SERO-EPIDEMIOLOGY OF MEASLES AND RUBELLA IN NEPAL

A DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MEDICAL MICROBIOLOGY

BY BIMAL PAUDEL

CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KIRTIPUR, KATHMANDU, NEPAL 2010

RECOMMENDATION

This is to certify that **Mr. Bimal Paudel** has completed this dissertation work entitled **"Sero-epidemiology of Measles and Rubella in Nepal"** as a partial fulfillment of Master of Science Degree in Microbiology under our supervision. To our knowledge, this work has not been submitted for any other degree.

Dr. Dwij Raj Bhatta, Ph. D. Associate Professor and Head Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Dr. Mukunda Sharma Co-Chief Pathologist National Public Health Laboratory Department of Health Services Ministry of Health and Population

Date:

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Dwij Raj Bhatta and Dr. Mukunda Sharma**, this dissertation work of **Mr. Bimal Paudel**, entitled "Sero-epidemiology of Measles and **Rubella in Nepal**" has been approved for the examination and is submitted to the Tribhuvan University in the Partial fulfillment of the requirements for **Master of Science Degree in Microbiology (Medical)**.

Dr. Dwij Raj Bhatta Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Date:

BOARD OF EXAMINERS

Recommended by:

Dr. Dwij Raj Bhatta

Supervisor

Dr. Mukunda Sharma Supervisor

Approved by:

Examined by:

Dr. Dwij Raj Bhatta Head of Department

Ms. Jyotsna Shrestha External Examiner

> Mr. Dev Raj Joshi Internal Examiner

Date:

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere and profound gratitude, and earnest compliment to my respected supervisor Dr. Dwij Raj Bhatta, Associate Professor and Head, Central Department of Microbiology, T.U., for his all long guidance, constant inspiration, tremendous support and encouraging attitude.

It gives me an immense pleasure to express my sincere gratitude and heartfelt appreciation to my respected supervisor Dr. Mukunda Sharma, Co-chief Pathologist, National Public Health Laboratory, Teku for her constant inspiration, superb guidance and great support during this research work.

I am also highly indebted to my respected teachers Prof. Dr. Anjana Singh. Prof. Dr. Shreekant Adhikari, Asso. Prof. Dr. Prakash Ghimire, Mr. Binod Lekhak, Ms. Saila Basnyat, Ms. Reshma Tuladhar, Mr. Dev Raj Joshi, Dr. Megh Raj Banjara, Mr. Komal Raj Rijal for their guidance and genuine cooperation throughout my M. Sc. studies.

I would like to thank Dr. Geeta Shakya, Director, National Public Health Laboratory, Teku for her support during the dissertation process. I would also like to express my gratitude to Mr. Shyam Pd. Khanal, Senior Medical Technologist, Mr. Bishnu Pd. Upadhyaya, Senior Medical Technologist, Mr. Khagendra Prakash KC, Microbiologist, Ms. Supriya Sharma, Microbiologist, Mr. Bala Ram Adhikari, Microbiologist and Ms. Srijana Shrestha, Microbiologist, NPHL for encouragement and support during the laboratory work. I am thankful to Mr. Ramji Sapkota, Mr. Gorkarna Raj Ghimire and all the staffs of NPHL for their help and cooperation through out the laboratory work.

Thanks are also due to Mr. Tikaram Sedai (WHO-IPD), Mr. Sushil Shakya (WHO-IPD) and all the staffs of Central Department of Microbiology for their support during work.

Many thanks go to all my friends for their supportive contributions during this research work.

Finally, I am greatly obliged to my parents and sisters without whose constant inspiration and unconditional support, this work would not have been completed.

Date:

Bimal Paudel

ABSTRACT

Background: Measles and Rubella are endemic in Nepal with Measles causing greatest morbidity and mortality in children among all vaccine preventable diseases and increasing no. of Rubella cases posing greater public health challenge of congenital defects.

Methods: This study was designed to estimate sero-prevalence of Measles and Rubella in Nepalese population based at NPHL, with WHO-IPD. During the period of March 2009 to February 2010, a total of 1009 specimens from suspected Measles/Rubella cases were tested for anti-Measles IgM and anti-Rubella IgM.

Results: Out of 1009 suspected cases, 53.5% were male and 46.5% were female. Of the total suspected cases tested by ELISA technique, 1.8% cases were Measles positive whereas 49.7% cases were Rubella positive. Among confirmed Measles positive 55.6% cases were from male and 44.4% cases were from female similarly 50.5% cases were male and 49.5% were female among all confirmed Rubella positive. Highest no. of Measles positive cases were from age group 5-15 years (44.4%) followed age group 1-5 years (38.9%), below 1 year (11.1%) and 15-45 years (5.6%). Collectively 94.4% Measles positive cases were from age group up to 15 years and rest 5.6% from above 15 years. Similarly Highest no. of Rubella positive cases were also from age group 5-15 years (60.7%) followed by 1-5 years (28.3%), below 1 year (4.2%), 15-45 years (3.2%) and above 45 years (0.2%). Collectively 96.6% Rubella positive cases were from age group up to 15 years and rest 3.4% from above 15 years. Measles positive cases were clustered in summer season (61.1%) with highest in July (44.4%). Most of the Rubella positive cases were observed in summer season (47.1%) followed by spring season (44.9%) with highest no. in June (113, 22.6%). Among 60 districts, Measles positive cases were observed only from 11 districts while Rubella positive cases were observed from 43 districts. The highest no. of Measles positive cases were confirmed in Kathmandu district (27.8%) followed by Doti (22.2%). The highest no. of Rubella positive cases were observed in Mahottari district (15.6%) followed by Dang (14.2%), Kathmandu (11.4%), Bhaktapur (6.4%) Dhankuta (5.2%) and Gorkha (3.6%). These six districts accounted 56.3% of total Rubella positive cases. Measles positive cases were equal from CDR and FWDR 6(33.3% each). Highest no. of Rubella positive cases were from CDR (46.1%) followed by EDR(22.4%), MWDR(16%), WDR(9%) and FWDR(5%). Majority of Measles and Rubella positive cases were from Hill and Terai region. Higher sero-positivity rate (7.6%) for measles was observed in patients who were unvaccinated compared to vaccinated (1.2%).

Conclusion: The actual Measles and Rubella burden can be estimated by strengthening and expanding the diagnostic facilities in the country. Further strengthening the vaccination strategies for measles along with need to introduce Rubella containing vaccine in immunization program should be emphasized.

Key words: Measles, Rubella, serum, epidemiology, vaccination

TABLE OF CONTENTS

Title Page	Ι
Recommendation	II
Certificate of Approval	III
Board of Examiners	IV
Acknowledgement	V
Abstract	VI
Table of Contents	VII
List of Abbreviations	XI
List of Tables	XIII
List of Figures	XIV
List of Photographs	XV
List of Appendices	XVI
CHAPTER-I: INTRODUCTION	1
CHAPTER-II: OBJECTIVES	4
2.1 General Objective	
2.2 Specific Objectives	4
CHAPTER-III: LITERATURE REVIEW	5
3.1 Measles and Rubella	5
3.2 Measles and Rubella Virus: The Etiological Agent	6
3.2.1 History	6
3.2.2 Classification	9
3.2.3 Morphology and Structure	9
3.2.3.1 Physical and Morphological properties	9
3.2.3.2 Genome structure and Function	13
3.2.4 Replication	13
3.3 Infection	14
3.3.1 Postnatal acquired infection	14
3.3.1.1 Clinical features	14

3.3.1.2 Pathogenesis	17
3.3.1.3 Reinfection	18
3.3.1.4 Immune Responses	19
3.3.2 Congenitally acquired Rubella	20
3.3.2.1 Clinical features	20
3.3.2.2 Pathogenesis	25
3.3.2.3 Persistance of Virus	26
3.4 Mode of Transmission	26
3.5 Period of communicability	27
3.6 Reservoir	28
3.7 Epidemiology	28
3.7.1 Global disease burden	29
3.7.2 Measles and Rubella in SEAR	32
3.7.3 Measles and Rubella in Nepal	34
3.8 Diagnosis of Measles and Rubella	35
3.8.1 Clinical diagnosis	35
3.8.2 Etiological diagnosis	36
3.8.2.1 Culture	36
3.8.2.2 Serology	38
3.8.3 Molecular diagnosis	39
3.9 Prevention and Control	40
3.9.1 Vaccination	40
3.9.2 Control of Transmission	40
3.9.3 Integrated Measles and Rubella Control	41
3.10 Treatment	41
CHAPTER-IV: MATERIAL AND METHODS	42
4.1 Material	42
4.2 Methodology	42
4.2.1 Study design	42
4.2.2 Study period	42
4.2.3 Laboratory site	42

4.2.4 Sample size	42
4.2.5 Sample collection, storage and transport	42
4.2.6 Data collection	43
4.2.7 Specimen Exclusion	43
4.2.8 Specimen Precesing	43
4.2.8.1 Protocol of the test	43
4.2.8.2 Calculation and quality control	45
4.2.8.3 Interpretation of the result	45
4.2.9 Data analysis	46
CHAPTER-V: RESULTS	47
5.1 Genderwise distribution of Measles and Rubella	47
5.2 Agewise distribution of Measles and Rubella	
5.3 Monthwise and Seasonal distribution of Measles and Rubella	
5.4 Districtwise and Reasonal Distribution of Measles and Rubella	
5.5 Measles in Vaccinated and Unvaccinated patients	60
CHAPTER-VI: DISCUSSION AND CONCLUSION	61
6.1 Discussion	61
6.2 Conclusion	

CHAPTER-VII: SUMMARY AND RECOMMENDATION	70
7.1 Summary	70
7.2 Recommendations	72

CHAPTER-VIII: REFERENCE	73

APPENDICES

LIST OF ABBREVIATIONS

C Cytosine	
CDC Centre for Disease Cont	rol and Prevention
CDR Central Development Re	egion
CMI Cell Mediated Immunity	7
CF Complement Fixation	
CFR Case Fatality Rate	
COV Cut-off Value	
CPE Cytopathic Effect	
CRS Congenital Rubella Synd	drome
CSF Cerebro Spinal Fluid	
DNA Deoxyribo Nucleic Acid	1
DoHS Department of health Se	ervice
EDR Eastern Development Re	egion
EIA Enzyme Immuno Assay	
ELISA Enzyme Linked Immune	osorbent Assay
EPI Expanded Programme o	n Immunization
FWDR Far-western Developme	nt Region
G Guanine	
HI Haemagglutination inhib	bition
Ig Immunoglobulin	
IgA Immunoglobulin A	
IgD Immunoglobulin D	
IgE Immunoglobulin E	
IgG Immunoglobulin G	
IgM Immunoglobulin M	
IPD Immunization Preventab	le disease
MHC Major Histocompatibilit	y Complex
MMR Mumps Measles Rubella	a

MPC	Mean Positive Control
MR	Measles Rubella
MV	Measles Virus
MWDR	Mid-western Development Region
NA	Not Available
NDV	Newcastle Disease Virus
NIP	National Immunization Programme
NPHL	National Public Health Laboratory
OD	Optical Density
ORF	Open Reading Frame
PCR	Polymerase Chain Reaction
PHA	Passive Hemagglutination
QNS	Quality not sufficient
RNA	Ribo Nucleic Acid
RT-PCR	Reverse Transcriptase-Polymerase Chain Reaction
SEAR	South East Asia Region
SIA	supplemental immunization activity
SLAM	Signaling Lymphocyte Activation Module
SMO	Surveillance Medical Officer
SSPE	Subacute Sclerosing Panencephalitis
U	Uracil
UK	United Kingdom
USA	United States of America
UV	Ultra Violet
WDR	Western Development Region
WHO	World Health Organization
WPR	West Pacific Region

LIST OF TABLES

- Table 1:Measles deaths, by region in 2004 estimated by World Bank
- Table 2:Measles Incidence per 100000 populations, SEAR 1999-2008
- Table 3:Genderwise distribution of Measles cases
- Table 4:Genderwise distribution of Rubella cases
- Table 5:
 Agewise distribution of Measles cases
- Table 6:Agewise distribution of Rubella cases
- Table 7:
 Monthwise distribution of Measles cases
- Table 8:Monthwise distribution of Rubella cases
- Table 9:
 Seasonwise distribution of Measles cases
- Table 10:
 Seasonwise distribution of Rubella cases
- Table 11:
 Districtwise distribution of Measles and Rubella cases
- Table 12:
 Regional distribution of Measles cases
- Table 13:Regional distribution of Rubella cases
- Table 14:
 Geographical distribution of Measles cases
- Table 15:
 Geographical distribution of Rubella cases
- Table 16:
 Measles positive cases by Measles vaccination history

LIST OF FIGURES

- Figure 1: Morphology of Measles Virus
- Figure 2: Morphology of Rubella Virus

LIST OF PHOTOGRAPHS

Photograph 1: Microtiter wells (IgM) with controls and diluted samples

Photograph 2: Microtiter wells (IgM) after addition of stop solution

LIST OF APPENDICES

Appendix-I: List of the equipments and materials used during the study Appendix-II: Standard Operating Procedure (SOP) for Measles Appendix-III: Standard Operating Procedure (SOP) for Measles Appendix-IV: Kit Package Insert (ELISA Test for the Detection of IgM Antibodies to Measles Virus in SIEMENS) Appendix-V: Kit Package Insert (ELISA Test for the Detection of IgM Antibodies to Rubella Virus in SIEMENS) Measles/Rubella Laboratory Request Form Appendix-VI: Appendix-VII: Surveillance form for Measles/Rubella Measles/Rubella Labline Form received in NPHL Appendix-VIII: Appendix-IX: Laboratory Results Reporting Form Appendix X: Laboratory working form Appendix XI: Kit Pacakge Insert for supplementary reagents Appendix XII: Tools for Analysis of Data