COMPARISION OF ZIEHL-NEELSEN AND FLUORESCENCE MICROSCOPY FOR DIAGNOSIS OF TUBERCULOSIS

А

DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY

(MEDICAL MICROBIOLOGY)

Ву

SANTOSH THAPA

CENTRAL DEPARTMENT OF MICROBIOLOGY

TRIBHUVAN UNIVERSITY

KIRTIPUR, KATHMANDU, NEPAL

2010

RECOMMENDATION

This is to certify that **Mr. Santosh Thapa** has worked under our supervision and guidance on the thesis entitled "**Comparision of Ziehl-Neelsen and Fluorescence Microscopy for Diagnosis of Tuberculosis.**" To the best of our knowledge this is an original research work of his and has not been submitted for any other degrees.

Supervisor

Assoc. Prof. Dr. Dwij Raj Bhatta, PhD

Supervisor

Ms. Jyotsna Shrestha

Central Department of Microbiology

Tribhuvan University

Kirtipur, Kathmandu

Senior Consultant Medical Microbiologist

NAMS, Bir Hospital

Kathmandu

Date: _____

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Dwij Raj Bhatta, PhD** and **Ms. Jyostna Shrestha** this dissertation work by **Mr. Santosh Thapa**, entitled "**Comparision of Ziehl-Neelsen and Fluorescence Microscopy for Diagnosis of Tuberculosis.**" has been approved for the examination and is submitted to Tribhuvan University in partial fulfillment of the requirements for degree of Master of Science in Microbiology (Medical).

Dr. Dwij Raj Bhattta, PhD

Head of the Department, Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu,Nepal

Date _____

BOARD OF EXAMINERS

Recommended by:

Dr. Dwij Raj Bhatta, PhD

Supervisor

Ms. Jyotsna Shrestha

Supervisor

Approved by:

Dr. Dwij Raj Bhatta, PhD

Head of the Department

Examined by:

Prof. Dr. Basista Rijal, PhD

External Examiner

Assist. Prof. Mr. Dev Raj Joshi

Internal Examiner

Date _____

ACKNOWLEDGEMENTS

I would like to express sincere thanks to my internal supervisor Associate Professor **Dr**. **Dwij Raj Bhatta**, Head of Department, Central Department of Microbiology, TU, Kirtipur, for his guidance and critical evaluation throughout the study.

I would like to express my sincere gratitude to **Ms. Jyotsna Shrestha**, Senior Consultant Medical Microbiologist, National Academy of Medical Science, Bir Hospital, for her encouragement and every possible support during this study as a supervisor.

I express my cordial gratitude to Professor **Dr. Anjana Singh**, Professor **Dr. Shreekant Adhikari**, Associate Prof. **Dr. Prakash Ghimire**, Assist. Prof. **Mr. Binod Lekhak**, **Ms. Reshma Tuladhar, Ms. Shaila Basnayat**, **Mr. Dev Raj Joshi**, **Dr. Megha Raj Banjara** and **Mr. Komal Raj Rijal**, for their constant support, inspiration and encouragement. I would further like to extend my respect to all staffs of Central Department of Microbiology for their kind help.

I express my sincerest gratitude and deep respect to Director, Rector, Head of Department of Pathology, NAMS, Bir Hospital for providing laboratory facility to conduct this thesis work. I am especially thankful to Mr. Purushottam Dhakal, Mr. Purushottam Karmacharya, Shayama mam, Mohan sir, Kapil KC, Arjun dai and other staffs of National Academy of Medical science, Bir Hospital.

I am immensely thankful and express my heartiest gratitude to my friends **Krishna**, **Pramod**, **Rajesh**, **Ranjit**, **Roshan**, **Suresh**, **Lama** and all my friends, colleagues, and well wishers for their moral support and invaluable help they provided during my study.

I express a very special acknowledgement to my family, who always gave me inner strength and confidence all the time.

Date:

Santosh Thapa

ABSTRACT

Tuberculosis (TB) is a serious threat to human health and is a global concern. Nepal is one of the endemic countries to TB and hence early detection of cases can be milestone to limit the spread of disease. A comparative study was conducted in Microbiology Laboratory, Bir Hospital to develop improved strategy for laboratory diagnosis of Acid Fast Bacilli (AFB) in suspected TB patients. A total of 2,592 different specimens (pulmonary 2,492, extra pulmonary 100) from 1,019 suspects visiting Bir Hospital, were included in the study. ZN and Fluorescence microscopy methods were applied in each specimen for acid fast staining. The total positive yield from the 2,592 specimens was slightly higher by Fluorescence microscopy 160 (6.17%) as against 140 (5.4%) positive by the Z-N microscopy. The higher proportion of positive results seen in fluorescence microscopy was found statistically significant difference (p < 0.05).

Among suspects of 2,492 different specimens for pulmonary tuberculosis, 155 were found AFB positive by either of the method. Out of 155 positive cases of TB, 133 cases were found to be positive by ZN microscopy and 153 by Fluorescence microscopy. Whereas among 100 suspects of extra pulmonary tuberculosis, both ZN microscopy and Fluorescence microscopy gave same results (i.e. 7 positive cases).

It was found that the sensitivity of Fluorescence microscopy greatly improves the diagnosis of TB. Furthermore, this method is also simple, easy and fast for low income laboratories with high sample load.

Keywords: AFB, ZN microscopy, Fluorescence microscopy, Tuberculosis, Diagnosis.

TABLE OF CONTENTS

	Page no.
Title	i
Recommendation	ii
Certificate of Approval	iii
Board of Examiners	iv
Acknowledgements	V
Abstract	vi
Table of Contents	vii
List of Abbreviations	xi
List of Tables	xiii
List of Appendices	xiv
List of Photographs	XV
CHAPTER I: INTRODUCTION	1
CHAPTER II: OBJECTIVES	4
CHAPTER III: LITERATURE REVIEW	5-40
3.1. Epidemiology of tuberculosis	5
3.1.1. Transmission	6
3.1.2. Risk of infection	7
3.2. Tuberculosis and HIV co-infection	7
3.3. Control and prevention of tuberculosis	8

3.3.1. Prevention of human infection	8
3.3.2. Control of reservoir	9
3.3.2.1. Treatment	9
3.4. Causative agent of tuberculosis	10
3.4.1. Morphology of <i>M. tuberculosis</i>	11
3.5. Cellular structure and acid fast property of Mycobacterium	11
3.6. Pathogenesis of tuberculosis	13
3.6.1. Entry of bacteria	13
3.6.2. Incubation period	13
3.6.3. Immunology	13
3.7. Clinical form of tuberculosis	16
3.7.1. Pulmonary tuberculosis	16
3.7.2. Extra pulmonary tuberculosis	17
3.8. Diagnostic method of tuberculosis	18
3.8.1. Clinical diagnosis	18
3.8.2. Radiological diagnosis	18
3.8.3. Laboratory diagnosis	19
3.8.3.1. Specimen handling	19
3.8.3.2. Specimen transport	21
3.8.3.3. Biosafety	22
3.8.3.4. Microscopy	23
3.8.3.4.1. Concentration of sputum specimen	30
3.8.3.4.2. Limitations of sputum smear microscopy	31
3.8.3.4.3. Quality control of acid fast smears microscopy	33

3.8.3.5. Conventional culture method	33
3.8.3.6. Automated methods (radiometric and non radiometric)	34
3.8.3.7. Serological tests	35
3.8.3.8. Tuberculin test	36
3.8.3.9. Molecular method	36
3.8.3.10. Molecular epidemiology/genotyping	37
3.8.3.11. Novel diagnostic tests	37
3.8.3.12. Drug resistance tuberculosis and drug susceptibility test	38
3.8.3.12.1. Multi drug resistance tuberculosis	38
3.8.3.12.2. Extensive drug resistance tuberculosis	39
3.8.3.12.3. Drug susceptibility test	40

CHAPTER IV: MATERIALS AND METHODS 41-45 4.1. Materials and Chemicals used 41 41 4.2. Methodology 4.2.1. Laboratory settings 41 4.2.2. Case definitions 41 4.2.3. Sample collection and processing 41 4.2.4. Concentration of samples 42 4.2.5. Preparation of smears 42 4.2.6. Staining methods 42 4.2.6.1. Ziehl Neelsen staining 43 4.2.6.2. Fluorochrome staining 43 4.2.7. Precautions 43

4.2.8. Quality controls	44
4.2.9. Recording and Interpretation of Microscopy results	44
4.3. Statistical analysis	45
CHAPTER V: RESULTS	46-51
CHAPTER VI: DISCUSSION AND CONCLUSION	52-55
6.1. Discussion	52
6.2. Conclusion	55
CHAPTER VII: SUMMARY AND RECOMMENDATION	56-57
7.1. Summary	56
7.2. Recommendation	57
CHAPTER VII: REFERENCES	58-69
APPENDICES	I-XI

ABBREVIATIONS

- AFB Acid Fast Bacilli
- AO Auramine O
- AP Auramine Phenol
- AR Auramine Rodamine
- BCG Bacillus Calmate Guerin
- CD Cluster of Differentiation
- CMI Cell Mediated Immunity
- CR complement receptor
- CSF Cerebrospinal Fluid
- DNA Deoxyribonucleic Acid
- DOTS Directly Observed Treatment Short course
- DST Drug Susceptibility Test
- EIA Enzyme Immune Assay
- EPTB Extra Pulmonary Tuberculosis
- FM Fluorescence Microscopy
- FNA Fine Needle Aspiration

HIV/AIDS Human Immune Virus/Acquired Immune Deficiency Syndrome

- IFN Interferon
- IgM Immunoglobulin M
- IL Interleukin
- IUATLD International Union against Tuberculosis and Lung Disease
- LAM Lipoarabinomannan

- MDR Multi Drug Resistance
- MDT Multi Drug Therapy
- ML flow test *M. leprae* flow test
- MTB Miliary Tuberculosis
- NTC National Tuberculosis Centre
- OPD Out Patient Department
- PCR Polymerase Chain Reaction
- PMNs Polymorphonuclear Neutrophils
- PPD Purified Protein Derivatives
- PTB Pulmonary Tuberculosis
- QC Quality Control
- RNA Ribonucleic Acid
- STC SAARC Tuberculosis Centre
- TB Tuberculosis
- Th1 T-helper cell 1
- TNF Tumor Necroting Factor
- UV Ultraviolet
- WHO World Health Organization
- ZN Ziehl-Neelsen

LIST OF TABLES

	Page no.
Table 1: ZN and Fluorescence microscopy finding	46
Table 2: Sputum Smears finding by ZN and Fluorescence microscopy	47
Table 3: Agewise distribution of AFB positive cases among pulmonary	
tuberculosis	48
Table 4: Sexwise distribution of AFB positive cases among pulmonary	
tuberculosis	48
Table 5: Distribution of different extra pulmonary samples	
Table 6: Extra pulmonary samples finding by ZN and Fluorescence microsco	ору 50
Table 7: Agewise distribution of AFB positive cases among	
extra pulmonary tuberculosis	50
Table 8: Sexwise distribution of AFB positive cases among	
extra pulmonary tuberculosis	51

LIST OF APPENDICES

Appendix 1: Materials used

Appendix 2: Proforma

Appendix 3: Staining reagent preparation

Appendix 4: Statistical analysis

Appendix 5: Comparison of reporting of ZN and Fluorescence microscopy result

Appendix 6: AFB Positive Results of ZN and Fluorescence Microscopy

LIST OF PHOTOGRAPHS

Photograph 1: Photograph of acid fast bacilli seen in Ziehl-Neelsen microscopy

Photograph 2: Photograph of acid fast bacilli seen in Fluorescence microscopy