GENETIC SIMILARITIES AMONG *BACILLUS THURINGIENSIS* STRAINS FROM DIFFERENT CLIMATIC ZONES OF NEPAL

A

Dissertation Submitted to the Central Department of Microbiology Tribhuvan University In Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science in Microbiology

> By Nirajan Bhattarai

Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal 2008

RECOMMENDATION

This is to certify that **Mr. Nirajan Bhattarai** has completed this dissertation work entitled "GENETIC SIMILARITIES AMONG BACILLUS THURINGIENSIS STRAINS FROM DIFFERENT CLIMATIC ZONES OF NEPAL" as a partial fulfillment of M. Sc. degree in Microbiology under our supervision. To our knowledge, this thesis work has not been submitted for any other degree.

Prof. Dr. Vishwanath Prasad Agrawal

Academician Nepal Academy of Science and Technology (NAST) Kathmandu, Nepal

Director Universal Science College Kathmandu, Nepal

Executive Director Research Laboratory for Agricultural Biotechnology and Biochemistry (RLABB) Kathmandu, Nepal

Dr. Prakash Ghimire, PhD

Associate Professor Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Dr. Shreekant Adhikari, PhD

Associate Professor Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

CERTIFICATE OF APPROVAL

On the recommendation of **Prof. Dr. Vishwanath Prasad Agrawal**, **Dr. Prakash Ghimire**, and **Dr. Shreekant Adhikari**, this dissertation work by **Mr. Nirajan Bhattarai**, entitled "GENETIC SIMILARITIES AMONG *BACILLUS THURINGIENSIS* STRAINS FROM DIFFERENT CLIMATIC ZONES OF NEPAL" has been approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of the requirement for M. Sc. degree in Microbiology.

Dr. Anjana Singh, PhD Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal.

Date:-

BOARD OF EXAMINERS

Recommended by:

Prof. Dr. Vishwanath Prasad Agrawal Supervisor

Dr. Prakash Ghimire, PhD Supervisor

Dr. Shreekant Adhikari, PhD Supervisor

Approved by:

Dr.Anjana Singh, PhD Head of Department

Examined by:

Bishnu Raj Tiwari External Examiner

Dr. Dwij Raj Bhatta, PhD Internal Examiner

Date:

ACKNOWLEDGEMENT

This work was carried out in RLABB during the May 2006 to September 2007. I am sincerely grateful to:

My supervisor Prof. Dr. Vishwanath Prasad Agrawal, Academician, Nepal Academy of Science and Technology (NAST), Director, Universal Science College, Executive Director, Research Laboratory for Agricultural Biotechnology and Biochemistry (RLABB) for giving me an opportunity to use lab facilities to complete my dissertation work; for his invaluable advice, fruitful discussions, continuous expert guidance, unwavering patience, support and enthusiastic encouragement work throughout my research work.

My supervisors, Dr. Prakash Ghimire, Associate professor, and Dr. Shreekant Adhikari, Associate professor, Central Department of Microbiology, Tribhuvan University for their guidance and constant encouragement for the completion and accomplishment of this dissertation.

Mr. Kiran Babu Tiwari, visiting faculty, Central Department of Microbiology, T.U, for his critical and insightful comments and detailed correctness of this thesis; for his useful discussions and guidance in designing and performing experiments.

All the honorable teachers and staffs of Central Department of Microbiology, Tribhuvan University, all of whom have been very generous and motivating.

Mr. Gyan sundar Sahukhal and Mr. Upendra Thapa Shrestha for their ever willing help, suggestions and guidance about the techniques of PCR throughout my thesis work. I am very much thankful to Mr.Kalyan Babu Tiwari for his help in computer work. My friends Ms. Manita Guragain and Mr. Rishi Baniya for their continuous support and help during completion of my thesis work. Mr. Vijendra Kumar Agrawal and other friends of RLABB. I am also thankful to my friends Khagendra Prakash K.C, Balaram Adhikari, Rup Bahadur Kunwor, Madan Singh Bohara, Dhan Kumar Pant, Prakash Shrestha and Khagendra Koirala for their moral support and encouragement to my work.

My parents for all.

Date:....

Nirajan Bhattarai

ABSTRACT

Bacillus thuringiensis is a spore forming bacterium showing the unusual ability to produce endogenous crystals during sporulation that are toxic for some pest insects. This work was performed to study the composition, ecological distribution of biochemical types and genetic similarities among the isolates of this entomopathogenic bacterium from high altitude region (Tangboche, Khumbu region), and Terai region (Biratnagar). Using acetate selection methods to screen soil samples, 115 presumptive B. thuringiensis were isolated from 43 soil samples. Of these strains, 64% (74/115) were classified as *B. thuringiensis* on the basis of their crystal proteins visualized by microscopy. The percentages of samples with B. thuringiensis were 78.9 and 83.4 for the Khumbu region and Biratnagar respectively. The respective B. thuringiensis indexes were 0.7 and 0.61 for the regions. Of the total 64 B. thuringiensis isolates, 13.51% were novel, while rest of the isolates (86.49%) were identified upto subspecies level as evident by the defined biochemical typing. B. thuringiensis subspecies thuringiensis, indiana and type 16 were recovered from both high altitude and Terai region. Randomly amplified polymorphic DNA (RAPD)-Polymerase Chain reaction (PCR) was used to study the genetic similarities. Based on the RAPD patterns obtained with random primer, B. thuringiensis subspecies indiana isolates from Khumbu region showed more than 65% genetic similarities, whereas those from Biratnagar showed more diverse among the strains.

Key Words: *Bacillus thuringiensis* subspecies, RAPD-PCR, genetic similarity, Khumbu, Biratnagar.

TABLE OF CONTENTS

	Page No.
Title Page	i
Recommendation	ii
Certificates of Approval	iii
Board of Examiners	iv
Acknowledgement	v
Abstract	vii
Table of Contents	viii
List of Abbreviations	xiii
List of Tables	xiv
List of Figures	XV
List of photographs	xvi
List of Appendices	xvii
CHAPTER-I	1-3
1. Introduction	1
CHAPTER-II	4
2. Objectives	4
2.1 General objectives	4
2.2 Specific objectives	4
CHAPTER-III	5-32
3. Literature review	5
3. 1. Bacillus thuringiensis	5
3.2. Ecology and Prevalence	5

3.3. Morphology and Physiology	6
3.4 History of <i>B. thuringiensis</i>	
3.5. Classification and Nomenclature	
3.6. B. thuringiensis Genome	9
3.7. Toxin structure	9
3.8. Mechanism of action of toxin (Insecticidal activity)	10
3.9. Development of resistance to B. thuringiensis	13
3.10. Mechanism of resistance	14
3.11. Effects on animals	15
3.12. Exposure and Effects on humans	16
3.12.1. Bacillus thuringiensis	17
3.12.2. Experimental exposure of humans	17
3.13. Techniques to study Genetic Polymorphism	17
3.13.1. Non-PCR based screening techniques	18
3.13.2. PCR arbitrary priming techniques	19
3.13.3. Targeted PCR and sequencing	21
3.14. Genetics of Bacillus thuringiensis	22
3.14.1. The B. thuringiensis Genome	22
3.14.2. The Transposable Elements of B. thuringiensis	22
3.14.3. Cry Gene Expression	24
3.14.3.1. Transcriptional Mechanisms	24
3.14.3.2. Sporulation-dependent cry Gene Expression.	25
3.14.3.3. Sporulation-independent cry gene expression	26
3.14.3.4. Posttranscriptional Mechanisms	26
3.14.3.5. Posttranslational Mechanisms	27
3.15. Numerical Index of the Discriminatory Ability of the Typing Methods	29
3.16. DNA-fingerprint Similarity Index	30

CHAPTER-IV	31-41
4. Materials and Methods	31
4.1 Materials	31
4.2 Methods	31
4.2.1 Sample Collection and Transport	31
4.2.2 Isolation of Bacillus thuringiensis	31
4.2.3 Preservation of the Isolates	31
4.2.4 Identification	32
4.2.4.1 Microscopy	33
4.2.4.1.a Gram Staining	33
4.2.4.1.b Spore Staining	33
4.2.4.1.c Crystals Staining	34
4.2.4.2 Biochemical Characteristics	34
4.2.4.2.a Catalase test	34
4.2.4.2.b Oxidase test	34
4.2.4.2.c Nitrate Reduction test	35
4.2.4.2.d Urea Hydrolysis	35
4.2.4.2.e Citrate utilization test	35
4.2.4.2.f Sugar utilization test	35
4.2.4.2.g Hydrolysis tests	36
(i) Casein-hydrolysis	36
(ii) Gelatin hydrolysis	36
(iii) Starch-hydrolysis	36
(iv) Tween-20 hydrolysis	36
(v) Aesculin degradation	36
(vi) Lecithin degradation	37
4.2.5 DNA Isolation from <i>B. thuringiensis</i> Isolates	37
4.2.5.1 Preparation of Mass Culture of B. thuringiensis	37

4.2.5.2 Isolation of Genomic DNA	37
4.2.5.2.a. Boiling Cells Method	37
4.2.5.2.b. Phenol-Chloroform Extraction Method	38
4.2.6 DNA Quantization by spectrophotmetry	39
4.2.7 RAPD-PCR Primer	39
4.2.8 Random Amplified Polymorphic DNA (RAPD) PCR amplification	40
4.2.9 Gel Electrophoresis of DNA	41
4.2.10 RAPD Data Analysis	41

42-48

CHAPTER-V

5. Results 42 5.1 Colony characteristics of the isolates 42 42 5.2 Morphological Characteristics 5.3. Distribution of *B.thuringiensis* in soil samples 43 5.4 Biochemical Identification 43 45 5.5 Strains for RAPD-PCR Analysis 5.6 RAPD pattern of the *B. thuringiensis* subspecies 45 5.6.1 RAPD profile of the B. thuringiensis subspecies indiana 47 5.6.1.1 RAPD pattern of B. thuringiensis subspecies indiana isolated from Tangboche 47 5.6.1.2: RAPD pattern of B. thuringiensis subspecies indiana isolated from Biratnagar 48

CHAPTER-VI	49-54
6. Discussion and Conclusion	49
6.1 Discussion	49

6.2 Conclusion	54
CHAPTER-VII	55-56
7. Summary and Recommendation	55
7.1 Summary	55
7.2 Recommendation	56
CHAPTER-VIII	57-65
8. References	57
CHAPTER-IX	
10. Appendices I-X	i-xxx

LIST OF ABBREVIATIONS

APN	Aminopeptidase N
AP-PCR	Arbitrary primed PCR
bp	Base Pairs
BBMV	Brush border membrane vesicles
cry gene	Crystal protein producing gene
cyt gene	Cytolytic toxin producing gene
DAF	DNA Amplification Fingerprinting
D value	Discriminatory value
DDT	Dichlorodiphenyl trichloroethane
DMSO	Dimethoxy sulphdoxide
D/W	Distilled Water
EDTA	Ethylenediaminetetraacetic acid
FAO	Food and Agricultural Organization
ICP	Insecticidal Crystal Protein
kDa	kilo Dalton
LB	Lauria Broth
MPCA	Microbial pest control agents
MR test	Methyl red test
NA	Nutrient Agar
PCR	Polymerase Chain reaction
RAPD	Randomly Amplified Polymorphic DNA
rRNA	Ribosomal RNA
Tn element	Transposable element
VP test	Voges-Proskauer test

LIST OF TABLES

- Table 1:Nucleotide sequence of RAPD-Primer
- Table 2:RAPD-PCR Reaction Mixture
- Table 3:
 Thermal-cycling Profile for Bacillus thuringiensis isolates
- Table 4:
 Crystal staining of the isolates from Tangboche and Biratnagar
- Table 5:Distribution of crystalliferous B. thuringiensis in soil samples, by region.
- Table 6:Distribution of biochemical types of B. thuringiensis
- Table 7:Randomly selected B. thuringiensis strains for RAPD-PCR
- Table 8:
 Estimated genetic similarities among *B. thuringiensis* subspecies
- Table 9:Estimated genetic similarities among B. thuringiensis subspecies indianaisolates from Tangboche
- Table 10:Estimated genetic similarities among *B. thuringiensis* subspecies *indiana*isolates from Biratnagar

LIST OF FIGURES

- Figure 1: Three-dimensional structure of Cry1A, Cyt2A and Cry 3A
- Figure 2: Mechanism of toxin action
- Figure 3: Flow chart for the of *B. thuringiensis* isolation

LIST OF PHOTOGRAPHS

Photograph 1: Isolation of Bacillus thuringiensis Photograph 2: Pure culture of the isolate Photograph 3: **Crystal Staining** Photograph 4: Lecithin hydrolysis Photograph 5: Biochemical tests (Aesculin hydrolysis, Acid production from Salicin and Sucrose) Photograph 6: Agarose gel electrophoresis of PCR product (B.thuringiensis subsp. *indiana*) (Gel 1) Agarose gel electrophoresis of PCR product (B. thuringiensis isolates) (Gel 2) Photograph 7: Working at a molecular biology laboratory

LIST OF APPENDICES

APPENDIX I:	Materials
APPENDIX II:	Name and Composition of Media
APPENDIX III:	Composition of Test and Staining reagents
APPENDIX IV:	Composition of Reagents and Solutions for DNA extraction, gel
	electrophoresis and DNA quantization
APPENDIX V:	I. Isolation of Bacillus thuringiensis from the soil samples of
	Khumbu region and Biratnagar
	II. Colony morphology of the isolates
APPENDIX VI:	Biochemical tests of crystal positive Bacillus thuringiensis
APPENDIX VII:	Biochemical types of Bacillus thuringiensis
APPENDIX VIII:	Standard curve for molecular weight determination of DNA
	Determination of molecular weight (Gel 1)
	Determination of molecular weight (Gel 2)
APPENDIX IX:	Molecular size of RAPD-fragments of the isolates
APPENDIX X:	I. Known cry & cyt gene sequences with revised nomenclature assignments
	II. Phylogram demonstrating amino acid sequences identity among Cry & Cyt proteins