Temperature and relatives humidity requirements for different	
	types of mushrooms	6
Table No. 2:	Comparison of weekly mycelial growth of Lentinus saja-caju	
	on different substrates (Mean \pm SD, n = number of replicates)	20
Table No. 3:	Comparison of colonization period, primordial formation and	
	first harvest days of Lentinus sajar-caju on different substrates	
	(Mean \pm SD, n = number of replicates)	21
Table No. 4:	Number of fruiting bodies in first and second flush of Lentinus	
	saju- caju on different substrates	23
Table No. 5:	Size of <i>Lentinus saju- caju</i> on different substrates (Mean \pm SD)	23
Table No. 6:	First and second flush of Lentinus sajar-caju on different	
	substrates	25
Table No. 7:	Biological efficcieny of Lentinus saju- caju on different	
	substrates (Mean \pm SD)	25
Table No. 8:	Comparison between yield of first and second harvest in	
	different substrates (Mean \pm SD, n = number of replicates)	26

ABBREVIATIONS

% = Percentage

- ^OC = Degree Centigrade
- Gm = gram
- BE = Biological efficiency
- PPD = Plant Pathology Department
- Spp. = Species (Pleural)
- CDB = Central Department of Botany
- DAP = Diammonium Phosphate
- CAT = Centre for Agriculture Technology
- NARC = Nepal Agricultural Research Council