MICROBIOLOGICAL STUDY OF URINARY TRACT INFECTION IN PATIENT VISITING PAROPAKAR MATERNITY AND WOMEN'S HOSPITAL, THAPATHALI, KATHMANDU

A DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY (MEDICAL)

> BY BANDANA SUBEDI

CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KIRTIPUR, KATHMANDU, NEPAL 2010

RECOMMENDATION

This is to certify that **Miss BANDANA SUBEDI** has completed this dissertation work entitled "**MICROBIOLOGICAL STUDY OF URINARY TRACT INFECTION IN PATIENT VISITING PAROPAKAR MATERNITY AND WOMEN'S HOSPITAL, THAPATHALI, KATHMANDU**" as a partial fulfillment of Master of Science Degree in Microbiology under our supervision. To our knowledge, this work has not been submitted for any other degree.

Ms. Shaila Basnyat Assistant Professor Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Mr. Ganesh Prasad Acharya M.Sc. MT (Pathology and Cytology) Senoir Medical Technologist Paropakar Maternity and Women's Hospital Thapathali, Kathmandu.

Date:

CERTIFICATE OF APPROVAL

On the recommendation of Ms. Shaila Basnyat and Mr.Ganesh Prasad Acharya, this dissertation work of Miss Bandana Subedi, has been approved for the examination and is submitted to the Tribhuvan University in the Partial fulfillment of the requirements for Master of Science Degree in Microbiology (Medical).

> Dr. Dwij Raj Bhatta, Ph.D. Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Date:....

BOARD OF EXAMINERS

Recommended by:

Ms. Shaila Basnyat

Supervisor

Mr. Ganesh Prasad Acharya

Supervisor

Approved by:

Dr. Dwij Raj Bhatta Head of the Department

Prof. Dr. Bharat Mani Pokharel

External Examiner

Mr. Komal Raj Rijal Internal Examiner

Examined by:

Date:

ACKNOWLEDGEMENT

I express my deepest thanks to all of those who assisted me throughout my research and academic career and made the completion of this dissertation possible.

I sincerely wish my gratitude to Dr. Dwij Raj Bhatta, Head, Central Department of Microbiology, Tribhuvan University for his scholastic inspiration, support, guidance, and encouragement throughout my dissertation.

I express my gratitude to my supervisors Assistant Professor Ms. Shaila Basnyat, Central Department of Microbiology, Tribhuvan University and Mr. Ganesh Prasad Acharya, Microbiologist, Paropakar Maternity and Women's Hospital, Thapathali for their continuous and regular supervision, expert guidance during my dissertation. I am greatly thankful to them for their critical review of the manuscript of my dissertation.

I am highly obliged to Dr. Lata Bajracharya, Director, Paropakar Maternity and Women's Hospital, Thapathali for providing me the Microbiological Laboratory to conduct my dissertation. Similarly I want to thank, Bhairab Budathoki Sir, and all the staff of the hospital for their support and valuable help during my dissertation work.

I would like to thank all the faculty member, staff and classmates of Central Department of Microbiology, Tribhuvan University for their kind cooperation and valuable suggestion and help during my dissertation work.

I am especially gratified to my friends Amrit Acharya, Bharat Sapkota, Dinesh Subedi and Prabin Shakya for their immense help and cooperation during data collection, data entry, statistical analysis and report writing of my dissertation. I am thankful to all the participant patients without whom this dissertation would never have been completed.

Last but not the least I would like to express my deepest gratitude to my family members for their constant support, encouragement and moral boosting.

Bandana Subedi

ABSTRACT

This study was conducted in patients visiting Paropakar Maternity and Women's Hospital, Thapathali, with an objective to assess the Microbiological study of Urinary Tract Infection. Annually, women and their neonates are in the risk of morbidity and mortality due to UTI in case of Nepal. In this study, a total of 1246 clinical samples of urine were collected. Prevalence of uropathogens was found 29.61% (369/1246). A total of 369 uropathogens of which 8 species from Gram negative (82.66%) and 4 species from Gram positive (17.34%) were isolated. In Gram negative, the most predominant was E. coli (62.3%) followed by Klebsiella pneumoniae (6.5%), Proteus mirabilis (4.9%), K. oxytoca (3%), P. vulgaris (2.7%), Enterobacter cloacae (0.5%) and Citrobacter freundii (0.5%). From Gram positive most prevalent were Staphylococcus aureus (7.6%) and coagulase negative staphylococci (CoNS) (7.6%) followed by Streptococcus spp. (1.4%) and S. fecalis (0.8%). The most efficient antibiotics in Gram negatives were found Tobramycin (87.54%). In S. aureus Amikacin (96.43%) was found more susceptible whereas for CoNS and Streptococcus spp. maximal efficient antibiotic was found Nitrofurantoin (75%). Altogether 199 Multidrug resistant strains were isolated. Highest percent of MDR were found in K. pneumoniae (58.33%) in Gram negatives and S. aureus (82.14%) in Gram positives urine isolates, a total of 14 Methicillin Resistant Staphylococcus aureus (MRSA) were isolated. All MRSA isolates were found to be Vancomycin sensitive. Mutiple Antibiotics Resistance index (MARI) of isolates was found more than 0.20 in 247 (66.93%) of isolates. MARI of antibiotics was found highest in antibiotics Nalidixic acid in Gram negative and Moxifloxacin in S. aureus and Penicillin G in CoNS and Streptococcus spp. Previous antibiotics use was found significantly associated with MDR isolates (p=0.029; OR=1.752 CI=1.159 and 2.650).

Keywords: host factors, MARI, uropathogens

TABLE OF CONTENTS

Title pa	ge	i	
Recommendation			
Certificate of Approval			
Board of Examiners			
Acknowledgement			
Abstract			
Table of Contents			
List of Abbreviations			
List of Tables			
List of Photographs			
List of .	List of Appendices		
CHAP	FER I		
1. Introduction			
CHAP	TER II		
2. Obje	ctives	4	
2.1.	General objective	4	
2.2.	Specific objectives	4	
CHAP	FER III		
3. Liter	ature Review	5-31	
3.1.	Urinary tract infection	5	
3.2.	Pathogenesis of UTI	6	
3.3.	Urinary tract and bacterial multiplication in urine	7	
3.4.	Risk factors of UTI	7	
3.5.	Causative agents of UTI	11	
3.6.	Categorization of UTI	11	
3.7.	Urinary tract infection in pregnancy	15	

3.7.1.Types of urinary tract infections in pregnancy	16
3.7.2. Risks factors of UTI in pregnant and non pregnant women	17
3.8. Laboratory Diagnosis of UTI	18
3.8.1. Collection of sample and transport	18
3.8.2. Urinalysis	19
3.8.3. Chemical and enzymatic analysis of urine	19
3.8.4. Urine culture	19
3.8.5. Quantitative culture	20
3.8.6. Antimicrobial susceptibility test or Antibiogram	21
3.8.7. Bacterial resistance to antibiotics	21
3.8.8. Multiple Antibiotics Resistance (MAR) Index	26
3.9. Epidemiology of UTI	27

CHAPTER IV

4. Materials and Methods				
4.1. Materials				
4.2. Methods				
4.2.1. Study design	32			
4.2.2. Collection of the data	33			
4.2.3. Urine sample collection	33			
4.2.4. Urine sample evaluation	33			
4.2.5. Sample processing	34			
4.2.6. Urine culture	34			
4.2.7. Antibiotics selection criteria	35			
4.2.8. Antibiotic susceptibility test	36			
4.2.9. Quality control	36			
4.2.10. Purity plate	37			
4.2.11. Statistical analysis				

CHAPTER V

5. Resu	38-60	
CHAP	ΓER V	
6. Discussion and Conclusion		61-71
6.1	Discussion	61
6.2	Conclusion	71
CHAPT	FER VI	
7. Summary and Recommendation		72-74
7.1	Summary	72
7.2	Recommendation	74
REFERENCES		75-86
APPENDICES		I-XIX

LIST OF ABBREVIATIONS

A/A	:	Acid/ Acid
Alk/A	:	Alkali/ Acid
ARI	:	Antibiotics Resistance Index
AUC	:	Acute Uncomplicated Cystitis
BA	:	Blood Agar
CA-UTI	:	Community Acquired Urinary Tract Infection
CDC	:	Centre for Disease Control
CDM-T U	:	Central Department of Microbiology, Tribhuvan
		University
CFU	:	Colony Forming Units
CoNS	:	Coagulase Negative Staphylococci
DNA	:	Deoxyribonucleic Acid
DoHS	:	Department of Health Services
EC	:	European Commission
ESBL	:	Extended spectrum beta-lactamases
FRAT	:	Formula for Rational Antimicrobial Therapy
GISA	:	Glycopeptide-intermediate Staphylococcus aureus
H_2S	:	Hydrogen Sulphide
HPF	:	High power field
Hrs	:	Hours
LF	:	Lactose fermenting
MA	:	MacConkey agar
MARI	:	Multiple Antibiotics Resistance Index
MDR	:	Multiple drug Resistance
MHA	:	Mueller Hinton Agar
MIC	:	Minimum Inhibitory Concentration
MoPH	:	Ministry of Public Health
MR	:	Methyl Red
MRSA	:	Methicillin-resistant Staphylococcus aureus

MSU	:	Mid-stream urine
NA	:	Nutrient agar
NCCLS	:	National Committee for Clinical Laboratory Standards
NLF	:	Non-lactose fermenting
NPHL	:	National Public Health Laboratory
PABA	:	Para-amino benzoic acid
PBP	:	Penicillin binding protein
PNSSP	:	Penicillin Non-Susceptible Streptococcus pneumoniae
RBC	:	Red Blood Cells
RNA	:	Ribonucleic Acid
rpm	:	revolution per minute
RS	:	Renal Stone
SIM	:	Sulphide Indole Motility
TMP/SMX	:	Trimethoprim-Sulphamethoxazole
TSI	:	Triple Sugar Iron
TUTH	:	Tribhuvan University Teaching Hospital
UK	:	United Kingdom
UPEC	:	Uropathogenic Escherichia coli
US	:	United States
UTI	:	Urinary Tract Infection
VP	:	Voges Proskauer
VRE	:	Vancomycin-resistant Enterococcus
VUR	:	Vesicoureteral Reflux
WBC	:	White Blood Cells
WHO	:	World Health Organization

LIST OF TABLES

Table 1: Classification of urinary tract infection Table 2: Maternal and fetal complications of asymptomatic bacteriuria in pregnancy Table 3: Distribution of patients according to the culture pattern of urine culture results Table 4: Result of Growth pattern of microorganisms Table 5: Distribution of uropathogens in patients visiting the hospital Table 6: Distribution of bacterial isolates in urine according to the origin of patients Table 7: Distribution of uropathogens according to age groups of the patients Table 8: Antibiotics succeptability pattern of gram negative urine isolates Table 9: Antibiotic susceptibility pattern of E. coli **Table 10:** Antibiotic susceptibility pattern of *Proteus vulgaris* Table 11: Antibiotic susceptibility pattern of Proteus mirabils Table 12: Antibiotic susceptibility pattern of Klebsiella oxytoca Table 13: Antibiotic susceptibility pattern of Klebsiella pneumoniae Table 14: Antibiotic susceptibility pattern of Citrobacter freundii Table 15: Antibiotic susceptibility pattern of Enterobacter cloacae Table 16: Antibiotic susceptibility pattern of Pseudomonas aeruginosa **Table 17:** Antibiotic susceptibility pattern of *Staphylococcus aureus* **Table 18:** Age wise distribution of *Staphylococcus aureus* Table 19: Antibiotics susceptibility pattern of CoNS and Streptococcus spp. Table 20: Antibiotic susceptibility pattern of CoNS Table 21: Antibiotic susceptibility pattern of Streptococcus spp. Table 22: Antibiotic susceptibility pattern of Streptococcus faecalis Table 23: Age wise distribution of CoNS, Streptococcus spp. and S. faecalis Table 24: Multiple Antibiotics Resistance (MAR) index of isolates Table 25: MAR Index of antibiotics for Gram negative uropathogens

- **Table 26:** MAR Index for Gram positive uropathognes (*Staphylococcus aureus*)
- **Table 27:**MAR Index of antibiotics for Gram positive uropathognes (CoNS,
Streptococcus faecalis and Streptococcus spp.)
- **Table 28:** Different host factors in UTI positive patients visiting Materity hospital
- **Table 29:** Chi-square test of previous antibiotics and MDR
- **Table 30:**Chi-square test of previous complication and MDR

LIST OF PHOTOGRAPHS

Photograph 1: Pure culture of Escherichia coli isolated on MacConkey agar

Photograph 2: Biochemical tests of Escherichia. coli

Photograph 3: Pure culture of *Pseudomonas aeruginosa* isolated on Nutrient agar plate

Photograph 4: Biochemical tests of *Pseudomonas aeruginosa*

Photograph 5: Antibiotic susceptibility test of *Pseudomonas aeruginosa*: MDR strain

Photograph 6: Pure culture of *Staphylococcus aureus* on Mannitol Salt Agar

LIST OF APPENDICES

- Appendix I: Questionnaire
- Appendix II: Clinical and Microbiological profile of patient
- Appendix III: List of the equipments and materials used during the study
- **Appendix IV:**
 - A. Composition and preparation of different culture media
 - B. Composition and preparation of different biochemical media
 - C. Composition and preparation of different staining and test reagents
- Appendix V: Method of collection of mid-stream urine
- Appendix VI: Multiple Antibiotics Resistance (MAR) index of isolates
- Appendix VII: Morphological and cultural characteristics of bacteria isolated from urine sample
- Appendix VIII: Distinguishing reactions of the common and pathogenic Enterobacteriaceae
- Appendix IX: Zone size interpretative chart
- **Appendix X:** Flow chart of the protocol