EVALUATION OF NITRATE REDUCTASE ASSAY FOR RAPID DETECTION OF DRUG RESISTANT TUBERCULOSIS

А

Dissertation Submitted to the Central Department of Microbiology Tribhuvan University

In Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science in Microbiology

(Medical)

by

Ranjit Kumar Sah

Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal 2010

RECOMMENDATION

This is to certify that Mr. Ranjit kumar Sah has worked under our supervision and guidance on the thesis entitled "EVALUATION OF NITRATE REDUCTASE ASSAY FOR RAPID DETECTION OF DRUG RESISTANT TUBERCULOSIS" as a partial fulfillment of M.Sc. Degree in Microbiology. To the best of our knowledge this work has not been submitted for any other degree.

Dr Dwij Raj Bhatta

Associate Professor, Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Mr Binod Lekhak Assistant Professor, Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Mr Gokarna Raj Ghimire Microbiologist, National TB Centre, Thimi, Bhaktapur, Nepal

Date: _____

CERTIFICATE OF APPROVAL

On the recommendation of Associate Professor **Dr. Dwij Raj Bhatta, Ph.D.**, **Mr. Binod Lekhak** and **Mr Gokarna Raj Ghimire** this dissertation work by **Mr. Ranjit Kumar Sah**, is approved for the examination and is submitted to Tribhuvan University in partial fulfillment of the requirement for M.Sc. Degree in Microbiology.

Dr. Dwij Raj Bhatta

Associate Professor Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Date: _____

BOARD OF EXAMINERS

Recommended by:

Dr. Dwij Raj Bhatta, Ph.D.

(Supervisor)

Mr Binod Lekhak (Supervisor)

Mr. Gokarna Raj Ghimire (Supervisor)

Approved by:

Dr. Dwij Raj Bhatta, Ph.D. Head of Department

Examined by:

Ms. Jyotsna Shrestha Consultant Medical Microbiologist Bir Hospital

Date: _____

Mr. Dev Raj Joshi Assistant Professor, CDM, TU

ACKNOWLEDGEMENT

I first express my sincere gratitude and earnest compliment to my supervisors Associate Professor **Dr. Dwij Raj Bhatta**, Head, Central Department of Microbiology, Tribhuvan University, **Mr. Binod Lekhak**, Assistant Professor, Central Department of Microbiology, Tribhuvan University and **Mr. Gokarna Raj Ghimire**, Microbiologist, NTC, Thimi for their continuous guidance, critical evaluation, kind encouragement and support for the completion of this thesis work.

I also wish to express my gratitude to **Dr. Kashi Kant Jha**, Director, SAARC TB & HIV/AIDS Center and NTC, Thimi; **Dr. Pushpa Malla**, former Director of NTC, Thimi for allowing me to utilize the laboratory facilities.

I humbly pay my sincere respect to **all respected teachers** of Central Department of Microbiology for their kind help their constant support, inspiration and encouragement.

I am especially thankful to Mr. Dhruba Kumar Khadka, Jhabindra Prasad Ghimire, Suraj Man Tuladhar, Ram Babu Shrestha, Hari Maharjan and other staffs of NTC.

I want to acknowledge the supportive contributions and thoughtful suggestions of my senior **Mr. Pappu Mandal**. I am incredibly thankful to all my friends especially Santosh Thapa, Krishna Kumar Raut for their moral support and positive criticism.

Finally, I would like to mention the deepest gratitude to **my parents** for their every support for completion of this work.

Date:_____

Mr. Ranjit Kumar Sah

ABSTRACT

Due to the emergence of multidrug-resistant tuberculosis (MDR-TB), there is an urgent demand for simple, rapid and inexpensive methods of detecting drug resistant tuberculosis for effective treatment, particularly in low-income countries. This study has the objective to evaluate nitrate reductase assay (NRA) efficacy for streptomycin, isoniazid, rifampicin and ethambutol susceptibility testing of Mycobacterium tuberculosis strains. This prospective study was carried out at National TB Reference Laboratory and SAARC TB and HIV/AIDS Centre, Thimi, Bhaktapur, Nepal from November 2009 to May 2010. A total of 113 clinical isolates of M. tuberculosis were tested for four first line antitubercular drugs by nitrate reductase assay and were compared with standard proportion method. The sensitivity and specificity of NRA were 98.1% and 100% for isoniazid, 95.1% and 98.6% for rifampicin, 91.4% and 94.9% for streptomycin, and 78.6% and 97.9% for ethambutol respectively. Agreement between NRA and proportion method were 99.1%, 97.3%, 93.8%, 95.6% for isoniazid, rifampicin, streptomycin and ethambutol respectively. Results were available in 7-14 days by NRA as compared to proportion method which takes 4-6 wk. NRA is reliable for susceptibility testing of isoniazid and rifampicin, the two most important drugs for the treatment of tuberculosis and is also easy to perform and inexpensive. In addition, the reduction in the time necessary to obtain susceptibility results is of fundamental importance.

Key words: Drug susceptibility, *Mycobacterium tuberculosis*, nitrate reductase assay, Proportion method

TABLE OF CONTENTS

	Page no.
Title page	i
Recommendation	ii
Certificate of approval	iii
Board of Examiners	iv
Acknowledgement	V
Abstract	vi
Table of contents	vii-x
List of abbreviations	xi-xiii
List of tables	xiv
List of figures	XV
List of photographs	xvi
List of appendices	xvii
CHAPTER I: INTRODUCTION	1-3
CHAPTER II: OBJECTIVES	4
CHAPTER III: LITERATURE REVIEW	5-33
3.1 Historical perspective of Tuberculosis	5
3.2 The genus Mycobacteria	5-6
3.3 The major TB organism: M. tuberculosis	6-8
3.4 Transmission and pathogenesis	8-10
3.5 Epidemiology of TB	11-12
3.5.1 Global scenario	11
3.5.2 Situation of TB in SAARC region	11
3.5.3 TB in Nepal	11-12
3.6 Drug resistance TB	12-18
3.6.1 Definition	12

3.6.2 Epidemiology of drug resistance TB	13
3.6.3 Development and acquition of drug resistance TB	13-15
3.6.4 Antitubercular drugs and their molecular genetic basis of resistance	15-18
3.7 Laboratory diagnosis of tuberculosis	19-25
3.7.1 Specimen collection and transport	19-20
3.7.2 Processing of specimen	20-21
3.7.3 Smear microscopy	21
3.7.4 Culture	21-22
3.7.5 Species identification	22-25
3.7.5.1 Conventional methods of identification	22-24
3.7.5.2 Non conventional methods for identification	24-25
3.8 Diagnosis of drug reistance tuberculosis	25-31
3.8.1 Conventional phenotypic methods	25-26
3.8.1.1 Resistance ratio method	25
3.8.1.2. Proportion method	25
3.8.1.3 Absolute concentration method	26
3.8.1.4 The BACTEC460 Radiometric Method	26
3.8.2 Genotypic method	26-28
3.8.3 New phenotypic methods	28-29
3.8.3.1 The MODS	28
3.8.3.2 Phage-based methods	28-29
3.8.4 Colorimetric methods	29
3.8.5 Nitrate reductase assay	29-31
3.9 Treatment of tuberculosis	31-33
CHAPTER IV: MATERIALS AND METHODS	34-42

4.1 Materials 34

4.2 Study setting	34
4.3 Study design	34
4.4 Study period	34
4.5 Study sample	34
4.6 Laboratory methodology	34-41
4.6.1 Collection of sputum	34
4.6.2 Evaluation of sputum	35
4.6.3 Macroscopic examination of sputum sample	35
4.6.4 Processing of sputum specimen	35
4.6.5 Microscopic examination of processed sputum	35
4.6.6 Culture	35
4.6.6.1 Inoculation and incubation	35
4.6.6.2 Culture examination	36
4.6.6.3 Recording and reporting of culture results	36
4.6.6.4 Microscopic examination of ZN staining	36
4.6.7 Subculture of isolates	36
4.6.8 Identification of isolates	36-37
4.6.8.1 Growth on medium containing p-nitrobenzoic acid (PNB)	37
4.6.8.2 Niacin production test	37
4.6.9 Antimicrobial Susceptibility Testing	37-39
4.6.9.1 Preparation of drug containing media	38
4.6.9.2 Preparation of bacillary suspension	38
4.6.9.3 Dilution of bacillary suspension for inoculation	39
4.6.9.4 Inoculation and incubation	39
4.6.9.5 Interpretation of results	39
4.6.10 Nitrate reductase assay method	40-41
4.6.10.1 Inoculation and incubation	40
4.6.10.2 Interpretation of results	40-41
4.7 Quality control	41-42

4.8 Data analysis	42
CHAPTER V: RESULTS	43-46
5.1 Results of Niacin test and growth on PNB-media among cultural isolates	43
5.2 Drug Susceptibility Pattern of M. tuberculosis isolates	43-44
5.3 Agreement between Proportion and NRA methods	45
5.4. Number of days required for reportable results by NRA method	46
CHAPTER VI: DISCUSSION AND CONCLUSION 6.1 Discussion 6.2 Conclusion	47-50 47-50 50
CHAPTER VII: SUMMARY AND RECOMMENDATIONS 7.1 Summary 7.2 Recommendations	51-52 51-52 52
CHAPTER VIII: REFERENCES	53-68

A]	PP]	EN	DI	CES	: I-	VIII
----	-----	----	----	-----	------	------

i-xiii

LIST OF ABBREVIATIONS

AFB	Acid Fast Bacilli
AIDS	Acquired Immuno Deficiency Syndrome
BACTEC	Becton Dickinson and Company
BCG	Bacille Calmette Guéruin
BTS	British Thoracic Society
CDC	Centre for Disease Control
CPC	Cetyl Pyridinium Chloride
DNA	Deoxyribo Nucleic Acid
DOTS	Directly Observed Treatment Short course
DOT-SCC	Directly Observed Therapy with Short-Course Chemotherapy
DRS	Drug Resistance Surveillance
DST	Drug Susceptibility Testing
EMB/E	Ethambutol
EPTB	Extra Pulmonary Tuberculosis
E-test	Epsilometer-test
ETH	Etionamide
FDC	Fixed Dose Combination
GI	Growth Index
HIV	Human Immunodeficiency Virus
ICL	IsoCitrate Lyase
INH/H	Isoniazid
IS	Insertion Sequence
IUATLD	International Union Against Tuberculosis and Lung Diseases
LAMs	Lipoarabinomannans
LiPA-Rif	Line Probe Assay- Rifampicin
LJ	Lowenstein Jensen
MABA	Microplate Alamar Blue Assay

MDR	Multi Drug Resistant
MDR-TB	Multi Drug Resistant-Tuberculosis
MGIT	Mycobacterium Growth Indicator Tube
MIC	Minimum Inhibitory Concentration
MOTT	Mycobacteria Other than Tuberculous bacilli
MTC	Mycobacterium Tuberculosis Complex
MTT	3-(4,5 diMethylThiazol-2-yl)-2,5-diphenyl Tetrazolium bromide
NAD	Nicotinamide Adenine Dinucleotide
NALC-NaOH	N-Acetyl Cysteine-Sodium Hydroxide
NPV	Negative Predictive Value
NR	Nitrate Reductase
NRA	Nitrate Reducatase Assay
NTC	National Tuberculosis Centre
NTM	Non-Tuberculous Mycobacteria
NTP	National Tuberculosis Programme
PCR	Polymerase Chain Reaction
PM	Proportion method
PNB	Para-NitroBenzoic acid
POA	Pyrazinoic Acid
PPV	Positive Predictive Value
РТВ	Pulmonary Tuberculosis
PZA/Z	Pyrazinamide
RFLP	Restriction Fragment Length Polymorphism
RMP/R	Rifampicin
RNA	Ribo Nucleic Acid
RR	Resistance Ratio method
SAARC	South Asian Association for Regional Cooperation
SEAR	South East Asia Region
SM/S	Streptomycin
STAC	SAARC Tuberculosis and HIV/AIDS Centre

TB	Tuberculosis
ТСН	Thiophene 2 Carboxylic acid Hydrazide
WHO	World Health Organization
XDR	Extended Drug Resistant
XDR-TB	Extended Drug Resistant Tuberculosis
ZN	Ziehl-Neelsen

LIST OF TABLES

- Table 3.9Standard regimens for previously treated patients depending on the
availability of routine DST to guide the therapy of individual retreatment
patients
- Table 4.1Concentrations of drugs used for proportion method
- Table 5.1
 Results of Niacin test and PNB test among culture positive
- Table 5.2Drug Susceptibility Pattern of *M. tuberculosis* isolates (n=113)determined by the proportion method and NRA method.
- Table 5.3Comparison of Indirect Nitrate Reductase Assay results with
conventional Proportion Method
- Table 5.4Percentage agreement between the Proportion and the NRA methods for
susceptibility testing of *M. tuberculosis* to each drug tested
- Table 5.5Number of days required for result by NRA method

LIST OF FIGURES

Figure 1 The development and spread of drug- and multi-drug resistant tuberculosis

Figure 2 Flow chart of methodology

LIST OF PHOTOGRAPHS

- Photograph 1 Result of drug susceptibility test by nitrate reductase assay method (all drug susceptible *M. tuberculosis*)
- Photograph 2 Result of drug susceptibility test by nitrate reductase assay method (isoniazid, rifampicin and streptomycin resistance; ethambutol resistance)

LIST OF APPENDICES

		Page no.
APPENDIX-I:	Material used during the study	i-ii
APPENDIX-II:	Composition and preparation of reagents	iii-v
	1. Ziehl-Neelsen (ZN) staining reagents	iii
	2. Digestion and decontamination reagents	iii-iv
	3. Griess reagent	iv
	4. Mc Farland no. 1	iv-v
	5. Niacin test reagents	V
APPENDIX-III:	Preparation of culture media	vi-viii
	1. Lowenstein-Jensen medium	vi
	2. Preparation of 0.5 mg/ml para-nitrobenzoic	
	Acid (PNB) containing medium	vii
	3. Preparation of drug solutions and drug	
	Containing medium	vii-viii
	4. Preparation of media for Nitrate Reductase	viii
	Assay	
APPENDIX-IV:	1. Ziehl-Neelsen (ZN) staining procedures	ix
	2. Sodium hydroxide (Modified Petroff) method for	
	Digestion and decontamination of sputum sample	ix
APPENDIX-V:	Identification of <i>M. tuberculosis</i>	X
APPENDIX-VI:	Quality check of media for drug susceptibility test	x-xi
APPENDIX-VII:	Calculation of Specificity, Sensitivity and Predictive	
	Value	xii
APPENDIX-VIII:	Statistical Analysis	xiii