FLUOROQUINOLONE SUSCEPTIBILITY PATTERN OF THE SALMONELLA ISOLATES FROM ENTERIC FEVER PATIENTS VISITING TO NATIONAL PUBLIC HEALTH LABORATORY NEPAL

A Dissertation Submitted to the Central Department of Microbiology Tribhuvan University

In Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science in Microbiology (Medical Microbiology)

By

Dhiraj Acharya Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal

TU Reg. No: 5-1-37-416-99 Exam Roll No: 1066/2008 Date of Submission: 28 January 2009

RECOMMENDATION

This is to certify that **Mr. Dhiraj Acharya** has completed this dissertation work entitled **"Fluoroquinolone susceptibility pattern of the** *Salmonella* **isolates from enteric fever patients visiting to National Public Health Laboratory, Nepal**" as a partial fulfillment of M.Sc. Degree in Microbiology under our supervision. To our knowledge, this is an original research work of his and has not been submitted for any other degree.

•••••

Dr. Dwij Raj Bhatta M. Sc., PhD (Microbiology) Associate Professor Central Department of Microbiology Tribhuvan University Kathmandu, Nepal

Prof. Dr. Sarala Malla, MD Director National Public Health Laboratory Department of Health Services Kathmandu, Nepal And Coordinator, MD Pathology National Academy of Medical Sciences Kathmandu, Nepal

Date: January 28, 2009

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Dwij Raj Bhatta** and **Prof. Dr. Sarala Malla**, this dissertation work **by Mr. Dhiraj Acharya** entitled "**Fluoroquinolone susceptibility pattern of the** *Salmonella* **isolates from enteric fever patients visiting to National Public Health Laboratory, Nepal**" has been approved for the examination and is submitted to the Tribhuvan University for partial fulfillment of the requirement for M. Sc. Degree in Microbiology.

Dr. Dwij Raj Bhatta, PhD Head Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal

Date: January 28, 2009

BOARD OF EXAMINERS

Recommended by:	
	Dr. Dwij Raj Bhatta, PhD
	Supervisor
	Prof. Dr. Sarala Malla, MD
	Supervisor
Approved by:	
	Dr. Dwij Raj Bhatta, PhD
	Head of the Department
Examined by:	
	Prof. Dr. Bharat Mani Pokharel, PhD
	External examiner
	Mr. Dev Raj Joshi
	Internal examiner
Date: February 22, 2009	

ACKNOWLEDGEMENT

It gives me an immense pleasure to express my profound gratitude and heartfelt appreciation to respected supervisors Associate Professor **Dr. Dwij Raj Bhatta**, Central Department of Microbiology, Tribhuvan University; and **Prof. Dr. Sarala Malla**, Director, National Public Health Laboratory and Co-ordinator, MD Pathology, National Academy of Medical Sciences for their expert guidance and supervision during the entire period of my research work.

I express my sincere thanks to respected teachers, **Dr. Anjana Singh, Dr. Prakash Ghimire, Dr. Shreekant Adhikari, Mr. Binod Lekhak** and **Ms. Shaila Basnyat** from Central Department of Microbiology, Tribhuvan University for their support and constant encouragement.

I am also grateful to **Mr. Shyam Prakash Dumre**, Microbiologist and **Mr. Bishnu Upadhaya**, Senior Medical Technologist, National Public Health Laboratory for their support, valuable advices, constant encouragement, and cooperation during the research period.

In addition, I thank to all the visiting faculty members and staffs of Central Department of Microbiology, Tribhuvan University for their support. I am also thankful to all the staff of National Public Health Laboratory for their kind co-operation.

Finally, I express my deepest gratitude to my family members for inspiration and support. I am equally grateful to my all dear friends and to all the people who directly or indirectly helped me in completing this work.

Dhiraj Acharya

Date: January 28, 2009

ABSTRACT

Enteric fever caused by *Salmonella enterica* serovar Typhi and Paratyphi A is the most common clinical diagnosis among febrile patients presenting to hospital in Nepal. The aim of this study was to evaluate the fluoroquinolone susceptibility pattern in *S*. Typhi and *S*. Paratyphi A *Salmonella enterica* serovar Typhi and Paratyphi A. During the study period, 41 isolates of *S. enterica* serovar Typhi (59.54%) and Paratyphi A (41.46%) were grown from 443 blood samples from clinically diagnosed enteric fever patients visiting to NPHL. All isolates were identified by conventional biochemical tests and serotyping with *Salmonella* antisera (Denka Seiken Co. Ltd., Japan). Antibiotic susceptibility testing to 8 antibiotics (Ampicillin, chloramphenicol, cotrimoxazole, tetracycline, nalidixic acid, ciprofloxacin, ofloxacin and ceftriaxone) was performed by Kirby Bauer disc diffusion method and CLSI recommended interpretive criteria. MIC to ciprofloxacin, ofloxacin and nalidixic acid were determined by agar dilution method.

Thirty three (80.49%) isolates were resistant to nalidixic acid, with *S*. Paratyphi A showing higher rate (88.23%) of resistance compared to *S*. Typhi (75%). Two *S*. Typhi isolates (4.88%) were MDR (one showing resistance to ampicillin, chloramphenicol, cotrimoxazole and nalidixic acid and other to cotrimoxazole, tetracycline nalidixic acid, ciprofloxacin, ofloxacin) while none of *S*. Paratyphi A were MDR. The isolates with full resistance to ciprofloxacin and ofloxacin with additional resistance to cotrimoxazole and tetracycline has not previously been characterized from Nepal. Ceftriaxone was the most sensitive (100%) drug. Despite this, one encouraging trend reported is the re-emergence of strains sensitive to ampicillin, chloramphenicol, cotrimoxazole and tetracycline (95.12%).

Difference in both MIC and inhibition zone diameter in nalidixic acid sensitive and nalidixic acid resistant isolates was statistically significant (P < 0.001). *S*. Paratyphi A with reduced susceptibility to fluoroquinolones had higher MIC value compared to that of *S*. Typhi (P < 0.001). The decreased susceptibility to fluoroquinolones of *S*. Typhi and *S*. Paratyphi A was strongly correlated (sensitivity and specificity of 100%) with resistance to nalidixic acid. Ciprofloxacin and ofloxacin can no longer be considered as the drug of choice in treating enteric fever due to the high level resistant in nalidixic acid and increasing report of full fluoroquinolone resistant. Due to the re-emergence of susceptibility, conventional drug may play important role in the treatment of enteric fever.

Keywords: - Enteric fever, Salmonella, Reduced fluoroquinolone susceptibility, Nepal

TABLE OF CONTENTS

Title Page			i
Recommend	ation		ii
Certificate o	f Approv	val	iii
Board of Ex	aminers		iv
Acknowledg	gement		V
Abstract			vi
Table of Co	ntents		vii-x
List of Abbr	eviations	3	xi
List of Table	es		xiii
List of Figur	es		xiv
List of Photographs		XV	
List of Appe	ndices		xvi
CHAPTER	I: Intro	duction	1-3
CHAPTER	II: Obje	ectives	4
2.1 C	General o	bjective	4
2.2 S	pecific o	bjectives	4
CHAPTER	III: Lite	erature Review	5-39
3.1	Enteri	c fever	5
	3.1.1	Global burden	5
	3.1.2	Transmission and risk factor	6
	3.1.3	Enteric fever in Nepal and south Asia	7
3.2.	Causa	tive agents of enteric fever	8
	3.2.1	Classification of Salmonella serotypes	8
	3.2.2	Morphological and biochemical characteristics	10

	3.2.3	Antigenic characteristics	11
	3.2.4	Organization of genome	14
	3.2.5	Typing and molecular characterization	15
		3.2.5.1 Serotyping	16
		3.2.5.2 Phage typing	16
		3.2.5.3 Biotyping	16
		3.2.5.4 Molecular typing methods	17
3.3	The di	isease	17
	3.3.1	Pathogenesis	18
	3.3.2	Sign and symptoms	20
	3.3.3	Complications	22
	3.3.4	Relapse	23
	3.3.5	Carrier stage	24
	3.3.6	Treatment, prevention and control	24
		3.3.6.1 Treatment	24
		3.3.6.2 Prevention and control	25
3.4	Drug	resistance	26
	3.4.1	Use of antibiotics in treatment of enteric fever	26
	3.4.2	Evolution of resistance to first line drug	27
	3.4.3	Generation of fluoroquinolones resistance	29
		3.4.3.1 Reduced susceptibility to fluoroquinolones	30
		3.4.3.2 Full fluoroquinolone resistance	30
	3.4.4	Third generation cephalosporins and ESBL production	31
3.5	Labor	atory diagnosis of enteric fever	32
	3.5.1	Microbiological procedure	32
		3.5.1.1 Blood and bone marrow culture	33
		3.5.1.2 Culture of stool, urine and other samples	33
		3.5.1.3 Isolation and identification	34
		3.5.1.3.1 Conventional biochemical tests	34

		3.5.1.3.2 Serotyping	34
	3.5.2	Serological diagnosis	35
		3.5.2.1Widal agglutination test	35
		3.5.2.2 New diagnostic methods	36
	3.5.3	Molecular methods	36
	3.5.4	Diagnosis of enteric fever in Nepal	37
3.6	Antim	icrobial susceptibility testing	37
	3.6.1	Disc diffusion methods	38
	3.6.2	Nalidixic acid screening test	38
	3.6.3	Determination of MIC	39
CHAPTER I	V: Mat	terials and Methods	40-44
4.1	Mater	ials and equipments	40
4.2	Metho	odology	40
	4.2.1	Study site and study period	40
	4.2.2.	Study population	40
	4.2.3	Case definition	40
	4.2.4	Sample size and inclusion criteria	40
	4.2.4	Collection of blood sample	41
	4.2.6	Isolation and identification of Salmonella serotype	41
		4.2.6.1 Isolation	41
		4.2.6.2 Biochemical tests	41
		4.2.6.3 Serological agglutination	41
	4.2.7	Preservation of the isolates	41
	4.2.8	Antimicrobial susceptibility testing	42
		4.2.8.1 Disc diffusion method	42
		4.2.8.2 Determination of MIC	42
4.3	Analy	sis of data	43
4.4	Quality control		

4.5.	Limitations of the study	44
CHAPTER	V: Results	45-59
CHAPTER V	VI: Discussion and Conclusion	60-72
6.1	Discussion	60
6.2	Conclusion	71
CHAPTER V	VII: Summary and Recommendation	73-75
7.1	Summary	73
7.2	Recommendation	75
References		76-100
Appendices		I-XXI

LIST OF TABLES

- Table 3.1Current Salmonella nomenclature
- Table 3.2Biochemical differentiation of species and subspecies of Salmonella
- Table 3.3
 Biochemical reactions of some Salmonella serotypes of subspecies enterica
- Table 3.4
 Antigenic formulae of serotype of Salmonella causing enteric fever
- Table 5.1Distribution of the samples and growth rate in different age group
- Table 5.2
 Antimicrobial susceptibility pattern of the Salmonella isolates
- Table 5.3MIC value and respective zone diameter of nalidixic acid, ciprofloxacin and
ofloxacin in all *Salmonella* isolates

LIST OF FIGURES

- Figure 5.1 Percentage of growth on blood culture
- Figure 5.2 Percentage of *S*. Typhi and *S*. Paratyphi A in growth positive samples
- Figure 5.3 Growth pattern in different days of incubation
- Figure 5.4 Pattern of organism isolated from April to October 2008
- Figure 5.5 Antimicrobial susceptibility patterns of the isolates
- Figure 5.6 Nalidixic acid resistance pattern in *S*. Typhi and *S*. Paratyphi A
- Figure 5.7 Distribution of MIC of ciprofloxacin among the NAR and NAS isolates
- Figure 5.8 MIC scatterplots of nalidixic acid versus ciprofloxacin for *S*. Typhi and *S*. Paratyphi A
- Figure 5.9 Distribution of MIC of ofloxacin among the NAR and NAS isolates
- Figure 5.10 MIC scatterplots for nalidixic acid versus ofloxacin for *S*. Typhi and *S*. Paratyphi A
- Figure 5.11 Scatterplots for nalidixic acid zone diameter versus ciprofloxacin MIC for S. Typhi and S. Paratyphi A
- Figure 5.12 Scatterplots for nalidixic acid zone diameter versus ofloxacin MIC for *S*. Typhi and *S*. Paratyphi A
- Figure 5.13 Scatterplots of ciprofloxacin MIC versus 5µg disc zone diameter with regression line
- Figure 5.14 Scatterplots of ofloxacin MIC versus 5µg disc zone diameter with regression line

LIST OF PHOTOGRAPHS

- Photograph 1 Blood culture for isolation of *Salmonella* from suspected enteric fever patients
- Photograph 2 Pure culture of *S*. Typhi
- Photograph 3 Biochemical test of *S*. Typhi
- Photograph 4 Researcher performing MIC determination test in the laboratory
- Photograph 5 Antibiotic susceptibility test of *Salmonella*
- Photograph 6 MIC determination by agar dilution method

LIST OF APPENDICES

Appendix I	Patient's request form		
Appendix II	Worksheet for blood culture, isolation and identification		
Appendix III	Worksheet for antimicrobial susceptibility testing		
Appendix IV	Working procedures		
	A. Gram staining procedure		
	B. Slide agglutination test for identification of <i>Salmonella</i> spp.		
	C. Antimicrobial susceptibility testing by disc diffusion		
	D. Determination of MIC by agar dilution method		
Appendix V	Composition and preparation of media and reagents		
Appendix VI	Equipments, materials and supplies		
Appendix VII	Preparation of antibiotic stock solution		
Appendix VIII	Inhibition zone diameter size interpretive standards with equivalent		
	MIC breakpoint for Enterobacteriaceae		
Appendix IX	Statistical analysis		

LIST OF ABBREVIATIONS

ACCo	:	Ampicillin, Chloramphenicol and Cotrimoxazole
ACCoT	:	Ampicillin, Chloramphenicol, Cotrimoxazole and tetracycline
CFU	:	Colony Forming Unit
CLSI	:	Clinical Laboratory Standards Institute
DNA	:	Deoxyribonucleic Acid
ESBL	:	Extended Spectrum Beta Lactamase
FQs	:	Fluoroquinolones
MDR	:	Multi-Drug Resistant
MDRST	:	Multi-Drug Resistant S. Typhi
МНА	:	Mueller Hinton Agar
MHB	:	Mueller Hinton Broth
MIC	:	Minimum Inhibitory Concentration
NA	:	Nalidixic Acid
NAR	:	Nalidixic Acid Resistant
NAS	:	Nalidixic Acid Sensitive
NARSPA	:	Nalidixic Acid Resistant S. Paratyphi A
NARST	:	Nalidixic Acid Resistant S. Typhi
NCCLS	:	National Committee for Clinical Laboratory Standards
NPHL	:	National Public Health Laboratory
PCR	:	Polymerase Chain Reaction
QRDR	:	Quinolone Resistant Determining Region

SD	:	Standard Deviation
SIM	:	Sulfur, Indole, Motility medium
SPA or S. Paratyphi A	:	Salmonella enterica subspecies enterica serovar Paratyphi A
SPIs	:	Salmonella Pathogenicity Islands
ST or <i>S</i> . Typhi	:	Salmonella enterica subspecies enterica serovar Typhi
TSI	:	Triple Sugar Iron
T3SS	:	Type III secretion system
WHO	:	World Health Organization