

Disk Scheduling Algorithms

Dissertation/Project Work

Submitted To

Central Department of Computer Science and Information Technology Institute of Science and Technology Tribhuvan University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

In

Computer Science and Information Technology

By

SUBASH PARI AR

May, 2008

Kirtipur, Nepal

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Date:

LETTER OF RECOMMENDATION

Mr. *Subash Pariyar* has carried out this project work entitle "DISK SCHEDULING ALGORITHMS" under my supervision and guidance. In my best knowledge this project work successfully completed which fulfills the requirements for the award of the Degree of Master's in Computer Science and Information Technology, therefore I recommended for further evaluation.

Prof .Dr. Shashidhar Ram Joshi Department of Electronics and Computer Engineering Pulchowk Campus, Pulchowk (Supervisor)

Institute of Science and Technology

Central Department of Computer Science and Information Technology

We certify that we have read this project work and in our opinion it is satisfactory in the scope and quality as a dissertation as the partial fulfillment of the requirement of Master of Computer Science and Information Technology from Tribhuvan University, Nepal.

Evaluation Committee

Dr. Tanka Nath Dhamala Head, Central Department of Computer Science and Information Technology Tribhuvan University, Kirtipur Prof. Dr. Shashidhar Ram Joshi Department of Electronics and Computer Engineering Pulchowk Campus, Pulchowk (Supervisor)

(External Examiner)

(Internal Examiner)

Date:

Acknowledgements

This project work would not exist without help, advice and encouragement of many people. I thank my supervisor, Professor Dr. Shashidhar Ram Joshi, who taught me much about teaching and research methodology. His broad theoretical knowledge and idea has always brought a breath of fresh air during the most challenging of time.

I am grateful to the professors and lecturer, Prof. Dr. Devi Dutta Paudyal, Dr. Subarna Shakya, Prof. Dr. Onkar Pd. Sharma, Mr. Arun Timilsina, Mr. Sudarshan Karanjit, Mr. Min Bhadur Khati, Mr. Samujjwal Bhandari, Mr. Bishnu Gautam and Mr. Hemanta B.C of Central Department of Computer Science and Information Technology who, while not being directly involved in my thesis work, nevertheless influenced me greatly.

.Many thanks go to my colleagues, who helped me directly or indirectly to accomplish my work. I am especially grateful to Dr. Tanka Nath Dhamala, Head, Central Department of Computer Science and Information Technology, has also been a positive and encouraging influence on my research efforts.

I want to thank my wife Mrs.Prajuna Pariyar(Shakya) for giving me continuous support and inspiration during my research work. I am also indebted to my friends Mr. Arjun Singh Saud, Mr. Madhav Dhakal, , Mr. Kamal Raj Sharma, Mr. Ashok Dhungana and my brother Mr. Prakash Pariyar for their interest, cooperation, worries and complain.

Finally, I thank to my parents, who were ultimately the people, who prepared me for this endeavour. I own you all my success.

Subash Pariyar mirajacademy@yahoo.com

Abstract

Without I/O, computers are not usable to users. We know that I/O from secondary memories like disk is slower operations. Scheduling of I/O requests such that response time of requests and become as possible as low and also requests does not suffer from the problem of a starvation is big issue in our computer systems. In this project simulates a disk having 200 tracks, implements different existing disk scheduling algorithms for that simulated disk and seek time of these algorithms for given I/O request set is compared and analyzed.

CONTENTS

ABSTRACT	IV
ACKNOWLEDGEMENT	V
CONTENTS	VI
LIST OF FIGURES	VIII
1 Introduction	1- 6
1.1 Motivation	1
1.2 general overview	2
1.3Report structure	5
2 Overview of Existing Disk Scheduling Algorithms	7-12
2.1 Introduction	7
2.2 Survey of Existing Disk Scheduling Algorithms	7
3 Problem statement and Objectives	13
3.1 Problem Definition	13
3.2 Objective	13
4 Methodology and Literature Survey	14-16
Methodology	14
Development Model	14
4.3 Assumptions made in our simulation studies	14
4.4 Literature Survey	15
4.5 Data collection	16
5 Design and Implementation	17-32
Design and Implementation	17

	5.2 Tools used	18
	5.3 Main Module of the Program	18
6	Analysis and experimentation	33-47
7	Conclusion and Further work	48-49
	7.1 Conclusion	48
	7.2 Further work	49
	References	50-51

LIST OF FIGURES

FIGURE	TITLE	PAGE NO.
Figure1	Simulation of Disk scheduling	33
Figure2	Acknowledgement	34
Figure3	Window for data entry	35
Figure4	First Come First Serve (FCFS)	36
Figure5	Calculation of FCFS	37
Figure6	Shortest Seek Time First	38
Figure7	Calculation of SSTF	39
Figure8	Scan Scheduling	40
Figure9	Calculation of Scan Scheduling	41
Figure10	C-Scan Scheduling	42
Figure11	Calculation of C-Scan Scheduling	43
Figure12	Look Scheduling	44
Figure13	Calculation of Look Scheduling	45
Figure14	About the Project	46
Figure15	Window for Conclusion	47