

 a

Tribhuvan University

Institute of Science and Technology

Bottleneck Just-in-Time Sequencing
for

Mixed-Model Production Systems

Thesis
Submitted to

Central Department of Mathematics
Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements
for the Master’s Degree in Mathematics

by

Chudamani Poudyal

December 2008

 b

Tribhuvan University

Institute of Science and Technology

Bottleneck Just-in-Time Sequencing
for

Mixed-Model Production Systems

Thesis
Submitted to

Central Department of Mathematics
Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements
for the Master’s Degree in Mathematics

by

Chudamani Poudyal

December 2008

Supervisor

Dr. Tanka Nath Dhamala

Co-Supervisor

Shree Ram Khadka

 c

 d

 i

ACKNOWLEDGMENTS

To form the existence of this thesis has been a rewarding experience for me. This
research work would not have been completed without the careful guidance and
encouragement that I received from the individuals to whom I am to owe my enormous
debt.

I owe a debt of profound gratitude to my respected supervisor Dr. Tanka Nath Dhamala,
Asst. Professor, Central Department of Mathematics, at present, Head, Central
Department of Computer Science and Information Technology, Tribhuvan University for
his invaluable and untiring guidance, encouragement and suggestions from the very
beginning to the end of the writing of this thesis.

My sincere gratitude goes to my respected co-supervisor, Shree Ram Khadka, Asst.
Professor, Central Department of Mathematics, Tribhuvan University for his genuine
constructive and perennial inspiration to come up with such materials.

I am sincerely grateful to Professor Yadav Prasad Koirala, Head, Central Department
of Mathematics, Tribhuvan University for his continuous encouragement and inspiration.

I am also grateful to the research committee members of Central Department of
Mathematics, Tribhuvan University who conclude a positive decision for providing this
golden opportunity. I owe very much to all my respected teachers of the Central
Department of Mathematics, Tribhuvan University who have always been my source of
legitimate suggestion and inspiration. I would like to express my grateful sincere thanks
to Gyan Bahadur Thapa, Asst. Professor, Pulchowk Campus, Institute of Engineering,
Tribhuvan University, Nepal.

I would like to express my deep respect to Dr. George Steiner, Professor, McMaster
University, Hamilton, Ontario, Canada for providing me some resourceful materials.

I am very much indebted to my family members especially to my mother for her
transcendent and lucid inspiration and suggestion which are indeterminate. My special
thanks go to all my colleagues, friends and relatives for their generative suggestions,
kind help and motivation and others for wishing me all the best.

Finally, I am immensely thankful to my friends Prabin Rai and Prem Bhatta for their
patient computer work and attractive type setting. I am also especially indebted to Bedu
Dahal and Chuda Bohara for their generous grammatical correction with creating
academic environment in my room during the preparation of this thesis.

December 2008 Chudamani Poudyal
Kathmandu, Nepal Central Department of Mathematics

 ii

ABSTRACT

Bottleneck Just-in-Time Sequencing for Mixed-Model Production Systems

Due to today’s competitive automotive industrial challenges of providing a variety of
products at a very low cost by smoothing productions on a flexible transfer line, one of
the most important and fertile research topic in industrial mathematics is to penalize jobs
both for being early and for being tardy. A problem is to determine a production
sequence for producing different types of products on the line. Just-in-Time (JIT) mixed-
model production system is used to address this problem, which involves producing only
the right products of different models of a common base product in evenly balanced
sequences in the exact quantities, at the right times, at the right place. Sequencing JIT
production system can be formulated as a challenging nonlinear integer programming
problem. The goal of such system is to balance the rate of production of products.
Minimization of the variation in demand rates for outputs of supplying processes is the
output rate variation problem (ORVP) and minimization of the variation in the rate at
which different products are produced on the line is the product rate variation problem
(PRVP).

The problem for minimizing of deviations between actual and desired production for
PRVP can be solved efficiently in pseudo-polynomial time complexity. However, the
ORVPs for two or more levels are strongly NP-hard. Heuristic algorithms and dynamic
programming to solve such NP-hard problems are summarized. But ORVPs with
pegging assumption are solvable by reducing them to the corresponding weighted
PRVPs. The cyclic sequences are optimal for both sum and max deviation PRVPs.

For the bottleneck PRVP, a binary search technique is used to test the existence of a
perfect matching and thereby to get optimal sequence. A feasible sequence always exists
such that, at all times, the deviation of actual production from the desired level of
production for every product is never more than one unit for the max-absolute and max-
squared PRVPs. An elegant algebraic concept of balanced words is used to deal the
bottleneck PRVP. The max-absolute PRVP is shown to be Co-NP with leaving its
general complexity open.

In this thesis, we study several interesting algebraic structures, properties, existence of
cyclic solutions and two applications of bottleneck PRVP. An optimal sequence for an
instance of max-absolute PRVP is obtained. With considering two min-sum and max-
absolute objectives, a bicriterion objective for balancing the sequence is analyzed. A
comparative study of different objectives is also summarized. Moreover, several
directions for further research are also explored including some emerged conjectures.

 iii

CONTENTS
ACKNOWLEDGMENTS i

ABSTRACT ii
1 INTRODUCTION 1

2 MATHEMATICAL BACKGROUND 4

2.1 Functions…..………………………………...……………………………….....4

2.2 Sequences…...…………………………..………………………………………5

2.3 Algorithms, Complexity and Heuristics………………………..…………...…..6

2.3.1 Algorithms.…………...….………………………………………………..6

2.3.2 Computational Complexity……………..………………………………...7

2.3.3 Heuristics.………………………...……………………………………….8

2.4 Combinatorial Optimization Problems…………..…………..…………………8

2.4.1 Integer Programming……..……………………………………………....9

2.4.2 Bipartite Matching Problems………..………………………………........9

2.4.3 The Assignment Problems...……..……………………………………...11

2.5 Dynamic Programming……….……………………………………………….13

2.6 Scheduling Problems.………..……………...………….……………………...14

3 MATHEMATICAL FORMULATIONS OF MIXED-MODEL JIT

PRODUCTION SYSTEMS 16

3.1 Multi-Level Problem Formulation………………..…….....………..…………16

3.2 Single-Level Problem Formulation………….……………...…………………19

4 THE SUM-DEVIATION MIXED-MODEL JIT PRODUCTION SYSTEMS 22

4.1 Toyota’s Goal Chasing Method to Solve Sum-Deviation ORVP…………......22

4.2 The Sum-Deviation Mixed-Model PRV-JIT Production Systems.……..…….23

4.2.1 Ideal Corners and Positions…...………………………………………....23

4.2.2 Reduction of sumF to Assignment Problem……...………………………25

4.2.3 Reduction of sumF to Integer Linear Programming……………..………29

4.2.4 The Cyclic Sequences to sumF …………...……..……………………….30

4.2.5 Dynamic Programming for sumF ………………………………...……….32

 iv

5 BOTTLENECK MIXED-MODEL JIT PRODUCTION SYSTEMS 34

5.1 Dynamic Programming for waFmax
~ ……………..…………………………..…...34

5.2 Reduction to Release Date/Due Date Decision Problem…………...…..……..36

5.3 Perfect Matching Representation ……………………………...………..…….41

5.4 Bounds on the Threshold Value ………………………………..………...…...53

5.4.1 Lower Bound……………………………….……………………………53

5.4.2 Upper Bound……………..……………………………………………...57

5.5 The Binary Search for Optimality…………………….……………………….60

5.5.1 Binary Search for Absolute Deviation………………..…………………60

5.5.2 Binary Search for Squared Deviation……………..…………………….64

5.6 The Cyclic Sequences……..…………..………………………………...…….64

5.7 Small Deviations...………………..………………..………………………….66

5.7.1 Small Deviations for aFmax ……………………………………..………..66

5.7.2 Small Deviations for sFmax ……………………………..………………..71

5.8 Two Product Problem……………………..……..……………………………73

5.9 Bottleneck Assignment for maxF ………………………………….…………...74

5.10 Complexity Status of aFmax ………………………………….....………………75

5.11 Application of aFmax Solution…………………...…………..………………….76

6 BICRITERION ANALYSIS 78

6.1 B-Bounded Problem sumF ………………………………..……..……….…….78

6.2 Simultaneous Optimization of maxF and sumF …..……………………..… ……80

7 CONCLUSIONS 84

REFERENCES 86

MATHEMATICAL NOTATIONS 90

 v

LIST OF FIGURES
2.1 Gantt Charts…………………………………...…………………………………….14

4.1 Determination of Ideal Corner and Position……….……………………….…….....24

5.1 Level Curves for the Deviation of Ideal Production from Each Copy over all

 Time Periods……………………………………..………….………………………37

5.2 Deviation “Attributable” to Each Copy of a Product...…...38

5.3 Bipartite Graph of Feasible Producing Times for Four Products Induced by a

 Threshold Value of 75.0=B for aFmax …………………...………………………..…...42

5.4 Convex Bipartite Graph for an Instance ⎟
⎠
⎞

⎜
⎝
⎛

7
4;1,3,3;3 of aFmax ….………………...…..46

5.5 Two Distinct Intervals]...['
ii kk and]...['

jj kk with ji <

 Containing the Neighbors of Vertex k………….…………………..……………….47

5.6 Bipartite Graph of Feasible Producing Times for Five Products with

 Threshold Value B = 13/20 for aFmax …………………..…………………………….54

5.7 Bipartite Graphs for Different Threshold Value for aFmax ………………..………….62

5.8 A Conjectured Topography of Balanced Words and the Solutions of JITSP aFmax …72

6.1 Representation of the Sets of Instances Corresponding to the Values of the

 Quintuplet (AM, SM, AM1, SM1, AS)…………………………………..…………82

6.2 Example of Instances with Sequences Optimizing Several Criteria…………...……82

 vi

LIST OF ABBREVIATIONS
AP Assignment Problem

DP Dynamic Programming

EDD Earliest-Due-Date

JIT Just-in-Time

JITSP Just-in-Time Sequencing Problem

LBAP Linear Bottleneck Assignment Problem

MDJIT Maximum Deviation Just-in-Time

MMJIT Mixed-Model Just-in-Time

MMJITSP Mixed-Model Just-in-Time Sequencing Problem

ORVP Output Rate Variation Problem

PRV-JIT Product Rate Variation Just-in-Time

PRV-MDJIT Product Rate Variation Maximum Deviation Just-in-Time

PRV-MMJIT Product Rate Variation Mixed-Model Just-in-Time

PRV-MMJITSP Product Rate Variation MMJITSP

PRVP Product Rate Variation Problem

SDJIT Sum Deviation Just-in-Time

 1

CHAPTER 1

INTRODUCTION

Mixed-model or flexible manufacturing systems with negligible change-over costs
between the different products make it possible for diversified small-lot instead of large-
lot production, e. g., mixing models (products) on a car assembly line. Just-in-Time (JIT)
production system is designed to control such mixed-model production systems. The
fundamental and underlying ideas of JIT have their origins at least at the beginning of the
twentieth century (see [55]). The philosophy of JIT production system is all about having
“the right product, at the right time, at the right place, and in the exact quantity”. The
goal of such system is to meet customer’s demands for a variety of products without
holding large inventories and incurring large shortages, provided that there is sufficient
production capacity available.

Because of modern competitive industrial challenges of providing a variety of products
at a very low cost by smoothing products (e. g. Toyota production system) and
increasing computer applications (e. g. hard real time), schedulers are motivated in the
years 1980’s on the concept of flexible manufacturing JIT systems to penalize jobs both
for being early and tardy. JIT makes production operations more efficient, effective in
cost and responsive to the customers. Overall, JIT lowers the cost and inventory, reduces
waste, and thereby raising the quality of products and profit.

A multi-level JIT production system consists of hierarchy of finite and distinct levels
such as products, sub-assemblies, components, raw materials, etc. It is a pull system
where the sub-assemblies, components, raw materials, etc. are pulled forward as they are
needed. The multi-level JIT production system is more challenging problem in
sequencing theory than the single-level JIT production system because the components
require for different models may or may not be distinct in multi-level but the different
models require the same number and mix of components in single-level. Production is
initiated by higher level’s requirement for another level’s output. As a result, the final
assembly line is the focus for control. Its sequence determines the production sequence at
all other levels.

An important and obvious optimization problem associated with JIT production system
is that of determining the sequence for manufacturing different types of products on the
final assembly line that minimizes deviation throughout the line, between the actual and
the ideal (desired) production. The production sequence depends upon the goals of the
manufacturing facility. Typically, there are two goals; usage and loading. A production
sequence with usage goal is referred to as leveling or balancing the sequence and one of
the foremost proponents of JIT system, Monden [41] describes it as the cornerstone of
the JIT production system by the management of Toyota and how it is handled at Toyota,
the first company to use JIT production system.

The seminal work of Miltenburg [37] is the formulation of the balanced sequence
problem for single-level mixed-model JIT production system as a nonlinear integer
programming, under the assumption that the products require approximately the same
number and mix of parts. As an extension, Miltenburg and Sinnamon [39] and Mitenburg
and Goldstein [38] formulate the multi-level JIT production systems. Miltenburg et al.

 2

[40] purpose a dynamic programming algorithm for optimizing the single-level sum-
squared problem.

Kubiak [29] provides a comprehensive review of the analytical literature until 1993. He
also refers to the single-level problem as the Product Rate Variation Problem (PRVP)
and the multi-level problem as the Output Rate Variation Problem (ORVP). We call min-
max for the bottleneck objective and min-sum in the case of sum objective. Inman and
Bulfin [24] develop an efficient earliest due date (EDD) first algorithm for the PRVP
with the objective function that is mathematically different but intuitively similar to
Miltenburg [40], and Kubiak and Sethi [32, 33].

Steiner and Yeomans [49] investigate the bottleneck max-absolute PRVP introducing a
new non-convex objective function to be minimized. The authors reduce the problem
into a single machine scheduling problem with release dates and due dates and develop
an efficient graph theoretic optimization pseudo-polynomial time algorithm for
optimality. The seminal aspect of this research is that an optimal sequence always exists
with the deviation for every product is never more than one unit and the lower bound for
such problem is also established. They [50] also give an algorithm for max-absolute
ORVJIT assembly systems under the pegging assumption. They [50] show that the
problem with pegging assumption is equivalent to a weighted PRVP which then can be
solved by modified algorithm for un-weighted PRVP. They [47] further investigate both
the min-sum and max-absolute objectives simultaneously for the first time.
Subsequently, Labacque et al. [35] compare PRVP with different objective functions and
give structures in which some sequences optimize several objective functions
simultaneously with many conjectures. Further, Steiner and Yeomans [50] establish the
existence of optimal cyclic sequences for the bottleneck PRVP. Similarly, Kubiak [27]
shows that the cyclic sequences are also optimal for the sum PRVP.

Kubiak and Sethi [32, 33] reduce the min-sum PRVP with the objective function the sum
of unimodal, symmetric, nonnegative and convex functions having 0 at 0 into an
assignment problem and thereby present an efficient optimization algorithm with
pseudo-polynomial time complexity determining ideal position of the product and
penalize equally for both early or tardy production, the cost for the corresponding
assignment problem.

Kubiak [29] and Kubiak et al. [34] respectively prove that even the special cases of the
min-sum and min-max ORVPs are NP-hard. However, as a solution procedure, Kubiak et
al. [34] give the dynamic programming approach to solve both the problems. A number
of heuristics are proposed in [34, 38, 39]. Several researchers have implemented meta-
heuristic methods including genetic algorithms, beam search, ant colony optimization,
and a multi-agent method for ORVP to obtain a better solution (see [57]).

Brauner and Crama [7] study structural properties of the max-absolute PRVP and give a
set of algebraic necessary and sufficient conditions for the existence of a solution for a
given objective value. They show that the problem is Co-NP and polynomially solvable
when the number of products is fixed, but its general version is still open whether it is
Co-NP-complete or polynomially solvable [19, 20]. They further improved the upper
bound for max-absolute and proved it is strictly less than one. This bound is further
improved in [28]. They formulate the small deviation conjecture. Brauner et al. [8]
exploit the concept of algebraic balanced words to give the proof of the conjecture. The

 3

max-absolute problem has been studied by reducing it into other scheduling problem
such as the apportionment problem (see [3, 4]) and chairman assignment problem (see
[17]). The applications of min-max optimal JIT sequences have been extended to the
other areas, e. g. in resource allocation problems, multiprocessing, service industry, hard
real time, internet and network services (see [17, 28]). Aigbdo [1] describes the structural
properties of min-sum PRVP and thereby establishes the lower bound for the min-
squared PRVP. Corominas and Moreno [12, 13] investigate relationships between the
solution spaces of different objective functions.

Dhamala [15] presents an efficient min-max-absolute-chain-algorithm to obtain an
optimal solution for max-absolute objective of PRVJITSP. Dhamala et al. [18, 19]
modify various algebraic structures and results established in [7] and [49] for max-
absolute PRVP to max-squared PRVP.

The JIT production system with special attention to bottleneck objectives with matching
problem is the main content of this thesis.

In Chapter 2, a synopsis introduction of the pivotal mathematical terminologies is given
relating to the subsequent study of this work.

The mathematical formulation of the JIT production systems only under the usage goal is
the content of Chapter 3. The first section describes the formulation of ORVP both for
weighted and un-weighted cases. The final section is for the PRVP formulation.

In Chapter 4, the sum deviation JIT production system is investigated in brief. A
heuristic for the ORVP is given. By introducing ideal corners and positions, the PRVP is
reduced to the assignment problem to solve for optimality. The cyclic solutions are
optimal for PRVP. Since the PRVP can be solved in pseudo-polynomial time, an
efficient dynamic programming approach has been given for practical sized problem.

In Chapter 5, we study the sequencing procedures for the bottleneck JIT production
systems with its algebraic structures, important properties including its two applications.
A dynamic programming algorithm has been used to obtain the optimal solutions for the
NP-hard ORVP. The bottleneck JIT problem can be considered as a perfect matching
problem in a convex bipartite graph with the reduction to release date/due date decision
problem (cf. [49]). An optimal sequence can be obtained under the binary search
algorithm within the interval given by the bounds of the problem. The optimal sequence
is also cyclic for this problem (cf. [50]).

The Chapter 6 is devoted to study the min-sum and max-absolute objectives to obtain all
the Pareto optimal solutions. It also gives the comparison results of simultaneous
optimization of different bottleneck and sum objectives.

As a conclusion, Chapter 7 is a synopsis of this work together with concluding remarks,
the main results of this work, and with some open problems for further research.

In this research, we not only study the sequencing procedure both for ORV and PRV
JITSP but also we explore the structural properties, existence of cyclic sequences,
complexity status and two applications of the max-absolute PRVJITSP. Moreover, an
optimal sequence for an instance of max-absolute PRVP is obtained under binary search.

 4

CHAPTER 2

MATHEMARICAL BACKGROUND

2.1 Functions

Let A and B be sets (not necessarily finite). A function f from A to B is an assignment
of exactly one element of B to each element of A. We write () baf = if b is the unique
element of B assigned by the function f to the element a of A. If f is a function from A
to B, then we write BAf →: . The sets A and B are called domain and co-domain of f
respectively. The range of f is the set of all images of elements of A, i. e. the set

(){ }yxfAxByy =∈∃∈ ,,| is the range of f . The graph of the function BAf →: is
the set of all ordered pairs () (){ }yxfandByAxyx =∈∈ ,|, .

A function f which values are in the set of real numbers R is called a real-valued
function and is nonnegative if 0≥f . Since we shall be mostly interested in real valued
function of real variable throughout this thesis, we write only “function” to mean the
real-valued function of real variable unless otherwise specified. The function f is said
to be monotonically increasing if () ()yfxf ≤ whenever yx ≤ . Similarly, f is called
monotonically decreasing if () ()yfxf ≥ whenever yx ≤ .

A function f defined over a set ⊆A R is said to take on its maximum and minimum over
A at the points *x and 'x respectively if () () () Axallforxfxfxf ∈≤≤ *' .

The function f is said to be unimodal if for some value a (the mode) such that either (i)
or (ii) holds:

(i) f is monotonically increasing for ax ≤ and monotonically decreasing for ax ≥ . In
that case, the maximum value of f is ()af and there are no other local maxima.

(ii) f is monotonically decreasing for ax ≤ and monotonically increasing for ax ≥ . In
that case, the minimum value of f is ()af and there are no other local minima.

A set ⊆A R is said to be convex if, whenever it contains x and y , it also contains
elements of the form () 10,,1 ≤≤−+ αααα allforyx . And a function f is said to be
convex over a convex set ⊆A R if for any two points Ayx ∈, and for all 10, ≤≤ αα ,

()() () () ()yfxfyxf αααα −+≤−+ 11 .

The floor function (it is often also called greatest integer function) denoted by ⎣ ⎦x
assigns to the real number x the largest integer that is less than or equal to x . The
ceiling function denoted by ⎡ ⎤x assigns to the real number x the smallest integer that is
greater than or equal to x . The rounding function denoted by][x assigns to the real
number x to the closest integer and if the fractional part of x is equal to ½, it rounds
downward. The following properties are obvious from definition: ⎣ ⎦ ⎡ ⎤xx −=−
and ⎡ ⎤ ⎣ ⎦xx −=− .

 5

2.2 Sequences

By a finite sequence of n terms we understand a function whose domain is the first n
natural numbers and we denote the finite sequence of n terms by ()nsss ,...,1= .

Definition 2.2.1 [51, 52, 54] An alphabet (or vocabulary) A is a finite non-empty set of
elements called symbols (letters). A word (or infinite sequence) over A is defined as a
subjective function N →A, where N is the set of all natural numbers. Sometimes, it is
also called bi-infinite word or N-word and is denoted by (),...,, 321 ssss = .

A function f : N×N→R is called a double sequence (see [2]). Here we state an
interesting theorem arising in JIT assembly systems concerning to double sequence.

Theorem 2.2.1 [53] Let ijλ (∈≤≤ jni ;1 N) be a double sequence of nonnegative

numbers with 2≥n such that 1
1

=∑
=

n

i
ijλ for all j∈N. For an infinite sequence s in an

alphabet },...,1{ n , let ikx be the number of si' in the k-prefix of s. Then here exists a
sequence s in },...,1{ n such that

()12
11sup

1, −
−≤−∑

= n
x

k

j
ikij

ki
λ . �

We construct an infinite word s on an alphabet },...,1{ nA = as (),..., 21 sss = such that

Ask ∈ is the kth letter of s, for all k∈N. A factor of s is a finite word ()jkk sssS ,...,, 1+=

for some j with k≤ j and the length of S is 1+−= kjS . The empty word is the word of
length 0. We say that the index k is the position of the letter i∈A in the word s. The rate
(density) ir of the letter i∈A in finite word, S is defined as the fraction

S
S

r i
i = , where |S|i

denotes the number of occurrences of the index i in the word S.

Definition 2.2.2 A balanced−δ word on alphabet },...,1{ nA = is an infinite sequence

(),..., 21 sss = such that
i) js ∈A for each j∈N, and
ii) if S and R are two subsequences consisting of t consecutive elements of s (t∈N), then
the number of occurrences of i in S and R differs by at most δ , i. e. δ≤−

ii
RS for

each i∈A.

For a finite word S, let S* = (SSS...) be the repetition of S. An infinite word s is called
periodic if s = S* for some finite word S. An infinite word s is called periodic,

balanced−δ word if s is balanced−δ and s = S* for some finite word S. A finite word S
is called symmetric if S = SR, where SR is a mirror reflection of S, then, S is clearly a
palindrome. An infinite word s is called periodic, symmetric and balanced−δ word if s
is balanced−δ and s = S* for some finite symmetric word S. One of the main problems
of balanced words in practice is to construct an infinite periodic sequence over a finite
set of letters whose each letter is distributed as "evenly" through the sequence as possible

 6

and each letter occurs with a given rate. Unfortunately, the existence of balanced
sequences for most rates is unlikely (see [20]).

Brauner et al. [8] prove the following theorem.

Theorem 2.2.2 There exists a periodic, symmetric and 1-balanced word on n≥3 letters

with rates nrrr <<< ...21 , if and only if the rates verify
12

2 1

−
=

−

n

i

ir . �

2.3 Algorithms, Complexity and Heuristics

2.3.1 Algorithms

A computational problem is a mathematical object representing a general question that
might want to solve and is independent of its specific input. A problem with a specific
set of inputs is called an instance. Hence, a computational problem is a function

:Π Z Υ→ , where Z is the set of all problems instances I and Υ is the set of solutions.
Naturally, one seeks an algorithm for solving a computational problem. An algorithm, in
short Alg, is any well-defined sequence of mathematical procedure for solving a
prescribed problemΠ . We say that an algorithm solves problemΠ , if it computes ()IΠ
for each instance ∈I Z. Let us denote A () { }Π=Π solvesAA lg|lg .

Here, a searching algorithm to find an integer from the list of integers naa ,...,1 where

naaa <<< ...21 is described. To search for the integer x in the list, we begin by asking
the questions of the form “Is iax > for some ?1,...,1, −= niai ”. This can be done by
first asking whether x is in the upper or lower half of the interval []naa ...1 which is the
set of all integers between 1a and na including both, then asking whether x is in the
upper or lower half of the new (smaller by a factor of 2) interval, and so on, repeat this
process until a list with one term is obtained. The full algorithm is as follows:

Algorithm 2.3.1 [45] The Binary Search

Input: A list of n integers naaa <<< ...21 .
Output: Position of an integer x .

set: 1=i (i is the left end point of search interval)
nj = (j is the right end point of search interval)

 while ji < , do
 begin

 ⎥⎦
⎥

⎢⎣
⎢ +

=
2

: jim ;

 if max > then 1+= mi ;
 else mj = ;
 end
 if iax = then position: = i ;
 else position: =0.

 7

(Position is subscript of the term equal to x , or 0 if x is not found)

2.3.2 Computational Complexity

Definition 2.3.1 [6, 11, 43, 45] Let f and g be functions from the set of integers or the set
of real numbers to the set of real numbers. We say that f(x) is))((xgO if there are
constants 0>c and k∈N such that)()(xgcxf ≤ whenever kx > . (This is read as
“f(x) is big-Oh of g(x).”)

One of the major goals of computational complexity theory and algorithm analysis is to
measure the performance of algorithms with respect to their computational time. The
running time of an algorithm is said to be))((khO if for some constant 0>c there
exists an implementation that terminates after at most)(khc elementary steps of
computer for all instances of size 0kk ≥ . The smallest function such that the algorithm
has running time))((khO is called the time complexity of the algorithm (see [9, 16]).
The time complexity ()kT of a problem Π is the minimal time complexity of all
Alg∈A(Π) so that for some constant 0>c and ∈0k N it holds)()(khckT ≤ for all

0kk ≥ . The existence of this minimality in general is not guaranteed and it is in fact one
of the focal points of research in the computational complexity theory. Obtaining the
lower bounds for the complexity of a problem are harder, however upper bounds are
usually obtainable.

A polynomial time (polynomial) algorithm is the one whose time complexity function

))(()(khOkT ∈ , where h is some polynomial and k is the input length of an instance I. If
time complexity function cannot be bounded by the polynomial function, it is called
exponential time algorithm (see [6, 16]). A computational problem Π is called
polynomially solvable if there exists a polynomial time algorithm to solve it. A problem
Π is called pseudo-polynomially solvable if the time complexity function)(kT is
polynomial with respect to I and)max(I , where I and)max(I respectively denote
the input length and the largest integer appearing in the instance Π∈I . Hence, the
notion of pseudo-polynomially solvable depends on the magnitude of the largest input
data involved.

Given any problem instance ∈I Z of an optimization problem to minimize a certain
objective function γ with respect to constraint set X, the optimal solution is given by

{ }Xxxx ∈= |)(min)(0 γγ , therefore,)()(0xI γ=Π . However, the range Υ must
contain elements to represent “unbounded” and “infeasibility”, too, in general. A
problem Π is called decision problem if { }noyes,=Υ . Each optimization problem has
its decision counterpart which is associated by defining an additional threshold value y
for the corresponding objective functionγ . For example, given an additional threshold
value y for the objective function γ we ask: does there exist a feasible solution Xx∈
such that yx ≤)(γ ?

In complexity classes, the set of all decision problems which are polynomially solvable
is denoted by P. The class of all decision problems whose all yes instances can be

 8

checked for validity in polynomial time, given some additional information called
certificate, is denoted by NP (Non-deterministic Polynomial Time).

Similarly, the class of all problems that are the complements of the problems in NP, i. e.
for every no instance I there exists a concise certificate for I, which can be checked for
validity in polynomial time, is denoted by Co-NP. The set of complements of NP-
complete problems is called Co-NP-complete.

We say that a decision problem 2Π reduces to another decision problem 1Π , denoted by

12 Π∝Π , if there exists a polynomial time transformation function :h Z2→Z1 such that
yesI =Π)(2 for ∈I Z2 if and only if yesIh =Π))((1 for ∈)(Ih Z1. A decision problem

1Π is called NP-complete if NP∈Π1 and for any other known decision problem
NP∈Π 2 we have 12 Π∝Π . Since it follows from 12 Π∝Π that the problem 1Π is at

least as NP-hard as the problem 2Π , it is sufficient to consider any known NP-complete
problem 2Π in the complexity hierarchy. The “problem reducibility” relation is a
transitive relation on the class of decision problems. A decision problem in NP is called
NP-complete in strong sense if it can be solved pseudo-polynomially only if P = NP,
which is one of the major open problems in modern mathematics. An optimization
problem is called NP-hard if the corresponding decision problem is NP-complete.

Example 2.3.1 [6, 43] THREE PARTITION
Given 3n integers { }ncc 31 ,..., , is there a partition of these integers into n triples nTT ,...,1
such that
 ∑ ∑

∈ ∈

=
ij kjTc Tc

jj cc , for all ki, ?

This problem is strongly NP-complete.

2.3.3 Heuristics

Any approach without formal guarantee of performance can be considered a “heuristic”.
Such approach is useful in practical situations when no better method is available (see
[9]). A heuristic does not always guarantee to solve the problem, but often solves it well
enough for most uses, and often does so more quickly than a more complete solution
would. Heuristic is the art and science of discovery and invention. The word comes from
the Greek root as “eureka”, means “to find”. A heuristic for a given problem is a way of
direction towards a solution (see [46]). It is different from an algorithm in that it merely
serves as a rule of thumb or guideline, as opposed to an invariant procedure. Heuristics
may not achieve the desired outcome, but can be extremely valuable to problem-solving
(see [55]). Good heuristics can dramatically reduce the time required to solve a problem
by eliminating the need to consider unlikely possibilities or irrelevant states.

2.4 Combinatorial Optimization Problems

Combinatorial optimization (it is also often called “discrete optimization”) is a branch of
applied mathematics and theoretical computer science, related to algorithm theory,
computational theory etc. A combinatorial optimization is a function :Π Z Υ→ , in
which Π seeks to pick out the best feasible solution fromΥ which is in this case finite

 9

or possibly countably infinite. Hence, the domain Z of combinatorial optimization
problem Π is a set of optimization problem instances I having finite or countably
infinite number of feasible solutions under some given constraints. Some combinatorial
optimization problems are described here.

2.4.1 Integer Programming

An optimization problem in the form
[P2.1] minimize ()xf

subject to the constraints

nWx

bAx
∈

=
 (2.1)

where :f Rn→R, ()
nmijaA

×
= integer matrix, b an n -dimensional integer column

vector, and W is the set of whole numbers, is called the integer programming. The
problem [P2.1] is said to be linear integer programming (ILP) if in addition f is linear
having integer coefficients (see [43]). And the problem [P2.1] is said to be nonlinear
integer programming (NLIP) if the function f is non linear. A vector ()nxxx ,...,1=
satisfying the constraints (2.1) is called feasible solution to the problem [P2.1]. If

{ }nx 1,0∈ , then the problem [P2.1] is said to be binary linear program or zero-one linear
program (ZOLP) (see [43]).

Definition 2.4.1 A square, integer matrix B is called unimodular (UM) if its
determinant () 1det ±=B . An integer matrix A is called totally unimodular (TUM) if every
square, non-singular sub-matrix of A is UM.

The following theorem is implicit in [43].

Theorem 2.4.1 If the coefficient matrix A of ILP is TUM, then the LP relaxation of ILP
gives the optimal ILP solution.

2.4.2 Bipartite Matching Problems

A graph as a mathematical structure is a pair ()EVG ,= where { }nvvV ,...,1= is a non-
empty finite set of vertices (or nodes), and E has as elements subsets of V of cardinality
two called edges. An edge between two vertices iv and jv for ji ≠ is denoted by

],[ji vv . A directed graph, or digraph is a pair ()AVG ,= where V is again a set of
vertices and A is a set of ordered pairs of vertices called arcs; that is, VVA ×⊆ . An arc
directed from vertex iv to jv is denoted by),(ji vv . If Avv ji ∈),(, then iv is the
predecessor of jv and jv is the successor of iv . For the sake of simplicity, we write

()EVG ,= for undirected graph and ()AVG ,= for digraph by ignoring the words
undirected and directed throughout this study.

Two vertices iv and jv in V are adjacent if there exists an edge Ee∈ having iv and jv
as its end-vertices in a graph ()EVG ,= ; we say e is incident with iv and jv . A graph

 10

()EVG ,= with { } { }mn eeEvvV ,...,,,..., 11 == can be represented by its node-edge
incidence mn× matrix ()ijmM = , where

⎩
⎨
⎧

=
otherwiseo

vwithincidentiseif
m ij

ij

1

The graph ()EVG ,= together with a function →Ew : R+ is called the edge weighted
graph and together with a function →Vw :' R+ is called vertex weighted graph, where
R+ is the set of all nonnegative real numbers. Suppose that ()EWG ,= is a graph that
has the following property. The set of vertices W can be partitioned into two sets, V and
U, and each edge in E has one vertex in V and one vertex in U, i. e. any [] Euv ∈, implies
that Vv∈ and Uu∈ . Then G is called a bipartite graph and is usually denoted by

()EUVG ,U= . A bipartite graph ()EUVG ,U= is said to be complete if each vertex of
V is connected to each vertex of U. The bipartite graph ()EUVG ,U= is V-convex if
there is an ordering on V such that Euv ki ∈],[and Euv kj ∈],[with jiji vvVvv <∈ ,,
implies that Euv kp ∈],[for jpi vvv ≤≤ (see [48]).

A matching M of a graph ()EVG ,= is a subset of the edges with the property that no
two edges of M share the same node. Given a graph ()EVG ,= , the matching problem is
to find a maximum matching M of G (see [43]). When the cardinality of a matching is

⎥
⎦

⎥
⎢
⎣

⎢

2
V

, the largest possible in a graph with V nodes, we say that the matching is

complete, or perfect and the problem of finding a perfect matching M of G is called the
perfect matching problem (see [43]).

Let us consider a graph ()EVG ,= together with a fixed matching M of G. Edges in M
are called a matched edges; the other edges are free. If],[vu is a matched edge, then u
and v are mate to each other. Nodes that are not incident upon any matched edges are
called exposed; the remaining nodes are matched.

Now, consider a bipartite graph ()EUVG ,U= with mUVn =≤= . For any subset X
of vertices, denote by ()XN the neighborhood of X, i. e. the set of all vertices adjacent
to at least one vertex in X. Clearly, n is an upper bound for the perfect matching in G.
The following theorem due to Hall [1935] (see [7, 9]) gives necessary and sufficient
conditions for the existence of a matching with cardinality n.

Theorem 2.4.2 [7, 9] Let ()EUVG ,U= be a bipartite graph with mUVn =≤= .
Then there exists in G a matching with cardinality n if and only if

 () VXallforXXN ⊆≥ .

A maximum matching M in a bipartite graph ()EUVG ,U= can be calculated in
()()EUVO .,min time (see [43]). But for a convex bipartite graph Steiner and

Yeomans [48] prove the following.

 11

Theorem 2.4.3 [48] The maximum matching problem in the V-convex bipartite graph
()EUVG ,U= with nU = can be solved in ()nO time.

2.4.3 The Assignment Problems

The assignment problem is one of the fundamental combinatorial optimization problems
in the branch of optimization or operations research in mathematics. It consists of finding
a maximum weighted matching in a weighted bipartite graph. Let us consider the
complete bipartite graph ()UVUVG ×= ,U with mUVn =≤= . Define a cost
function →Ec : R+ such that () ijji cuvc =],[where ijc is the cost of assigning the vertex

Vvi ∈ to the vertex Uu j ∈ . An assignment is given by a one-to-one mapping
UV →:ϕ . The assignment problem (AP) [P2.2] is to find an assignment ϕ such that

()∑
=

=
n

i
ij ijc

1
, ϕ

is minimized (see [9]). The corresponding Linear Bottleneck Assignment Problem
(LBAP) [P2.3] is to find an assignmentϕ such that

()ijcij ϕ=,max
is minimized (see [56]).

The assignment problem is the weighted complete bipartite matching problem where the
weights ijw are considered to the cost ijc (see [43]). A weighted matching problem is to
find a maximum matching in the weighted graph ()EVG ,= with the smallest possible
sum of the corresponding weights (see [43]).

Here we summarize the Hungarian Method for the assignment problem strictly based on
the reference [43]. To develop the Hungarian Method, without loss of generality, we may
assume that the bipartite graph ()EUVG ,U= is complete with

{ } { }nn uuUvvV ,...,,,..., 11 == , i. e. nUV == . Let { }1,0∈ijx for njni ,...,1;,...,1 == ,
where 1=ijx if the edge],[ji uv is incident in the matching and 0=ijx if otherwise.
Therefore, we must have

{ } njix

nix

njx

ij

n

j
ij

n

i
ij

,...,1,1,0

,...,1,1

,...,11

1

1

=∈

==

==

∑

∑

=

=

 (2.2)

and our goal is to minimize ∑∑
= =

n

i

n

j
ijij xc

1 1
.

To describe the Hungarian Method, we use the following terminology and notations:
The labels of vertices in a graph ()AVG ,= form an array with V entries representing
the predecessor vertex of all vertices. The label of a vertex Vv∈ is denoted by label][v .
To represent the current matching in the complete bipartite graph ()EUVG ,U= we use

 12

the array mate having 2n entries where mate[w] for any vertex UVw U∈ denotes the
vertex 'w which is the mate of w . For any Vv∈ exposed [v] is a node of U that is
exposed and is adjacent to v ; if no such node exists, exposed 0][=v . Now, for nj ,...,1= ,
slack][ju is the minimum of ()jiijc βα −− over all labeled vertices iv of V and

][junhbor is the particular labeled vertex iv with which slack][jv is achieved.

Algorithm 2.4.1 [43] The Hungarian Method

 Input: An n × n matrix][ijc of nonnegative integers.
 Output: An optimal perfect matching (given in terms of the array mate) of the

complete bipartite graph ()EUVG ,U= with nUV == under the
cost ijc .

 begin
 for all Vvi ∈ do 0:,0:][== iivmate α ;
 for all Uu j ∈ do mate][ju :=0, }{min: ijij c=β ;

 (comment: initialize)
 for i := 1,…,n do (comment : repeat for n stages)
 begin
 A: = Ø;
 for all Vv∈ do exposed[v] := 0;
 for all Uu∈ do slack[u] := ∞ ;
 for all ji uv , with UuVv ji ∈∈ , , and iα + jβ = ijc do
 if mate[ju] = 0 then exposed ji uv =:][
 else A:= A U {(vi, mate[uj])};
 (comment : construct the auxiliary graph)

 Q := Ø;
 for all vi∈V do
 if mate[vi]=0 then
 begin
 if exposed[vi] ≠ 0 then augment (vi), go to endstage;
 Q := Q U {vi};
 label[vi] := 0;
 for all uk ∈U do
 if 0<cik - iα - kβ <slack[uk]then slack[uk]:=cik - iα - kβ ,nhbor[uk]:=vi;
 end;

search: while Q ≠ Ø do
 begin
 let vi be any node in Q;
 remove vi from Q;
 for all unlabeled vj ∈ V with (vi, vj) ∈ A do
 begin
 label[vj] := vi;
 Q := Q U {vj};

 13

 if exposed[vj] ≠ 0 then augment (vj), go to endstage;
 for all uk ∈ U do
 if 0<cjk - jα - kβ <slack[uk]then slake[uk]:=cjk - jα - kβ ,nhbor[uk]:= vj;
 end
 end;
 modify;
 go to search
endstage: end
 end

procedure modify
(comment : it calculate 1θ , updates the 'α s and s'β , and activates new nodes to
continue the search)
begin

1θ :=
2
1

Uu∈
min {slake[u]>0};

for all vi ∈ V do
 if vi is labeled then iα := iα + 1θ else iα := iα - 1θ ;
for all uj ∈ U do
 if slack [uj] =0 then jβ := jβ - 1θ else jβ := jβ + 1θ ;
for all u∈U with slack[u]>0 do
 begin
 slack[u]:=slack[u]-2 1θ ;
 if slack[u]=0 then (comment: new admissible edge)
 if mate[u]=0 then exposed[nhbor[u]]:= u, augment(nhbor[u]), go to endstage;
 else (comment: mate[u] ≠ 0)
 label[mate[u]]:=nhbor[u], Q:=QU {mate[u]}, A:=AU {(nhbor[u], mate[u])};
 end
end

procedure argument (v)
 if label [v] =0 then mate[v]:= exposed [v],
 mate [exposed[v]]:= v;
 else begin
 exposed[label [v]] := mate[v];
 mate[v]:= exposed [v];
 mate[exposed[v]]:= v;
 augment(label[v])
 end

Theorem 2.4.4 [43] The Algorithm 2.4.1 correctly solves the assignment problem for a
complete bipartite graph with 2n nodes in ()3nO time.

2.5 Dynamic Programming

Dynamic programming (DP) refers to a computational technique rather than to a
particular type of optimization problem and “programming” in this context refers to a
tabular method (see [11, 23]). DP is an implicit enumerative method as it enumerates in

 14

an intelligent way all possible solutions indirectly (see [9]). A DP algorithm solves every
sub-problem just once and then saves its answer in a table, thereby avoiding the work of
recomputing the answer every time the sub-problem is encountered. The idea is to work
backwards from the last decisions to the earlier ones.

If a DP is applied to a combinatorial problem, then in order to calculate the optimal
solutions for any sub-problem of size k, we first have to know the optimal value for each
sub-problem of size k-1. Thus, if the problem is characterized by a set of n elements, the
number of subsets considered is n2 . It means that usually DP algorithms are of
exponential computational complexity. However, for problems which are NP-hard it is
often possible to construct pseudo-polynomial DP algorithms which are of practical
value for reasonable instance sizes (see [6]).

DP can only be applied when the problem under concern has optimal sub-structure.
Optimal sub-structure means that the optimal solutions of local problems can lead to the
optimal solution of the global problem. That is, the problem can be solved by breaking it
down, and solving the simpler problems.

2.6 Scheduling Problems

Scheduling is a decision making process that plays an important role in manufacturing
and service industries. Suppose there are n-jobs)1(niJ i ≤≤ to be processed on m-
machines)1(mjM j ≤≤ . A schedule is for each job an allocation of one or more time
intervals on one or more than one machines. Schedules may be represented by Gantt-
Charts and is either machine oriented Figure 2.1 (a) or job oriented Figure 2.1 (b).

 (a) (b)

Figure 2.1: Gantt Charts

The processing of a job on a machine is called an operation. A schedule is feasible if no
two time intervals on the same machine overlap, if no two time intervals allocated to the
same job overlap, and, if in addition, it meets a number of problem specific
characteristics (see [9]).

We denote a scheduling problem by a three field notation γβα (cf. [22], see also [6, 9]).
The first field 21ααα = describes the machine environment, where 1α denotes the
machine characteristic and 2α denotes the number of machines used. The single machine
environment is described by o=1α , and 12 =α , i. e. 1=α , where o denotes the empty
symbol. The second field β describes the job characteristic. If we denote preemption,
precedence relation, release date (ir), processing time (ip) and due date (id),
respectively, by 54321 ,,,, βββββ and , then { }54321 ,,,, ββββββ ∈ . The third field, γ ,
denotes the objective function. Corresponding to the completion time iC of job i, the
associate cost is denoted by the function ()ii Cf . The usual bottleneck and sum objective

 15

functions are, respectively, denoted by () (){ }ii

n

i
CfCf

1max max
=

= and () ()∑
=

=
n

i
iisum CfCf

1

.

Furthermore, given id as the fixed parameters for all jobs lateness, tardiness and
earliness defined by iii dCL −= , { }0,max iii dCT −= , { }iii CdE −= ,0max ,
respectively, are usual objective functions depending upon due date parameters. With
each of these functions ih , we get different objectives

() () ()
⎭
⎬
⎫

⎩
⎨
⎧

∈ ∑∑ ∑
== ====

n

i
ii

n

i

n

i
iiiiii

n

iii

n

iii

n

i
hwhwhwhwhwhw

11 1

2

1

2

11
,,,max,max,maxγ .

The Scheduling Around the Shortest Job (SASJ) problem is defined as (see [29]):
“ Given a set of n independent jobs(i. e. jobs without 2β) nJJ ,...,1 , with processing
times nppp ≤≤≤ ...21 to be scheduled on a single machine. Find a nonpreemptive

schedule of the jobs that minimizes ()∑
=

−
n

i
i CC

1

2
1 ”.

Theorem 2.6.1 [29] The problem (SASJ), i. e. the problem

()∑
=

−≤≤≤
n

i
in CCppp

1

2
121 ...1

is NP-hard.

Earliest-Due-Date First (EDD) Algorithm [6, 9]

Whenever a machine is freed, the job with the earliest due is selected to be processed
next. This rule is to minimize the maximum lateness among the jobs waiting for
processing. Actually, in a single machine setting, with n-jobs available at time 0, the
EDD rule does minimize the maximum lateness.

Example 2.6.1:

max
;;1 iii Lpmtndr is the problem of finding a preemptive schedule on

one machine for a set of n-jobs with given release times 0≠ir and due dates 0≠id

such that the objective function
maxiL is minimized. �

 16

CHAPTER 3

MATHEMATICAL FORMULATIONS OF MIXED-MODEL JIT
PRODUCTION SYSTEMS

Mathematical models of a system grow out of equations that determine how the system
changes from one state to the next and or how one variable depends on the value or state
of other variable [36]. By an ideal mathematical formulation of any industrial problem
the way of solution will be simpler and accurate. That is, mathematical modeling is a key
to solve the complex industrial problems specially faced by automobile companies.

Just-in-Time Production System often uses mixed-model assembly lines. The effective
utilization of these lines requires determining the sequence schedule for producing
different products on the line. The sequence depends upon the goals of the
manufacturing facility. There are two goals (cf. [41], see also [25, 39]).

1. USAGE Goal: Keeping a constant rate of usage of all parts in the facility.
2. LOADING Goal: Smooth the work load on the final assembly process to

reduce the chance of production delays and stoppage.
A joint usage and loading problem is developed in [38], and is called the joint problem.
Although both goals are important and need to be considered for all mixed-model
assembly lines, the usage goal is considered to be more important goal for JIT production
system (see [41]). That is, the quantity of each part used by the mixed-model assembly
line per-unit time should be kept as constant as possible. The constant demand rates for
the products yields a constant rate of parts usage. However, the integral nature of
production creates variability between the actual and ideal production. Thus there should
be very little variability in the usage of each part from one time period to the next. This
is called leveling or balancing the sequence (see [37]).

The problems are formulated under the assumption that the systems have sufficient
capacity with negligible switch over costs from one product to another and each product
is produced in a unit time.

The single level problem of JIT production systems is formulated by Miltenburg [37] in
1989 and is in the form of nonlinear integer program. In his research different types of
objective functions are considered and sequencing algorithms and heuristics are
presented in an efficient way. As an extension of that work Miltenburg and Sinnamon
[39] formulate the mixed–model, multi–level JIT assembly systems. But till now, there
are very few research results which are carried out in this area such as [20, 29, 34, 39,
50] etc. The single level and multi level problems are respectively known as Product
Rate Variation Problem (PRVP) and Output Rate Variation Problem (ORVP) (cf. [29]).

3.1 Multi-Level Problem Formulation

A mixed-model multi level assembly consists of a hierarchy of L distinct production
levels Lll ,...,2,1, = with highest product level 1, where multiple copies of various
products are made. The lower production levels subassemblies, component parts and raw
materials are either fabricated or purchased for use in the products. Let ln be the number
of different part types of level l and ild be the demand for part type i of level

lnil ,...,2,1, = . Let ilpt represents the number of total units of part type i at level l

 17

required to produce one unit of product 1,...,2,1, npp = , then ∑
=

=
1

1
1

n

p
pilpil dtd is the

dependent demand for part type i of level l determined by the final product demands

11 ,...,2,1, npd p = . Clearly, .,0,11 otherwiseandpifort pi == Let ∑
=

=
ln

i
ill dD

1
 be the

total part demand of level l . So the demand ratio for part type i at level l is
l

il
il D

d
r =

with 1
1

=∑
=

ln

i
ilr for Ll ,...,2,1= . The preemption is not allowed. Hence, one production

on a product at level 1 has commenced, it must be completed before the production of
another unit can start. This introduces the concept of a stage or cycle. One is said to be
stage k (or in cycle k) if k units of product have been produced at level 1. There will
be k complete units of the various product p at level 1 produced during these first k-
stages and the time horizon will consist of 1D stages in total. Let the quantity of part i
at level l produced during stage 1 through k is denoted by ilkx and lky be the total
quantity of parts produced by level l during stages 1 through k . So clearly,

∑
=

=
ln

i
ilklk xy

1

. Thus, the cumulative production at level 1 through the first k stages is

kxy
n

p
kpk == ∑

=

1

1
11 . By the pull nature of JIT systems and from the fact that lower level

parts (from level 2, 3,…, L) are drawn as needed by the final assembly process, the
particular combination of the highest level products produced during these k stages
(the kpx 1 values) determines the necessary cumulative production at every other level.
Hence, for level 2≥l the required cumulative production through k stages for output i

will be kp

n

p
ilpilk xtx 1

1

1

∑
=

= . Let 0≥ilw be a weighting factor which reflects the relative

importance of balancing the sequence for part i at level l . Now consider ilf unimodal
symmetric convex function with minimum 0 at 0, Llni l ,...,2,1;,...,2,1 == . Then the
mixed-model multi-level JIT production problem [P3.1] is to extract the matrix

()
11

1
~

DnkpxX
×

= that minimizes the following objective function(s) (cf. [34, 39], see also

[19, 38]).
)(max)~(~

,,max illkilkililkli

w ryxfwXF −= , (3.1)

and ∑∑∑
= = =

−=
1

1 1 1
)()~(~ D

k

L

l

n

i
illkilkilil

w
sum

l

ryxfwXF (3.2)

subject to the constraints

 ∑
=

====
1

1
11 ,...,1;,...,1;,...,1,

n

p
lkpilpilk DkLlnixtx (3.3)

 ∑
=

===
1

1
1,...,1;,...,2,

n

i
ilklk DkLlxy (3.4)

 18

 ∑
=

===
1

1
111 ,...,1,

n

p
kpk Dkkxy (3.5)

 1)1(11 ,...,1;,...,1, Dknpxx lkpkp ==≥ − (3.6)
 11011 ,...,1,0,

1
npxdx ppDp === (3.7)

 ,0≥ilkx integer, 1,...,1;,...,1;,...,1 DkLlni l === (3.8)

Constraint (3.3) ensures that the necessary cumulative production of part i of level l by
the end of time unit k is determined explicitly by the quantity of products produced at
level 1. Constraints (3.4) and (3.5) show the total cumulative production of level l and
level 1, respectively, during the time units 1 through k. Constraint (3.6) ensures that the
total production of every product over k time units is a non-decreasing function of k.
Constraint (3.7) guarantees that the demands for each product are met exactly.
Constraints (3.5), (3.6), (3.8) ensure that exactly one unit of a product is sequenced
during one time unit in the product level. The selection of weights will be based on the
total production at various levels. Weights can be used to smooth the variability and to
prevent lower level parts to be dominated over higher level parts in the measures at
different levels and sometimes level wise weights lw can also be considered (see [39,

50]). If { }
11

)(~|~~
1 DnkpxXX ×==χ be the set of all feasible solutions, then the multi level

JIT sequencing problem is equivalent to the optimization problem (see [20]):
{ }χ~~|)~(~min ∈XXF , where { }w

sum
w FFF ~,~~

max∈ .

The objectives of types)~(~
max XF w and)~(~ XF w

sum are respectively known as bottleneck
and sum deviation objectives.

We assume Llniw lil ,...,1;,...,1,1 ==∀= for un-weighted case and the superfluous sub-
script w will be dropped out. So for un-weighted case, the objective function (3.1) and
(3.2) respectively become:
)(max)~(~

,,max illkilkilkli
ryxfXF −= (3.9)

∑∑∑
= = =

−=
1

1 1 1
)()~(~ D

k

L

l

n

i
illkilkilsum

l

ryxfXF . (3.10)

Now for absolute deviation xxfil =)(, the objectives (3.1) and (3.2) respectively take
the form
 illkilkilkli

wa ryxwXF −=
,,max max)~(~ (3.11)

and ∑∑∑
= = =

−=
1

1 1 1
)~(~ D

k

L

l

n

i
illkilkil

wa
sum

l

ryxwXF . (3.12)

Similarly for squared deviation 2)(xxfil = , (3.1) and (3.2) respectively take the form

 2

,,max)(max)~(~
illkilkilkli

ws ryxwXF −= (3.13)

and ∑∑∑
= = =

−=
1

1 1 1

2)()~(~ D

k

L

l

n

i
illkilkil

ws
sum

l

ryxwXF . (3.14)

 19

The absolute and squared objective functions corresponding to (3.11), (3.12), (3.13) and
(3.14) with out weighting factor ilw can be obtained from these objectives by removing

ilw respectively. For convenience, by waFmax
~ , for example, we mean the problem [P3.1]

with the objective function)~(~
max XF wa and the feasible solution set χ~ .

3.2 Single-Level Problem Formulation

The notation of Section 3.1 for the highest product level 1 is used here by dropping out
the superfluous subscript 1. Let us assume that the flexible transfer line produces n (∈N)
different products (models) with demands di∈N for products ni ,...,1= , totaling

∑
=

=
n

i
idD

1

 units are to be produced during a specified time horizon, which is partitioned

into D equal time units of which 1 time unit is required for a unit of a product to be

produced. Let
D
d

r i
i = be the relative demand also known as ideal production rate for

product i with ∑
=

=
n

i
ir

1

1. A JIT system tries to keep the effective production rate as close

as possible to ir and a production sequence is called uniformly leveled if, at each time
period Dkk ,...,1, = , the line has assembled ikr copies of product i (see [35]).

A production sequence),...,,(21 Dssss = is a finite sequence of integers satisfying
Dkfornsk ,...,11 =≤≤ . If isk = then a copy of product i is produced in period k.

A sequence s is feasible if the number of times isk = is precisely di for every
nii ,...,1, = . Let)1;1(Dknixik ≤≤≤≤ be the cumulative production of product i

through period k, then ikx is the number of times kjforis j ≤≤= 1 , and the equation

∑
=

=
n

i
ik kx

1

 must hold for each k. Thus, for any feasible sequence s it is possible to

obtain a corresponding matrix DnikxX ×=)(of the cumulative productions of each
product at each period. Consider)1(nif i ≤≤ be unimodal symmetric convex
nonnegative discrepancy functions between the actual and ideal production with
minimum 0)0(=if and 00)(≠> yforyf i . Then the mathematical model for the single
level mixed-model JIT production system is the following optimization problem [P3.2]:
Find a production sequence),...,,(21 Dssss = , where product i occurs exactly di times
that minimizes the following objective function(s) (cf. [37, 49], see also [14]):

)(max)(
,max iikiki

krxfsF −= (3.15)

 ∑∑
= =

−=
D

k

n

i
iikisum krxfsF

1 1

)()((3.16)

subject to the constraints

 ∑
=

==
n

k
ik Dkkx

1

,...,1, (3.17)

 Dknixx ikki ,...,2;,...,1,)1(==≤− (3.18)

 20

 nixdx iiiD ,...,1,0; 0 === (3.19)
 ,0≥ikx integer. (3.20)

Each of the constraints can be described similarly as in the case of multi level. If

})(|{ DnikxXX ×==χ be the set of all feasible solutions, then the single level JIT
sequencing problem is equivalent to solve the optimization problem (see [14]):
 { }χ∈XsF |)(min , where { }sumFFF ,max∈ .
If we introduce the weighting factor 0≥iw for product nii ,...,1, = , it reflects the
priority of product i relative to the other products in the system. Then the weighted
single level objective functions can be considered as:
)(max)(

,max iikiiki

w krxfwsF −= (3.21)

and ∑∑
= =

−=
D

k

n

i
iikii

w
sum krxfwsF

1 1

)()(

(3.22)

 For absolute deviation xxfi =)(, the objectives (3.15) and (3.16) respectively become:

 iikki

a krxsF −=
,max max)((3.23)

and ∑∑
= =

−=
D

k

n

i
iik

a
sum krxsF

1 1

)(. (3.24)

Similarly for squared deviation 2)(xxf i = , (3.15) and (3.16) respectively become:

 ()2

,max max)(iikki

s krxsF −= (3.25)

 and 2

1 1

)()(iik

D

k

n

i

s
sum krxsF −= ∑∑

= =

. (3.26)

Which are widely studied measure of deviations in the literature. Again as in the case of
multi-level, by aFmax , for example, we mean the problem [P3.2] with the objective
function)(sF a

msx and the set χ . Let 0>B be a constant, then the decision version of the
problem maxF is to decide whether there exists a solution),...,,(21 Dssss = such that

Bkrxf iikiki
≤−)(max

,
 holds for the matrix DnikxX ×=)(derived from s and satisfied the

constraints (3.17)-(3.20), and such a solution is known as B-bounded (B-feasible).

The mixed-model maximum deviation and sum deviation JIT sequencing problems are
respectively denoted by MDJIT and SDJIT problems (see [7, 20]). Similarly the
abbreviated form MMJIT refers to mixed-model Just-in-Time and MMJITSP refers to
MMJIT sequencing problem. The bottleneck objective functions seek to find smooth
sequences at each stage and as a result it precludes the possibility of relatively large
deviations in every time period. In contrast the min-sum objective functions are
concerned for finding the smooth sequences on the average which may result in
relatively large deviations in certain time periods.

Under the pegging assumption, parts of output i at production levels which fed the level
1 are dedicated or pegged to the specific final product into which they will be assembled.
This assumption decomposes the lower level parts that will be assembled into different
level 1 products into disjoint sets. As a result, a distinction is made between ilht and ilpt ,

ph ≠ for each part i at level l . With this assumption the multi level min-sum JIT

 21

sequencing problem can be reduced to a weighted single level problem (see [19, 20]).
Similarly with the same assumption the objective of the bottleneck problem waFmax

~ can be
formulated as (see [20, 50]).

{ }
{ }1,,,

11111,,,max

max

,max)~(~

pplkilpilklip

pilpilpkpilpkppklip

pegaw

krxtw

rkttxwkrxwXF

−=

−−=

LlDkninp l ,...,1;,...,1;,...,1;,...,1 11 ==== . Now by letting { }ilpillip tww
,1 max= , the

objective function reduces to { }111,,,max max)~(~
pkppklip

pegaw krxwXF −= . Now by dropping out

the superfluous subscript 1 the problem is reduced to the weighted PRVP

{ }⎥⎦
⎤

⎢⎣
⎡ −== iikiki

wapegaw krxwsFXF
,maxmax max)()~(~min ,

Dkni ,...,1;,...,1 == and the set χ . Similarly the problem pegwsFmax
~ can be reduced to

wsFmax (see [18]).

 22

CHAPTER 4

THE SUM-DEVIATION MIXED-MODEL JIT PRODUCTION
SYSTEMS

In this chapter, we summarize the solution procedures for sum deviation MMJITSP. The
ORVP s

sumF~ has been shown to be strongly NP-hard by reducing the already known NP-

hard scheduling problem “Around the Shortest Job” to an instance of the ORVP s
sumF~ (cf.

[29]).

The heuristic approach to solve sum deviation ORVP for joint usage and loading
problems is described in [38] and for only usage problems is described in [39]. Toyota
used a heuristic known as Goal Chasing Method (GCM) to solve sum deviation ORVP
with parts usage goal (cf. [41]).

Miltenburg [37] formulates three algorithms and two heuristics to solve s

sumF . Kubiak
and Sethi [33] reduce the problem sumF to the polynomially solvable assignment
problem. The existence of optimal cyclic solution for the problem s

sumF with 3=n , and
for demand vector (600, 600, 100) is presented in [37] for the first time and is proved
analytically in [27].

In Section 4.1 we describe Toyota Goal Chasing Method to solve Sum-Deviation ORVP.
The main strategy of Section 4.2 is to bring the solution approaches for the problem sumF .

4.1 Toyota’s Goal Chasing Method to Solve Sum-Deviation ORVP

Among the major car manufactures, Toyota has always been an innovator in the areas of
manufacturing and assembly. Toyota operates according to the JIT principle. Toyota’s
most important goal in the operation of its mixed-model production system is to keep the
rates of consumption of all parts constant. For sequencing mixed model multi-level JIT
production system, Toyota developed and used an algorithm known as the Goal Chasing
Method (GCM) to sequence automobile final assembly lines, (cf. [41], see also [25, 39]).
The GCM suggests sequencing the product (model) p among 1n products at stage k

)1(Dk ≤≤ with the lowest
2

1
2)1(2

1

2
2

∑
=

− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

n

i
piki

i
pk tx

D
kd

GCM . (4.1)

To minimize this objective the GCM algorithm is described as:

Algorithm 4.2.1 [44] Goal Chasing Method

Step1.
Set { } 1,...,2,1,0 1020 === kandnSxi .

Step 2.
Select for the kth position in the sequence model p* that minimizes the
measure.

 23

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∑

=
−∈ −

2

1 1

2

2)1(2
1

2
* min

n

i
piki

i

Spkp tx
D

kd
GCM

k

.

Step3.

 If more copies of model p* remainto be sequenced, set .1−= kk SS If all
 copies of model p* now already have been sequenced set
 { }.*1 pSS kk −= −

Step 4.
If ,Ø=kS then stop.
If ,Ø≠kS set 2*2)1(22 ,...,1, nitxx pikiki =+= − .
Set k = k+1 and go to step 2.

But in practice it is difficult to apply the GCM to all parts as the total number of parts
required for a car is around 20,000. Therefore, the parts are represented only by their
respective subassemblies. The number of subassemblies is around 20 and Toyota gives
the important subassemblies additional weights. The sub assemblies include the
following items (see [44]):

Engines, Bumpers,
Transmissions, Steering assemblies,
Frames, Wheels,
Front axles, Doors,
Rear axles, Air conditioners.

Since the GCM is developed only for two levels, it considers only the variability at the
subassembly and the variability at final assembly is ignored. The GCM can also be
extended for all levels and is known as Extended Goal Chasing Method (EGCM) (cf.
[39]) in which, for example with L levels and for the objective

2

1 1 1 1

1

∑∑∑
= = =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

D

k

L

l

n

i
ilk

il
l

l

x
D
kd

w sequence the product p at stage k with the lowest

2

1 1
)1(

1
∑∑
= =

− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

L

l

n

i
ilpkil

il
pk

l

tx
D
kd

EGCM (4.2)

and to minimize this objective, a similar algorithm as that of 4.2.1 can be developed.

4.2.1 The Sum-Deviation Mixed-Model PRV-JIT Production Systems

4.2.2 Ideal Corners and Positions

Consider the PRV-JIT problem [P3.2]. Following Kubiak [29, 30], the unique crossing
point ijk satisfying
 () ()iijiiiji rkjfrkjf −−=− 1
and the quantity
 ⎡ ⎤ijij kZ =*

 24

are referred to as the ideal corner and position respectively for the jth copy of product i,
denoted by .,...,2,1;,...,2,1),,(idjniji == For example, if ,,,)(2 ixxxf i ∀= then we
get

 ⎥
⎥

⎤
⎢
⎢

⎡ −
=

−
=

i
ij

i
ij r

jZand
r

jk
2

12
2

12 * .

Figure 4.1: Determination of Ideal Corner and Position

In the Figure 4.1 the point A denotes the ideal corner of),(ji and the point B placed
horizontally along x-axis at a distance p from the origin O is the ideal position of),(ji
for the function xxfi =)(.

Definition 4.2.1 An instance of PRV-JIT problem is said to be standard if

1,...0 21 >≤≤≤< nddd n and the greatest common divisor of Ddd n ,,...,1 is 1,
i.e., 1),,...,gcd(1 =Ddd n .

Lemma 4.2.1 [30] Ideal corners of any product i are equally spaced in [0, D] with the

first corner at
id

D
2

, each next at a distance
id

D from its immediate predecessor and the

last one at
id

D
2

 from D. �

Lemma 4.2.3 [30] For any standard instance 2,...0 21 >≤≤≤< nddd n , if at least one
ideal corner is integer, then some of n sequences of product ideal positions overlap. �

The concept of ideal position for),(ji to be produced is introduced by Inman and Bulfin

[24]. They define the ideal position for (i, j) as
i

ij r
jk
2

12 −
= . They consider a measure of

deviation that is mathematically different, but intuitively similar to the one in PRVP. Let
ijZ denote the time at which the copy (i, j) is actually produced and so it incurs penalty

() ,2
ijij kZ − this leads to the following problem:

 25

[P4.1] minimize ()∑∑
= =

−
n

i

d

j
ijij

i

kZ
1 1

2

 Subject to
 1,...,1;,...,1,)1(−==≤ + ijiij djniZZ (4.3)
 iij djniDZ ,...,1;,...,1,1 ==≤≤ (4.4)
)','(),(,'' jijiZZ jiij ≠≠ (4.5)
 ∈ijZ W, idi ,...,1= (4.6)
Constraint (4.3) ensures that the production time of each copy of a product type i is a
strictly increasing function of each copy j. Constraint (4.4) guarantees that the
production time of any copy of any product lies in the internal [1...D]. Constraint (4.5) is
the only linking constraint and is not in the standard integer programming format and it
specifies that only one copy of any product type can be produced in each period. By
defining ijk as the due-date of copy),(ji where each copy of product is treated as a
separate job, Inman and Bulfin [24] observe that [P4.1] may be interpreted as a single
machine scheduling problem
 ∑

∈

+=
Iji

jijiji TEp
),(

),(),(),()(11 , (4.7)

where),(jip ,),(jiE and),(jiT respectively represents the processing time, earliness and
tardiness of copy),(ji and (){ }idjnijiI ,...,1;,...,1|, === . And in conclusion they
suggest the following.

Theorem 4.2.1 The optimal sequence for [P4.1] is to order the copies following the
EDD rule for the problem (4.7).

The EDD procedure can run in)(nDO time and the EDD rule also gives an optimal
sequence for the sum of absolute deviations as well (see [24, 29]).

4.2.2 Reduction of sumF to Assignment Problem

Consider the problem [P3.2] with objective function)(sFsum , where each if is assumed
to be a unimodal, nonnegative convex function, ni ,...,2,1= . Let ijZ denote the period in
which the item),(ji is actually produced. Then the problem sumF can be written
equivalently in the following form [P4.2] which facilitates decomposition into single part
type problems with an appropriate linking constraint.

[P4.2] minimize () () ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−++−+−= ∑ ∑ ∑ ∑
=

−

=

−

= =

n

i

Z

k

Z

zk

D

Zk
iiiiiiisum

i i

i iid

krdfkrfkrfsF
1

1

0

11 2

1

...10)(

subject to the constraints (4.3), (4.4), (4.5), (4.6).

If we remove the constraint (4.5) from problem [P4.2] then the problem [P4.2] could be
partitioned into n independent sub-problems. Moreover, obtaining an optimal solution
for each product in isolation is straight forward. For that, let us define

() () Dkdjkrjfkf iii
i
j ,...,1,0;...,,2,1,0, ==−= , (4.8)

 26

which represents the inventory or shortage cost in period k if the item),(ji and only j-
copies of the iih product have been produced by period k. Then the iih product type sub-
problem [P4.2i] can be started as below

[P4.2i] minimize ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑ ∑

=

−

=

+i ji

ij

d

j

Z

Zk

i
j

i
sum kfsF

0

1)1(

)(

subject to the constraints (4.3), (4.4), (4.6), where DZZ
idii =−= + 1,0)1(0 and

() 0)(00 == Dff i
d

i
i

. Now, we have

Theorem 4.2.2 [33] An Optimal Solution to [P4.2i] is given by

⎡ ⎤ iijijij djkZZ ,...,1,* ===
with optimal objective value

∑
=

=
D

k

ii
sum kfsF

1

)()(

where
() () Dkkfkf i

jj

i ,...,1,inf == . (4.9)

Moreover, if if is symmetric, then

.
2

12*
⎥
⎥

⎤
⎢
⎢

⎡ −
==

i
ijij r

jZZ �

Now, if all of the copies can be placed in their ideal positions, i.e. if *

ijZ , Iji ∈),(,satisfy
the linking constraint (4.3), then we shall, obviously, have an optimal solution to the
sequencing problem [P4.2], in which the product i will contribute the cost ()kf i to the
total cost of the solution. This will unfortunately not be the case in general and we must
somehow come to terms with the resolution of conflicts between various copies for their
ideal positions in a way that preserves the ordinary relations defined by inequalities in
(4.8).

The idea for the resolution of conflict between various copies is simple. It makes sense to
reduce the problem sumF to an assignment problem. To formulate the assignment
problem, let H (){ }Dkdjnikji i ,...,1;,...,1;,...,1|),,(==== . Following Kubiak and
Sethi [32, 33] for any ()∈kji),,(H, denoted by ijkC the cost of assigning item),(ji to
the kth period is defined by

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

>

=

<

=

∑

∑

−

=

−

=

1
*

*

1
*

*

*

0
k

Zl
ijijl

ij

Z

kl
ijijl

ijk

ij

ij

Zkif

Zkif

Zkif

C

ψ

ψ

 (4.10)

where

() ()lflf i
j

i
jijl 1−−=ψ =

() ()
() ()⎪⎩

⎪
⎨
⎧

≥−

<−

−

−

*
1

*
1

ij
i
j

i
j

ij
i
j

i
j

Zlforlflf

Zlforlflf
 (4.11)

 27

which represents the excess cost of having j-copies of product i produced by period
over l having (j-1) copies of the same product produced by period l .

Now, to analyze the definition of ijkC in (4.10), if ,*

ijZk = then the jth copy of product i

has its ideal position and .0=ijkC If the item),(ji is produced too soon, i.e. ,*
ijZk <

then excess inventory costs ijlψ are incurred in periods from .1* −== ijZltokl On the

other hand if ,*
ijZk > i.e. the item),(ji is produced so late, then the excess shortage

costs ijlψ are incurred on account of not having it in periods 1* −== kltoZl ij . And
with some manipulations (4.10) can be written as

()

()
∑

−

=

=
1,max

,min

*

*

ij

ij

Zk

Zkl
ijlijkC ψ , (4.12)

where we use the convention that ∑
=

=
'

0
k

kl
ka for kk <' . Now, the assignment variables for

any ∈)),,((kji H can be defined as
()

⎩
⎨
⎧

=
otherwise

kperiodtimeinproducedisjiif
yijk 0

,1

Then the assignment problem corresponding to the problem sumF is

[P4.3] minimize () ⎥
⎦

⎤
⎢
⎣

⎡
= ∑∑∑

= = =

D

k

n

i

d

j
ijkijk

i

yCsF
1 1 1

 subject to

Dky
n

i

d

j
ijk

i

...,,2,1,1
1 1
∑∑
= =

== (4.13)

i

D

k
ijk djniy ,...2,1;,...,2,1,1

1
===∑

=

. (4.14)

In order to find the optimal solution for the assignment problem [P4.3], we consider it in
terms of graph. The objective is to find a smallest perfect matching in the weighted
complete bipartite graph ()EVVGw ,21 U= , where the vertex set []DV ...11 = represents
the production time periods, 2V is the set of all parts),(ji , and an edge ()[] Ejike ∈= ,,
has the weights ijke Cw = . Since there are D2 nodes in this assignment problem [P4.3],

it can be solved for optimality in ()3DO time by Algorithm 2.4.1.

Let ⊆S H, and define ()
()
∑

∈

=
Skji

ijkCSc
),,(

 and call the set S is feasible for the problem sumF

if it satisfies the following three constraints:
c1: For each Dkk ,...,2,1, = there is exactly one idjniji ,...,2,1;,...,2,1),,(== , such

that () Skji ∈),,(, i.e., exactly one copy is produced at one time unit.
c2: For each idjniji ,...,2,1;,...,2,1),,(== , there is exactly one Dkk ,...,2,1, = , such

that () Skji ∈),,(, i.e., each copy is produced exactly once.
c3: If ()kji),,(, () Skji ∈'),',(and 'kk < then 'jj < , i.e. lower indices copies are

produced earlier.

 28

Constraints c1 and c2 are related to the assignment problem. Constraint c3 imposes an
order on copies of a product.

Consider any feasible set S of D triples ()kji),,(and define the sequence),...,(1 Dsss =
with isk = if () Skji ∈),,(for some idj ,...,1= corresponding to the set S, and

()
⎩
⎨
⎧ ∈

=
otherwise

Skjiif
yijk 0

),,(1

Then the sequence s is feasible for any given instance with demand vector),...,(1 ndd .
Now, the implication of reducing the problem sumF to the assignment problem [P4.3] is
the following:

Theorem 4.2.3 [33] If ⊆S H satisfies 1c and 2c , then a feasible S* such that
() ()*ScSc ≥ can be determined in ()DO time. Moreover, each copy in the sequence s*

from S* preserves the order that it has in the sequence s from S. Furthermore, for any
sequence s constructed from the feasible S

iijk djnikjy ,...,2;,...,1;1,0 ==+≥= (4.15)
and 1)(,...,1;,...,1;1,0 −− ==−−≤= iikDij djnikdjy (4.16)

Clearly, pre-assigning zero values to a number of variables would reduce the
computational effort for solving the problem [P4.3]. It is possible to count the number of
variables ijky that can be assigned zero value each a priori. The number of variables both

in (4.15) and (4.16) is
()

2
1−ii dd

. But some variables occur in both (4.15) and (4.16) and

if D is sufficiently large and id is sufficiently small, then () Ddi ≤−12 and there is no
repetition of variables in (4.15) and (4.16). Thus, the number of variables that can be pre-

assigned a zero value is ()∑
=

−
n

i
ii dd

1
1 . Now, for any feasible ⊆S H, let ()sFi denote the

parts of the objective function of the assignment problem [P4.3], attributed to product
type i corresponding to sequence s derived from S, then we have the optimality theorem.

Theorem 4.2.4 [33] For any feasible ⊆S H and s derived from S,

() () ()∑
=

+=
D

k

i
i

i
sum kfsFsF

1

 (4.17)

and then

() () ()∑∑
= =

+=
D

k

n

i

i
sum kfScsF

1 1
 (4.18)

 �

As the term ()∑∑
= =

D

k

n

i

i kf
1 1

 is independent of the set S, that is constant, an optimal solution

to the problem sumF would be an immediate consequence if an optimal feasible subset S
is obtained.

 29

A direct consequence of Theorem 4.2.3 and Theorem 4.2.4 is that the optimal set S for
[P4.3] that is feasible is also optimal for the problem sumF . Moreover, any optimal set S
for [P4.3] can be converted into an optimal set *S for sumF (cf. [33]) and thus, an
account of Theorem 4.2.4, S* provides the optimal sequence s* for PRV-MMJITSP sumF .

Again, from Theorem 4.2.4, we can construct an optimal feasible set S* for sumF from
any optimal set S for [P4.3] which is feasible or not, and thereby solving the
problem sumF . The explicit procedure is stated in the following theorem.

Theorem 4.2.5 [33] Let S be an optimal set to [P4.3] with the corresponding
sequence { }Dkdjniy iijk ,...,1;,...,1;,...,1 === . Then

∑∑
= =

===
k

l

d

j
ijlik

i

Dkniyx
1 1

,...,1;,...,1,

is an optimal solution to sumF . Furthermore, for i = 1,…,n
1;1 == ilij xZ

 1,)1(−== − jxkZ kiij
and Dkdjjx iik ,...,2;,...,1, === is an optimal solution to [P4.2]. �

4.2.3 Reduction of sumF to Integer Linear Programming

Since in a sum-deviation MMJITSP, a part idjniji ,...,2,1;,...,2,1),,(== , can be
produced at any time period Dkk ,...,2,1, = , then we can define a complete weighted
bipartite graph ()EVVGw ,21 U= , where []DV ...11 = represents the production time
periods, 2V is the set of all parts),(ji and for any edge ()[] Ejike ∈= ,, , we assign the
edge weight ijke Cw = . Let () 22 DDijaA

×
= be the vertex edge incidence matrix of the

graph wG . Let ∈w R
2D be the vector of the weights and { } 2

1,0 Dy∈ be the column vector
of the corresponding assignment variables. Then the problem sumF equivalently can be
written in the form of ILP as
[P4.4] minimize ywT

subject to

{ } .1,0

1
2Dy

Ay

∈

=
 (4.19)

Clearly the matrix A is totally unimodular and as a result due to Theorem 2.4.1, we can
solve ILP (4.19) by relating into LP for optimality.

The dual of the linear relation of (4.19) is

[P4.5] minimize zT1

subject to

freez

wAz TT

−
≤

 (4.20)

 30

The problem (4.20) can be interpreted as finding vertex weights ∈z R D2 such that the
sum of lz for all 21 VVl U∈ , is maximal and such that for all edges ()[] Ejik ∈,, , we
have ijkijk Czz ≤+ . Therefore, we have

Theorem 4.2.6 [35] A sequence),...,(1 Dsss = with objective value s* for the
problem sumF is optimal if and only if there is a minimum weighted perfect matching M
with a weight function →21: VVz U R such that

ijkijk Czz ≤+ ()[] Ejik ∈∀ ,,

()
∑ ∑∑
∈ ∈∈

==+
21 ,)],(,[

*

Vji Mjik
ijkij

Vk
k sCzz .

4.2.4 The Cyclic Sequences to sumF

By a cyclic solution for MMJITSP, we mean, if),...,(1 Dsss = is an optimal sequence for
an instance of MMJITSP with demand vector),...,(1 ndd then ms for any m ≥ 1 is an
optimal sequence for the instance with demand vector),...,(1 nmdmd , where ms is a
concatenation of m-copies of s. Miltenburg [37] and Miltenburg and Sinnamon [39]
observe the existence of the cyclic sequences for the problem sumF . Such a cyclic
sequence can be found under the assumption that niiff i ,...,1,, =∀= where f is
unimodal symmetric convex nonnegative with minimum
() () 0000 ≠>= yforyfandf (cf. [27], see also [19]). The result is also true if all

if are convex, symmetric and equal in the interval ()1,0 but not true even if a single if
is asymmetric (cf. [26]).

An instance for the MMJITSP is said to be even if the demand vector is of the form

)2,...,2(1 ndd for some vector),...,(1 ndd of positive integers, and feasible sequence have

length 2D, where ∑
=

=
n

i
idD

1

. Then we have

Theorem 4.2.7 [27] Let

),...,,,...,(211 DDD sssss +=
be a feasible sequence for the problem sumF with demand vector)2,...,2(1 ndd . Then, a
feasible sequence
),...,,,...,(*

2
*

1
**

1
*

DDD sssss +=
where i occurs id times in the first half **

1 ,..., Dss and id times in the second half
*
2

*
1 ,..., DD ss + can be constructed such that

 () ()sFsF sumsum ≤* .

Now, with the help of this Theorem, we are ready to state the main result of this section
as

 31

Theorem 4.2.8 [27] Let s be an optimal sequence for the problem sumF with the demand
vector),...,(1 ndd . Then the concatenation ms for any m (≥1) copies of s, is optimal
sequence for the problem sumF with demand vector),...,(1 nmdmd .

Proof: The underlying idea to prove this theorem is strictly based on the reference [27]
and is proved under the mathematical induction on m. The theorem obviously holds for
m = 1. Now, it remains to prove that the theorem holds for 1+m under the assumption
that the theorem holds for any 1≥m . For that, consider an optimal sequence

),...,(' '
)1(

'
1 Dmsss += for the demand vector ()ndmdm)1(,...,)1(1 ++ . Now, if m is odd.

Then by Theorem 4.2.7, this sequence can be transformed without increasing the cost

into a sequence ()),...,,,...,(*
1

*

1
2

1
*

2
1

*
1

*
DmDmDm sssss +

+
++= , where i occurs idm

2
1+ times in

each of the two halves of *s . Thus, each half must be optimal for sumF with demand

vector)
2

1,...,
2

1(1 ndmdm ++ . Therefore, by the induction hypothesis, each half is the

concatenation of
2

1+m copies of s, and the theorem holds for 1+m if it holds for any

1≥m . Now, if m is even, then consider a sequence 'ss for sumF with demand vector
()ndmdm)2(,...,)2(1 ++ . We have)'()()'(sFsFssF sumsumsum += (see [37]). By Theorem
4.2.7, 'ss can be transformed without increasing the cost into a sequence

()),...,,,...,(**
2

**

1
2

2
**

2
2

**
1

**
DmDmDm sssss +

+
++= , where i occurs idm

2
2+ times in each of the two

halves of **s . Thus, each half must be optimal for sumF with demand vector

)
2

2,...,
2

2(1 ndmdm ++ . Therefore, by the induction hypothesis, each half is the

concatenation of
2

2+m copies of s and

())(1)'(
)()2()'()()'(

sFmsF
sFmsFsFssF

sumsum

sumsumsumsum

+≥⇒
+≥+=

which proves the theorem holds for 1+m , if it holds for any even 1≥m . This proves the
theorem.

Therefore, the optimal MMJIT sequences for sumF are cyclic. This result provides an
important theoretical support to the usual for Just-in-Time systems practice of repeating
relatively short sequence to build a sequence for a longer time horizon, Monden [41] and
Miltenburg [37]. It has also important consequences for the computational time
complexity of all existing algorithms for PRVP. All these time complexities depend on
the magnitude of demands ndd ,...,1 and consequently on the magnitude of number D.
The only known polynomial time, with respect to D and n, optimization algorithm for
MMJITSP has time complexity ()3DO , and is Hungarian Method for Assignment
Problem as presented in Section 2.4.3 (see [33]). Theorem 4.2.8 makes it possible to
reduce each of these demands by the factor of m, where m is the greatest common

 32

divisor of numbers ndd ,...,1 , in the computations of optimal MMJIT sequences for sumF .
The Euclidean Algorithm can find m in ()DnO log steps (see [27]).

4.2.5 Dynamic Programming for sumF

The computational time complexity of solving the assignment problem [P4.3] grows
exponentially, if the demands for the problem sumF are in exponential form. Then to
determine an optimal sequence for the problem sumF becomes difficult for other than
extremely small problems. The dynamic programming (DP) algorithm proposed by
Miltenburg et al. [40] determines the optimal sequence, for the first time, of the problem

sumF with large input size. Here we describe a DP algorithm to solve sumF based on
Miltenburg et al. [40], where the DP algorithm is developed to solve the sum-squared
joint usage and loading problem.

Let ()nddd ,...,1= be the demand vector of sumF . Define states in a sequence as

()nxxX ,...,1= , where ix is a nonnegative integer representing the production of exactly

ix units of product i , idx ii ∀≤ , . Let ie be the usual thi unit vector with n entries, all of
which are zero except a single 1 in the thi place. A state X can be sequenced in the first
k stages if

∑
=

==
n

i
ixXk

1

.

Now, let

() ()∑∑
= =

−=
k

j

n

i
iii jrxfX

1 1
minφ

and

 () ()∑
=

−=
n

i
iii krxfXg

1

.

Then the following DP recursion holds for () :Xφ

() ()

() (){ }
() () () .00,...,00|Ø

1;,...,1|min
,...,1

===∀=
≥=+−=

=

φφφ
φ

φφ

i

ii

n

xX
xniXgeX

xxX
 (4.20)

Clearly, () 0≥Xφ , and from the definition of ir ’s
 () 0| ==∀ ii dxXg .
Now, we have

Theorem 4.2.9 [40] The DP recursion (4.20) solves the MMJIT sequencing problem sumF

in ()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∏

=

n

i
idnO

1

1 time.

Proof [40]: Clearly, ()Xg represents the “contribution” of each product to the objective
function in stage ()Dkk ≤≤1 . The minimization in (4.20) determines the product to be

 33

sequenced in stage k. Now, since nidx ii ,...,1,,...,1,0 =∀= , then the cardinality of the set

containing all states X, in the DP recursion is given by ()∏
=

+
n

i
id

1

1 . To calculate ()Xφ

for a state X from recursion (4.20), we must calculate at most n values ()ieX −φ , whose
calculation requires ()nO time. Hence, the calculation of ()Xφ can be done in ()nO
steps for each state X. Therefore, the time complexity for the entire problem is

 ()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∏

=

n

i
idnO

1

1 .

The total number of feasible sequences for sumF is
!!....

!

1 ndd
D which is considerably larger

than the number of sets in the DP recursion. Moreover,

 ()
nn

n
n

i
i n

nD
n

nddd
d ⎟

⎠
⎞

⎜
⎝
⎛ +

=⎟
⎠
⎞

⎜
⎝
⎛ ++++

≤+∏
=

...
1 21

1

.

Hence, although the number of sets may grow at exponential rate with n, its growth rate
is polynomial in D, and so the DP procedure is effective for small n even with large D.

 34

CHAPTER 5

BOTTLENECK MIXED-MODEL JIT PRODUCTION SYSTEMS

In this chapter, we study the bottleneck objective of MMJITSP, which seeks to minimize
the max-deviation between ideal production and actual production for each product at
each stage and as a result a smooth sequence in every time period can be obtained (see
[50]). Kubiak et al. [34] prove that the problem waFmax

~ with only two levels is strongly
NP-hard by transforming an instance of already known strongly NP-hard 3-PARTITION
problem into an instance of the ORVP waFmax

~ with only two levels in pseudo-polynomial

time. Hence, as the ORVP waFmax
~ is NP-hard, an efficient algorithm for the optimality is

unlikely to exist. However, by transforming the problems waFmax
~ and ws

sumF~ concisely into
the matrix representation, Kubiak et al. [34] provide a dynamic programming (DP) for
optimal sequence and is the topic of Section 5.1.

We study the ORVP waFmax

~ in Section 5.1 and all the remaining sections of this chapter
are concerned to the study of the bottleneck PRV problem maxF and its structural
properties.

5.1 Dynamic Programming for waFmax

~

Since the problem waFmax

~ is strongly NP-hard, polynomially bounded procedures for it are
extremely unlikely to exist. Here we describe an implicit enumeration dynamic
programming (DP) procedure which can optimize the problem waFmax

~ . By definition, we
have

∑

∑ ∑

∑ ∑∑

=

= =

= = =

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−=−

1

1

1 1

1
1

1
1

1

1 1 1
11

,
n

p
kpilp

n

p
kp

n

i
ilpililp

n

p

n

p

n

i
kpilpilkpilpillkilk

x

xtrt

xtrxtryx

l

l

δ

where

∑
=

−=
ln

i
ilpililpilp trt

1
.δ

Since 00,0 >≥≥ ililkil randxw , then the deviation for part i of level l at stage k

for waFmax
~ would be

,

11

1
1

1
1 ∑∑

==

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

n

p
kpilp

n

p
kpilpilillkilkil xxwryxw γδ

 35

where ilpililp w δγ = is the measure of the weighted deviation in the usage of part i in
level l from the proportional usage per unit of product p. Let ()

1nnilp ×
=Γ γ be the matrix

where ∑
=

=
L

l
lnn

1

is the total number of different parts and products. Each row of

Γ corresponds to either a product or a part at the corresponding levels. The value ilpγ

will be the element appearing in the thin
l

m
m ⎟

⎠

⎞
⎜
⎝

⎛
+∑

−

=

1

1
row and the pth column of the matrix

Γ . The maximum norm of a vector ()naaa ,...,1= is defined to be { }ini
aa

≤≤
=

11
max . Then

the objective function ()XF wa ~~
max can be written as () ,max~~

1max kk

wa XXF Γ= where

()knkk xxX 111 1
,...,= is the cumulative, level 1 production vector through the first k stages.

Let the demand vector at level 1 be () ()
11

,...,,..., 1111 nn ddddd == and the states in a

sequence be ()
1

,...,1 nxxX = with ∑
=

=
1

1

n

i
ixX , 1,...,1 ni = where ix is the cumulative

production of product ., ii dxi ≤ Let ()0,...,1,...,0=ie be the unit vector with

1n entries all of which are zero except for a single 1 in the ith row. Let ()Xφ be the
minimum value of the maximum deviation for all parts and products over all partial
sequences which lead to state X. The norm

1
XΓ represents the maximum deviation of

actual production from desired one over all products and parts in state X at stage Xk = .
The following DP recursion holds for ()Xφ (cf. [34], see also [19]):

() ()
() () (){ }{ }.1;,...,1:,maxmin,...,

00:Ø

111 1
≥=Γ−==

===

iiin xniXeXxxX
XX

φφφ
φφ

(5.1)

It can be observed that ()Xφ ≥ 0 and () 0:
1
==Γ dXX for any state X.

Theorem 5.1.1 [34] The DP recursion (5.1) solves the MMJITSP waFmax

~ in

 ()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∏

=

1

1
1 1

n

i
idnnO

time.

Proof: As 1,...,1,,...,1,0 nidx ii =∀= , the cardinality of the set containing all states X, in
the DP recursion is

 ()∏
=

+
1

1

1
n

i
id .

On the other hand, any state X can be generated from at most 1n states of the form

ieX − . The computation time for
1

XΓ is ()nnO 1 . Thus, the total computation time for
the entire problem is

 ()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∏

=

1

1
1 1

n

i
idnnO .

 36

The number of feasible sequences for any instance of the problem waFmax
~ is

!!...
!

11

1

ndd
D which

is considerably larger than the number of states in the DP recursion. The relation

()
1

1

1 1

111
nn

i
i n

nD
d∏

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
≤+ shows that the DP algorithm is effective for small number of

products even with large number of copies. During the enumeration process, an
excessive amount of time is reduced by using some fast heuristic as a filter which
eliminates any state from DP's state that would lead to no optimality. Kubiak et al. [34]
present two myopic heuristics for generating the filter. If the heuristics yield near-
optimal sequences, then the number of state could be reduced. The DP algorithm
progresses through the state in the forward direction of increasing the cardinality as the
procedure generates all states X with kX = before .,...,1,1 1DkkX =∀+=

The DP for waFmax

~ can also be modified for the problem ws
sumF~ (cf. [34], see also [20]):

The objective function ()XF ws
sum

~~ can be written as

 minimize ()∑
=

Ω
1

1

2

2

D

k
kX

where Ω is the deviation matrix ()
1nnilpilw

×
δ and ()∑

=

=
n

i
iaa

1

2
2

 is the Euclidean

norm of the vector ()naaa ,...,1= . Define ()XΦ to be the minimum total squared

deviation for all parts and products over all partial sequences of X. Let () ()2
2

XX Ω=θ
be the squared sum of the deviations of actual production from the desired one for all
parts and products when X is the amount of product produced. Then the following DP
recursion holds for ()XΦ (cf. [34], see also [20]):

() ()
() () (){ }1;,...,1:min

00:Ø

1 ≥=+−Φ=Φ
=≡Φ=Φ

ii xniXeXX
XX

θ
 (5.2)

Thus, it is always the case that ()XΦ ≥ 0 and that () .0: == dXXθ

5.2 Reduction to Release Date/ Due – Date Decision Problem

As the general solution techniques do not exist to solve the integer programming
formulation of the problem aFmax , a special solution procedure is developed for the
specific problem under consideration. If),(ji is produced in period Dkk ,...,2,1, = , then

jxik = and the penalty associated with),(ji under aFmax in period k is

i
i
j krjkf −=)(,

⎪
⎭

⎪
⎬

⎫

=
=
=

Dk
dj
ni

i

,...,2,1
,...,1,0
,...,2,1

 (5.3)

where 0=j has been introduced to account for the periods k in which 0=ikx . All
together there are nD + such individual penalty functions)(kf i

j depending upon the
values of ni ,...,1= and idj ,...,1,0= under the consideration of k is continuous time
variable running form 0 to D, i. e.],0[Dk ∈ . There are 1+id individual penalty

 37

functions of a single variable],0[Dk ∈ for each ni ,...,1= , associated with individual
copies of product i as shown in Figure 5.1 for 3=id and 14=D .

(Feasible Produce Times for the Individual Copies of Product i with a Target Value of B = 0.75 for aFmax)

Figure 5.1: Level Curves for the Deviation of Ideal Production from Each Copy over all Time Periods

Since ijZ be the completion time of),(ji then the penalties 'attributable' to product i,
for a particular product sequence are given by

⎪⎩

⎪
⎨
⎧ <≤

= +

otherwise
ZkZforkf

kg jiij
i
ji

j 0
)(

)()1((5.4)

Now, if
)(max)(

0
kgkf i

jdj

i

i≤≤
=

then)(kf i is the envelope of the)(kf i
j functions and has a saw tooth shape, as shown in

Figure 5.1 (e). Clearly the envelope is non-convex function for each nii ,...,1, = . Now,
minimizing the objective function of aFmax is equivalent to finding a sequence which
minimizes:

(){ }DknikfZ i

Dk
ni

,...,1;,...,1|max
1
1

===
≤≤
≤≤

.

Hence to minimize the objective functions of aFmax are made, those functions specifically
created by (5.4) will be under examination. Denote a threshold value for the objective
function of the problem aFmax by the variable B∈Q, where Q is the set of rational
numbers. Then the assembly goal is to determine the smallest possible B for which a
sequence),...,,(21 Dssss = can be constructed in which each copy),(ji has a
completion time ijZ such that Bkg i

j ≤)(for)].1(,[)1(−∈ +jiij ZZk For the threshold

value B, a copy),(ji cannot produce before 2≥k if ,)1()1(Brkjkf i
i
j >−−=− and

can produce at time period 1≥k if .)(Bkrjkf i
i
j ≤−=

Thus, any fixed threshold (target) value B allows the calculation of a release date and due
date for a specific copy of a product. By letting),(jiE be the earliest feasible producing
time for copy),(ji then it must have:

() BrjiEj i >−− 1),(, and (5.5)

 38

Given a Sequence for Product i , where ,13,9,3 321 === iii ZZZ the Graphs Show the Deviation for the Individual

Copies. The symbol ""• Show that the Deviation is Measure only at Integral Times

(a)

 (b)

 (c)

 (d)

 (e)

Figure 5.2: Deviation “Attributable” to Each Copy of a Product

 39

BrjiEj i ≤−),(. (5.6)
So, the earliest feasible producing time will be the unique integer satisfying

 [] () [] 11,1
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
<≤−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Bj

r
jiEBj

r ii

 (5.7)

That is,

⎥
⎥

⎤
⎢
⎢

⎡ −
=

ir
BjjiE),(. (5.8)

It is a general convension that when),(jiE will be calculated to be a nonpositive
integer, then we set 1),(=jiE . Similarly, by letting),(jiL to be the latest feasible
producing time for),(ji then the latest time DjiL ≤),(at which),(ji can produce and
will satisfy the threshold value must satisfy:

() () BjrjiL i ≤−−− 11),((5.9)
and () BjrjiL i >−− 1),(. (5.10)
Thus the latest feasible producing time will be the unique integer satisfying

[] ()[] 111),()1(1
++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≤<+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Bj

r
jiLBj

r ii

. (5.11)

That is,

⎥
⎦

⎥
⎢
⎣

⎢
+

+−
= 11),(

ir
BjjiL . (5.12)

We assume that 1),(,),(+≥∀= DjiLDjiL .
Hence, the release date and due date for each copy),(ji under aFmax are considered to be

⎥
⎥

⎤
⎢
⎢

⎡ −
=

ir
BjjiE),(and ⎥

⎦

⎥
⎢
⎣

⎢
+

+−
= 11),(

ir
BjjiL , (5.13)

respectively.
The similar results for the problem sFmax are (cf. [18]):

 ⎥
⎥

⎤
⎢
⎢

⎡ −
=

ir
BjjiE),(and ⎥

⎦

⎥
⎢
⎣

⎢
+

+−
= 11),(

ir
BjjiL . (5.14)

The earliest and latest producing times for each copy),(ji under weighted case can be
calculated in the similar fashion as in the un-weighted case. The effect of the weighting
factors is to shift the slops of the corresponding unweighted problem. For the problem

waFmax , the results are (cf. [50]):

 ⎥
⎥

⎤
⎢
⎢

⎡ −
=

ii

i

wr
Bjw

jiE),(and ⎥
⎦

⎥
⎢
⎣

⎢
+

+−
= 1

)1(
),(

ii

i

wr
Bwj

jiL . (5.15)

Similarly for the problem wsFmax (cf. [18]):

⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢

⎢

⎡
−

=
i

i

r
w
Bj

jiE),(and

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢

+
+−

= 1
)1(

),(
i

i

r
w
Bj

jiL . (5.16)

 40

For a given threshold value B, early and late producing dates can be calculated for each
copy of each product in a one pass procedure, and hence, can be constructed in

)(DO time. Thus, the decision problem (Is aFforBZ max?≤) of PRV-MDJIT is
equivalent to the problem of determining whether there is a feasible schedule of D unit-
time jobs on a single machine with release dates and due dates for each job. That is, the
problem of solving PRV-MDJIT problem is equivalent to solve the scheduling problem,

−=1;);,();,(1),(jipDjiLjiE , where),(jip is the processing time of copy),(ji .

Theorem 5.2.1 [7] Consider an instance);,...,(1 Bdd n of the problem aFmax . A sequence

),...,,(21 Dssss = for aFmax is B-feasible if and only if, for all ni ,...,1= and idj ,...,1=
this sequence assigns copy),(ji to the interval)],()...,([jiLjiE where),(jiE and

),(jiL are given by (5.13).

Proof [7]: Necessity: Consider any feasible sequence with threshold value B>0. Now,

on the contrary assume that the copy),(ji is produced at time
ir
Bjk −

< on this feasible

sequence. Then jxik = and we must have
BBjjkrxkrx iikiik =+−>−≥− ,

which is absurd, contradicting the supposition. Therefore, copy),(ji cannot produce

before time ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

ir
Bj and hence before time ⎥

⎥

⎤
⎢
⎢

⎡ −

ir
Bj .

Similarly, assume that copy),(ji is produced at time 11
+

+−
>

ir
Bjk . Then at time k-1,

there holds 1)1(−=− jx ki , and we must have

B
jBj

xrkrkx kiiiki

=
+−+−>

−−≥−− −−

11

)1()1()1()1(

a contradiction. By which we conclude that copy),(ji cannot produce after time,

⎥
⎦

⎥
⎢
⎣

⎢
+

+−
= 11),(

ir
BjjiL

which establish the necessary condition.

Sufficiency: Suppose that each copy),(ji is assigned to some time period in
[] []DjiLjiE ...1),()...,(I and all copies are assigned to different time periods. Consider a
fixed copy of product i and a time period k (i.e. [k-1, k]). Let j∈{1,2,. . .,di} be the
number of copies of product i which have been produced up to (and including) time
period k, i.e. xik = j.
Now, we must show that
 Bkrj i ≤− .
We have
),(jiEk ≥

 41

So that,

Br
r

BjjrjiEjkrj i
i

ii =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−≤−≤−),(. (5.17)

If 0, ≥−=−= iiii krdkrjthendj .
Hence, (5.17) implies that Bkrj i ≤− as required.
Else idj < and since the (j+1)st copy of product i is produced after k, we have
)1,(+< jiLk .
Then,

.

)1)1,((

B
jBj

jr
r

BjjrjiLjkr i
i

ii

=
−+≤

−⎥
⎦

⎥
⎢
⎣

⎢ +
=−−+≤−

Therefore, Bjkri ≤− . (5.18)

From (5.17) and (5.18), we have
 Bkrj i ≤− ,
which completes the proof.

5.3 Perfect Matching Representation

The decision version of the PRV-MDJIT problem can be formulated as a perfect
matching problem in the bipartite graph ()EVVBG ,)(21 U= as follows (cf. [49], see also
[18]): Let the vertex set V1 = {l, 2,…, D} represents the production time periods and let
V2 correspond to the set of all copies),(ji of each product. We construct an edge
between 1Vk∈ and 2),(Vji ∈ if),(ji may produce at time period k. That is,

()[] Ejik ∈,, if and only if)],()...,([jiLjiEk ∈ (see Figure 5.3 for aFmax). For any subset
X of vertices, denotes by N(X) the neighborhood of X, i.e., the set of all vertices adjacent
to at least one vertex in X. Then, clearly the neighborhood of every vertex 2),(Vji ∈ is
an interval)],()...,([jiLjiE . Therefore, by definition the bipartite graph G(B) is V1-
convex. Now, to find a feasible sequence in the release date/due date MDJIT decision
problem is equivalent to finding a perfect matching in the bipartite graph G(B) with the
additional property that lower numbered copies of a product are always matched to
earlier producing times than higher numbered copies. Such a matching will be referred to
as order preserving.

As suggested by Steiner and Yeomans [49] a modified version of Glover's [21] ()EO
running time algorithm for finding a perfect matching in a 1V -convex bipartite graph

()EVVG ,21 U= can be used to find a perfect matching in)(BG , and the modified
version is called the Glover’s Earliest Due Date (EDD) algorithm (cf. [49], see also [18],
see [7]). The algorithm runs through the time period Dk ,...,1= , in order and assigns to k
the copy),(ji with smallest value of),(jiL along all the available copy such that

Ejik ∈)],(,[. The algorithm can stop at Dk < for one of the following two reasons, as

 42

two separate cases. Suppose ()',, kkiN denotes the number of copies of product i which
can be matched to some time period []'...kkt∈ .

Figure 5.3: Bipartite Graph of Feasible Producing Times for Four Products Induced by a

Threshold Value of 75.0=B for aFmax

Stopping Case 1 Too few Products for the Available Time Periods.
The first case of stopping occurs when there are less than p copies available to sequence,

intotal, in the first p time periods. That is,∑
=

<
n

i

ppiN
1

.),1,(

Stopping Case 2 Too many Products for the Available Time Periods.

The second case of stopping occurs when, although ∑
=

≥
n

i

ppiN
1

),1,(is satisfied for

Dp ≤≤1 , the algorithm stops at a Dk < , because it cannot find a matching product for

k, i.e., ∑
=

+−<
n

i

kDDkiN
1

1),,(. This would be caused by more than k-1 products having

to produce at []1...1 −∈ kt .

Now, if we follow the rule “ For each 1Vk ∈ in descending order find the previously
unmatched item),(ji with Ejik ∈)],(,[and match to k the),(ji with the largest

),(jiL value”, then showing that the stopping case 2 dose not hold for a particular
problem is equivalent to show that the stopping case 1 does not hold.

The implementation of the EDD algorithm for the decision version of the MDJIT
problem gives an answer in ()DO time, i. e. the existence of a perfect matching in)(BG
for a given B can be checked in ()DO time (cf. [49], see also [47]).

Lemma 5.3.1 [49] For the problem aFmax

(a) Only the first copy of a product may produce at time k = 1, if 1-rmax ≤ B≤ 1.
(b) Only the last copy of a product may produce at time k = D, with 1-rmax ≤B ≤ 1.

 43

Proof: (a) Clearly copy),(ji may produce at time period k = 1, if

21 <+≤⇒
+≤⇒
≤−

i

i

i

rj
rBj
Brj

since 1<< iro .
Therefore, j = 1 is the only copy that could produce at time t = 1.

(b) Similarly, copy),(ji may produce at time period k = D if

.1
1

)1()1(

<≤−⇒
≤+−−⇒

≤−−−

ii

ii

i

rjd
Bjrd

Bjrk

Hence, j = di, since j ≤ di.

Lemma 5.3.2 [49] For any threshold value B > 0 for aFmax

(a))1,(),(+< jiEjiE
(b))1,(),(+< jiLjiL

Proof: (a) From (5.7), we have

1),(+
−

<
ir
BjjiE

ir
BjjiE −+

≥+
1)1,(=

iii r
B

rr
j

−+
1 .

Now, since 0 <ri <1, then we get

1),(+−<
ii r

B
r
jjiE =

ii r
B

r
j

−+1 <
iii r

B
rr

j
−+

1 ≤)1,(+jiE .

Therefore,).1,(),(+< jjEjiE

(b) From (5.11), we have

i
r

Bj

r
BjjiLandjiL

i

+
>++≤ +−)1,(1),(1 .

Since 0 < ri < 1, then

11),(++−≤
iii r

B
rr

jjiL

11
+−+=

iii rr
B

r
j

)1,(+<+< jiL
r
B

r
j

ii

.

Therefore,)1,(),(+< jiLjiL .

 44

The Lemmas 5.3.1 and 5.3.2 also hold for the problem sFmax with 1)1(2
max ≤≤− Br (cf.

[18]).

These lemmas suggest that earlier copies of a product become available for sequencing
before later copies and the algorithm chooses products in the order of their due dates.
Therefore, Brauner and Crema [7] prove the following which is implicit in [49].

Proposition 5.3.1 The PRV-MDJIT decision problem has a feasible solution if and only
if the graph G(B) has a perfect matching M(B).

Proof [7]: Necessity: Assume that, for a prespecified threshold value B, there is a feasible
solution for MDJIT Problem. Clearly for such a solution each copy),(ji of each product
corresponds to exactly one time period in]...1[D and hence this feasible solution defines
a perfect matching M(B) in G(B). Moreover, any feasible solution to MDJIT corresponds
to an order preserving matching, i.e. a perfect matching M(B) such that, when 21 jj < ,
copy),(1ji is matched to an earlier time period than copy),(2ji .

Sufficiency: Assume that the graph G(B) has a perfect matching M(B). If M(B) is an order
preserving one then there is nothing to prove. Otherwise, if),(1ji is matched to 1k and

),(2ji is matched to 2k in M(B), where 21 kk > for 21 jj < as shown below:

Then due to the convexity of G(B) and Lemma 5.3.2, we may match),(1ji to 2k and

),(2ji to 1k without destroying the feasibility.

Now, depending up on the Hall's Theorem 2.4.2, we proceed to develop the necessary
and sufficient conditions for the existence of a perfect matching M(B) in G(B) for a
given threshold value B and such a perfect matching M(B) on the graph G(B) can be
found by applying the EDD algorithm described above.

Definition 5.3.1 Put I1 = {I|I is an interval of V1}.
Now, for each I∈I1, let U(I) be the largest subset of V2 whose neighborhood is
completely contained in I. That is, }.)(|{)(2 IvNVvIU ⊆∈=
Finally define, I2= {U(I) │I∈I1}.

Theorem 5.3.1 [7] For a given threshold value B for the problem aFmax , the V1-convex
bipartite graph),()(21 EVVBG U= has a perfect matching if and only if for all
 X∈ I 1U I 2, XXN ≥)(. (5.19)

Proof: Necessity: Since 21 VV = , then clearly, by Hall's Theorem 2.4.2, condition
(5.19) holds.

Sufficiency [7]: Assume that the condition (5.19) holds. Now, suppose on the contrary,
there exist X1⊆V1 such that 11)(XXN < . But the set X1 is a union of disjoint intervals

 45

pIIX UU ...11 = with 1,...,11]...[1
'' −=−<= + piforkkandkkI iiiii . Assume that

X1 is chosen so that p is minimal. Then, it arises the following two cases;
Case (1): Assume that for all },...,1{, pji ∈ with i ≠ j, implies Ø)()(=ji ININ I .

Hence, ∑
=

=
p

i
iINXN

1
1)()(.

But each Ii is an interval and so by condition (5.19), we have
ii IIN ≥)(for all }.,...,1{ pi∈

Therefore, ∑ ∑
= =

=≥=
p

i

p

i
ii XIINXN

1 1
11)()(,

which is a contradiction to the hypothesis on X1.

Case (2): There exist i and j with ji < such that

Ø)()(≠ji ININ I .
So, let)()(ji ININu I∈ .
Now, due to V1-convexity of G(B), we have,)()(1+∈ ii ININu I .
Therefore, with out loss of generality, we may assume that j = i+1
Put]1...1[1

' −+= +ii kkI .
Then clearly, Ø1 =IX I .
Since U = U(I)∈ I2, then condition (5.19) implies that ,)(UNU ≤

Moreover, by definition of U, we have, IUN ≤)(.

Consequently IU ≤ .
Also, we have

Ø)(1 =XNU I .
 Indeed,

)(1XNUx I∈
⇒ Iy∈∃ such that 1Xy∈
⇒ Ø1 ≠IX I ,
which is a contradiction to Ø1 =IX I . Again, due to the convexity of the graph G(B),
we have,)()(1XNUIN U⊆ . Therefore,
 11111)()()()(XIXIXNUXNUXNIN UUU =+<+=≤ .
Hence,
 IXIXN UU 11)(< .
Let IXY U1= . The set Y is a union of 1−p disjoint intervals of 1V and satisfies

YYN <)(. This is the contradiction to the minimality of p . Therefore, condition (5.19)
implies the Hall’s condition of Theorem 2.4.2, and thus (5.19) implies the existence of a
perfect matching in G.

In the above Theorem 5.3.1 the condition on I2 are not superfluous. That is the Hall's
conditions on intervals of V1 would not sufficient, by themselves, to ensure the existence
of a perfect matching M(B) in a V1-convex bipartite graph G(B). For the support of this
discussion Brauner and Crama [7] present the following counter example:

 46

Example 5.3.1 The following convex bipartite graph G(B) is associated with an instance

of the MDJIT problem aFmax where)
7
4;1,3,3;3();,...,;(1 =Bddn n .

Figure 5.4: Convex Bipartite Graph for an instance ⎟
⎠
⎞

⎜
⎝
⎛

7
4;1,3,3;3 of aFmax

Clearly, this convex bipartite graph ⎟
⎠
⎞

⎜
⎝
⎛

7
4G satisfies the conditions, for all X∈I1,

XXN ≥)(, but unfortunately, does not have a perfect matching.

Now, to strengthen the condition (5.19) by restricting them to those sets of I2 whose
neighborhood is an interval. For that we go with a

Definition 5.3.2 I ’2 ={U∈I2|N(U)∈I1}

Consequently, Brauner and Crema [7] give

Proposition 5.3.2 [7] Conditions (5.20) and (5.21) are equivalent:
∀X∈ I2, XXN ≥)((5.20)
∀ X∈ I ‘2, XXN ≥)((5.21)

Proof: (5.20)⇒ (5.21): I '2⊆ I2 and hence (5.20) ⇒ (5.21).

Now, (5.21) ⇒ (5.20):

Assume that (5.21) holds and consider U∈I2. If N(U) is an interval, then U∈I'2 and
immediately (5.21) ⇒ (5.20). So, suppose that N(U) is a union of disjoint intervals:

]....[...]...[)(''
11 pp kkkkUN UU=

with 1,...,111
' −=−< + piforkk ii .

 Define
]}....[)(|{ 212 kkVNVvYi ⊆∈=

Then, by construction

U
p

i
i UY

1

.
=

⊆

And actually

U
p

i
i UY

1=

=

 47

For that let Uk ∈ and .
1
U

p

i
iYk

=

∉ This means that k has neighbors in at least two distinct

intervals],...[]...[''
jjii kkandkk with i < j. Since the graph is V1-convex, this would

imply that all vertices between ji kandk ' are in N(U) as shown in the Figure 5.5. This is

absurd. Therefore, we must have U
p

i
i UY

1=

= .

Figure 5.5: Two Distinct Intervals]...['

ii kk and]...['
jj kk with ji <

Containing the Neighbors of Vertex k

Since every element of]...['
ii kk is the neighbor of some element of U, there follows

immediately that,]...[)('
iii kkYN = and hence Yi∈I '2, for pi ,...,1= .

Therefore, ∑ ∑
= =

=≥=
p

i

p

i
ii UYYNUN

1 1
)()(, i. e. UUN ≥)(.

Thus (5.21)⇒ (5.20). This completes the proof.

From Proposition 5.3.2 it can be concluded that, in the case of convex graphs, Hall's
conditions need only to be applied to those sets X such that X is either an interval in V1 or
the neighborhood of an interval in V1.

Theorem 5.3.2 [7] For a presperified threshold value B > 0, the MDJIT problem aFmax
has a feasible solution if and only if for all k1, k2 in [1…D] with k1 ≤ k2, the following
inequalities are both valid:

⎣ ⎦ ⎡ ⎤∑
=

+−≥−−−+
n

i
ii kkBrkBrko

1
1212 1))1(,max(; and (5.22)

⎡ ⎤ ⎣ ⎦∑
=

+−≤+−−−
n

i
ii kkBrkBrko

1
1212 1))1(,max((5.23)

Proof [7]: Necessity: Suppose the MDJIT problem aFmax has a feasible solution with
threshold value 0>B . Now, since aFmax has a feasible solution then G(B) has a perfect
matching M(B). This is equivalent to

∀X∈I1U I '2, XXN ≥)(. (5.24)
Now, let]...[21 kkX = be an interval of V1. Then copy),(ji is in the neighborhood of X,

 48

 [] []),()...,(... 21 jiLjiEkk ⊆⇔

21),(),(kjiLandkjiE ≥≤⇔
),(),(21 jiLkkjiE ≤≤≤⇔

12),(),(kjiLandkjiE ≥≤⇔

12 11 k
r

Bjandk
r

Bj

ii

≥⎥
⎦

⎥
⎢
⎣

⎢
+

+−
≤⎥

⎥

⎤
⎢
⎢

⎡ −
⇔

12 11 k
r

Bjandk
r

Bj

ii

≥+
+−

≤
−

⇔

BrkjBrk ii +≤≤−+−⇔ 21 1)1(. (5.25)
For a given product },...,1{ ni∈ , the number of copies j which satisfy the inequality
(5.25) is (i.e. the total number of natural numbers between BrkandBrrk ii +−+− 21 1)(
including both if they are natural).

⎣ ⎦ ()⎡ ⎤() ⎣ ⎦ ()⎡ ⎤()BrkBrkBrkBrk iiii −−−+=+−+−−+ 1,0max111,0max 1212 .
Therefore, for]...[21 kkX = ∈I1, XXN ≥)(, if and only if

 ⎣ ⎦ ⎡ ⎤ ,1))1(,max(
1

1212∑
=

+−≥−−−+
n

i
ii kkBrkBrko

which is (5.22).

Now, for given withVinkk ,, 121 ,21 kk ≤ and given 2),(Vji ∈ , we have

[] []21...),()....,(kkjiLjiE ⊆

21),(),(kjiLandkjiE ≤≥⇔
1),(1),(21 +<−>⇔ kjiLandkjiE

1111 21 +<+
+−

−>
−

⇔ k
r

Bjandk
r

Bj

ii

BrkjBrk ii −+<<+−⇔ 1)1(21

⎣ ⎦ ⎡ ⎤BrkjBrk ii −≤≤++−⇔ 21 1)1(. (5.26)

For a given product i, the number of j which satisfy the inequality (5.26) is
 ⎡ ⎤ ⎣ ⎦).)1(,0max(12 BrkBrk ii +−−−

Thus the cardinality of
[] [] []{ }21221 ...),()...,(|),()...(kkjiLjiEVjikkU ⊆∈=

can be computed as

[] ⎡ ⎤ ⎣ ⎦∑
=

+−−−=
n

i
ii BrkBrkkkU

1
1221))1(,0max()...(. (5.27)

Now, assume that the inequalities (5.23) hold for all values of 21 kk ≤ and consider

∈X I '2. By definition,)(XN is an interval of 1V , say]...[)(21 kkXN = . Hence,
]....([21 kkUX ⊆ Thus, from (5.23) and (5.27), we have

)(1])...([1221 XNkkkkUX =+−≤≤ ,
which is required by (5.24).

 49

Sufficiency: Suppose both conditions (5.22) and (5.23) hold. Now, we will show that the
corresponding sequence is feasible for the MDJIT problem aFmax .
Condition (5.22) implies that for any ∈=]...[21 kkX I 1, with 21 kk ≤ ,

)(XNX ≤ . (5.28)
Now, consider X∈I '2. By definition N(X) is an interval of V1, say]...[)(21 kkXN = .
So tahat,])....([21 kkUX ⊆
Then])...([21 kkUX ≤ ,

or 112 +−≤ kkX (By 5.23 and 5.27)

or)(XNX ≤ .

Therefore,)(XNX ≤ for all X∈I '2 .

Hence, for all X∈I 1UI '2,)(XNX ≤ .
Therefore, by Theorem 5.3.1 and Proposition 5.3.2, the graph G(B) has a perfect
matching and consequently due to Proposition 5.3.1, the MDJIT problem aFmax has a
feasible solution.

A similar result for the MDJIT problem sFmax is obtained by Dhamala et al. [18] as

Theorem 5.3.3 [18] For a given threshold value 0>B , the graph),()(21 EVVBG U=
corresponding to the problem sFmax has a perfect matching if and only if for all

21121 ,, kkVkk ≤∈ and [] [] Ø...),()...,(21 ≠kkjiLjiE I , it holds

⎣ ⎦ ⎡ ⎤()

⎡ ⎤ ⎣ ⎦() .1)1(

;1)1(

1
1212

1
1212

∑

∑

=

=

+−≤+−−−

+−≥−−−+

n

i
ii

n

i
ii

kkBrkBrk

andkkBrkBrk
 (5.29)

Proof [18]: Let [] 121... VkkX ⊆= . Then)(),(XNji ∈

[]

⎡ ⎤ ⎣ ⎦.1)1(

11

),(kj)E(i,
Ø),()...,(

21

12

12

BrkjBrk

k
r

Bjandk
r

Bj

kjiLand
XjiLjiE

ii

ii

+≤≤−+−⇔

≥+
+−

≤
−

⇔

≥≤⇔
≠⇔ I

Therefore, for XXNVX ≥⊆)(,1 if and only if

 ⎣ ⎦ ⎡ ⎤()∑
=

+−≥−−−+
n

i
ii kkBrkBrk

1
1212 1)1(.

If X is the neighborhood of an interval []21...kk in 1V , i.e., [] 121...)(VkkXN ⊆= . Then

2),(VXji ⊆∈

 50

[] []

⎣ ⎦ ⎡ ⎤ .1)1(

1)1(

11

),(),(
...),()...,(

21

21

21

21

121

BrkjBrk

BrkjBrk

k
r

Bjand
r

Bjk

kjiLandjiEk
VkkjiLjiE

ii

ii

ii

−≤≤++−⇔

−+<<+−⇔

≤+
+−−

≤⇔

≤≤⇔
⊆⊆⇔

Thus, for X with [] 121...)(VkkXN ⊆= , XXN ≥)(if and only if

⎡ ⎤ ⎣ ⎦()∑
=

+−≤+−−−
n

i
ii kkBrkBrk

1
1212 1)1(.

A slight modification of Theorem 5.3.2 to state a simpler form needs the following
proposition.

Proposition 5.3.3 [7] When a prespecified threshold value B is strictly less than 1 for

aFmax , then the following statements (a)-(d) are equivalent.
(a) for all [] 21211, kkwithDkk ≤∈ ,

⎣ ⎦ ()⎡ ⎤()∑
=

+−≥−−−+
n

i
ii kkBrkBrk

1
1212 11 , (5.30)

(b) for all [] 2121 ...1, kkwithDinkk ≤ ,

⎣ ⎦ ()⎡ ⎤() 11,0max 1212
1

+−≥−−−+∑
=

kkBrkBrk ii

n

i
, (5.31)

(c) for all k in [1…D],

⎣ ⎦ kBkr
n

i
i∑

=

≥+
1

, (5.32)

(d) for all k in [1…D],

⎣ ⎦∑
=

≥+
n

i
i kBkr

1
, (5.33)

⎡ ⎤∑
=

≤−
n

i
i kBkr

1
. (5.34)

Proof:
1. (a) ⇒ (b): Here the right-side term of (5.30) is always positive integer and as a result
all terms of the sum in left-hand-side of (5.30) may not be non-positive. Now, replace the
non-positive term in the sum by 0 and positive terms remain same. Then, consequently,
we get (b). Therefore, (a) ⇒ (b).

2. (b) ⇒(c): Suppose (b) holds. Now, set 11 =k in (5.31) to get

⎣ ⎦ ⎡ ⎤() 22
1

,0max kBBrk i

n

i
≥−−+∑

=

. (5.35)

But 0,0 >> irk and 10 <≤ B , implies that

⎣ ⎦ ⎡ ⎤ 002 =−≥+ BandBrk i .

 51

Thus, (5.35) becomes

⎣ ⎦∑
=

≥+
n

i
i kBrk

1
22 .

Now, replace the dummy variable k2 by the general variable k to get

⎣ ⎦∑
=

≥+
n

i
i kBkr

1
, for all k in [1…D].

Therefore, (b) ⇒ (c).

3. (c) ⇒(d): Here we need to show that (5.33) holds for all k in [1…D] if and only if
(5.34) holds for all k in [1…D].
For that, (5.33) ⇒ (5.34).
Write k' = D-k in place of k in (5.33), to get

⎣ ⎦∑
=

≥+
n

i
i kBrk

1

''

 ⎣ ⎦∑
=

−≥+−⇒
n

i
ii kDBkrDr

1

⎣ ⎦{ } kDkrBd
n

i
ii −≥−+⇒ ∑

=1

⎣ ⎦ kDkrBD
n

i
i −≥−+⇒ ∑

=1

⎣ ⎦ kkrB
n

i
i −≥−⇒ ∑

=1

⎣ ⎦ kkrB
n

i
i ≤−−⇒ ∑

=1

⎡ ⎤∑
=

≤−⇒
n

i
i kBkr

1
.

Since k = D, then k' = 0.
So that,

⎣ ⎦ ''
1
∑
=

≥+
n

i
i kBrk

 ⎣ ⎦ 0
1

≥⇒ ∑
=

n

i
B

 00 ≥⇒ , which is true.
Hence, (5.33) ⇒ (5.34).

Now, it remains to show (5.34) ⇒(5.33)
For that, write k' = D-k in place of k in relation (5.34), to get

 ⎡ ⎤∑
=

≤−
n

i
i kBrk

1
''

i.e. ⎡ ⎤∑
=

−≤−−
n

i
ii kDBkrDr

1

 52

or ⎡ ⎤∑
=

−≤−−
n

i
ii kDBkrd

1

or ⎡ ⎤{ }∑
=

−≤+−+
n

i
ii kDBkrd

1

)(

or ⎡ ⎤∑
=

−≤+−+
n

i
i kDBkrD

1

)(

or ⎡ ⎤∑
=

−≤+−
n

i
i kBkr

1
.)(

But, we know ⎡ ⎤x− = ⎣ ⎦x− .

Therefore, ⎣ ⎦()∑
=

−≤+−
n

i
i kBkr

1

⇒ ⎣ ⎦∑
=

−≤+−
n

i
i kBkr

1

⇒ ⎣ ⎦∑
=

≥+
n

i
i kBkr

1
.

Since k = D, then k'=0.

So that, ⎡ ⎤∑
=

≤−
n

i
i kBrk

1

''

 ⎡ ⎤∑
=

≤−⇒
n

i

B
1

0

 00 ≤⇒ , which is true.
Hence, (5.34) ⇒ (5.33). Therefore, (c) ⇒ (d).

Finally it remains to show that

4. (d) ⇒ (a)
In (5.33) replace k by k2, to get

⎣ ⎦∑
=

≥+
n

i
i kBrk

1
22 . (5.36)

Again, in (5.34) replace k by 11 −k , to get

⎡ ⎤∑
=

−≤−−
n

i
i kBrk

1
11 1)1(

 ()⎡ ⎤∑
=

−≥−−−⇒
n

i
i kBrk

1
11 11 . (5.37)

Add (5.36) and (5.37), we have

⎣ ⎦ ()⎡ ⎤∑ ∑
= =

+−≥−−−+
n

i

n

i
ii kkBrkBrk

1 1
1212 11

i.e. ⎣ ⎦ ⎡ ⎤∑
=

+−≥−−−+
n

i
ii kkBrkBrk

1
1212 1))1((,

which is (5.30). Therefore, (d))(a⇒ .

 53

Thus, in the conclusion we have (a))()()()(adcb ⇒⇒⇒⇒ and hence proof is
completed.

Corollary 5.3.1 [7] For the given threshold value B < 1, the MDJIT problem aFmax has a
feasible solution if and only if, for all k1, k2 in [1…D] with k1 ≤ k2, the following
inequalities are both valid:

 ⎣ ⎦∑
=

≥+
n

i
i kBrk

1
11 (5.38)

 ⎡ ⎤ ()⎣ ⎦ 1)1,0max(12
1

12 +−≤+−−−∑
=

kkBrkBrk
n

i
ii . (5.39)

Proof: This corollary can be proved with the direct application of Theorem 5.3.2 and
Proposition 5.3.3.

The condition (5.39) is not redundant one. For that Brauner and Crama [7] demonstrate

a counter example with)
7
4;1,3,3;3();,...,;(1 =Bddn n of MDJIT problem .max

aF Clearly,

the conditions ⎣ ⎦∑
=

≥+
n

i
i kBkr

1

 for all k in [1…D]. But the instance does not have a

feasible solution for the given B (=
7
4) since the graph in Figure 5.4 has no perfect

matching. That is, the inequality (5.39) fails for k1 = k2 = 4.

Now before closing this section, we summarize the main result of this section as

Proposition 5.3.4 [18, 35] The optimal objective values of the MDJIT problems aFmax
and sFmax are respectively the smallest aB and sB such that the corresponding graphs

)(aBG and)(sBG have perfect matchings)(aBM and)(aBM .

5.4 Bounds on the Threshold Value

In this section the bounds on the optimal PRV-MDJIT problems are analyzed.

5.4.1 Lower Bound

From Section 5.3, if the first copy of product i is sequenced to be produced at k = 1, then
by definition

{ } i
i
jdj

i rgf
i

−==
≤≤

1)1(max)1(
1

.

By which we conclude that, the threshold value B for aFmax can be feasible if

{ }

.1

max1

1min

)1(min

max Br

Br

Br

Bf

ii

ii

i

i

≤−⇒

≤−⇒

≤−⇒

≤

 54

Therefore, for being a feasible solution to PRV-MDJIT problem aFmax , the threshold
value B must be bounded from below by the quantity max1 r− (cf. [49]). For the
problem sFmax , a copy of some product i must be assigned to the time unit k = 1. Then it
must hold

()

() Br

Brii

≤−⇒

≤−

2
max

2

1

1min

for a given threshold value B to be feasible sequence . Thus the lower bound for the
problem sFmax is ()2

max1 r− (cf. [18]). By the similar argument, we can calculate the
lower bounds for the optimal value of the problems waFmax and wsFmax as)1(maxmin rw − (cf.
[50]) and 2

maxmin)1(rw − (cf. [18]) respectively, where ii
ww minmin = .

Example 5.4.1 The lower bound of the threshold value B for the MDJIT problem aFmax is
tight.

Figure 5.6: Bipartite Graph of Feasible Producing Times for Five Products with

Threshold Value B = 13/20 for aFmax

For that consider an instance

)
20
13;1,2,4,6,7;5();,...,;(1 =Bddn n

(3, 1)
(1, 1)

(2, 1)

(1, 2)
(2, 2)

(2, 4)
(1, 4)

(1, 5)

(1, 6)

The Demand Vector)1,2,4,6,7(

(4, 1)

3

6

12

18

20

(1, 3)

Producing Times

4

7

11

9

19

(2, 3)

(2, 6)
(1, 7)

(3, 3)

(3, 4)

1
2

8(3, 2)

5

(2, 5)

(5, 1)

16

10

13

17

14

15
(4, 2)

 55

of the MDJIT problem aFmax where B = 1-rmax. The corresponding 1V -convex bipartite

graph G(
20
13) is given by Figure 5.6. Now, by applying the EDD algorithm, we easily

obtain the following perfect order preserving perfect matching M(
20
13). That is

 M(
20
13) ={[1,(1,1)], [2,(2,1)], [3,(3,1)], [4,(1,2)], [5,(2,2)], [6,(4,1)], [7,(1,3)],

[8,(2,3)], [9,(3,2)], [10,(1,4)], [11,(5,1)], [12,(2,4)], [13,(1,5)], [14,(3,3)], [15,(2,5)],
[16,(1,6)], [17,(4,2)], [18,(2,6)], [19,(3,4)], [20,(1,7)]}.

This yields the optimal production sequence)1,3,2,4,1,2,3,1,2,5,1,3,2,1,4,2,1,3,2,1(=s for
the given instance. �

Proposition 5.4.1 For nddd ≤≤≤ ...21 . The optimal value B* of the MDJIT problem

(a) [7] aFmax satisfies
 1,...,1*, −=≤ niforBri , (5.40)
 1,...,1*,21 −=≤− niforBri , (5.41)
 *2Brn ≤ , (5.42)
 *1 Brn ≤− , (5.43)

 *
12

1 B
n

n
≤

−
− . (5.44)

(b) sFmax satisfies

1,...,1,* −=≤ niforBri ,

 1,...,1,*21 −=≤− niforBri ,

 *2 Brn ≤ ,

 *1 Brn ≤− ,

 *
12

1 B
n

n
≤

−
− .

Proof:
(a) [7] In any feasible sequence, some copy),(ji must be produced in time period k = 1
(i.e. in period [0,1]). But },...,max{ 1 nn rrr = .

Hence, to minimize iini
rx −

≤≤ 11
max we have to sequence product n in the first time period.

Therefore, we must have, *1*1 BrBr nn ≤−⇒≤− , which is (5.43). Now, since
copy)1,(n is sequenced in time period 1=k , then clearly,

1,...,1*,0 −=∀≤=− niBrr ii , which is condition (5.40).

Again, for a feasible solution of the MDJIT problem aFmax , it holds),(),(jiLjiE ≤ (cf.
[31] for proof) for all copies),(ji .Hence,

),(),(0 jiEjiL −≤
ii r
Bj

r
Bj *1*1 −

−+
+−

≤
i

i

r
rB 1*2 −+

=

 56

and the condition (5.41) follows. Moreover, ∑
=

≥=−≥
n

i
ni rrrB

2
11*2 , which is condition

(5.42). Now, for the bound (5.44), we simply add the inequalities (5.42) for 1,...,1 −= ni
to inequality (5.43) to get the required result

 *
12

1 B
n

n
≤

−
− .

(b) It follows immediately from (a).

Theorem 5.4.1 Define
),gcd(Dd

D

i
i =∆ . The optimal value B*

 of the MDJIT problem

(a) [7] aFmax satisfies

 niB i

i

,...,1
2

1* =∀⎥⎦

⎥
⎢⎣

⎢∆
∆

≥ . (5.45)

(b) sFmax satisfies

 niB i

i

,...,1
2

1* =∀⎥⎦
⎥

⎢⎣
⎢∆

∆
≥ . (5.46)

Proof:

(a) [7] The ideal production rate for any product ni ,...,1= is
i

ii
i D

d
r

∆
==
δ

 with

1),gcd(=∆ ii δ . Clearly, any feasible solution Dnikx ×)(of the MDJIT problem aFmax
satisfies the inequality
 iiiik krkrkrx −≥−][, for all k∈[1...D].
Now, it is sufficient to show that there exists at least one k in [1...D] such that

⎥
⎦

⎥
⎢
⎣

⎢∆
∆

=−
2

1][i

i
ii krkr .

Case (I): i∆ is even.

 Put k =
2

i∆ ,

then,
2

||][| i
ii krkr

∆
=−

i

i

∆
δ -

2
[i∆

i

i

∆
δ

]| = |
2

iδ - [
2

iδ]|.

But 1),gcd(=∆ ii δ and i∆ -even, so the optimal value of the objective function is at
least

5.0
2

1
=⎥

⎦

⎥
⎢
⎣

⎢∆
∆

i

i

.

Case (II): i∆ is odd.

Since i∆ is odd, then we have
2
1

22
−

∆
=⎥⎦

⎥
⎢⎣
⎢∆ ii .

Again, we show that there exists a k such that

 57

 []
i

ii

i
ii krkr

∆
−∆

=⎥⎦
⎥

⎢⎣
⎢∆

∆
=−

2
1

2
1 .

As the integers iδ and i∆ are relatively prime, then there exist two integers u and v such
that 1=∆+ ii vuδ (see [10]).
Which implies that 1±=+∆− ii vu δ (5.47)

Now, multiply on both sides of equality (5.47) by a constant number
i

i

∆

−∆

2
1

 and set

2
1−∆

= ivk to obtain

i

ii

i

i uk
∆
−∆

±
−∆

=
∆ 2

1
2

1δ
. (5.48)

Now, for
i

i

∆

−∆

2
1

 < 0.5 and i∆ is odd, we have from (5.48),
2

1−∆
=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

i

i

i uk
δ

 and

hence the desired conclusion is obtained as |[k(
i

i

∆
δ

)] - k (
i

i

∆
δ

)| =
i

i

∆

−∆

2
1

i.e., [] ⎥
⎦

⎥
⎢
⎣

⎢∆
∆

=−
2

1 i

i
ii krkr .

(b) It directly follows from the proof of (a).

5.4.2 Upper Bound

Interestingly, Steiner and Yeomans [49] prove that the optimal value of the MDJIT
problem aFmax is always less or equal to 1. This means that for any number n of products
and any set of demand values d1,...,dn, there always exists a sequence in which at any
time]...1[Dk ∈ no product is ahead or behind the ideal cumulative production kri for
product i by more than B = 1. But due to Brauner and Crama [7] and Tijdeman [53],
Kubiak [28] gives a slightly stronger version of this result for PRV-MDJIT problem

aFmax as

Theorem 5.4.2 For any instance d1,...,dn (n>1) of the MDJIT problem aFmax , the optimal
value

⎭
⎬
⎫

⎩
⎨
⎧

−
−≤

22
1,1max1*

nD
B .

Proof: It is sufficient to prove the following for an optimal solution B* of the MDJIT
problem aFmax

(a)
D

B 11* −≤

(b)
)1(2

11*
−

−≤
n

B

 58

(a) [7] Due to Corollary 5.3.1, it is sufficient to show that the two inequalities (5.38) and

(5.39) of the same Corollary hold for B = 1 -
D
1 < 1.

For that, let k ≥ 0 be any integer, and if kri is also an integer, then ⎣ ⎦Bkr i + = kri.

Otherwise {kri }≥
D
1 , where {kri} denotes the fractional part of kri. This implies

1111}{ =−+≥+
DD

Bkri ,

and hence,
⎣ ⎦ ⎣ ⎦ iii krkrBkr >+=+ 1 .

Therefore, for any integer k≥0, we have
⎣ ⎦ ii krBkr ≥+ (5.49)

Now, by summing (5.49) over i = 1,...,n, we have

⎣ ⎦ kBkr
n

i
i ≥+∑

=1

for any integer 0≥k .

And in particular ⎣ ⎦ 1
1

1 kBrk
n

i
i ≥+∑

=

, for any k1 in [1...D]. This proves inequality (5.38).

Now, to establish the inequality (5.39), fix]...1[, 21 Dkk ∈ , with 21 kk ≤ , and consider the
set },...,1{ nJ ⊆ , defined by ⎡ ⎤ ⎣ ⎦ 0)1(12 ≥+−−−⇔∈ BrkBrkJi ii . Then by
substituting D - k2 in place of k in (5.49), we get

⎣ ⎦
⎣ ⎦

⎣ ⎦ iiii

iiii

ii

rkdBrkd
rkdBrkd

rkDBrkD

22

22

22

)(

)()(

−≥−−+⇒
−≥+−⇒
−≥+−

 ⎣ ⎦ ii rkBrk 22)(−≥−−⇒
 ⎣ ⎦ ii rkBrk 22)(≤−−−⇒ .
But ⎣ ⎦ ⎡ ⎤xx −=− .
Therefore, ⎡ ⎤ ii rkBrk 22 ≤− , for i = 1,2,3,...,n.
Also, we have ∑

∈

≤
Ji

ir 1

Hence, we derive successively

⎡ ⎤ ⎣ ⎦()∑
=

+−−−
n

i
ii BrkBrk

1
12)1(,0max = ⎡ ⎤ ()⎣ ⎦()∑

∈

+−−−
Ji

ii BrkBrk 112

 i
Ji

rkk)1(12∑
∈

+−≤

 1)1(1212 +−≤+−= ∑
∈

kkrkk
Ji

i ,

which establish the required inequality (5.39), and consequently (a) is proved.

(b) The proof given by Kubiak [28] with the direct application of Theorem 2.2.1 is given
here. For that define the double sequence);1(Ν∈≤≤ jniijλ of nonnegative number

 59

with λ ij = ri =
D
di for all j∈N. Then clearly for all j∈N, ∑

=

=
n

i
ij

1

.1λ Therefore, the

Theorem 2.2.1 guarantees that the existence of an infinite sequence s in the alphabet
{1,...,n} such that

22

11max
1, −

−≤−∑
= n

x
k

j
ikijki

λ .

That is,
22

11max
, −

−≤−
n

xkr ikiki
,

where ikx gives the same meaning as in the Theorem 2.2.1.

We now require the number of copies of each product in first D-prefix of s. Consider the
first D-prefix of s and assume that there is a product)1(nii ≤≤ with iiD dx > , so there
must be a product ij ≠)1(nj ≤≤ such that jjD dx < . But for iiD dx > , we have

1+−>− iDiiDi xdxDr , and for jjD dx < , we have 1−−>− jDjjDj xdxDr . Hence,
by replacing the last copy of product i in the D-prefix of s by product j does not increase
the absolute maximum-deviation for the D-prefix as the new two deviations strictly
decrease and other remains the same. Therefore, it is easy to obtain a D-prefix where
each product i occurs exactly di–times and with maximum deviation not exceeding

)1(2
11
−

−
n

. This proves relation (b). Hence, the theorem is established by combining

relations (a) and (b).

Dhamala et al. [18] establish the upper bound for the problem sFmax as

Theorem 5.4.3 For any instance d1,...,dn (n>1) of the MDJIT problem sFmax , the optimal
value

211* ⎟
⎠
⎞

⎜
⎝
⎛ −≤

D
B .

Proof [18]: To prove this theorem, it is sufficient to establish the relations of (5.29)

for
211 ⎟
⎠
⎞

⎜
⎝
⎛ −=

D
B . Let

211 ⎟
⎠
⎞

⎜
⎝
⎛ −=

D
B , then ⎣ ⎦ ⎥⎦

⎥
⎢⎣
⎢ −+=+

D
rkBrk ii

1122 . If irk2 is an

integer, then ii rk
D

rk 22
11 =⎥⎦
⎥

⎢⎣
⎢ −+ , and if irk2 is not an integer, then

⎣ ⎦ { }iii rkrkrk 222 += where { }x denotes the fractional part of the number x . Since

{ }
D

rk i
1

2 ≥ , we have

 ⎣ ⎦ .111 222 iii rkrk
D

rk >+≥⎥⎦
⎥

⎢⎣
⎢ −+

Therefore, ii rk
D

rk 22
11 ≥⎥⎦
⎥

⎢⎣
⎢ −+ . Thus,

 60

 ⎣ ⎦ ⎡ ⎤()∑ ∑ ∑
= = =

+−≥−−≥−−−+
n

i

n

i

n

i
iiii kkrkrkBrkBrk

1
12

1 1
1212 1)1()1(.

On the other hand for such B, we have ⎡ ⎤ ⎥⎥
⎤

⎢⎢
⎡ +−=−

D
rkBrk ii

1122 . If irk2 is an integer,

then ii rk
D

rk 22
11 =⎥⎥
⎤

⎢⎢
⎡ +− , and if irk2 is not an integer, then ⎣ ⎦ { }iii rkrkrk 222 += where

{ }x denotes the fractional part of the number x . Since{ }
D

rk i
112 −≤ , we have

⎣ ⎦ { } ⎣ ⎦⎡ ⎤ iiiii rkrk
D

rkrk
D

rk 22222
1111 <≤⎥⎥
⎤

⎢⎢
⎡ +−+=⎥⎥

⎤
⎢⎢
⎡ +− .

Therefore, ii rk
D

rk 22
11 ≤⎥⎥
⎤

⎢⎢
⎡ +− . Thus,

⎡ ⎤ ⎣ ⎦()∑ ∑ ∑
= = =

+−≤−−≤+−−−
n

i

n

i

n

i
iiii kkrkrkBrkBrk

1
12

1 1
1212 1)1()1(.

Hence, the 1V -convex bipartite graph),(21 EVVG U= constructed by the problem
yields a perfect matching within this bound.

As a direct consequence of the Theorems 5.4.2 and 5.4.3, we have

Corollary 5.4.1 [47] Upper bounds on the objective functions for the problem a

sumF and
s

sumF are respectively
 () () nDsFandnDsF s

sum
a

sum ≤≤ .

Surprisingly, the upper bounds for both problems a

sumF and s
sumF are identical. However,

the bounds are not tight (see [19]). Moreover, the lower bound for the problem s
sumF is

∑
=

−n

i

i

D
dD

1

22

12
 (cf. [1]).

The upper bounds for the problems waFmax and wsFmax are maxw (cf. [50]) and

2

max
11 ⎟
⎠
⎞

⎜
⎝
⎛ −

D
w (cf. [18]) respectively, where ii

ww maxmax = .

5.5 The Binary Search for Optimality

5.5.1 Binary Search for Absolute Deviation

The tight lower bound for the PRV-MDJIT problem aFmax is proven to be 1- rmax in
Section 5.4.1. For small examples, the optimal value of aFmax very often coincides with
the lower bound 1 – rmax. Depending up on this analysis Kovalyov et al. [26] conjectured
that the value of the optimal MDJIT problem aFmax will always be at the problem's
theoretical lower bound, 1- rmax. But, unfortunately this conjecture is refuted several

 61

times in their computational experiments. In fact, in their 1,00,000 trials, approximately
25% of the time, the optimal aFmax value is found not to be at its lower bound (cf. [26]).
As a matter of fact, assume that an optimal sequence attains its lower bound 1-rmax and

also assume that rmax>
3
2 . Now, by (5.42) and (5.43), we have

 1- rmax = B*
 rmax≤ 2B*.

Combining these two implies
rmax ≤ 2-2 rmax

⇒
3
2 < rmax ≤

3
2

 ⇒
3
2 <

3
2 .

Which is absurd and as a result the lower bound cannot be tight as soon as rmax >
3
2 (cf.

[7]).

 Now, for an instance of PRV-MDJIT problem aFmax with
3
2

max >r , we use the binary

search technique to find the optimum B* in the interval]1),1[(maxr− for which the
corresponding V1-convex bipartite graph G(B*) has a perfect matching and can be
obtained by doing O(logD) tests.

Theorem 5.5.1 [49] An optimal sequence for the problem aFmax can be determined when
a binary search algorithm is performed in the interval []1,1 maxr− in exact pseudo-
polynomial time complexity ()DDO log .

Proof: Let the optimal value be B*. Then for some values of i and k, it must hold
 iik krxB −=*

D
d

kxDDB i
ik −=⇒ * .

Hence, *DB an integer in the interval []DdD ...max− , and the problem becomes to find
an optimal integer DB* in the interval []DdD ...max− , which requires to solve
()maxlog dO decision problems. Since),(jiE and),(jiL can be calculated in O(D) time,

an optimal sequence can be obtained in () ()DDOdDO loglog max ≤ time.

The optimal solution to the weighted case can also be determined by the

Corollary 5.5.1 [50] An optimal sequence for the problem waFmax can be determined
when a binary search is performed in the interval ()],1[maxmaxmin wrw − in exact pseudo-
polynomial time complexity ()()maxlog wDDO φ , where φ is a positive integer constant
that depends on the problem data. �

 62

Example 5.5.1 Here we consider an instance)7,2,1;3(),...,;(1 =nddn of the PRV-MDJIT

sequencing problem aFmax in which rmax =
10
7 >

3
2 . So that the optimal value B* of the

instance does not attain its problem’s theoretical lower-bound 1- rmax = 1-
10
7 =

10
3 .

Hence, we search for optimal B* under Binary Search Algorithm 2.3.1 as follows:

Since B*∈ [1-
10
7 , 1], then 10B*

 ∈ [10 - 7...10] = [3...10].

Now, first we check:
Is 10B* < 6?

i.e., is B* <
10
6 ?

Now, to check this, let B1 =
10
5 be a threshold value of the instance and the

corresponding graph G(
10
5) is given by Figure 5.7 (a). Obviously, the graph G(

10
5) does

not contain any perfect matching since the time period 2 and 9 are not assigned to any
copy of vertex set V2.

 (a): ⎟

⎠
⎞

⎜
⎝
⎛
10
5G (b): ⎟

⎠
⎞

⎜
⎝
⎛
10
7G (c): ⎟

⎠
⎞

⎜
⎝
⎛
10
6G

Figure 5.7: Bipartite Graphs for Different Threshold Value for aFmax

Thus, the answer of the question is no and we have 10B*∈[6...10].
Again, we check:

Is 10B* <* 8 ?

That is, is B* <
10
8 ?

For that, let B2 =
10
7 be a threshold value of the instance and the corresponding graph

G(
10
7) is Figure 5.7 (b).

1

3

5
6

8

10

1
2 2

1

3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10

(1, 1) (1, 1) (1, 1)
(2, 1) (2, 1) (2, 1)

(2, 2) (2, 2)

(3, 1) (3, 1) (3, 1)
(3, 2) (3, 2)

(3, 3) (3, 3)

(3, 4) (3, 4) (3, 4)

(3, 5) (3, 5)
(3, 6)

(3, 7)

(3, 6) (3, 6)

(3, 7) (3, 7)

1V 1V 2V 2V

The Demand Vector)7,2,1(The Demand Vector)7,2,1(

2

4

9

(2, 2)

(3, 2)
(3, 3)

(3, 5)

1V 2V

The Demand Vector)7,2,1(

7

 63

By applying the EDD Algorithm in the graph G(
10
7), we can easily find the order

preserving perfect matching M (
10
7) as

M (
10
7) = {[1, (3,1)] , [2, (3,2)] , [3, (2,1)] , [4, (3,3)] , [5, (3,4)] , [6, (1,1)] , [7, (3,5)],

[8, (3,6)], [9, (2,2)], [10,(3,7)]}.

Therefore, 10 B* ∈ {6, 7}. Similarly we check;
 Is 10B* < 7?

 i.e. is B* <
10
7 ?

 For that, let B3 =
10
6 be the threshold value of the instant and the corresponding graph

is given by Figure 5.7 (c). Again, under the application of EDD algorithm for the graph

G(
10
6), we can obtain an order preserving perfect matching M (

10
6) as

 M(
10
6) = { As same as for threshold value

10
7 }.

Thus, we have 10B* > 5 and 10B* ≤ 6 . By which we must have
 10B* = 6.
This implies that

 B* =
10
6 = 0.6.

Which is the optimal solution to the instance)7,2,1;3(),...,;(1 =nddn of the PRV-MDJIJ
sequencing problem aFmax . The optimal sequence is)3,2,3,3,1,3,3,2,3,3(=s .

By Theorem 5.4.2, the optimal value of the example 5.5.1 must satisfy

B* ≤ 1-max {
10
1 ,

4
1 } = 1-

4
1 =

4
3

Therefore, 1-r max ≤B* ≤
4
3

⇒
10
3
≤ B* ≤

4
3 .

But the value B* is the integral multiple of
D
1 , so the optimal value B* must be one

among
10
4 ,

10
5 ,

10
6 , and

10
7 , since the optimal value does not attain its lower bound in

this example. And clearly, the possible value
10
6 is found to be optimal by binary search

algorithm in the desired interval. �

 64

5.5.2 Binary Search for Squared Deviation

Theorem 5.5.2 [18] An optimal sequence for the problem sFmax can be determined when

a binary search algorithm is performed in the interval ⎥⎦
⎤

⎢⎣
⎡ −− 22

max)11(,)1(
D

r in exact

pseudo-polynomial time complexity ()DDO log . �

Corollary 5.5.2 [18] An optimal sequence for the problem wsFmax can be determined when

a binary search is performed in the interval ⎥⎦
⎤

⎢⎣
⎡ −− 2

max
2

maxmin)11(,)1(
D

wrw in exact

pseudo-polynomial time complexity ()()max
2log wDDO φ , where φ is a positive integer

constant that depends on the problem data. �

In Section 3.2, it has been shown that the bottleneck multi-level problems waFmax

~ and wsFmax
~

with pegging assumption can be reduced to weighted single level problems waFmax and
wsFmax respectively and Corollary 5.5.1 and 5.5.2 demonstrates that the problems waFmax and
wsFmax can be solved for optimality in time which is polynomial in D and in the size of the

weighting factors. Hence, optimal solutions to the balanced sequence problem for multi-
level, pegging models can also be efficiently determined.

5.6 The Cyclic Sequences

For any instance ndd ,...,1 with ∑
=

=
n

i
idD

1

of the PRV-MMJIT sequencing problem sumF ,

we have summarized the existence of cyclic optimal sequence in Section 4.2.4. On the
other hand Steiner and Yeomans [50] establish the existence of optimal cyclic sequences
for bottleneck absolute deviation both for weighted and un-weighed cases for the first
time. Subsequently, Dhamala et al. [18] prove the existence of optimal cyclic sequences
for the bottleneck squared deviation. In this section, we describe the existence of optimal
cyclic sequences for any instance of the bottleneck problems aFmax and sFmax by which
the computational complexity reduce significantly. Let ()nddm ,...,gcd 1= . Then the
product requirement vector becomes () ()nn mmmmddd ,...,,..., 11 == with

nimmd ii ,...,1, =∀= .

Letting ∑
=

=
n

i
imA

1

, then ∑
=

==
n

i
i mAdD

1

 and
A

m
mA
mm

D
d

r iii
i === .

Let each copy of the product be labeled as () cmk i +−1 , where

imcandmk ,...,1,...,1 == . Then for each fixed value of k, there will be a group of

im copies of product i in the range
() ()[]iii mmkmk +−+− 1...11 .

This range will be referred to as the thk tier (cf. [50]) of copies for product i . The
following lemma is implicit in [18] and [50].

 65

Lemma 5.6.1 For a threshold value ,1<B we have the linear relations
() () kAciEckmiE i +=+ ,, and () () kAciLckmiL i +=+ ,, .

Proof: We give the proof only for the case aFmax of Steiner and Yeomans [50] and the
proof for the case sFmax can be obtained similarly from [18].

⎥
⎥

⎤
⎢
⎢

⎡ −+
=+

i

i
i r

Bckm
ckmiE),(

()

⎥
⎥

⎤
⎢
⎢

⎡ +−+−
=

i

ii

r
mBcmk 1

()

⎥
⎥

⎤
⎢
⎢

⎡
+

−+−
= A

r
Bcmk

i

i1

 A
r

Bcmk

i

i +⎥
⎥

⎤
⎢
⎢

⎡ −+−
=

)1(

 ()() AcmkiE i ++−= 1,
 () kAciE += , .

Similarly, it can be proved that () () kAciLckmiL i +=+ ,,

The Lemma 5.6.1 implies that only the early and late producing times for copies

imc ,...,1= in the first tier need to be calculated, as the produce times for all copies in the
remaining tiers are linear function of those in the first tier.

Lemma 5.6.2 For bottleneck 1<B , then for all ni ,...,1= and mk ,...,1= , we have
 () () kAkmiLa i ≤,
 () () ()()11,1 +−<− imkiEAkb

An obvious result of Lemma 5.6.2 is

Corollary 5.6.1 For an bottleneck 1<B , then for all ni ,...,1= and 1,...,1 −= mk , we
have

() ()[] () ()()[] Ø1,...1,,)...11(, =+++− iiii mkiLkmiEkmiLmkiE I .

Now, we state the main result from [18, 31, 50].

Theorem 5.6.1 Let ()nddm ,...,gcd 1= . Then the problem

(a) aFmax has an optimal sequence which consists of m repetitions of the optimal
sequence to the sub-problem where ()nmmd ,...,1= .

(b) sFmax has an optimal sequence which consists of m repetitions of the optimal
sequence to the sub-problem where ()nmmd ,...,1= .

Proof:

 66

(a) Consider any optimal sequence ()Dsss ,...,1= to the problem aFmax with objective
value 1* <B . By Theorem 5.4.2 such a solution always exists. If s itself is an m
repetitions of the optimal sequence to the sub-problem where ()nmmd ,...,1= , then there
is nothing to prove further. Else, a copy ()ji, of product i occupies a position in the
interval () ()[]jiLjiE ,..., . Moreover, Lemma 5.6.1 implies that each interval
()[]kAAk ...11 +− consists of m units of products and hence by Corollary 5.6.1 we can

rearrange the products sub-sequence on each of the interval ()[]kAAk ...11 +− , for
mk ,...,2= as in the first interval []A...1 without destroying the *B feasibility of the

sequence.

(b) The proof directly follows from Theorem 5.4.3 and (a).

It is also noted that the cyclic sequence analogously exists for the weighted problem with
appropriate weights (see [18, 50]).

Dhamala and Kubiak [20] conjectured that the cyclic JIT sequences in multi-level
problem are optimal and till now there are no further investigation on this conjecture.

5.7 Small Deviations

5.7.1 Small Deviations for aFmax

Since the optimal cyclic sequences exist, without loss of generality, in this section, we

may assume that all instances are standard. It is noted that the bound ⎥⎦
⎥

⎢⎣
⎢∆

∆
≥

2
1* i

i

B is

usually close to
2
1 , and then

2
1* ≥B as soon as there exists some i such that i∆ is even.

On the other hand the bound *)
12

1(B
n

n
≤

−
− , established in Proposition 6.3.1, goes to

2
1 as ∞→n . Thus, in this section we look more closely at those instances for which

the maximum deviation does not exceed the value
2
1 and the ultimate goal of this

section is to identify all instances with optimal value
2
1* <B . Clearly for

2
1* <B the

condition, *Bkrx iik ≤− forces ikx to be equal to][ikr and the ikr not be equal to sum

of some integral and
2
1 by which the problem becomes highly constrained.

Lemma 5.7.1 [30] For B* <
2
1 , each copy),(ji must be sequenced in its ideal position

and no ideal corner is integer.

Proof [30]: For 1≥∆ an integer, assume that a copy),(ji is sequenced in position

 67

∆+⎥
⎥

⎤
⎢
⎢

⎡ −

ir
j
2

12 . Then, .1
2

12 −≤
⎥
⎥

⎤
⎢
⎢

⎡ −
jx

ir
ji

But, we have

.
2
1

2
12

2
12

−=
−

≥⎥
⎥

⎤
⎢
⎢

⎡ − jr
r

jr
r

j
i

i
i

i

Therefore, at the time period ⎥
⎥

⎤
⎢
⎢

⎡ −

ir
j
2

12 , we have
2
1

2
12

2
12 ≥⎥

⎥

⎤
⎢
⎢

⎡ −
−

⎥
⎥

⎤
⎢
⎢

⎡ − i
ir

ji
r

r
jx

i

,

which contradicts to B* <
2
1 .

Now, assume that copy),(ji is sequenced in position ,
2

12
∆−⎥

⎥

⎤
⎢
⎢

⎡ −

ir
j where is as

before. Then, jx
ir

ji
≥−

⎥
⎥

⎤
⎢
⎢

⎡ −
1

2
12

.

But
2
1)1

2
12(−≤−⎥
⎥

⎤
⎢
⎢

⎡ − jr
r

j
i

i

.

Therefore, at time period ,1
2

12
−⎥

⎥

⎤
⎢
⎢

⎡ −

ir
j

2
1)1

2
12(

)1
2

12(
≥−⎥

⎥

⎤
⎢
⎢

⎡ −
−

−⎥
⎥

⎤
⎢
⎢

⎡ − i
ir

ji
r

r
jx

i

.

This is again a contradiction to the hypothesis
2
1* <B . Therefore, for

2
1* <B , we have

to sequence each copy),(ji in its ideal position.

Now, let the ideal corner of copy),(ji be integer.

Then,
ii r

i
r

j
2

12
2

12 −
=⎥

⎥

⎤
⎢
⎢

⎡ − .

And we must have jx
ir

ji
=

⎥
⎥

⎤
⎢
⎢

⎡ −
2

12

Therefore,

2
1)

2
1(

2
12

2
12 =−−=⎥

⎥

⎤
⎢
⎢

⎡ −
−

⎥
⎥

⎤
⎢
⎢

⎡ −
jjr

r
jx i

ir
ji

i

,

which is a contradiction. Hence, no one ideal corner is an integer for B* <
2
1 .

Lemma 5.7.2 [30] For
2
1* <B ,

(a) exactly one ideal corner falls inside the interval [k -1, k] , for k = 1,2,...,D.

(b) 1,...,1221 −=><< nifor
d
Dand

d
D

in

(c) exactly one di , i = 1,…,n is odd.

 68

Proof [30]: (a) By definition there are exactly D numbers of ideal corners and positions.
Again, we can sequence exactly one copy at a time. Then, the proof immediately follows
from Lemma 6.5.1.

(b) For standard instance, it is clear that
nd

D
<1 . Now, we show 2<

nd
D . On the contrary

assume that 1
2

..,2 ≥≥
nn d

Dei
d
D . Then, due to Lemma 5.1.1 and 6.5.1, the first and

the last ideal corners of product n do not fall inside]1,0[and],1[DD − respectively.

Moreover, none ideal corner falls in either]1,0[or],1[DD − , since
ni d

D
d
D

≥ for

1,...,1 −= ni , and standard instances, which contradicts (a) and hence we must have

2<
nd

D . Now, it remains to show that 2>
id

D for 1,...,1 −= ni . Suppose on the contrary

2≤
id

D for some 1,...,1 −= ni . Then 1
2

≤
id

D and consequently, the two ideal corners of

product i shares both time intervals]1,0[and],1[DD − with n, which again contradicts

the part (a) and proves that 2>
id

D for 1,...,1 −= ni .

(c) For a product i with odd di, we have di = 2k + 1 for some integer k>0. Then the ideal

corner of copy (i, k+1) is
22

1)1(2 D
r

k

i

=
−+ . Therefore, each product i with an odd di has

one of its ideal corners at
2
D . But by part (a), there is no more than one di (1< i < n).

Moreover, for being standard instance one di must be odd, otherwise the instance will
not be standard since 2),,...,gcd(1 ≥Ddd n .

Proposition 5.7.1 [7, 8] Let di , i = 1,2,…,n be an instance of the MDJIT problem aFmax

for which there is an optimal sequence s with B* <
2
1 . Then s generates a periodic word

w = (sss…) with distinct rates
D
d

D
d n,....,1 which is symmetric and 1-balanced.

Proof: Let s be the optimal sequence for the instance (d1,…,dn) with 2
1* <B and define

an infinite sequence obtained by repeating s, i.e. w = (ss…). Now, we show that the
infinite sequence w is periodic, symmetric and 1-balanced on alphabet },...,1{ n . The
periodicity of w immediately follows from the definition.

Now, let ∈t N and 1S , 2S be two subsequences consisting of t consecutive elements of
w . Assume that jS ranges from time 1+jt to time tt j + , for 2,1=j . Fix },...,2,1{ ni∈

and denote by I the number of occurrences of i in any time interval I . Then for
2,1=j ,

 69

1
2
1

2
1)(]...1[]...1[]...1[+=⎟

⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ ++<−+=++ iijijjjjj trrtrtttttttt

and similarly

1
2
1

2
1)(]...1[]...1[]...1[−=⎟

⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ −+>−+=++ iijijjjjj trrtrtttttttt .

Thus,]...1[11 ttt ++ and]...1[22 ttt ++ are two integers in the interval)1,1(+− ii trtr .

There follows that]...1[11 ttt ++ and]...1[22 ttt ++ differ at most by 1, and hence w
is 1-balanced.

Now, the symmetricity follows as
 ()[] ()[]iikDikDi rkDrkDxx 1)1()(−−−−=− −−−
 [] ()[]iiii rkdkrd 1++−−=
 ()[] []ii krrk −+= 1
 ikki xx −= +)1(.
Finally all the rates are distinct. Indeed, if ri = rj for i ≠ j, then x ik= [kri] =[krj]= x jk

for all k, which is clearly impossible for 2
1* <B . Hence, the conclusion follows.

Theorem 5.7.1 [8] For 3≥n a standard instance (d1,…,dn) of the PRV-MDJIT problem

aFmax has optimal value B*< 2
1

 if and only if the demand vector

 (d1,…,di,…,dn) = (1,…,2i-1,…,2n-1) and .
12
12*

1

−
−

=
−

n

n

B

Proof: Necessity: Assume that the standard instance (di,…,dn) of the PRV-MDJIT

problem aFmax has an optimal finite sequence s of length ∑
=

=
n

i
idD

1

with 2
1* <B . Then by

Proposition 5.7.1, s generates an infinite periodic, symmetric and 1-balanced word
...)(sssw = with distinct rates (ri,…,rn). Therefore, Theorem 2.2.2 guarantees that the

rates should be

1

1

2
2

−

−

= n

i

ir for each i = 1,…,n.

Hence, the demand vector is given by
)2,...,2,...,1(),...,,...,(),...,,...,(11

11
−−== ni

nini DrDrDrddd .

Now, it remains to show that for such instance the optimal value .
12
12*

1

−
−

=
−

n

n

B For that,

Theorem 5.4.1 suggests that niforB i

i

,...,1
2

1* =⎥⎦
⎥

⎢⎣
⎢∆

∆
≥ . Now, let

2
1

12
12

2
1*

1

<
−
−

=
−

=
−

n

n

D
DB be the threshold value of the problem. Again, by Lemma 5.7.1,

for
2
1* <B , each copy of each product must be sequenced in its ideal position. Hence, to

 70

test the feasibility of B*, by Theorem 5.2.1, it is sufficient to show that
),(),(* jiLZjiE ij ≤≤ , where

)12(2
2

12)12(2
2

)12)(12(

12
22

12
2

12
1

* −=⎥⎥
⎤

⎢⎢
⎡ −

−−=⎥
⎥

⎤
⎢
⎢

⎡ −−
=

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

−

−
=⎥

⎥

⎤
⎢
⎢

⎡ −
= −−

− jjjjj
r

jZ in
i

in
i

n

n

i
i

ij ,

is the ideal position of copy),(ji .

Indeed,

1

11
*

2
12)12()12(2*

−

−− −+−−−
=

−
− i

nnn

i
ij

jj
r
BjZ

 = 12
1

−

−
i

j
≥ 0,

and

ir
Bj *1+− + 1 - *

ijZ = 1

111

2
)12(2212)12)(1(

−

−−− −−+−+−−
i

ninn jj = 1

1

2
2

−

− −
i

i j
≥0.

Now, *
ijZ integer implies that

),(1*1*),(* jiL
r

BjZ
r
BjjiE

i
ij

i

=⎥
⎦

⎥
⎢
⎣

⎢
+

+−
≤≤⎥

⎥

⎤
⎢
⎢

⎡ −
= .

Furthermore, *
ijZ ≠ *

'' jiZ for i ≠ i' or j≠ j' and clearly 1≤ *
ijZ ≤D = 2 1−n .

Hence, the necessary condition.

Sufficiency: Assume that the demand vector of a standard instance of the PRV-MDJIT
problem aFmax is given by

(d1,...,di,...,dn) = (1,...,2i-1,...,2n-1).
Now, as shown in the necessity condition. Such standard instance has an optimal finite

sequence s of length D = ∑
=

n

i
id

1

with B* =
2
1

12
12 1

<
−
−−

n

n

.

Which completes the proof of the Theorem.

The structure of instances with B* =
2
1 becomes more complex as ikx may now be

equal to either [kri] or to [kri]= kri+
2
1 when kri is half integral and hence the following

conjecture is formulated by Brauner and Crama [7].

Conjecture 5.7.1 A standard instance (d1,...,dn) of the PRV-MDJIT problem aFmax has

optimal value B* ≤
2
1 if and only if it satisfies one of the following conditions:

(a) d1 and d2 are arbitrary and for i ≥ 3, di is the sum of all demands with smaller
index: di = ∑

<ij
jd = 2i-3 (d1 + d2) for all i∈[3...n],

 71

(b) d1 = 1, d2 = 2, d3 = 9 and for i≥4, di is the sum of all demands with smaller
index: d1 = 1; d2 =2; d3 =9; di =∑

<ij
jd = 2i-4 ×12 for all i∈[4...n],

(c) d1 = 2, d2 = 3, d3 = 7 and for i≥4, di is the sum of all demands with smaller
index: d1 = 2; d2 =3; d3 =7; di =∑

<ij
jd = 2i-4 ×12 for all i∈[4...n],

(d) There exists an index l∈[3...n] such that
 di = 2i-1 for all i∈[1... l];
 di = ∑

<ij
jd = 2i- l -1(2 l -1) for all i∈[l +1...n],

(e) There exists an index l ∈[3...n] such that
di = 2i-1 for all i∈[1.. l -1],

ld = 2 l -1 +1, di = ∑
<ij

jd = 2i-1 for all i∈[l +1...n].

Proposition 5.7.2 [7] For the feasible instance *);,...,;(1 Bddn n of the PRV-MDJIT

problem aFmax with B*≥
2
1 . Then the following instance, involving an additional product,

is also feasible:

*);,,...,;1(
1

11 Bddddn
n

i
inn ∑

=
+ =+ . �

5.7.2 Small Deviations for sFmax

The Proposition 5.7.1 for the problem sFmax can be generalized as

Corollary 5.7.1 Let di , i = 1,2,…,n be an instance of the MDJIT problem sFmax for

which there is an optimal sequence s with
4
1* <B . Then s generates a periodic word

w = (sss…) with distinct rates
D
d

D
d n,....,1 which is symmetric and 1- balanced.

Theorem 5.7.2 For 3≥n a standard instance (d1,…,dn) of the PRV-MDJIT problem

sFmax has optimal value 4
1* <B if and only if the demand vector

 (d1,…,di,…,dn) = (1,…,2i-1,…,2n-1) and

21

12
12* ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
−

n

n

B .

Corollary 5.7.2 There is no instance),...,(1 ndd with 2≥n of PRV- MMJIT problem

(a) [19] aFmax that has a feasible solution with
3
1

<B .

(b) [18] sFmax that has a feasible solution with
9
1

<B . �

 72

For any finite sequences s of length D = ∑
=

n

i
id

1

 with maximum deviation B* for n-

product demands ,,...,1, nidi = any infinite periodic word w of period s is 1-Balanced, 2-

Balanced, or 3-Balanced on each product i if
2
1* <B ,

4
3* <B and 1* <B , respectively.

But any sequence with ,,...,1,1 nidi =∀= is a 1-Balanced word though its maximum

deviation
2
111* >−=

n
B for n ≥3 (see [20]). However, the maximum deviation B* is

greater than
4
3 for the 2-Balanced word),,...,,,,(2211 nn ssssssw = with 2=id for

each ,,...,1 ni = . Similarly, the maximum deviation B* is greater than 1 for the 3-
Balanced word),,,...,,,,,,(222111 nnn sssssssssw = with 3=id for each ,,...,1 ni = with
n ≥ 3. Hence, we have

Theorem 5.7.3 [14] Let s be a finite sequence of length D = ∑
=

n

i
id

1

 with maximum

deviation B* for n-ideal rates ()nrrr ,...,1= , and let 2
1

S , 4
3

S and S1 be the sets of

sequences with
2
1* <B ,

4
3* <B or 1* <B respectively. Then 2

1

S , 4
3

S and S1 are

properly contained in the sets of 1-Balanced, 2-Balanced and 3-Balanced words,
respectively. �

From Theorem 5.4.2, 5.4.3, 5.7.2 we conclude that all the optimal solutions of the PRV-
MDJIT problems aFmax and sFmax belongs to the set of all 3-Balanced words. But the
question whether there always exists a 2-Balanced word that optimizes PRV-MDJIT
problem raised by Dhamala and Kubiak [20] still remains open. Hence, we have the
Figure 5.8 showing the conjectured topography.

 3-Balanced Words

 2-Balanced Words

 1-Balanced Words

 Infinite Periodic Words having Periods the Feasible Sequences

 S for aFmax with
2
1*<B and 3≥n

Infinite Periodic Words having Periods Optimal aFmax Solutions

Infinite Periodic Words having Periods the Feasible Sequences

 S for aFmax with
4
3* <B and 2≥n

Figure 5.8: A Conjectured Topography of Balanced Words and the Solutions of JITSP aFmax

 73

5.8 Two Product Problem

Here we study the PVR-MDJIT problem for n = 2 with ideal production rates 1r and

12 1 rr −= .We assume without loss of generality that 210 dd ≤< .

Theorem 5.8.1 The matrix () DikxX ×= 2 defined by [],11 krx k = []12 krkx k −= for

Dk ,...,1= is an optimal solution of the 2-product PRV-MDJIT problems aFmax and sFmax .

Proof: Here we give the proof only for aFmax from the reference [7] and the proof for

sFmax is clearly dominated by the former. For Dk ,...,1= , we have
[] [] kkrkkrxx kk =−+=+ 1121 ,

2,1,,02010 ==== idxandxx iiD ,
[] ()[] 01 11)1(11 ≥−−=− − rkkrxx kk ,

and [] ()[]11)1(22 11 rkkkrkxx kk −++−−=− − ()[] [] 011 11 ≥+−−= krrk .
Therefore, the matrix () DikxX ×= 2 satisfies all the constraints (3.17) - (3.20). Now, it
remains to show that () DikxX ×= 2 is an optimal solution for the MDJIT problem aFmax
with n = 2. Clearly,

[]
2
1

1111 ≤−=− krkrkrx k ,

and [] []
2
1

111122 ≤+−=+−−=− krkrkrkkrkkrx k .

Now, let () DikxX ×= 2'' be another feasible solution of the 2-product MDJIT problem
aFmax . We want to show that () DikxX ×= 2'' has maximum deviation larger than or equal to

2
1 , which implies that () DikxX ×= 2'' is not better than () DikxX ×= 2 . Assume that X'

differs from X at period l . Now, by the constraint Dkkxx kk ,...,1,21 =∀=+ , it must
be the case that lx 1' is not equal to []11 lrx l = . Thus, by definition of the operator [.], lx 1'

is at distance at least
2
1 from 1lr , i. e.

2
1' 11 ≥−lrx l , which is needed.

The above theorem solves the two product MDJIT problems aFmax and sFmax in
polynomial time, in the sense that; at every time period k, the theorem allows to
determine efficiently which copy should be produced at time period k. Moreover, the
optimal value of the 2-product MDJIT problems aFmax and sFmax can be computed very
easily as follow:

Theorem 5.8.2 [7] The optimal value Ba

* and Bs* of the objective functions of the 2-
product MDJIT problems aFmax and sFmax are respectively given by

.
),gcd(),gcd(

,
2

1*,
2

1*
21

2

Dd
D

Dd
DwhereBandB sa ==∆⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎥

⎢⎣
⎢∆

∆
=⎥⎦

⎥
⎢⎣
⎢∆

∆
=

 74

Corollary 5.8.1 The optimal objective values
4
1*

2
1* << sa BandB if and only if

one of the demands 21 dord is odd and the next even. Moreover,

2

2
1

2
1*

2
1

2
1* ⎟

⎠
⎞

⎜
⎝
⎛ −=−=

D
Band

D
B sa

for odd instances, and

4
1*

2
1* == sa BandB

for even instances.

Proof: The proof is the direct conclusion of Theorem 5.8.2.

Hence, in conclusion for any n≥3, there is only one standard instance with maximum

deviation less than
2
1 for aFmax and there is only one standard instance with maximum

deviation less than
4
1 for sFmax , but the number of standard instances with maximum

deviation less than
2
1 for aFmax and less than

4
1 for sFmax with n = 2 are infinite.

 5.9 Bottleneck Assignment for maxF

One means of solution lies in the reduction of the bottleneck maxF to a linear bottleneck
assignment problem (LBAP) such an approach is independent of discrepancy functions

if i ∀, and allows us to use either symmetric or asymmetric discrepancy functions. The
idea of reducing the maxF to LBAP was first mentioned by Kubiak [29], and is in the
form.
[P5.1] { }ijkijkkji

yC
,,

maxmin ,

subject to the constraints (4.13)-(4.14), where ijkC and ijky are defined as in Section 4.2.
Although, it has not been further developed since its formulation (see [42]). The question
whether an optimal solution to the LBAP [P5.1] is optimal to the problem aFmax raised by
Kubiak [29] still remains open (see [19]). But Bautista et al. [5] reduce the bottleneck
problem maxF to an equivalent LBAP with assignment matrix
 ()()

DDkji ×
=Γ ,λ () (){ }()

DDii krjrkj
×

−−−−= ,11max

where ()kji ,λ corresponds to the production of a copy ()ji, at time period k for
Dkdjni i ,...,1;,...,1;,...,1 === . For solving the problem maxF , it suffices to use the

discrepancy functions () nixxfi ,...,1, =∀= (cf. [42]). Therefore, for such functions, we
may take the assignment matrix as
 ()() ()()

DDkjiDDkjiD
××

==Λ ,,
~~ λλ .

This enables to achieve more rapid performance of different algorithms. The LBAP

matrix values ()kji,
~λ grow to the right and to the left from the ideal position ⎥

⎥

⎤
⎢
⎢

⎡ −

ir
j
2

12 .

 75

Since the optimal solution to the problem maxF is always strictly less than l, it is possible
to avoid computing a complete matrix by only computing elements for which

1<− iik krx .

Morero and Corominas [42] study the problem maxF using LBAP. They perform a
computational experiment adopting three main approaches, viz;

(a) Solving LBAP by means of specific LBAP algorithms.
(b) Solving LBAP as a sequence of assignment problem using binary matrix

and binary search.
(c) Solving LBAP as a sequence of matching problem with and without binary

search.
They recommend the application of third approach for the solution of bottleneck maxF as
this outperforms the computational results in their experiment. For, this, they start with a
heuristic solution. If the heuristic solution is close to the optimal solution, the search
interval can be reduced that ultimately reduces the number of iterations of the matching
problem.

5.10 Complexity Status of aFmax

The input of the generic JIT sequencing problem is essentially the list of integers

ndd ,...,1 , so that its input size is ()DnOdO
n

i
i log

1
=⎟

⎠

⎞
⎜
⎝

⎛∑
=

. Hence, an algorithm which is

polynomial in n and D is only pseudo-polynomial, but not polynomial in the size of the
problem. Thus, the recognition version of the PRV-MMJIT sequencing problem maxF is
pseudo-polynomial in size, since it involves nD variables and ()nDO constraints. So
obtaining truly polynomial algorithms for JIT sequencing problems is far from trivial (if
possible at all) and requires deep insight into the structural properties of the problems.
Bruuner and Crama [7] prove the following:

Theorem 5.10.1 [7] The PRV-MDJIT SP aFmax is in Co-NP.

Proof [7]: Let ()Bddn n ;,...,; 1 be an instance of the problem aFmax which is not feasible
for aFmax . Then by Corollary 5.3.1, there exists [] 2121 ,...1, kkDkk ≤∈ such that one of the
two inequalities (5.38) or (5.39) does not hold. For given 21 kandk this can be checkd
for validity in time ()DnO log . Hence, the PRV-MDJITSP aFmax is in Co-NP class.

The PRV-MDJITSP aFmax is efficiently solvable for n = 2 (see Theorem 5.8.1). But for
fixed 2>n , we are not aware of a direct proof of the fact that the problem aFmax is
pollynomially solvable. Theorem 5.10.1 also leaves open the more challenging question:
whether the recognition version of aFmax is in NP or is Co-NP-complete problem?

 76

5.11 Application of aFmax Solution

The optimal aFmax solution can be applied to resource allocation problems in diverse
environment, for example, the generalized pinwheel scheduling problem and the Liu-
Layland periodic scheduling in NP-hard real-time environments (see [28]). Let
() ()nn baba ,,...,, 11 be n pairs of positive integers.

Definition 5.11.1 A generalized pinwheel schedule on alphabet { }n,...,2,1 is an infinite
sequence ,...),(21 sss = such that

{ } ∈∈ jallforns j ,...,2,1.1 N, and
2. each { }ni ,...,2,1∈ occurs at least ia times in any subsequenceσ consisting of

ib consecutive elements of s.
The schedule for 1...21 ==== naaa refers to simply as a pinwheel schedule.

Theorem 5.11.1 [28] Let
i

ii
i b

a
D
d

r == , where ia and ib are relatively prime, be the rate

for the letter i and ()
ibjj ss ++ ,...,1 be any subsequence of ib consecutive letters of

()...SSSs = , with S obtained by the min-max algorithm with 1<B . Then letter i occurs
either 1−ia or ia , or 1+ia times in the subsequence. Moreover, if subsequences
()

ibjj ss ++ ,...,1 and ()
ii bkjkbj ss)1(1 ,..., ++++ , for some 1≥k have 1−ia letter i occurrences

each, then 2≥k and there are exactly siak i '1)1(+− in the subsequence
()

ii kbjbj ss +++ ,...,1 .

With this theorem, Kubiak [28] proves the following

Theorem 5.11.2 [28] If ∑
=

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

n

i ii

i

bb
a

1
11 , then there is a generalized pinwheel schedule

for pairs () ()nn baba ,,...,, 11 . The schedule can be found by the min-max algorithm with
1<B .

Proof: Let () ()nn baba ,,...,, 11 be an instance of the generalized pinwheel scheduling

problem such that ∑
=

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

n

i ii

i

bb
a

1
11 . Define

()
nifor

b
aL

d
i

i
i ,...,1,

1
=

+
= , where

()nbblcmL ,...,1= . Then, ∑
=

≤
n

i
i Ld

1
 and if ∑

=

<
n

i
i Ld

1
, then define ∑

=
+ −=

n

i
in dLd

1
1 .

Theorem 5.11.1 ensures that the min-max algorithm with 1<B when applied to the

instance including ratios nifor
b

a
L
d

i

ii ,...,1,
1

=
+

= , will deliver a sequence with at least

() ii ca =−+ 11 occurrences of i in any sub-sequence of ib consecutive letters, and
therefore, a generalized pinwheel schedule for () ()nn baba ,,...,, 11 .

 77

Definition 5.11.2 Consider n independent, preemptive, periodic jobs n,...,1 with their
request periods being nTT ,...,1 and their run-times being nCC ,...,1 . The execution of the

thk − request of task i , which occurs at moment () iTk 1− , must finish by moment ikT
when the next request for the task is being made. Missing a deadline is fatal to the
system, therefore, the deadlines ,...2, ii TT are considered NP-hard for job i . All numbers
are positive integers and niforTC ii ,...,1=≤ . We need to find an infinite sequence

,...),(21 sss = on the alphabet { }n,...,2,1 such that i occurs at exactly iC times in each
sub-sequence () niandkforss

ii kTTk ,...,1,...1),...,(11 ==+− . We call s a periodic
schedule for ni ,...,1= .

The proof of the following theorem directly follows from the proof of Theorem 5.6.1 (a).

Theorem 5.11.3 [31] Any solution to the problem aFmax with ratios

∑
=

≤==
n

i
i

i

i
i rni

T
C

r
1

1,,...,1, , and 1<B is a periodic schedule.

 78

CHAPTER 6

BICRITERION ANALYSIS

Investigations of different objectives simultaneously provide us quite interesting
interpretations in JITSP. In this chapter, some of the sumF and maxF objectives are
analyzed simultaneously and are compared. None of the objectives sumF and maxF is
considered to be superior over the other, and therefore, both the objectives have their
own significance. Sequencing mixed-model JIT facilities with more than one objective is
considered in [47] for the first time. Moreover, simultaneous optimization of different
objectives is presented in [35].

In the first section of this chapter, the B-bounded problems sumF is summarized and a
method to find all Pareto optimal solutions to the problems sumF and aFmax is given. The
equivalency of the two problems a

sumF and s
sumF under certain condition is studied and an

example without oneness property for the problems a
sumF and s

sumF is given.

The final section is devoted to the development of different production sequences that
optimizes the different aFmax and sumF objectives simultaneously. Some open conjectures
are summarized in consequences.

6.1 B-Bounded Problem sumF

For a given threshold value 0>B , a feasible sequence ()Dsss ,...,1= for the problem

sumF is said to be B-bounded (or s has the B-ness property) if and only if
kandiallforBkrx iik ≤− . For such given 0>B , the problem sumF can be represented

by a weighted incomplete bipartite graph () ()EVVBGw ,21 U= where 21 , VV and the
weights are the same as in Section 4.2.2 and ()[] Ejik ∈,, if and only if

() ()[]jiLjiEk ,...,∈ (cf. [47], see also [26]). An appropriate choice of B can significantly
reduce the number of calculated edge weights from the total number of required in the
complete graph. If an order preserving perfect matching exists in ()BGw , then the
minimum weight perfect matching for the corresponding weighted bipartite graph could
also be determined. This matching would have the property that it provides the min sum
value sumF such that the maximum deviation does not exceed B. Hence, sumF is a
function of B and the min-sum value is denoted by sumF (B). Hence, such an approach
would provide a solution to the bicriterion sequencing problem with a value of

))(),((BsFBF sumsum ≤ or the objectives sumF (s) and ()sF a
max .

Definition 6.1.1 [47] A bicriterion solution to the level production sequence problem is
Pareto optimal if no other production sequence exists which has an objective value that
is at least as good in both of the criteria and strictly better in at least one of them.

 79

Lemma 6.1.1 [47] The min-sum assignment solution for the convex bipartite graph
()BGw with 1≤B , can be determined in ()DnDO log2 time.

Lemma 6.1.2 [47] A bicriterion JIT level sequence with a solution
(sumF (1), () 1max =≤ BsF a) can be determined in ()DnDO log2 time.

Instead of Lemma 6.1.2, it can be observed that)1(* sumsum FF ≤ and 1* =≤ BB ; where

*sumF and *B are the optimal values for the problems sumF and aFmax respectively. Hence,
the sequence may not the optimal with respect to either measure.

Theorem 6.1.1 [47] The Pareto optimal solution ()**),(BBFsum can be determined in
()DnDO log2 time.

Proof [47]: The optimal value 1* <B for the problem aFmax can be determined in
()DDO log time as in Section 5.5. By Lemma 6.1.2 with B = *B , the perfect matching

which provides the objective value ()*BFsum could be constructed in at most
()DnDO log2 time. Since *B is optimal, the constructed production sequence must be

Pareto optimal. As the two operations are disjoint, the overall complexity for
determining this Pareto optimal solution is ()DnDO log2 time.

Since, in practice, it is generally the case that Dn << , the time complexity ()DnDO log2
is fewer than that of the time complexity ()3DO . Thus, the computational complexity for
determining a Pareto optimal solution is lower than that for determining an optimal
solution for the problem sumF alone.

The sequence created in Theorem 6.1.1 is optimal for aFmax and is of comparable quality
to the problem sumF . However, there are also some Pareto optimal sequences which are
optimal for non of the objectives. All the Pareto optimal solutions for the problems sumF
and aFmax with 1≤B can be constructed by the following algorithm.

Algorithm 6.1.1 [47] Pareto

 Input: An instance of JIT production system.
 Output: All Pareto optimal solutions for sumF and aFmax with 1≤B .

begin,
1. Initialize max1 rB −= .
2. Generate the edge set for the convex bipartite graph corresponding to B.

Denote this edge set by ()BE .
3. Determine if a perfect matching exists in this bipartite graph. If there is

no perfect matching, then let
D

BB 1
+= and go to 2. If a perfect

matching exists, then determine a minimum weight order preserving

 80

perfect matching in ()BGw . The corresponding production sequence
()Dsss ,...,1= will be Pareto optimal with objective values *B and
()*BFsum .

Let ()BEE = , *)(min BFF sumsum = and go to 4.

4. Let
D

BB 1
+= . If 1>B , then stop all required Pareto optimal solutions

with 1≤B have been determined. Otherwise, go to 5.
5. Generate the edge set, ()BE , for the convex bipartite graph

corresponding to B. If () EBE = , then go to 4.
Otherwise set)(BEE = and go to 6.

6. Determine a minimum weight order preserving perfect matching in
()BGw . If ()BFsum < sumFmin , then this sequence will be Pareto optimal

with objectives B and ()BFsum , set ()BFF sumsum =min and go to 4.
Otherwise the sequence is not Pareto optimal. Go to 4.

end.

Theorem 6.1.2 [47] Algorithm 6.1.1 determines the production sequences ()Dsss ,...,1=
for all Pareto optimal solutions),(BFsum with 1≤B , in ()DDdnO log2

max time. �

The existence of a 1-bounded solution optimal for the problem sumF is not always the
case. Corominas and Moreno [12] establish an instance with 10=n ,

100=D , 4621 == dd , 1... 1043 ==== ddd without oneness property for the
problems a

sumF and s
sumF .

Let 1χ be the set of all 1-bounded feasible solutions of the PRV-JIT sequencing problem.

Theorem 6.1.3 [12, 13] Any optimal sequence),...,(1 Dsss = for the problem a

sumF , such
that 1χ∈s , is an optimal sequence for the problem s

sumF , and hence, all optimal solutions
for s

sumF are 1-bounded. �

This theorem specifies the extent of the equivalence between both problems; it can be
said that the problems a

sumF and s
sumF are 1χ -equivalent. Given an instance, if it can be

assured that both problems have optimal solutions belonging to set 1χ then it suffices to
solve one of the problems to have an optimal solution for the other. As it is pointed out
by Kovalyov et al. [26], it is preferable to solve the problem a

sumF .

6.2 Simultaneous Optimization of maxF and sumF

In this section, we summarize the analysis of simultaneous optimization of the different
objectives concerning to the problems sumF and maxF . Introduce five Boolean variables
denoted AM, SM, SM1 and AS to describe which criteria are simultaneously optimized.
In these notations, A, S, M and M1 respectively stand for the objectives a

sumF , s
sumF , aFmax

 81

and 1max ≤
aF . Define AM is true if and only if there is a sequence optimizing both the

problems a
sumF and aFmax simultaneously, SM is true if and only if a sequence optimizes

both s
sumF and aFmax simultaneously, AM1 is true if and only if an optimal a

sumF sequence
has maximum deviation lower than 1, SM1 is true if and only if an optimal s

sumF
sequence has maximum deviation lower than 1 and AS is true if and only if a sequence
optimizes both the problem a

sumF and s
sumF simultaneously. The Boolean value True and

False are respectively denoted by T and F.

Proposition 6.2.1 [35] AMAMSM ⇒∧ 1 .

Proof [35]: Suppose that SM and AM1 are true for an instance of the PRV-MMJITSP.
Let ()DSSS ,...,* 1= be a sequence optimizing the problems s

sumF and aFmax
simultaneously and ()Dsss ,...,* 1= a minimal sequence of a

sumF with maximum
deviations less than 1. The solution *S is optimal for s

sumF . Therefore,

 *

1 1 1

*

1 1 1
ijk

D

k

n

i

d

j

s
ijkijk

D

k

n

i

d

j

s
ijk YCyC

ii

∑∑∑∑∑∑
= = == = =

≥ ,

where aC and sC are the cost matrices calculated for the problems a
sumF and s

sumF
respectively and *

ijky and *
ijkY are the assignment variables corresponding to the

sequences *s and *S respectively. Maximum deviation for *S is equal to the optimum
aFmax and is clearly lower than 1 by Theorem 5.4.2. Therefore, from Theorem 6.1.3, we

have
*

1 1 1

*

1 1 1
ijk

D

k

n

i

d

j

a
ijkijk

D

k

n

i

d

j

s
ijk YCYC

ii

∑∑∑∑∑∑
= = == = =

= .

Likewise, since the solution *s has maximum deviation lower than 1, we have

 *

1 1 1

*

1 1 1
ijk

D

k

n

i

d

j

a
ijkijk

D

k

n

i

d

j

s
ijk yCyC

ii

∑∑∑∑∑∑
= = == = =

= .

Therefore, we obtain the inequality,
*

1 1 1

*

1 1 1
ijk

D

k

n

i

d

j

a
ijkijk

D

k

n

i

d

j

a
ijk YCyC

ii

∑∑∑∑∑∑
= = == = =

≥ .

Since the sequence *s is minimal for a
sumF , *S is also minimal for a

sumF . Since *S is
optimal for both aFmax and a

sumF , AM is true.

The set IX, { }ASSMAMSMAMX ,1,1,,∈ represents the set of all instances such that X
is true. Since 1AMSMAM ∧⇒ and AMAMSM ⇒∧ 1 , the set IAM is equal to the
intersection of the sets IAM1 and ISM. Figure 6.1 (cf. [35]) is an illustration of the
possible values of the quintuplet (AM, SM, AM1, SM1, AS) and for simplicity the set
IAM is not drawn there. The numbers in the sets represents the seven examples of Figure
6.2 (cf. [35]). Figure 6.2 represents the examples for all possible values of quintuplet
(AM, SM, AM1, SM1, AS) except the quintuplet (F, F, F, F, F). The compact notation of
the demand vector ()q

b
p

a ddd ,= represents an instance with qpn += part types whose
demands of the p first part types are equal to ad and of the q following are equal to bd .

 82

For all instances, if one of the Boolean variables AM to AS is true, the corresponding
sequence that proves it is presented. This sequence is also presented in a compact form.

Figure 6.1: Representation of the Sets of Instances Corresponding to the Values of the
Quintuplet (AM, SM, AM1, SM1, AS)

If part types i and 'i are such that 'ii dd = , we can exchange the parts ()ji, and ()ji ,'
without modifying the sum or the maximum of deviations. Since for each example, the
part types have at most two different values ad and bd , we denote aj dja ,...,1, = all
parts ()ji, such that ai dd = and bj djb ,...,1, = all parts ()ji, such that bi dd = .

Figure 6.2: Example of Instances with Sequences Optimizing Several Criteria

 Existence of Sequence Optimizing
AM SM AM1 SM1 AS

a
sumF

s
sumF a

sumF s
sumF a

sumF
and and with with and

aFmax
 aFmax

 1max ≤
aF 1max ≤

aF s
sumF

Instance

Proof

1 T T T T T)1(=d)(1as = is optimal for all problems
2 F T F T T

)7,1(39

=d

),,,,,,,,,,(3
7

3
6

3
1

3
5

2
1

3
41

3
3

3
1

3
2

3
1 bbababababbs = is optimal for

a
sumF and s

sumF .),,,,,,,,,,,,(' 3
71

3
6

2
1

3
5

2
1

3
41

3
3

2
1

3
21

3
1 bababababababs =

is optimal for s
sumF and aFmax

3 F T F T F
)10,1(212

=d),,,,,,,,,,,,,,,,,,(2
101

2
91

2
8

2
1

2
71

2
6

2
1

2
51

2
4

2
1

2
31

2
21

2
1 babababababababababs =

is optimal for s
sumF and aFmax

4 F F T T T
)4,1(22

=d
),,,,(2

4
2
3

2
1

2
2

2
1 bbabbs = is optimal for a

sumF with 1max ≤
aF

5 F F F T T
)6,1(510

=d

),,,,,,,,,,(5
61

5
5

3
1

5
4

2
1

5
3

3
1

5
21

5
1 babababababs = is optimal for

s
sumF with 1max ≤

aF and),,,,,,,,(' 5
6

5
5

3
1

5
4

4
1

5
3

3
1

5
2

5
1 bbabababbs =

is optimal for a
sumF and s

sumF
6 F F F T F

)6,1(49

=d

),,,,,,,,,,(4
61

4
5

2
1

4
4

3
1

4
3

2
1

4
21

4
1 babababababs = is optimal for

s
sumF with 1max ≤

aF
7 F F

F F T

)6,1(47

=d

),,,,,,,,(4
6

4
5

2
1

4
4

3
1

4
3

2
1

4
2

4
1 bbabababbs = is optimal for a

sumF

and s
sumF

1 4 7

2 5

3 6

IAM1

ISM1

ISM

IAS

 83

Now, to obtain the quintuplet (T, T, T, T, T), we need a sequence ()Dsss ,...,1= with the
desired characteristics. Theorem 4.2.6 gives the optimality of this sequence for the
problem a

sumF and s
sumF . When AS is not already implied by AM or AM1, we can show

that AS is true by giving the perfect matching representing the common optimal solution
to the problems a

sumF and s
sumF and by proposing associated vertex weights for each

complete bipartite graph as in Section 4.2.3.

To prove that optimal sumF sequence is B-bounded (i. e. that the corresponding variable
AM to AM1 is true), we can either compute the maximum deviation of the sequence and
verify that it is indeed lower than B, or construct the graph corresponding to the B-
bounded problem and verify that all the edges of the sequence belong to this restricted
graph.

To prove that the Boolean variables AM to SM1 are false, we have to compare the
optimal sumF objective values of the bounded and unbounded problems. That is we
compute optimal perfect matching and vertex weights for the unbounded and bounded
problems. If the values of the two matching are different, then the corresponding variable
is false.

The Boolean variable AS is false when the problems a

sumF and s
sumF have no common

optimal solution, i.e. when the sets of all the optimal solutions of the problems a
sumF and

s
sumF are disjoint.

The statement “For any instance there is a minimal a

sumF sequence that is minimal for the
problem aFmax ” conjectured in [29] is refuted with providing a counter example (4) of
Figure 6.2 by Lebacque et al. [35].

The existence of an instance with SM1 true and AM1 false proves that the converse of
Theorem 6.1.3 is not true (see [35]). It also refutes the following conjecture.

Conjecture 6.2.1 [47] For an instance, there is a sequence that is optimal for a

sumF with
maximum deviation lower than 1. �

Instead of their computational testing, Lebacque et al. [35] conjectured the followings:

Conjecture 6.1.2 For 3=n there are instances such that the problem a

sumF has no
optimal solution with maximum deviation lower than 1. �

Conjecture 6.1.3 For any instance, if there is no optimal sequence for s

sumF with
maximum deviation lower than 1, then there is a sequence that optimizes the problems

s
sumF and a

sumF simultaneously. For any instance, if there is no sequence optimizing s
sumF

and a
sumF simultaneously, then there is a sequence optimizing s

sumF with maximum
deviation lower than 1. �

 84

CHAPTER 7

CONCLUSIONS

Determining the optimal balanced sequence in MMJITSP is considered which involves
minimizing the deviation of production from demand. The mathematical formulations of
the MMJITSP in sequencing theory are in the more challenging nonlinear integer
programming form. It is because the linear case of the integer programming has already
been NP-hard (see [43]). In this research, mathematical formulations of MMJITSP
remain as a backbone. The main work of this research is to explore and summarize the
different types of solution procedures for MMJITSP up to now. The study shows that the
MMJITSP has real world existing applications as well as interesting mathematical
features of theoretical value.

The min-sum PRV problems with any nonnegative symmetric convex discrepancy
functions with minimum 0 at 0 are pseudo-polynomially solvable by reducing it into the
assignment problem (see Section 4.2.2). Similarly, the bottleneck PRV problem has been
solved by reducing it into bottleneck assignment problem (see Section 5.9).

In this study, bottleneck Just-in-Time single-level sequencing problems have been
discussed in detail. Several algebraic structural properties of such problems have been
explored. By reducing it into release dates, due dates decision problems and thereby
shifting into perfect matching problems in bipartite graphs the optimal sequences for the
bottleneck problems aFmax and sFmax are calculated in exact pseudo-polynomial time
complexity)log(DDO (cf. Theorem 5.5.1 and Theorem 5.5.2) under the binary search
(see Section 5.5) in which the maximum deviations are strictly less than one (cf.
Theorem 5.4.2 and Theorem 5.4.3). The lower bound max1 r− of the problem aFmax has
been shown to be tight (cf. Example 5.4.1). This approach can also be applied to other
nonnegative symmetric convex objective functions. An example (cf. Example 5.5.1) for
an instance of aFmax is presented obtaining an optimal sequence.

Obtaining common solutions to different objective functions would significantly reduce
the computational complexity and thus a comparative study is summarized in Section 6.2
for optimizing different objectives simultaneously. However, the 1-bounded sequence
obtained in incomplete bipartite graphs does not guarantee an optimal sequence for the
problem sumF . But the question of determining a minimum B such that the optimal
sequence for sumF is B-bounded, remains open and will be a topic for further
investigation.

Although most of PRV-MMJITSPs are pseudo-polynomially solvable depending upon
the input size of the demands, their exact complexity status still remains open. The
problem aFmax is shown to be Co-NP (cf. Theorem 5.10.1) but it is also open whether the
problem is Co-NP-complete or polynomially solvable. As the input size of the general
PRVP is)log(DDO and there are nD variables and)(nDO constraints, existence of a
polynomial time algorithm is far from trivial. Thus in spite of its apparent simplicity, the
status of PRV-MMJITSP is not completely understood yet.

 85

Throughout this research, we find that both the min-sum and min-max ORVPs even with
two-levels are strongly NP-hard (cf. [29, 34]). Therefore, a heuristic procedure “Toyota’s
Goal Chasing Method” (see Section 4.1) for the min-sum ORVP and an efficient,
implicit enumeration dynamic programming procedure for the general ORVP which are
fruitful for such NP-hard problems for optimization have been presented. However, if the
products require either approximately the same number and mix of parts or the pegging
assumptions are imposed then the general ORVPs are efficiently solvable by reducing
these into corresponding weighted PRVPs. Thus, searching for the efficient algorithms or
good approximation algorithms for ORVP might be an interesting research topic for
further investigation.

In our study, we find that the optimal sequences both for the problems sumF and maxF are
cyclic (cf. Theorem 4.2.8 and Theorem 5.6.1). We give a modified proof of Theorem
5.6.1 from Kubiak [31] which is originally proved by Steiner and Yeomans [50]. The
importance of the existence of the cyclic sequences is to reduce the computational
complexity for obtaining the production sequences. However, the conjecture whether
cyclic sequences to ORVP are optimal is still open and it may be one of the interesting
foremost topic for further study.

Our study also focuses on the elegant algebraic concept of balanced words relating to the
problem maxF (see Section 5.7). The 1-balanced words cannot be obtained for most rates,
but the set of all 3-balanced words consists of optimal sequence for the problem aFmax (cf.
Theorem 5.7.3). Minimality of this set is unknown and enumeration of this set for
optimality is expensive. It is still unsolved whether the set of all 2-balanced words is
sufficient for an optimal sequence for the problem aFmax . Thus, a conjectured topography
(cf. Figure 5.8) waiting for a conclusion has been presented. Among the applications of
optimal objective value of aFmax in allocation problems, in this study, it has only been
applied to pinwheel (cf. Theorem 5.11.2) and periodic scheduling problems (cf. Theorem
5.11.3).

The exact complexity status of the PRV-JITSP, relation between optimal sequences of
the problems aFmax and sFmax and to determine the actual status of the conjectured
topography of Figure 5.8 are the foremost subjects for further investigation and research
to pave some new results in this field.

 86

REFERENCES

1. H. Aigbdo, Some Structural Properties for the JIT Level Schedule Problem,
Production Planning and Control, 11, 4 (2000), 357-362.

2. T. M. Apostol, Mathematical Analysis (Addison-Wesley Publishing Company,

Inc., 1974).

3. M. Balinski and N. Shahidi, A Simple Approach to the Product Rate Variation
Problem (PRVP) via Axiomatics, Operations Research Letters, 22 (1998), 129-
135.

4. J. Bautista, R. Companys and A. Corominas, A Note on the Relation Between the

Product Rate Variation (PRV) Problem and the Apportionment Problem, The
Journal of the Operational Research Society, 47, 11 (1996), 1410-1414.

5. J. Bautista, R. Companys and A. Corominas, Modeling and Solving the

Production Rate Variation Problem, TOP, 5, 2 (1997), 221-239.

6. J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt and J. Weglarz, Scheduling
Computer and Manufacturing Processes (Springer- Verlag, Berlin, 1996).

7. N. Brauner and Y. Crama, The Maximum Deviation Just-in-Time Scheduling

Problem, Discrete Applied Mathematics, 134 (2004), 25-50.

8. N. Brauner, V. Jost and W. Kubiak, On Symmetric Fraenkel's and Small
Deviations Conjectures, Les Cahiers du Laboratoire Leibniz-IMAG, 54 (2004),
Grenoble, France.

9. P. Brucker, Scheduling Algorithms, 2nd Edition (Springer-Verlag, 1995).

10. D. M. Burton, Elementary Number Theory, 2nd Edition (Universal Book Stall,

New Delhi, Reprint, 2003).

11. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to
Algorithms, 2nd Edition (Prentice-Hall of India Pvt. Ltd., 2007).

12. A. Corominas and N. Moreno, About Relations Between the Optimal Solutions

for Different Types of min-sum Production Rate Variation Problem (PRVP), 27
Congresso de Estadistica e Investigation operativa Lieida, 8-11 de abril de
(2003).

13. A. Corominas and N. Moreno, On the Relations between Optimal Solutions for

Different Types of min-sum Balanced JIT Optimization Problems, INFOR, 41, 4,
(2003), 333-339.

14. T. N. Dhamala, Balancing Just-in-Time Sequences in Mixed-Model Production

Systems, The Nepali Mathematical Sciences Report, 25, 2 (2005), 17-27.

 87

15. T. N. Dhamala, Just-in-Time Sequencing Algorithms for Mixed-Model
Production Systems, The Nepali Mathematical Sciences Report, 24, 1 (2005), 25-
34.

16. T. N. Dhamala, Shop Scheduling Solution-Spaces with Algebraic

Characterizations (Ph. D. Thesis Otto-von-Guericke University, Magdeburg,
Germany, 2002).

17. T. N. Dhamala and S. R. Khadka, Absolute Maximum Deviation Just-in-Time

Sequencing Problem for Mixed-Model Production Systems, Proceedings of the
Seminar on Mathematical Sciences and Applications (Central Department of
Mathematics, Tribhuvan University, Nepal, Sep. 20-21, 2006), 25-32.

18. T. N. Dhamala, S. R. Khadka and M. H. Lee, Bottleneck Product Rate Variation

Problem for Mixed-Model Just-in-Time Production System, Submitted to
International Journal of Operations Research, 2008.

19. T. N. Dhamala, S. R. Khadka and M. H. Lee, On Sequencing Approaches for

Mixed-Model Just-in-Time Production Systems, Submitted to Asia-Pacific
Journal of Operational Research, 2008.

20. T. N. Dhamala and W. Kubiak, A Brief Survey of Just-in-Time Sequencing for

Mixed-Model Systems, International Journal of Operations Research, 2, 2 (2005),
38-47.

21. F. Glover, Maximum Matching in a Convex Bipartite Graph, Naval Research

Logistics Quartile, 4, 3 (1967), 313-316.

22. R. E. Graham, E. L. Lawer, J. K. Lenstra and A. H. G. Rinnoy Kan, Optimization
and Approximation in Deterministic Sequencing and Scheduling: A Survey,
Annals of Discrete Mathematics, 5 (1979), 287-326.

23. G. Hadley, Nonlinear and Dynamic Programming (Addison-Wesley, 1972).

24. R. R. Inman and R. L. Bulfin, Sequencing JIT Mixed-Model Assembly Lines,

Management Science, 37, 7 (1991), 901-904.

25. S. Kotani, Sequencing Algorithms for a Mixed-Model Assembly Line, Toyota
Technical Engineering, 33 (1983), 31-38.

26. M. Y. Kovalyov, W. Kubik and J. S. Yeomans, A Computational Analysis of

Balanced JIT Optiminization Algorithms, Journal of Information Systems and
Operational Research-INFOR, 39, 3 (Aug 2001), 299-315.

27. W. Kubiak, Cyclic Just-in-Time Sequence are Optimal, Journal of Globle

Optimization, 27 (2003), 333-347.

28. W. Kubiak, Fair Sequences (Hand Book of Scheduling Chapman and Hall/CRC
Computer and Information Science Series, 2004).

 88

29. W. Kubiak, Minimizing Variation of Product Rates in Just-in-Time Systems: A
Survey, European Journal of Operational Research, 66 (1993), 259-271.

30. W. Kubiak, On Small Deviations Conjecture, Bulletin of the Polish Academy of

Sciences, 51 (2003), 189-203.

31. W. Kubiak, Solution of the Liu-Layland Problem via Bottleneck JIT Sequencing,
Journal of Scheduling, 8 (2005), 295-302.

32. W. Kubiak and S. P. Sethi, A Note on Level Schedules for Mixed-Model Assembly

Lines in Just-in-Time Production Systems, Management Science, 37, 1
(1991),121-122.

33. W. Kubiak and S. P. Sethi, Optinal Just- in-Time Schedules for Flexible Transfer

Lines, The International Journal of Flexible Manufacturing Systems, 6 (1994),
137-154.

34. W. Kubiak, G. Steiner and J. S. Yeomans, Optimal Level Schedules for Mixed-

Model, Multi-Level Just-in-Time Assembly Systems, Annals of Operations
Research, 69 (1997) , 241-259.

35. V. Lebacque, V. Jost and N. Brauner, Simultaneous Optimization of Classical

Objectives in JIT Scheduling, European Journal of Operations Research,182
(2007), 29-39.

36. Mathematical Models, Science Education Resources Center, Carleton College

(http:|| serc.Cartleton.edu, 2008).

37. J. Miltenburg, Level Schedules for Mixed-Model Assembly Lines in Just-in–Time
Production Systems, Management Science, 35, 2 (1989), 192- 207.

38. J. Miltenburg and T. Goldstein, Developing Production Schedules which Balance

Part Usage and Smooth Production Loads for Just-in-Time Production Systems,
Naval Research Logistics, 38 (1991), 893-910.

39. J. Miltenburg and G. Sinnamon, Scheduling Mixed-Model Multi-Level Just-in–

Time Production Systems, International Journal of Production Research, 27, 9
(1989), 1487-1509.

40. J. Miltenburg, G. Steiner and J. S. Yeomans, A Dynamic Programming Algorithm

For Scheduling Mixed-Model, Just-in-Time Production Systems, Mathematical
and Computer Modeling,13, 3 (1990), 57-66.

41. Y. Monden, Toyota Production Systems (Industrial Engineering and Management

Press, Norcross, GA, 1983).

42. N. Moreno and A. Corominas, Solving the min-max Product Rate Variation
Problem (PRVP) as a Bottleneck Assignment Problem, Computers and
Operations Research, 33 (2006), 928-939.

 89

43. C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity (Prentice-Hall of India Pvt. Ltd., 2003).

44. M. Pinedo and X. Chao, Operations Scheduling with Application in

Manufacturing and Services (Irwin, McGraw-Hill, 1999).

45. K. H. Rosen, Discrete Mathematics and its Applications (TATA McGRAW Hill
Edition, New Delhi, 2003).

46. S. J. Russel and P. Norving, Artificial Intelligence: A Modern Approach (Prentice

Hall, 1995).

47. G. Steiner and J. S. Yeomans, A Bicriterion Objective for Levelling the Schedule
of a Mixed-Model, JIT Assembly Process, Mathematical and Computer
Modelling, 20, 2 (1994), 123-134.

48. G. Steiner and J. S. Yeomans, A Linear Time Algorithm for Maximum Matching

in Convex, Bipartite Graphs, Computers and Mathematics with Applications, 31,
12 (1996), 91-96.

49. G. Steiner and J. S. Yeomans, Level Schedules for Mixed-Model Just-in-Time

Processes, Management Science, 39, 6 (1993), 728-735.

50. G. Steiner and J. S. Yeomans, Optimal Level Schedules in Mixed-Model , Multi-
Level JIT Assembly Systems with Pegging, European Journal of Operational
Research, 95 (1996) , 38-52.

51. R. Tijdeman, Exact Covers of Balanced Sequences and Fraenkel's Conjecture,

Algebraic Number Theory and Diophantine Analysis (F. Halter-Koch and R.F.
Tichy, Walterde Gruyter, Berlin, New York, 2000), 467-489.

52. R. Tijdeman, Fraenkjel's Conjecture for Six-Sequences, Discrete Mathematics,

222 (2000), 223-234.

53. R. Tijdeman, The Chairman Assignment Problem, Discrete Mathematics, 32
(1980), 323-330.

54. L. Vuillon, Balanced Words, Rapports de Recherché 2003-006. LIAFA CNRS,

University Paris, 7 (2003).

55. Wikipedia, The Free Encyclopedia (http://en .wikipedia.org, 2008).

56. Www.assignmentproblem.com, 2008.

57. M. Yavuz and E. Akcali, Production Smoothing in Just-in-Time Manufacturing
Systems: A Review of the Model and Solution Approaches, International Journal
of Production Research, 45, 16 (2007), 3579-3597.

 90

MATHEMATICAL NOTATIONS

A Cardinality of a set A

],[ba Closed interval

ijkC The cost of assigning),(ji to the kth period

ild Demand for output i at level l , Llni l ,...,1;,...,1 == of ORVP
gcd Greatest common divisor

ilr Demand ratio for output i at level l , Llni l ,...,1;,...,1 == of ORVP

ir Demand ratio for product i to the total demand of PRVP
Ø Empty (null) set
l Level number, Ll ,...,1= of ORVP
lcm Least common multiple
log Logarithm to the base 2

maxr Maximum product demand ratio, { }i
n

i
rr

1max max
=

=

ln Number of different outputs at level l of ORVP

ilpt Number of units of output i at level l require to produce one unit of
product p , 1,...,1;,...,1;,...,1 npLlni l ===

),(ba Open interval

ilkx Quantity of output i at level l produced during stages 1 through
k, 1,...,1 Dk = of ORVP

 ikx Quantity of product i producing during stages 1 through k of PRVP
]...[ba Set of all integers between a and b including both

),(ji The jth copy of product i , idjni ,...,1;,...,1 ==
L The number of different levels of production of ORVP
B Threshold value for the objective function of PRVP

lD Total demand for production at level l , Ll ,...,1= of ORVP
D Total demand of production of PRVP

wFmax
~ A weighted max-absolute ORVP

)~(~
max XF w A weighted max-absolute ORVP objective function

pegwaFmax
~ A weighted max-absolute ORVP with pegging assumption

maxF Bottleneck PRVP
)(max sF Bottleneck PRVP objective function

aFmax Max-absolute PRVP
sFmax Max-squared PRVP

sumF Min-sum PRVP
a

sumF Min-sum-absolute PRVP
s

sumF Min-sum-squared PRVP
)(sFsum Sum-deviation PRVP objective function

ijlψ Excess cost of having j-copies of product i produced by period over l

 91

lky Total production at level l during stages 1 through k

ilw Weighting factor for the ith part at level l of ORVP

iw Weighting factor for the ith product of PRVP
),...,(1 nsss = A finite sequence

,...),(21 sss = An infinite sequence

ilf Discrepancy function between actual and ideal productions of output
i at level l of ORVP

if Discrepancy function between actual and ideal productions of product
i of PRVP

x Norm of x

ijZ The completion time of),(ji
),(jiE The earliest feasible producing time for),(ji in the final production

sequence
ijk The ideal corner of),(ji
*
ijZ The ideal position of),(ji

),(jiL The latest feasible producing time for),(ji in the final production
sequence

maxw Weighting factor of largest value, { }i
n

i
ww

1max max
=

=

minw Weighting factor of smallest value, { }i
n

i
ww

1min min
=

=

Co-NP Class of complements of NP decision problems
Co-NP-complete Class of complements of NP-complete decision problems
H Set of 3-tuples with an element)),,((kji for ;,...,1 ni = ;,...,1 idj =

Dk ,...,1= .
N Set of natural numbers
NP Class of nondeterministic polynomial time solvable decision problems
NP-complete Class of NP-complete decision problems
NP-hard Class of NP-hard optimization problems
P Class of polynomially solvable decision problems
Q Set of rational numbers
R Set of real numbers
R+ Set of nonnegative real numbers
Rn Set of n-tuples with entries in R
W Set of whole numbers
Wn Set of n-tuples with entries in W
X~ Cumulative production matrix

11
)(1 Dnkpx × of ORVP

χ~ Set of all feasible solutions to ORVPP
χ Set of all feasible solutions to PRVPP
Z Set of integers
⎣ ⎦x The floor of the real number x

⎡ ⎤x The ceiling of the real number x

 92

[]x The rounding of the real number x
⇒ Implies
∧ Conjunction (and)
⇔ If and only if
∀ For all
∃ There exist(s)
∈ Belong(s) to
≠ Not equal to
> Is greater than
< Is less than
≥ Is greater than or equal to
≤ Is less than or equal to
⊆ Is contained in
U Union of sets
I Intersection of sets

∑
=

n

i 1
 Sum to n terms, one for each positive integer from 1 to n

∏
=

n

i 1

 Product of n terms, one for each positive integer from 1 to n

<< Is very much smaller
 The end of proof or the end of solution

