

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS

THESIS NO: G020/069

Comparative Study On Permeability Characteristics Of Kathmandu Valley Soils

by Sudip Karki (069/MSG/820)

A THESIS

SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCE IN GEOTECHNICAL ENGINEERING

> DEPARTMENT OF CIVIL ENGINEERING LALITPUR, NEPAL

> > NOVEMBER, 2016

COPYRIGHT

The author has agreed that the library, Department of Civil Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis freely available for inspection.

Moreover, the author has agreed that permission for extensive copying of this thesis for scholarly purpose may be granted by the professor(s) who supervised the work recorded herein or, in their absence, by the Head of the Department wherein the thesis was done. It is understood that the recognition will be given to the author of this thesis and to the Department of Civil Engineering, Pulchowk Campus, Institute of Engineering in any use of the material of this thesis. Copying or publication or the other use of this thesis for financial gain without approval of the Department of Civil Engineering, Pulchowk Campus, Institute of Engineering and author's written permission is prohibited. Request for permission to copy or to make any other use of the material in this thesis in whole or in part should be addressed to:

Head of the Department Department of Civil Engineering Institute of Engineering, Pulchowk Campus, Institute of Engineering Lalitpur, Kathmandu Nepal

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS DEPARTMENT OF CIVIL ENGINEERING

The undersigned certify that they have read, recommended to the Institute Of Engineering for acceptance, a thesis entitled, "**Comparative Study On Permeability Characteristics Of Kathmandu Valley Soils**" submitted by Sudip Karki (069/MSG/820) in partial fulfillment of requirement for the degree of Master of Science in Geotechnical Engineering.

Supervisor	,
Dr. Indra P	rasad Acharya
Lecturer	
M. Sc. Prog	gram in Geotechnical Engineering
Pulchowk	Campus, Pulchowk, Lalitpur, Nepal.
External E	xaminer,
Prof. Dr. A	kkal Bahadur Singh
M. Sc. Prog	gram in Geotechnical Engineering
Pulchowk	Campus, Pulchowk, Lalitpur, Nepal.
Program C	oordinator/Supervisor,
Dr. Indra P	rasad Acharya
Lecturer	
M. Sc. Prog	gram in Geotechnical Engineering
Departmen	t of Civil Engineering
Departmen	

ACKNOWLEDGEMENT

Firstly, I would like to express sincere appreciation for precious suggestion and guidance to my supervisor Dr. Indra Prasad Acharya for his guidance and support during my thesis work. Also I am indebted to my teachers at M.Sc. Program in Geotechnical Engineering, Department of Civil Engineering and support staffs.

My special thanks to Central Material Testing Laboratory (CMTL), Mr. Rajendra R. Panta, Mr. Chandra Man Shrestha, Mr. Ram Sharan Timilsina and all cooperative staffs for their facilitation, support and guidance during laboratory testing. Finally, I will like to thankful to all my caring and cooperative colleagues for their encouragement and grateful to my family's for their guidance, motivation and support.

Sudip Karki 2069/MSG/820

ABSTRACT

This study investigates the permeability characteristics of the different nine soils from the Kathmandu i.e. from Kalanki, Champi, Matatirtha, Thimi, Kamerotar, Luvu, sand of Bagmati, sand of Manohara and sand from Bungmati. Visual inspections, Grain size distributions, Atterberg limits, Specific gravity, Permeability test of soils are carried out. The digitization of the test result from the literature of Lambe and Whitman is done with the aid of Plot digitizer software.

From the result of classification of soil as per USCS Sand from Manohara, Bagmati and from Bungmati are classified as SP. Kalanki and Luvu soil as CL, Matatirtha soil as CL-ML, Thimi soil as ML and OL, Kamerotar and Champi soil as ML.

Result of study on the permeability characteristics of the Kathmandu soil, it is found that as the void ratio of soil increases the coefficient of the permeability increases and vice versa. The relation between the void ratio and the coefficient of permeability is found to be almost straight for all soil. The coefficients of permeability of Kathmandu valley soil are found within range of 10⁻² cm/sec to 10⁻⁷ cm/sec. As per Terzaghi and Peck (1967) classification soils from Kathmandu are classified as soil having very low permeability to medium permeability.

Further, comparison between test result of my investigation and literature test result it shows that permeability of soils from Thimi, Champi, Matatirtha, Kalanki, Kamerotar and Luvu lies between the permeability characteristics of silt of Boston to Sand from Dike. The Champi soil permeability characteristic is similar to that of Silt- North Carolina. This research works deals with simple observation of K values of soils at different location of Kathmandu, the difference between K values for these soils are mainly due to particle size and somehow affected by composition, structure and shape of particles.

TABLE OF CONTENTS

COVER PAGE	i
COPY RIGHT	ii
CERTIFICATE	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENTS	vi-viii
LIST OF TABLES	ix
LIST OF FIGURES	x-xi
ABBREVIATION	xii
1. INTRODUCTION	
1.1 Background	1
1.2 Objectives of the Study	2
1.3 Limitation of Study	2
2. LITERATURE REVIEW	
2.1 Background	3
2.2 Constant Head Permeability Test	4
2.3 Falling Head Permeability Test	5
2.4 Factors Affecting Permeability	7
2.4.1 Permeant Characteristics	8
2.4.2 Soil Properties	9
2.4.2.1 Particle Size	9
2.4.2.2 Void Ratio	10
2.4.2.3 Composition	11
2.4.2.4 Structure of Soil/ Fabric	11

2.4.2.5 Shape of Particles	12
2.4.2.6 Degree of Saturation	12
2.5 Plot Digitizer	15
3. MATERIALS AND METHOD	
3.1 Materials Used and Sample Preparations	16
3.1.1 Collection of Samples	16
3.1.2 Sample Preparations	16
3.1.2.1 Soil Characterization Test Samples	16
3.1.2.2 Permeability Test Samples	16
3.1.3 Soil Characterization and Permeability Test	16
3.1.3.1 Moisture Content	16
3.1.3.2 Particle Size Distribution	17
3.1.3.3 Atterberg Limits	17
3.1.3.4 Specific Gravity	18
3.1.3.5 Soil Classification	18
3.1.3.6 Permeability Test	18
3.1.4 Digitization of Test Result from Literature	18
4.0 Results and Discussion	19
4.1 Geotechnical Properties of Collected Soil Sample	19
4.2 Gradation of Soil Samples	19
4.3 Atterberg Limits	25
4.4 Specific Gravity	25
4.5 Soil Classification	25
4.6 Permeability Test	26
4.7 Digitization of Test Result From Literature	32
5.0 Conclusion and Recommendation	36

5.1 Conclusion	36
5.2 Recommendation	37
REFRENCES	38
ANNEX	

LIST OF TABLES

Table 2.1	Variation of $(\eta_{T^{\circ}C}/\eta_{20^{\circ}C})$	9
Table 2.1	Classification of soil by Terzaghi and Peck	13
Table 4.1	Geotechnical properties collected soil sample	19
Table 4.2	Soil coefficient of Curvature and Uniformity	25
Table 4.3	Test result data of Kathmandu valley soil	27

LIST OF FIGURES

Figure 2.1	Constant head permeability method	4
Figure 2.2	Falling head permeability test method	6
Figure 2.3	Permeability of Kaolinite to Various fluids as a function of $e^{3}/(1+e)$.	
	(from Michaels and Lin, 1954)	8
Figure 2.4	Relation between e and k for variable head test	10
Figure 2.5	Coefficient of permeability versus void ratio	11
Figure 2.6	Effect of structure on permeability	12
Figure 2.7	Permeability versus degree of saturation for various sand	
	(from Wallace, 1948)	13
Figure 2.8	Permeability test result from literature	14
Figure 4.1	Particle size distribution of soil from Kalanki	20
Figure 4.2	Particle size distribution of Thimi soil	20
Figure 4.3	Particle size distribution of Champi soil	21
Figure 4.4	Particle size distribution of Bagmati Sand	21
Figure 4.5	Particle size distribution of Manohara sand	22
Figure 4.6	Particle size distribution of Bugmati sand	22
Figure 4.7	Particle size distribution of Matatirtha soil	23
Figure 4.8	Particle size distribution of Kamerotar soil	23
Figure 4.9	Particle size distribution of Luvu soil	24
Figure 4.10	Gradation curve for Kathmandu valley soils	24
Figure 4.11	e versus k for Kalanki soil	28
Figure 4.12	e versus k for Thimi soil	28
Figure 4.13	e versus k for Champi soil	29
Figure 4.14	e versus k for Bugmati sand	29
Figure 4.15	e versus k for Manohara sand	30
Figure 4.16	e versus k for Bagmati sand	30

Figure 4.17	e versus k for Matatirtha soil	31
Figure 4.18	e versus k for Kamerotar soil	31
Figure 4.19	e versus k for Luvu soil	32
Figure 4.20	e versus k of Kathmandu valley soils	33
Figure 4.21	Digitize permeability test data from literature of Lambe and Whitman	34
Figure 4.22	Comparison of e vs k of Kathmandu valley soils with literature	35

ABBREVIATION

А	Area of soil specimen in permeater
a	Area of stand pipe
ASTM	American Society for Testing and Materials
С	Shape factor
C _c	Coefficient of curvature
СН	Highly Plastic Clay
CL	Clay of low Plasticity
C_u	Coefficient of uniformity
D ₁₀	Effective particle size
D ₃₀	30% finer particles
D ₆₀	60% finer particles
D _s	Some effective particle diameter
e	Void ratio
G	Specific gravity of solid
h	Hydraulic head
Н	Highly Plastic
k	Coefficient of permeability
k ₂₀	Coefficient of permeability at 20° C
k _T	Coefficient of permeability at T° C
k _{0.85}	Coefficient of permeability at Void ratio of 0.85
L	Length of soil specimen in permeater
LL	Liquid Limit
ML	Silt of Low plasticity
OH	Organic Soil of Medium to High Plasticity
OL	Organic Soil of low plasticity
PI	Plasticity Index
PL	Plastic Limit
SP	Poorly Graded sand
USCS	Unified Soil Classification System
W	Water content
γ	Unit weight of permeant
$\eta_{T^{\bullet}\!C}$	Viscosity of Permeant at T ° C
$\eta_{20^{o}C}$	Viscosity of permeant at 20° C