
1

Chapter 1

Introduction

The problem of scheduling arises whenever work has to be done is more than the

resources available. A simple example is a kitchen: If there is a single stove, variety of

dishes to be cooked is more than one, and the cook has to prepare the dishes as fast as

possible, then it is a sort of scheduling problem. An experienced cook knows which item

is to be cooked earlier and which later so that time is saved. But in a far more complex

environment like production management, computer networks, etc., we need a sound

theory, based on rigorous mathematics, to handle the problems arising due to resource

scarcity. Such a theory is scheduling theory.

Scheduling theory is not a mere mathematical aesthetic, but a practical requirement posed

by industrial and technological development. Scheduling theory has evolved as a branch

of operations research since the 1950’s. In those days, this newly evolving science had

major applications in industries (e.g. [48]). Today, apart from industries, scheduling

theory is a crucial tool needed in computers, operating systems and several other

electronic devices.

Two basic concepts required in scheduling theory are of machines and jobs – a machine

executes a job. The terms ‘machine’ and ‘job’ are very general. For example, a machine

can be a microprocessor, a water pump, or even office personnel. Similarly, jobs can be

of any type. If the machine is a microprocessor, then a job means a program, if a water

pump is considered as a machine, then amounts of water to be pumped can be jobs, etc.

In this dissertation, scheduling problems for a single machine is studied. The books

referred in [11] and [7] provide a profound introduction of the scheduling theory.

The second point is NP-hardness. In computational complexity, the problems that have

not yet been solved efficiently using any algorithm, are called NP-hard problems. There

2

are several important single machine scheduling problems which are NP-hard. To solve

such problems, practical techniques known as heuristic algorithms are used. This study

includes such heuristic algorithms in the context of NP-hard single machine scheduling

problems. Finally, a heuristic algorithm, known as tabu search, is devised for a particular

NP-hard single machine-scheduling problem. See [15], [49], and [8] for basic theory of

algorithms and complexity

Chapter 2 deals with computational complexity theory. In this chapter, the concept of

good and bad algorithms is formalized. Also, some fundamental concepts of computer

science are summarized.

In Chapter 3, the formal description of scheduling theory is summarized. Apart from the

classical scheduling model, this chapter also gives some glimpses of some newly

emerging problems and models of scheduling. However, attention is restricted to the

classical model, and the details of these new ideas are not considered.

Chapter 4 mentions some easy problems in single machine scheduling. Although these

problems are classic pieces in computer science literature, and can be found in most of

the textbooks, they give the idea of mathematical tools used in scheduling. Moreover,

single machine problems are special cases of the general scheduling problem, thus, they

need attention.

In Chapter 5, there is a survey of popular techniques for handling NP-hard scheduling

problems. Actually, these techniques are applicable to a broader class of problems,

known as discrete optimization problems, of which scheduling is a special case. So again

in this chapter, the context is of single machine scheduling.

In Chapter 6, heuristic algorithms are discussed. Heuristic techniques like local search

and genetic algorithms are being more and more popular in computer science. Some of

these techniques and the criteria for evaluating their performance are discussed.

3

In Chapter 7, a heuristic algorithm, known as tabu search, is devised for the NP-hard

single machine scheduling problem, where jobs arrive over time and preemption is not

allowed (i.e., jobs can not be paused). This problem is not an unconsidered problem.

There are two heuristic algorithms known as Earliest Completion Time (ECT) and

Earliest Start Time (EST) for this problem (see [7]). There are many other approaches of

handling such a NP-hard problem. But in this dissertation, tabu search is chosen because

it is a simple algorithm that produces better solutions, and thus getting more and more

acceptance in practical areas. Furthermore, the beauty of heuristic algorithms lie in the

fact that their efficiency is usually judged by experiments, and not analytically. Tabu

search is more like an engineering approach than an elegant mathematical approach [24],

and it is an interesting paradigm for programming. The program code of this tabu search

algorithm as well as ECT and EST heuristics are given in the Appendix.

The main results of this dissertation and prospected future study are summarized in

Chapter 8.

4

Chapter 2

Computational Complexity

Computational Complexity is a branch of computer science and applied mathematics that

deals with analysis of algorithms. It deals with nature of problems solvable by

algorithms, and classifies problems into several classes according to their difficulty.

NP-hard problems are popularly taken as a synonym for ‘difficult’ problems. To describe

the notion of NP-hardness, one needs a series of definitions from the theory of

computation: such definitions are given from Section 2.1 up to Section 2.5. In Section

2.6, a practical example is given to describe the hardness imposed by NP-hard problems

in practical situations.

2.1 Turing Machines and Algorithms

For a pure theoretical perspective, a computer is modeled as a Turing Machine, which

basically converts one set of strings to another. A Turing Machine comprises of a finite

control, a tape, and a head that can be used for reading and writing on that tape (see [39]

and [26]). The formal definition of a Turing Machine is slightly involved. This study

continues discussion from another viewpoint: algorithms. Though there is no precise

definition of an algorithm, it is believed that algorithms and Turing Machines are

equivalent. Equivalence in this context means every problem solvable by algorithms is

solvable by Turing Machines and vice-versa. This definition of equivalence does not

consider efficiency.

There are still other models of computations apart from Turing Machines and algorithms.

Actually, the Church-Turing thesis states that all these models are equivalent (see [39]

and [26]). Here, this elementary definition of an algorithm is accepted: An algorithm is

any well defined computational procedure that takes some value, or set of values as input

and produces some value, or set of values as output.

5

2.2 Asymptotic Order of Functions

There are two qualities that make a good algorithm: less time requirement and less space

requirement. These space-time requirements are highly influenced by the real machine

used for computation. If a bad machine is used, even a better algorithm may appear

inefficient compared to a bad algorithm in a better machine. Due to these considerations,

computational complexity deals with instances whose input size is very large, so that

machine difference can be neglected. To describe behavior of algorithms for large input,

the concept of asymptotic order is needed. Three asymptotic orders are frequently used,

viz., big-O, big-omega and big-theta. Details of these concepts can be found in books like

[15] and [8].

Let t:N+ and f:N+ be two functions from the set of natural numbers to the set of

non-negative real numbers. The function t(n) is said to be upper bounded by f(n) and

written t(n)O(f(n)) iff there is a positive real constant c and an integer threshold n0 such

that

t(n)  cf(n) for all n  n0.

The function t(n) is said to be lower bounded by f(n) and written t(n)(f(n)) iff there is

a positive real constant c and an integer threshold n0 such that

t(n)  cf(n) for all n  n0.

The function t(n) is said to be tightly bounded by f(n) and written t(n)(f(n)) iff

t(n)O(f(n)) and t(n)(f(n)).

Note that O(f(n)), (f(n)) and (f(n)) all represent classes of functions, this justifies the

use of the set-membership symbol ‘’ for denoting asymptotic order. But popularly, the

equal-to sign ‘=’ is used instead of ‘’. This popular notation is used in the following

discussions and later chapters.

2.3 Time and Space Complexities of Algorithms

Time requirement is counted in units of steps. Space requirement is counted in units of

memory cells. For any algorithm, one may have to specify time or space complexity, or

6

both. For example, if an algorithm has time complexity of O(f(n)), then it means that the

number of steps required by the algorithm is bounded above by f(n). Space complexity

can be stated similarly.

Usually in computational complexity theory, one considers time complexity. In the

following discussions, the term ‘complexity’ is used to denote time complexity unless

explicitly mentioned.

2.4 Problems and Encoding

A computational problem can be viewed as a function f which maps each input x in some

domain to an output f(x) in some given range. An instance is a member of the input

domain. Computational problems are called abstract problems whenever their

peculiarities are unknown. However, for formal treatment, one has to restrict our

attention to typical problems.

Now some important types of problems in computational complexity theory are

mentioned. A problem whose output can either be ‘yes’ or ‘no’ is called a decision

problem. One may use any symbol instead of ‘yes’ and ‘no’. Scheduling problems belong

to the class of discrete optimization problems. For this, the following definitions of an

instance of optimization problem and an optimization problem are needed: An instance of

an optimization problem is a pair (F,c), where F is any set, the domain of feasible points,

c is the cost function, a mapping c:F+. The problem is to find fF such that for all

gF, c(f)  c(g) (some optimization problem may use  instead of , such problems are

called maximization problems). An optimization problem is a set I of instances of an

optimization problem (see [49]).

Conceptually, a particular instance of an optimization problem can have many feasible

solutions: F is the set of such solutions. By feasible solutions, solutions that do not violate

the given constraints are understood. Among the feasible solutions from F, the solution

having minimum cost is to be selected. This cost is given by the cost function c:F+.

7

Now, the concept of a discrete optimization problem is defined: An optimization problem

whose all instances have finite set of feasible solutions is known as a discrete

optimization problem. Discrete optimization problems are also known as combinatorial

optimization problems (for example, see [49]).

To be computed by an algorithm, problem instances should be represented in a suitable

way. Generally, binary strings are used for this purpose. First consider the definition of

an encoding: An encoding of a set S of abstract objects is a mapping e from S to the set of

binary strings. Generally the set {0, 1} is used as an alphabet for binary encoding. Let e

be an encoding of a set S of abstract objects. Let sS, then the length of encoding,

denoted by |e(s)|, is the number of symbols in e(s) (see [15]).

There is a special reason for choosing binary string instead of unary or others. Actually

the efficiency of an algorithm is affected by the encoding used. Time and space

complexities are described in terms of length of the encoded string. So, if an input has

length n in a unary encoding, then in a binary encoding, its length = log2n +1, which

differs exponentially from the length in unary encoding. This shows that the encoding

scheme cannot be let arbitrary. However, binary encoding has an advantage over unary.

Because the length of an input string of in a higher order encoding differs from length in

binary encoding by a polynomial factor only. This can be seen by changing base of

logarithm while converting a string in higher order encoding to binary encoding. So, if

binary encoding is used instead of higher order encodings, the complexity remains same.

The only trouble is with unary encoding. In the following discussions, the length of an

input instance means the length of corresponding binary encoding.

2.5 Complexity Classes

2.5.1 Classes P and NP
To define the complexity classes, the concept of a verification algorithm is needed. Let X

be a decision problem. A verification algorithm A for the problem X takes as an input the

pair (x, q), where xX is an instance of X, and q, known as certificate, is a binary string

8

whose size is in O(f(|x|)) , where f is a polynomial. The algorithm returns ‘yes’ if q is a

solution of x (see [15]).

Now complexity classes are considered. There are several complexity classes in the

theory of computation. But here, only the major classes relevant to this dissertation are

discussed. The class of all decision problems that can be solved in polynomial time is

known as the complexity class P. Problem belonging to P are said to have ‘efficient’

algorithms. Any algorithm having complexity of a lower order polynomial is accepted as

an efficient algorithm. On the other hand, the class of all decision problems that have

verification algorithms with polynomial complexity is known as the complexity class NP.

The notation NP actually refers non-deterministic polynomial-time algorithms. But

nowadays, the notion of non-deterministic algorithms is rarely used in the definition of

NP class. See [8] for a description of complexity classes from an algorithmic view.

Example 2.1 The problem of sorting n numbers can be done in O(n2) time using the

quicksort algorithm in the worst case (see [15]). Thus, all sorting problems are in P.

Example 2.2 A vertex cover of an undirected graph G = (V, E) is a subset V’  V such

that if (u, v)  E, then u  V’ or v  V’ or both. That is, each edge touches at least one

vertex in V’. The vertex-cover problem is to find such a vertex cover of minimal

cardinality. This problem is NP (see [15])

.2.5.2 Classes NP-Complete and NP-Hard

The definition of NP-complete and NP-hard classes requires the concept of polynomial

reduction. To define polynomial reduction, the definition of a polynomial-time

computable function is needed: A function f:{0, 1}*{0, 1}* is said to be polynomial-

time computable if there exists a polynomial-time algorithm A which, for all input

x{0, 1}, produces the output f(x) in polynomial time (see [15]). Now comes the

definition of polynomial reduction: Let X and Y be two problems. We say that X is

polynomially reducible to Y, and write as X PY, if there exist a polynomial-time

computable function f:{0, 1}*{0,1}* such that for all x{0, 1}*, xX if and only if

f(x)Y. Such a function is called a polynomial reduction from X to Y (see [15]).

9

The notion X P Y is often stated as ‘Y is as hard as X’ or ‘Y is not easier than X’, etc.

Informally, this means that difficulty of solving problem X is not harder than difficulty of

solving problem Y. Note that this definition of polynomial reduction applies to all types

of problems. Concerning decision problems, an important fact is stated below.

Lemma 2.1 Let X and Y be two decision problems such that X P Y, then

Y  P X  P.

Proof. Let Y  P. Since X P Y, there exists a polynomial-time computable function

f:{0, 1}*{0, 1}* such that x  X if and only if f(x)  Y. To solve x  X, first reduce it

to f(x) which takes polynomial time, say t1(|x|). Now f(x) is an instance of Y, so it can be

solved in polynomial time, say t2(|f(x)|). Equivalently we get solution of x  X in time

t1(|x|) + t2(|x|), which is a polynomial. Hence, X  P.

The class NP-complete is the set of decision problems X such that

1. X  NP

2. For all Y  NP, Y P X (see [15]).

In simple words, NP-complete are the hardest problems among the NP class. A question

arises immediately: Is the class NP-complete non-empty? The answer is yes. There is a

famous theorem, known as Cook’s theorem, which demonstrates the existence of a

NP-complete problem known as satisfiability problem. The satisfiability problem,

denoted as SAT, states that given a set U of Boolean variables and a collection C of

clauses over U, is there a satisfying truth assignment for C? (see [49])

Theorem 2.1 (Cook’s Theorem) (see [49]) The problem SAT is NP-complete.

Actually, hundreds of important problems have been proved to be NP-complete till now

(see [39], [26]). Now an intuitively obvious fact is mentioned:

10

Theorem 2.2 P  NP

Proof. Let X  P, then all instances x  X can be solved in polynomial time. Then one

can verify X in polynomial time in this simple way: Solve X in polynomial time and

check it against the given certificate. Thus, P  NP.

One may now suspect whether P = NP. Intuition suggests that P  NP. But this is an

open question of computer science (see [14] for the formal definition of this problem).

For P = NP, we should have P  NP and P  NP. The first inclusion comes from

Theorem 2.2. The second inclusion is an open problem, and has stunning practical

consequences. Now, an important theorem of computational complexity is mentioned:

Theorem 2.3 (see [49]) If any NP-complete problem is polynomial time solvable, then

P = NP. Equivalently, if any problem in NP is not polynomial time solvable, then no

NP-complete problem is polynomial-time solvable.

Proof. Let X  NP. From the definition of NP, any problem Y  NP, we have Y P X.

Now, if X  P, then from Lemma 2.1, Y  NP. Thus, P = NP.

If P = NP, then according to above theorem, all the NP-complete problems can be solved

in polynomial time: this would be a huge enhancement in the applicability of computers.

Several problems in the field of Artificial Intelligence, optimization, and algorithms in

general are NP-complete, if a constructive proof for P = NP could be found; these

problems would be solved in polynomial time. But most of the researchers believe

P  NP. Cook [13] mentions the reason for this: Since 1970’s when this question was

posed, innumerable computer scientists, mathematicians and engineers have been trying

to find a polynomial time algorithm for one of the several NP-complete problems, but not

a single algorithms has been found.

The class NP-hard is the class of all problems X such that for all YNP, Y P X (see

[8]). In other words, there may be a problem X which is as hard as any problem in NP,

11

but one may not be able to prove its NP-completeness, such a problem is NP-hard. Note

that the class NP-hard can contain problems other than decision problems also. An

optimization problem is called NP-hard if its decision counterpart is NP-complete (see

[16]).

Example 2.3 The vertex-cover problem stated in Example 2.2 is NP-hard (see [15]).

Note that this problem is not a decision problem.

Though the definitions of the classes NP-complete and NP-hard appear similar: the main

differences are, NP-hard problems need not be decision problems, and NP-hard problems

need not be in NP. But there are several reasons to study NP-hardness rather than

NP-completeness. Brassard and Bratley [8] point the following reasons:

1. There are important problems that are not decision problems. For example,

scheduling problems are not decision problems, but discrete optimization

problems.

2. Even in the case of decision problems, there are decision problems which are

NP-hard but not NP, hence not NP-complete.

3. For practical purposes, NP-hardness is the only thing to be established, because

NP-hard and NP-complete both cannot have efficient algorithms.

The phrase ‘cannot’ is italicized intentionally. This is elaborated by the following

theorem.

Theorem 2.4 (see [8]) If P  NP, then no NP-hard problem can be solved in polynomial

time.

Proof. If we assume P  NP, the NP-complete problems cannot be solved in polynomial

time. And since any NP-hard problem is as hard as a NP-complete problem, it cannot be

solved in polynomial time.

Proving NP-completeness will be easier if one can show that a problem already known to

be NP-complete polynomially reduces to the current problem, and for proving

12

NP-hardness, this will be sufficient. So, one has to explicitly prove the existence of at

least one NP-complete problem. Fortunately, NP-completeness of the satisfiabilty

problem SAT has an explicit proof. There are hundreds of important NP-complete and

NP-hard problems (see [49] for some examples).

2.6 Hardness Imposed by NP-Hardness

In this section, an example is given to illustrate the hardness of NP-hard problems.

Consider the famous Traveling Salesman Problem, TSP, which states that given a

complete weighted graph G(V, E) with |V| = n, find a Hamilton circuit having minimum

total weight, where total weight is the sum of all edges in the circuit (see [49]).

TSP is NP-hard, actually, the decision version of TSP is NP-complete (see [8], [49]). It is

interesting to know how hard this problem is: given n vertices, there can be (n-1)!

tours/circuits. If n = 10, there are 9! = 362,880 tours to be examined. If there are 30 cities

(i.e. n = 30), the number of tours is 29! which is larger than1030. Even if we could

examine a billion tours per second – a pace far beyond the capabilities of existing or

projected computers – the required time for completing this calculation would be more

than a billion human lifetimes! (see [39]). This example clearly demands the necessity of

evaluating near-to-exact solutions for NP-hard problems, because finding actual solution

is practically impossible. This example thus intensifies the need of evaluating near-to-

exact solutions.

Regardless the fact that all NP-hard/NP-complete problems are computationally hard,

some of them may still have tolerably efficient exact algorithms. Such algorithms, known

as pseudo-polynomial algorithms have complexities slightly higher than polynomials (see

[49] for formal definition). On the other hand, there are strongly NP-hard and strongly

NP-complete problems: Under the assumption P  NP, strongly NP-hard and strongly

NP-complete problems can not have pseudo-polynomial algorithms (see [49]). For

example, the problem TSP is strongly NP-hard. Thus two NP-hard or NP-complete

problems may not be computationally equivalent. Due to these reasons, scheduling

problems have also been classified according to the hierarchy of complexity (see [12]).

13

Chapter 3

Scheduling Problem

In this chapter, the basic formulation of the scheduling theory is described. The

classification of scheduling problems mentioned in this chapter follows the notation used

in [11]. Since the domain of scheduling theory is very wide, only single machine

scheduling problems are considered as far as possible. Sections 3.1 to 3.6 include basic

concepts and terminology of scheduling theory. Section 3.7 describes the extension of

basic scheduling model to encompass realistic situations.

3.1 Schedules and Their Representation

Let there be m number of machines, Mi, i = 1, …, m, which have to process n jobs, Jj,

j = 1, …, n. Besides, there is an objective function which gives the cost of scheduling.

The problem is to assign the jobs an allocation of one or more time intervals on one or

more machines; such an assignment is called a schedule (see [11]). A schedule is often

represented as a Gantt chart. Below is an example for a single machine schedule:

Figure 3.1 Gantt chart for a schedule of four jobs in single machine

In some circumstances where scheduling times of jobs are obvious or irrelevant, one can

represent a schedule as a sequence of jobs. For example, the schedule shown in

Figure 3.1 can be written as the sequence  = (J3, J1, J4, J2). In some cases, the machine

may remain idle for a time interval; such idle intervals are depicted by simply writing

‘idle’ for that period in the Gantt chart.

14

There are further descriptions which specify the problem of scheduling. These

descriptions are the number of machines, the types of jobs and their inter-relations, the

objective function, etc. They are mentioned in the following sections.

3.2 Machine Environment

There can be a single machine, multiple machines, or in some situations, the number of

machines may be unknown in advance. Let us briefly discuss the multiple machine

environment, which is the general case (see [11], [7] for complete description). In the

multiple machine environment, a job Ji is a set of ni numbers of operations, Oi. It is not

necessary that an arbitrary operation of an arbitrary job can be processed in an arbitrary

machine: this restriction inspires to classify the multiple machine environment into two

groups; parallel machines and dedicated machines.

In parallel machine model, an arbitrary operation Oij of an arbitrary job Ji can be executed

in an arbitrary machine Mj. Stating simply, any machine can execute any operation of any

job. There are further classifications of parallel machines according to the speed of the

machines, but our brief discussion will not proceed there.

In the dedicated machine model, there is a restriction on operations: operations

executable on machines are constrained. To be specific, dedicated machine environment

has been classified into three categories, viz., flow shop, open shop and job shop.

Consider a job Ji with ni operations, O1i, O2i, …, Onii. In an open shop, the number of

operations is same for all jobs, say, m. Further, the operation O1i should be processed on

M1, O2i on M2, and in general, Oki on Mk.

Flow shop is same as open shop; only there is an additional precedence constraint: each

operation Oij should precede Oi-1,j for all job Jj. Job shop is an extension of the open shop:

Number of operations per job is arbitrary, and in general, the set of machines that can

execute Oij is different from the set of machines that can execute Oi,j+1.

15

3.3 Job Description

Each job Ji is provided with a number pi, which is the processing time of Ji. This

definition of processing time is sufficient for single machine environment. For the

multiple machine environment, processing time of each operation of each job may differ

from machine to machine, so the processing times are often provided in matrix form.

Here, only the single machine case is considered.

Another important data regarding a job Jj is its release date, rj. Release date means the

time by which the job is ready for processing. Similarly, for each job Jj, there may be

weight wj, due date dj, and a deadline d j. Weight of a job means its priority. Due date

and deadline have this interpretation: If a job does not complete before its due date, the

quality of the output detoriates. In the other hand, if a job does not complete before its

deadline, the output is invalid. These information may or may not be given.

There can be precedence relation among the jobs. In general, a precedence relation is a

directed acyclic graph (DAG), G(V,E), where the vertices V are the jobs, and (Ji,Jj)  E if

and only if Ji precedes Jj. In specific situations, precedence relation can occur as a tree, or

some other special type of DAG like sp-graphs (see [11]). A tree can be outtree or an

intree. In outtree, the DAG is a rooted tree with indegree for each vertex at most one.

Similarly, an intree is a rooted DAG with outdegree for each vertex at most one.

3.4 Objective Functions in Scheduling

For each job Jj, rj is the release time, dj is the due –date, and wj is its weight, or priority.

Given a schedule of jobs, the following parameters can be calculated (see [7] and [11]):

Completion time Cj

Flow time Fj = Cj-rj

Lateness Lj = Cj-dj

Tardiness Tj = max{Cj - dj, 0}

Earliness Ej = max{dj - Cj, 0}

Accordingly, one can define objective functions, such as,

Schedule length (makespan) Cmax = max{Cj}

16

Weighted completion time jwjCj

Total completion time jCj

Mean flow time Fmean = (1/n) jFj

Flow time variance Fvar = (1/n) j(Fj – Fmean)
2

In scheduling problems, one of these objective functions has to be minimized.

3.5 The Three-Field Notation:  |  | 
For specifying scheduling problems, three-field notation is popularly used. This notation

is due to Graham et al. [21]. In this scheme, a problem is denoted as  |  | , where the

-field describes the machine environment, -field describes the jobs and their

interrelations, and -field denotes the objective function. This notation is described as per

the requirements of this document. For details, one can refer [11] and [7].

The -field, in general, is  = 12, where  denotes string concatenation.

Parameter 1{, P, Q, R, O, F, J}characterizes the type of machine used. Specifially,

1 =  : single machine ( denotes empty string)

1 = P : identical machines

1 = Q : uniform machines

1 = R : unrelated machines

1 = O : dedicated machines, open shop system

1 = F : dedicated machines, flow shop system

1 = J : dedicated machines, job shop system

Parameter 2{, k} denotes the number of machines

2 =  : number of machines is assumed to be variable

2 = k : k number of machines

The -field, in general, is  = 123456.

Parameter 1{, pmtn} denotes whether preemption is allowed or not.

1 =  : preemption is not allowed

17

1 = pmtn : preemption is allowed, i.e., a job being proceesed can be paused

arbitrarily, and start some another available job.

Parameter 2{, res} indicates additional resource constraints.

2 =  : no resource constraints

2 = res : resource constraints are given

Parameter 3{, prec, tree} denotes precedence constraints.

3 =  : no precedence constraints

3 = prec : precedence is given in the form of an arbitrary DAG.

3 = tree : precedence is given in the form of a tree

3 = intree : precedence is given as an intree

3 = outtree : precedence is given as an outtree

Parameter 4{, rj} describes release dates.

4 =  : release date is zero for all jobs (or equal release dates)

4 = rj : release date is given for each job

Parameter 5{, pj=p} describes the processing times.

5 =  : jobs have arbitrary processing times

5 = (pj=p) : all jobs processing times equal to p

Parameter 6{, d } denotes whether deadlines are given or not.

6 =  : no deadlines

6 = đ : jobs have deadlines

In the -field, the formula or a short symbol for denoting the objective function is simply

written. For example, one can write jwjCj to indicate weighted completion time has to

be minimized. Here are some examples of the three-field notation: 1 | rj | jwjCj denotes

the single machine problem where release dates are given, and the objective is to

minimize the weighted completion time.1 | | Fvar denotes the single machine where the

flow time variance has to be minimized. P |prec, pj=1| Cmax denotes identical parallel

machines, precedence relation is given as a DAG, all jobs have unit processing time, and

the objective is to minimize the maximum completion time.

18

3.6 Polynomial Reduction between Scheduling Problems

Many scheduling problems polynomially reduce to other problems by making changes in

the , , and  fields. This concept of reduction is important for obtaining complexity of

scheduling problems from some older problem whose complexity is well established. The

possibility of polynomial reduction is depicted in the so-called reduction graph. There are

reduction graphs for all the , , and  fields. However, for single machine problems, 

field is always 1, so only the reduction graphs for  and  fields are presented. Reduction

graphs for all classes of scheduling problems can be found in [12].

Figure 3.2 Reduction graphs for the  field [(a) Possibility of preemption, (b)Precedence

constraints, (c)Release dates, (d)Due dates, (e) Processing times]

Reduction graphs can be interpreted in this way: An arc AB in a reduction graph

means there is a polynomial reduction from A to B only if the size of B is polynomially

bounded above by the size of A. For example, one can conclude that the problem

1 | tree| Uj polynomially reduces to 1 | prec | Uj because there is an arc treeprec in the

reduction graph of Figure 3.2(b). Note that polynomial reduction is transitive, for

example, according to graph of Figure 3.2(e), the problem 1 | pj = 1 | Lmax polynomially

reduces to problem 1 | | Lmax.

19

Below is the reduction graph for the  field. To take an example, from the graph one can

infer that the problem 1 | rj | Cj polynomially reduces to the problem 1 | rj | wjCj,

1 | | Cmax reduces to 1 | | wjUj, etc.

Figure 3.3 Reduction graph for the  field.

3.7 Realistic Scheduling Problems

The scheduling model formulated in this chapter is elementary and lacks many realistic

features like unavailability of job information until its arrival, resource constraints, etc

There are many extensions of the basic scheduling problem, some of them are mentioned

in the following sub-sections.

3.7.1 Online Problems

The discussion so far is considered with offline version of scheduling. In an online

version, one does not know processing time and other relevant information of a job until

it actually arrives in the system. This online model is realistic. For example, consider the

online version of the problem 1 | rj | Cj. This problem has a deep significance in

operating system design. One of the goals that the operating system seeks to achieve is to

minimize the average response time, i.e., (1/n)(sj-rj), where sj is the starting time of a

20

job Jj (see [45]). Since sj = Cj-pj, and pj is constant for all job j, this problem is equivalent

to minimizing total completion time. Not only scheduling, many computational problems

in general have online versions.

In the field of scheduling, as well as many related topics, the online versions are getting

more and more attention. Many of the classical problems recur in modern online

applications, but with slightly modified objective functions. Among these new objectives

functions, flow time and stretch are important ones (see [29]). Flow time was defined in

Section 3.3. Stretch of a job is its flow time divided by processing time. Many

applications like handling requests at web servers, scheduling jobs in operating systems,

parallel computing, etc. pose scheduling problems in which flow time and/or stretch has

to be minimized. Jawor [29] describes the latest research on online algorithms. Unless

specifically mentioned, the discussion throughout this document considers offline version

of scheduling problems.

An interesting feature of online algorithms is that despite their complexity, commonly

used algorithms for solving them are very simple and easy to implement. In an online

environment, scheduling decision has to be taken in a very short interval of time. And

such decisions have to be taken again and again. So, one does not have the time to find

exact solution, simple algorithms giving reasonable solutions are acceptable. A few

examples of online problems are given in Section 5.2.2.

3.7.2 Just-In-Time and Real-Time Scheduling

Just-in-time scheduling models assume the existence of job due dates and discourage

early as well as tardy jobs (see [17], [18], and [40]). Take an example of a manufacturing

company. If items are produced earlier than the expected date, then they have to be

preserved, and thus add unwanted storage costs. On the other hand, late production can

lead to fines, express delivery charges, lost sales, etc. A just-in-time schedule minimizes

sum of earliness and tardiness penalties.

21

A special type of just in time scheduling is due date scheduling. Basically, there are two

versions of this problem. In the first version, a common due date is given for all jobs, one

has to find schedule minimizing lateness and tardiness penalties with respect to this due

date. The second version is reverse of the first one, here, one has to determine a common

due date such that the penalties are minimized. The symbols ‘d’ and ‘dopt’ are added in

the  field of the three field notation to indicate first and second versions due date

scheduling, respectively. Unlike other scheduling problems, usually due date scheduling

considers positional weights. This means, weight wj does not correspond to job Jj, but to

any job that occurs in position j of the schedule (see [17], [18], and [40]). An example of

due date scheduling is presented in Section 5.31.

Real-time scheduling problems are principally online versions of just-in-time scheduling

problems, but popularly, the nomenclature ‘real-time’ refers to computer related

problems. These types of scheduling problems occur in real-time systems. Generally a

real-time system is an operating system embedded in some electronic devices. In a real-

time system, the correct functioning of the system depends on the time when jobs are

completed. In a soft real-time system, early/tardy jobs degrade the quality of the output,

while in a hard real-time system, such jobs make the output invalid. The book of

Tanenbaum [56] provides an introduction for real-time scheduling problems in Operating

Systems.

3.7.3 Set-up Times and Resource Constraints

There is a special type of scheduling problem in which jobs are classified in F families.

For f = 1, …, F, each family contains Nf jobs labeled as (1, f), …., (Nf, f). All jobs are

available at time zero. For j = 1, …, Nf, a job (j, f) has processing time pjf and a due date

dif. If two jobs from the same family are scheduled contiguously, then no set-up time is

necessary between these two jobs. On the other hand, a non-negative set-up time sf is

required before the processing of a job from family f if it is the first job in schedule, or if

it is scheduled immediately after a job from different family. The machine can process at

most one job at a time. The goal is to find a schedule minimizing some objective

function, for example, maximum lateness (see [23]). This scheduling problem is an

22

instance of a more general problem, where there can be multiple machines, and the setup

time depends on many parameters (for example, see [11], [7], and [23]).

Complication of scheduling further increases when resource constraints are added. In

many circumstances, in addition to the machines, additional resources may be required by

the jobs. However in practice, the number of these resources is much lesser than the

number of jobs. For example, in a multiprogramming operating system, many processes

share resources like memory, input/output devices etc. The machine environment and job

interrelation model discussed in Section 3.2 is not sufficient for analyzing scheduling

problems under resource constraints.

3.7.4 Scheduling Problems in Operating Systems

Theoretically, scheduling problems posed by Operating Systems (OSs) are not different

from the problems discussed till now. To be precise, scheduling problems of operating

systems are just the online version of various scheduling problems. However, due to the

vast scope of computer systems, it becomes necessary to mention some points. For

details, books of Milenkovic [45] and Tanenbaum [56] are referred.

In an OS, a machine is a processor, and jobs are processes (a process is a program ready

for execution). The machine environment has a large variety. There can be multiple

processors, preemption may or may not be allowed, and in almost all situations, the

scheduling problems are resource constrained. Due to this variation, OS designers take an

engineering approach. They select algorithms in the basis of simulation experiments. The

second point to be mentioned is objective function. There is a crucial difference between

manufacturing companies and computer systems at this point. A manufacturing company

aims to reduce production cost, whereas an OS aims to provide a fair service to all user

processes. This leads to objective functions like:

1. Processor utilization: This is the average fraction of time during which the

processor is busy.

2. Throughput: This is the number of processes executed per unit time. Throughput

is computed by dividing the number of processes by schedule length.

23

3. Average turnaround time: Turnaround time is the time that elapses from the

moment a program is released until it is completed by the system. If a process Jj

has release time rj and completion time Cj, then its turnaround time j = Cj - rj.

4. Average waiting time: Waiting time is the time that a process spends waiting for

the processor or some other resources. A process Jj with processing time pj and

turnaround time j has waiting time Wj = j – pj.

5. Average response time: Response time is the time taken by a process to

‘response’ after it is released. For a process Jj with release time rj and start time sj,

response time is Rj = rj-sj.

Analysis of scheduling algorithms in computer system is mostly based in the elements of

queuing theory. The basic queuing model is depicted below.

Figure 3.4 The basic queuing model

Jobs arrive and wait in a queue as shown above. For an OS, the queue is the main

memory. Every scheduling algorithm of an OS follows this model, below are basic

algorithms used is OS for uniprocessor computers.

1. First Come First Serve (FCFS): At any instant when machine is idle, select the

available job having least release date.

2. Shortest Processing Time (SPT): At any instant when the machine is idle, select

the available job having least processing time. This rule is also known as the

Shortest Job First (SJF) rule.

24

3. Shortest Remaining Time Next (SRTN): At each release time or finish time of a

job, schedule an unfinished job which is available and has the smallest remaining

processing time. SRTN rule is applicable in preemptive systems.

4. Round Robin: Store available jobs in a queue sorted according to release dates.

Allow unit processing time to each job in the queue in the sorted order. If a new

job arrives, append it to the queue. If a job completes, remove it from the queue.

Round-Robin rule is applicable in preemptive system.

There are some assumptions of the queuing theory. For example, infinite numbers of jobs

are assumed, and the arrival pattern of these jobs is assumed to be Poisson’s distribution.

Based on these assumptions, performance of the above algorithms is evaluated (see

Milenkovic [45] for details of these concepts).

This study does not include many examples of these realistic and complex problems

because of two reasons. First, this dissertation deals with near-to-exact evaluation of NP-

hard scheduling problems. Fortunately, as far as the offline versions are considered, the

techniques discussed in chapters 6 and 7 are applicable to these complex problems also

(see for example [40], [23] and [50]). The second reason is, a proper treatment of these

problems require sophisticated mathematical tools beyond the scope of this short study.

25

Chapter 4

Polynomially Solvable Single Machine Scheduling

Problems

As discussed in Chapter 2, problems that can be solved in time bounded above by a small

degree polynomial are known as easy problems. There are many easy single machine

scheduling problems having practical as well as theoretical importance. The algorithms

and theorems regarding these problems have become classic pieces in the scheduling

literature, and thus, often available in textbooks. However, some of these problems are

presented here, because the algorithms and theorems regarding these problems give a

glimpse of the vast field of scheduling.

4.1 1 | prec | fmax

For this problem, associated with each job j is a monotone non-decreasing cost function

fj. Each fj is evaluated in unit time for any value of the argument. The objective function

is the maximum cost, fmax = max {fj(Cj)}. The algorithm for this problem is due to Lawler

[32].

Let N = {1, ….., n} be the set of all jobs and let SN be the set of unscheduled jobs. Let

p(S) = jSpj, i.e., total processing time of all unscheduled jobs. The scheduling rule is:

Schedule a job jS which has no successor in S and has a minimal fj(p(S)) value as the

last job in the schedule.

Now Lawler’s algorithm for 1 | prec| fmax is stated. The precedence constraints is given by

the adjacency matrix A = (aij) where aij = 1 if and only if j is a direct successor of i. By

n(i), the number of immediate successors of i is denoted.. The optimal schedule is

denoted as  : (1),….., (n) where (i) denotes the job in position i.

26

Algorithm [32] Lawler’s algorithm for 1 | prec | fmax
Begin

n
1. For i :=1 to n do n(i) :=  aij

j=1

n
2. S := {1,…, n}, p :=  pj

j=1

3. For k = n down to 1 do
Begin

4. Find job jS with n(j) = 0 and minimal fj(p) value
5. S := S\{j}
6. n(j) := 
7. (k) := j
8. p := p-pj
9. For i := 1 to n do

If aij = 1 then n(i) := n(i)-1
End of algorithm

The complexity of this algorithm is O(n2). Now the proof for the correctness of this

algorithm is presented.

Theorem 4.1 [32] Lawler’s algorithm for 1 | prec | fmax constructs an optimal sequence.

Proof. Enumerate the jobs in such a way that 1, 2,…., n is the sequence constructed by

the algorithm. Let  : (1),….,(n) be an optimal sequence with (i) = i for i = n, n-1,.., r

and (r-1) r-1 where r is minimal. The sequence  is in the following situation:

It is possible to schedule r-1 immediately before r. Therefore, r-1 and j have no successor
r-1

in the set {1,…., r-1}. This implies fr-1(p)  fj(p) with p = pi because 1,…., n was
i =1

constructed by the algorithm. Thus, the schedule obtained by shifting the block of jobs

between r-1 and r an amount of pr-1 units to the left and processing r-1 immediately

before r is again optimal. This contradicts the minimality of r.

Example 4.1 Consider 5 jobs J1, ……, J5 with the following processing times.

27

j 1 2 3 4 5
pj 2 4 6 3 5

The precedence relation is given below in Figure 4.1(a) and the monotone functions fi’s

are given in Figure 4.1(b).

Figure 4.1 (a) The precedence relation in Example 4.1

Figure 4.1 (b) The monotone functions fi’s for Example 4.1

Initially, t = total completion time = p1 + p2 + p3 + p4 + p5 = 20.

At t = 20, J5 and J4 have no successors, but f4(20) is minimal (see above figure), so J4 is

chosen, the partial solution denoted by  = (J4), and t := 20 – p4 = 17.

28

At t = 17, J2 and J5 have no successors, but f5(17) is minimal, so J5 is chosen,  = (J5, J4),

and t := 17-p5 = 12. At t = 12, J2 and J3 have no successors, but f3(12) is minimal, so J3 is

chosen, and  = (J3, J5, J4), and t := 12-p3 = 6.

At t = 6, J3 and J1 have no successors, but f1(6) is minimal, so J1 is chosen,  = (J1, J3, J5,

J4), and t := 6-p1 = 2.

At t = 2, only J2 is available, so final schedule is  = (J2, J1, J3, J5, J4).

4.2 1 | | wjCj

This problem can be solved using the Weighted Shortest Processing Time (SWPT) rule.

The SWPT rule is to sort jobs in non-decreasing order of pj/wj. This SWPT rule produce

an optimal solution for the problem 1 | | wjCj. The optimality of SWPT rule can be

proved as a consequence of a more general theorem due to Lawler [36]. Consider this

problem that includes 1 | | wjCj as a special case: Given a set N of n jobs and a real

valued function f which assigns f() to each permutation  of jobs, find a permutation *

such that

f(*) = min { f() |  is a permutation of N }.

In some special cases one can find a transitive and a complete relation  on the set of jobs

N such that for any two jobs Ji, Jk  N, and for any permutation of the form JiJk,

Ji  Jk  f(JiJk)  f(JkJi). (4.2.1)

If such a relation exists for a given function f, f is said to admit the relation , and the

relation  is known as a task interchange relation for f. Now, consider the following

theorem:

Theorem 4.2 [36] If f admits the task interchange relation , then an optimal permutation

* can be found by ordering the task according to .

Proof. If f admits a task interchange relation , then (4.2.1) holds. This means, whenever

Jk and Ji are adjacent in a sequence, Jk  Ji, and Jk comes before Ji, then Jk and Ji can be

29

interchanged without increasing the total cost. Repeating this for all possible pairs, one

gets an optimal schedule which is ordered according to .

The optimality of SWPT rule can be proved as a consequence of theorem 4.2.1:

Theorem 4.3 (see [7]) SWPT rule produces optimal sequence for the problem 1 | | wjCj.

Proof. Let us define a relation  on the set of jobs such that the SWPT rule produces a

sequence which is ordered according to . More specifically, define  such that for any

two jobs Ji and Jk

Ji  Jk  pi/wi  pj/wj (4.2.2)

Now, if one can show that  is a task-interchange relation for the objective function

wjCj, then according to Theorem 4.2.1, SWPT rule produces an optimal sequence. For

two jobs Ji and Jk, let Ji  Jk and consider a sequence JiJk. If the last task in the

subsequence  finishes at time t, cost of JiJk is

cost1 = wi(t + pi) + wk(t + pi + pk) + b

where b considers all the costs of tasks in subsequences  and . If Ji and Jk are

interchanged, the resulting sequence is JkJi, whose cost is

cost2 = wk(t+pk) + wi(t + pk + pi) + b.

From (4.2.2), cost1  cost2. Thus, optimality is proved.

Example 4.2 This example demonstrates the SWPT rule. Consider five jobs J1,….,J5 with

following information:

j 1 2 3 4 5

pj 8 9 12 5 14

wj 4 3 3 5 2

pj/wj 2 3 4 1 7

Sorting according to the pj/wj values the optimal solution is  = (J4, J1, J2, J3, J5). The total

cost wjCj = 5.(5) + 4.(5+8) + 3.(5+8+9) + 3.(5+8+9+12) + 2.(5+8+9+12+14) = 341.

30

4.3 1 | pj = 1 | wjUj

The objective function in this problem involves unit penalty Uj, this means, for each job

Jj due date dj is given. Here an algorithm for 1 | pj = 1 | wjUj is described. This algorithm

constructs an optimal set S of early jobs. To get an optimal schedule, jobs in S are

scheduled according to non-decreasing due dates. Late jobs, i.e., the jobs not belonging to

S are scheduled in arbitrary order.

The main strategy of this algorithm is to construct the set S of early jobs such that total

weight of jobs in S is maximal. For this, one tries to schedule the jobs in earliest due date

order. If a job i to be scheduled next is late, then i is scheduled and a job k with smallest

wk value is removed form S.

In the following algorithm, t denotes the current time, n is the total number of jobs, and

assume jobs are enumerated such that 1.d1…..dn.

Algorithm (see [11]) 1 | pj = 1 | wjUj
Begin

1. t = 1, S = 
2. for i = 1 to n do
3. if di  t then
4. add i to S, t = t + 1
5. if there exists a job kS with wk  wi then

begin
6. Delete job k from S where k is the largest index such that wk is

minimal
7. add i to S

end
End of algorithm

If the scheduled jobs in S is organized as a priority queue with respect to the wj value, the

complexity of this algorithm is O(n logn).

Theorem 4.4 (see [11]) Algorithm 1 | pj = 1 | wjUj provides an optimal schedule.

Proof. Let S be the sequence of jobs scheduled early by the algorithm ordered according

to their indices. Let S* be the corresponding sequence for an optimal schedule coinciding

with S as long as possible. Let k be the first job in S* which does not belong to S. When

31

constructing S, job k must have been eliminated by some job, say i. Let J be the set of

jobs in S between k and i (i included) at the time k was eliminated. Due to step 6 of the

algorithm wj>wk for all job j  J. Thus all j  J must belong to S*, otherwise, replacing k

by j would yield a better schedule than S*. However, this implies that there is a late job in

S*, which is a contradiction.

Example 4.3 To demonstrate how the algorithm for 1 | pj=1 | wjUj constructs the set of

early jobs consider five jobs J1,…,J5 with following information:

Initially t=1 and the set of early jobs S = .

At i =1, d1  t, so S = {J1}, t := t+1 = 2.

At i =2, d2  t, so S = {J1, J2}, t := t+1 = 3.

At i = 3, d3 < t, J2 has maximum weight in S, so swap J2 and J3, and S = {J1, J3}.

At i = 4, d4  t, so S = {J1, J3, J4}, t := t+1 = 4.

At i = 5, d5 < t, J4 has maximum weight in S, so swap J4 and J5, and S = {J1, J3, J5}

finally.

The jobs in S are to be scheduled as per the sequence  = (J3, J5, J1). J2 and J4 can be

scheduled afterwards in any order.

4.4 1 | rj, pmtn | Cj

This problem can be solved in O(n2) time using the Shortest Remaining Time Next

(SRTN) rule, which can be stated as: At each release time or finish time of a job,

schedule an unfinished job which is available and has the smallest remaining processing

time. This is known as Smith’s rule.

Theorem 4.5 [5] The SRTN rule constructs optimal schedule for the problem

1 | rj, pmtn | Cj.

j 1 2 3 4 5

wj 3 5 1 2 4

dj 3 6 2 8 2

32

Proof. Let S be the schedule constructed by applying the SRTN rule and let S* an

optimal schedule. Assume that the both schedules coincide until time t. Then the

following situation occurs:

Let the job i in S which starts at time t be processed up to time t’. Let j be the job in S*

which starts at time t. According to SRTN rule, the remaining processing time of j is not

smaller than that of i. Further, between t and t’ there is no release time. Now in S* all

intervals of both jobs i and j which do not start before time t are eliminated. After this

these parts are rescheduled in the empty time slots starting at time t by first scheduling

the remaining parts of i and then the remaining parts of j. The schedule created in this

way is still optimal. This interchange process is repeated until S and the new optimal

schedule coincide up to time t’.

Example 4.4 This example demonstrates the SRTN rule. Consider five jobs J1,….,J5 with

the following information.

Let A denote the set of available jobs.

At t = 0, J2 releases, A = {J2}, J2 is scheduled.

At t = 1, J3 releases, A = {J2, J3}, but J2 has shortest remaining time (SRT), J2 scheduled.

At t = 2, J1 and J5 release, A ={J3, J1, J5}, J5 has SRT so it is scheduled.

At = 3, J5 completes, A = {J3, J1}, J1 has SRT so it is scheduled.

j 1 2 3 4 5

pj 6 2 4 2 1

rj 2 0 1 4 2

33

At t = 4, J4 releases, A = {J3, J1, J4}, J4 has SRT so it is scheduled.

At t = 6, J4 completes, A = {J3, J1}, J3 has SRT so it is scheduled.

At t = 10, J3 completes. J1 is the only job remaining, so it is scheduled. The final schedule

is depicted in the following Gantt chart.

Figure 4.2 Solution of Example 4.4

4.5 1 | outtree | wjCj

In this problem, the precedence relation is given as an outtree. The algorithm for this

problem is due to Adolphson and Hu [1]. For each job j, let qj = wj/pj and let S(j) be the

set of successors (not necessarily immediate) of j including j. For a set of jobs

I {1, 2, …., n} define

Let ij mean job i precedes job j in the given outtree. The following theorem gives the

main idea for constructing algorithm for 1 | outtree | wjCj.

Theorem 4.6 [1] Let i, j be jobs with ij and qj = max {qk | k S(i)}. Then there exists

an optimal schedule for 1 | outtree | wjCj in which i is processed immediately before j.

Besides the given outtree for precedence, the algorithm uses an outtree in which each

node represents a sequence or a subsequence of jobs in {1, 2, …, n}. Initially, this outtree

is a shadow of the given outtree, i.e., each node represents a sequence of single job

34

corresponding to that node of the given outtree. Then the algorithm goes on merging the

nodes in this way: Each node i represents a sequence i and the corresponding set of jobs

Ai, where i is the first job in i. In the general step, the algorithm selects a node j different

from the root with maximal q(j) value. Let f be the unique father of j in the original

outtree. Then the algorithm finds a node i of the current tree with fAi. Then the nodes i

and j are merged, replacing i and Ai by ij (where  represents string concatenation)

and AiAj, respectively. Then the children of node j become the children of node i. The

algorithm is given below, where E(i) denotes the last job of i, P(i) denotes the

predecessor of i, and the root of the outtree is assumed to be i = 1. Further, w1 = - is

taken so that root is not selected while searching for maximal q-value.

Algorithm [1] 1 | outtree | wjCj
Begin

1. w(1) = -
2. for i := 1 to n do

E(i) := i
Ai := i
q(i) := w(i)/p(i)

3. L := {1, …, n}
4. while L  1 do

begin
5. find jL with largest q(j) value
6. f := P(j)
7. find i such that fAi
8. w(i) := w(i) + w(j)
9. p(i) := p(i) + p(j)
10.q(i) := w(i)/p(i)
11.P(j) := E(i)
12.E(i) := E(j)
13.Ai := AiAj
14.remove j from L

end
End of algorithm

This algorithm can be implemented in O(n logn) time if a priority queue is used for the

q(j) values and an efficient union-find algorithm for sets is used in Steps 7 and 13. The

following theorem states the optimality of the algorithm.

35

Theorem 4.7 [1] Algorithm 1 | outtree | wjCj calculates optimal sequence.

Proof. The proof is done by induction on the number of jobs. The algorithm is clearly

correct for a single job. Let  be the problem with n jobs. Let i and j be the first jobs

merged by the algorithm. Let ’ be the problem that results after merging i and j, i.e., i is

replaced by I = (i, j) with w(I) = w(i) + w(j) and p(I) = p(i) + p(j). Let R be the sequences

of the form

 : (1), ..., (k), i, j, (k+3), …, (n)

and let R’ be the sequences of the form

 : (1), ..., (k), I, (k+3), …, (n).

According to theorem 4.6, R contains an optimal schedule. Now, let fn() and fn-1(’)

denote the objective values wjCj for  and ’, respectively. Then,

fn() – fn-1(’)

= w(i)p(i) + w(j)(p(i) + p(j)) – (w(i) + w(j))(p(i) + p(j))

= - w(i)p(j)

This means R is optimal if and only if the corresponding sequence ’R’ is optimal.

But ’ has only n-1 jobs. Thus, by the induction hypothesis, the sequence constructed by

the algorithm most be optimal.

Example 4.5 This example illustrate algorithm 1 | outtree | wjCj. Consider an instance

of 6 jobs with precedence relation and other parameters given in the following figure.

Figure 4.3(a) Outtree for Example 4.5

36

Node 6 has the maximum q-value of 4, so it is merged with node 3 resulting in the

following tree.

Figure 4.3(b) Tree after merging nodes 3 and 6

Continuing in this way, one obtains the following single noded tree, which represents

optimal solution.

Figure 4.3(c) Final tree representing the solution

This algorithm can be slightly modified to solve the problem 1 | intree | wjCj [1]. A

1 | intree | wjCj – problem P can be reduced to a 1 | outtree | wj’Cj’ - problem P’ with

 i is a successor of j in P’ if and only if j is a successor of i in P

 wj’ = -wj for j = 1, …, n

Then a sequence : 1, …., n is feasible for P if and only if ’:n, …., 1 is feasible for P’.

Further, it can be proved that a sequence  is optimal for P if and only if the reverse

sequence ’ is optimal for P’.

37

4.6 Some More Problems

There are several other easy problems of importance in single machine scheduling.

Description of all of them is not possible here. A brief summary of some more

polynomially solvable problems covered during this study is given below.

1 | | Lmax

Jackson [28] proved that this problem can be solved in O(nlogn) time using the Earliest

Due Date (EDD) rule. The EDD rule is simply to schedule jobs in non-decreasing order

of due dates. The optimality of this rule has a simple proof: Let  be an optimal schedule

and * be an EDD schedule. If   * then there exist two jobs Jj and Jk with dk  dj, such

that Jj immediately precedes Jk in , but Jk precedes Jj in *. Since dk  dj, interchanging

the positions of Jj and Jk in  can not increase the value of Lmax. A finite number of such

changes transforms  into *.

1 | rj, pj = 1 | Lmax

Horn [27] proved that this problem can be solved in O(nlogn) time using the EDD rule.

1 | prec, pj = 1 | Lmax

This problem can be solved using the algorithm due to Monma [46]. The basic idea of the

algorithm is this: The first step is to modify due dates. If a job Ji precedes Jj and

di’ := dj – pj < di, then replace di by the modified due date di’. The next step is to make the

due dates non-negative. If all due dates are already non-negative, then nothing is to be

done. Otherwise the minimum modified due date is subtracted from all modified due

dates. This second modification assures that Lmax  0. After the modification of due dates

in this manner, the remaining part of the algorithm is developed using the following

ideas:

1. The jobs are processed in the interval [0, n]. This implies that no job Jj with dj  n

is late even if it is processed as the last job. Because Lmax  0, these jobs have no

influence on the Lmax value.

38

2. Sort the jobs in non-decreasing order of due dates using bucket sort. Construct the

buckets Bk as

{ j | dj = k } if 0  k  n-1

Bk =

{ j | dj  n } if k = n

Modification of the due dates can be done in O(n+e) time, where e is the number of edges

in the precedence graph [46]. Bucket sort can be done in O(n) time (see [15]). Thus the

overall complexity is O(n+e).

1 | | Uj

This problem can be solved in O(nlogn) time using the algorithm due to Moore [47]. The

algorithm for 1 | | Uj is very much similar to the algorithm described in Secion 4.3 for

the problem 1 | pj = 1 | wjUj. Moore’s algorithm [47] for 1 | | Uj constructs a

maximal set S of jobs which complete on time. The optimal solution then consists of the

jobs in S scheduled according the EDD rule, followed by the late jobs in any order. The

set S is constructed by this rule [47]: Add the jobs in S in order of non-decreasing due

dates. If the addition of job a Jj results in this job being computed after dj, then a job in S

with the largest processing time is marked to be late and removed form S.

1 | | wjUj with Agreeable Weights

The problem 1 | | wjUj is NP-hard, this was proved by Karp [30]. However, there is a

special case of this problem where the weights are agreeable. Weights are called

agreeable if for two jobs Ji and Jj, pi < pj implies wi  wj. Lawler [33] devised a O(nlogn)

time algorithm for this special case. The idea is again similar to that described in Section

4.3 and the previous problem (1 | | Uj), i.e., construct an optimal set of S jobs on time,

schedule the jobs of S in EDD order and late jobs in any order. Refer [33] for details.

1 | rj | Uj

The algorithm for this problem also constructs a maximal set S of jobs completed on

time, which are scheduled in EDD order, and late jobs are scheduled in arbitrary order.

39

Lawler [35] devised an algorithm based on this idea and proved that it gives optimal

solution for 1 | rj | Uj. Refer [35] for the details.

1 | pmtn, prec, rj | fmax

The objective function fmax for this problem is defined in Section 4.1. This problem can

be solved in O(n2) time using the algorithm of Baker et al. [6]. The algorithm follows

three major steps:

1. If a job Jj is a successor of job Ji and ri + pi > rj, then job Jj can not start before

rj’ = ri + pi. So, replace rj by rj’. In this way, all release dates are modified.

2. Schedule the jobs in non-decreasing order of modified release dates. This

decomposes the jobs into blocks, where a block is a minimal set of jobs processed

without idle time in between them.

3. Find optimal solution for each block separately. The resulting set of blocks will be

the optimal schedule.

For Step 3, Baker et al. [6] use a recursive procedure.

From the problems described in this chapter, it can be seen that many of these

polynomially solvable problems have somewhat similar algorithms. And secondly, it

should be noted that research works on these polynomial solvable single machine

problem are still going on. The website of Brucker and Knust [12] maintains a list of

classic as well as latest scheduling problems, their status and corresponding references.

40

Chapter 5

Handling NP-Hard Scheduling Problems

In this chapter a summary of general approach of tackling NP-hard problems taking

examples of single machine scheduling problems is given.

Scheduling Problem

Easy Problem
(polynomial time algorithms)

N P-hard
Problems

Relaxation

N ear- to-Exact
Algorithms

Exact Enumerative
Algorithms

Figure 5.1 Schematic view of scheduling complexity

Above figure summarizes the complexities of scheduling problems and approaches for

solving them. In the figure, easy problems are the problems of class P. Few polynomially

solvable single machine problems were described in the previous chapter. In this chapter,

the techniques of tackling NP-hard problems are briefly mentioned. Note that the

techniques of relaxation, near-to-exact algorithms and exact enumerative algorithms are

generic: they are applicable to discrete optimization problems in general. However, the

discussion is again in the context of single machine scheduling.

41

As discussed in Chapter 2, hardness of all NP-hard problems is not same. Knowing the

level of NP-hardness of a problem, one can select an appropriate algorithm. Though this

is not a rule, usually exact algorithms based on dynamic programming (Section 5.3.1) are

applied to pseudo-polynomially solvable problems. For example, the problem 1| | wjUj

has been proved to be NP-hard and pseudo-polynomially solvable by Karp [30]. Sahni

[53] developed an exact pseudo-polynomial algorithm for 1| | wjUj based on dynamic

programming. On the other hand, for a strongly NP-hard problem, one seldom tries to

compute exact solution. Rather, one applies approximate/heuristic algorithms (Section

5.2 and Chapter 7). But practical situations can demand exact solutions of even these

strongly NP-hard problems. In such situations, branch-and-bound algorithms (Section

5.3.2) are used. Branch-and-bound techniques can give exact solutions for small instances

of these strongly NP-hard problems. For example, the problem 1 | | wjTj is strongly

NP-hard [37]. Babu et al. [4] designed a branch-and-bound algorithm for this problem;

this algorithm can find solutions for problem instances with number of jobs up to 50.

5.1 Relaxation

Relaxation restricts the universality of the problem, considering only special types of

input instances. Actually, it is not a technique for solving given problem, rather, a

compromise made due to difficulties forwarded by the problem. In scheduling theory, the

following types of relaxation are often seen:

(i) Allowing preemptions: e.g. the problem 1 | rj | Cj is NP-hard [37], but its

preemptive version, 1 | rj; pmtn | Cj can be solved in O(nlogn) time, n being

the number of jobs [5].

(ii) Assuming unit processing time: e.g. the problem 1 | | wjUj is NP-hard [37],

but the problem 1 | pj=1 | wjUj can be solved in O(nlogn) time (see [11]).

(iii) Assuming equal release dates: e.g. the problem 1 | rj| Lmax is NP-hard [37], but

if rj = r for all jobs Jj, then it can be solved in O(n2) time (see [11]).

(iv) Assuming certain precedence relation: e.g. the problem 1 | prec | wjCj is

NP-hard for a general DAG [34], but the problem 1 | sp | wjCj can be solved

in O(nlogn) time (see [7]).

42

5.2 Near-To-Exact Algorithms

As discussed in Chapter 2, till now there are no efficient algorithms for NP-hard

problems. Even for instances of moderate size, one has to obtain solutions that are not

exact, but practically tolerable. Basically, there are two classes of algorithms for

obtaining near-to-exact scheduling (see [7] and [8]):

 Approximation algorithms: These algorithms provide a theoretical guarantee for

the quality of the obtained solution.

 Heuristic algorithms: No such theoretical guarantee can be given. The quality of

solutions is determined by simulation experiments and actual implementation.

Heuristic algorithms are considered in Chapter 6. In this section, approximation

algorithms for both offline and online problems are mentioned.

The performance of approximation is measured by approximation ratio, which is, in

general, a function of the size of the input instance. Let A be an algorithm. For any input

instance of size n, A has an approximation ratio of (n) if the cost c of the solution

produced by the algorithm is within a factor (n) of the cost c* of the optimal solution,

i.e., max(c/c*, c*/c)  (n) (see [15]). Regarding online version of scheduling as well as

other optimization problems, the concept of competitive ratio is introduced. Let AO be an

online algorithm. For any instance of size n, let cA be the cost of solution obtained by AO

and c be the cost of optimal solution for the corresponding offline problem. Then AO is

said to have a competitive ratio of c(n) if cA  c(n)c (see [3]).

5.2.1 Approximation Algorithms for Offline Problems

Approximation technique is not a general paradigm. Depending upon the problem, one

has to implement his own scheme for obtaining the solution. For example, consider the

NP-hard problem 1 | rj | Fj. Kellerer et al. [31] have obtained an approximation

algorithm for this problem with an approximation ratio of O(n) for this problem. Their

technique does not fall on any broad class of algorithms; here is a summary:

1. Convert the problem 1 | rj | Fj to 1 | rj; pmnt | Fj by allowing preemptions.

43

2. Solve 1 | rj; pmtn | Fj using the Shortest Remaining Processing Time rule (see

[11]).

3. From the solution of the preemptive version, obtain the solution for the original

problem 1 | rj | Fj.

For the last step, they associate a forest structure for the preemptive schedule, such that

each node represents an interval [Si, Ci] where Si and Ci are the start and complete times

of a job Ji in the preemptive schedule. The solution for the original non-preemptive

problem is obtained by merging these trees in a suitable way.

It is not always that design of approximation algorithms for scheduling is always ad hoc.

Savelsbergh et al. [54] make an empirical analysis of several approximation algorithms

based on linear programming formulation for the problem 1 | rj | wjCj. They conclude

that these techniques usually have complexity of O(nlogn), n being the number jobs, and

have very reasonable approximation ratio.

5.2.2 Approximation Algorithms for Online Problems

Online algorithms are getting larger attention by researchers of the scheduling theory.

Consider the problem 1 | rj | Cj, even the offline version of this problem is NP-hard [37].

Regarding its online version, some popular approaches for solving it are the FCFS (First

Come First Serve) and SPT (Shortest Processing Time) rules (see Section 3.7.4). Mao et

al. [42] proved that for the problem 1 | rj | Cj, both FCFS and SPT rules have

competitive ratio of n, where n is the total number of jobs, this is a very pessimistic

result. Again, for the same problem Hoogeven and Vestjens [25] proved that the D-SPT

(Delayed Shortest Processing time) rule gives a competitive ratio of 2, which is a vast

improvement compared to the performance of FCFS and SPT. The main idea behind

D-SPT rule is to postpone a job with too large processing requirement:

D-SPT rule: [25] If the machine is idle and a job is available at time t, determine an

unscheduled job with smallest processing requirement, say Ji. If there is a choice, take the

job with smallest release date. If pi  t, then schedule Ji, otherwise wait until time pi, or a

new job arrives, whichever happens first.

44

Example 5.1 This example illustrates FCFS, SPT and D-SPT rules. Consider 5 jobs

J1, .., J5 with following information.

j 1 2 3 4 5

rj 3 4 5 10 14

pj 10 2 3 2 4

The following figure shows the schedules obtained by these three rules. Note that FCFS

and SPT rules schedule job J1 immediately after it is released at time 3, but D-SPT keeps

waits till the arrival of J2, because processing requirement of J1 = 10, which is too large in

this context.

Figure 5.2 Schedules and total completion times given by FCFS, SPT and D-SPT rules in

Example5.1

In the same paper, Hoogeven and Vestjens [25] further proved that there can be no online

algorithm for the problem 1 | rj | Cj having competitive ratio less than 2. Their result

45

was generalized by Anderson and Potts [3], who proved that the D-SWPT (Delayed

Shortest Weighted Processing) rule has a competitive ratio of 2 for the more general

problem 1 | rj | wjCj. D-SWPT is very much similar to D-SPT, the difference is due to

the weights:

D-SWPT rule: [3] Suppose that the machine is available at time t. We chose from among

the available job as a job Jj with the lowest value of the ratio pj/wj to start at time t,

otherwise, we do nothing until time pj or another job is released if this occurs before time

pj.

Anderson and Potts [3] further proved that there can be no algorithm for the online

version of the problem 1 | rj | wjCj having competitive ratio less than 2.

5.3 Exact Enumerative Algorithms

These algorithms try to find the exact solution. By enumeration, one understands an

exhaustive visit of all possible solutions. Thus, for NP-hard problems, these methods are

applicable only for small instances.

If we model the solution space as a graph, then the common graph search algorithms,

DFS (Depth First Search) and BFS (Breadth First Search) are examples of enumerative

algorithms. They are often called blind search, for they do not use the knowledge of the

problem domain. Whenever we use extra knowledge of the problem domain for guiding

an enumerative search, then such an enumeration is kwon as an implicit enumeration.

Dynamic programming and branch-and-bound algorithms are popular techniques that use

implicit enumeration. Several scheduling algorithms have been implemented using this

approach.

5.3.1 Dynamic Programming

This is a modification of the divide-and-conquer approach. But unlike the divide-and-

conquer technique, which is top-down in nature, dynamic programming is bottom-up.

46

Further, dynamic programming intelligently enumerates all visited sub-problems to avoid

repeated computations. To be precise, dynamic programming has the following general

steps (for example, see [15]):

1. Characterize the structure of an optimal solution,

2. Recursively define the value of an optimal solution,

3. Compute the value of an optimal solution in a bottom-up fashion,

4. Construct an optimal solution from computed information.

The first three steps give the cost of the optimal solution. The fourth step is optional, it

can be omitted if one needs the value only, not the optimal solution. The following

example illustrates how optimal solutions can be characterized and recursively defined in

the context of a scheduling problem.

Example 5.2 Dynamic programming applied to problem 1 | d | wE Ej + wT Tj

In the problem 1 | d | wE Ej + wTTj, d is the common due-date of all jobs. wE and wT

are penalty associated with early and tardy jobs, respectively. In the following discussion,

given a number x, the symbol x+ denotes max{0, x}.

Assume that there are n jobs enumerated such that p1  p2 ……  pn.

Let (k, e) = optimal sequence for jobs J1, J2, …., Jk

Z(k, e) = corresponding objective value.

Now, optimal solution can be recursively defined in the following way (see [11]).

Base condition:

wE (e-p1) if p1  e  d (if early)

Z(1, e) =

wT(p1 – e) if e< p1 (if late)

(1, e) = 1

Recursive definition:

Given Z(k-1, e) and (k-1, e), add job Jk in the following way:

Case 1: Jk scheduled at the beginning

Cost of scheduling k at front = wEEk + wTTk = wE(e-pk)
+ + wT(pk-e)

Cost of scheduling remaining jobs = Z(k-1, e-pk)

So, cost of scheduling Jk at first is Z1(k, e) = wE(e-pk)
+ + wT(pk-e) + Z(k-1, e-pk)

47

Correspondingly, (k, e) = Jk(k-1, e), where  denotes string concatenation.

Case 2: Jk scheduled at last

Cost of first k-1 jobs = Z(k-1, e)

So, cost of scheduling Jk at last, Z2(k,e) = wEEk + wTTk + Z(k-1, e)

= wE(e-Ck)
+ + wT(Ck-e) + Z(k-1, e)

where Ck = p1 + p2 + …. + pk, the completion time of k.

Correspondingly, (k, e) = (k-1, e) Jk

Thus in general, Z(k, e) and (k, e) can be recursively defined as follows: For k =2 to n

and 0  e  d,

Z(k, e) = min{Z1(k, e), Z2(k, e)}

and Jk(k-1, e) if Z1(k, e)  Z2(k, e)

(k, e) =

(k-1, e) Jk otherwise

The algorithm requires the Z and  values for negative e also, the complete discussion

can be found in [11].

5.3.2 Branch-and-Bound Algorithms

Branch-and-bound is a technique of exploring an implicit graph, which is most often a

tree. Such graphs are called as state-space graphs. Usually each node in the search tree

for a branch-and-bound algorithm represents a set of feasible solutions. The parent node

represents the set of all feasible solutions. As the tree expands, the cardinality of the sets

represented by the nodes go on decreasing, and finally, the leaves become singleton sets

representing probable solutions, among them is the optimal solution. The task is to find a

path from the root to a leaf having optimal solution as efficiently as possible (see [7], [8],

[11] and [49]).

However, there is no standard of representing the solution space in a search tree in

branch-and-bound paradigm. In many situations, a search node may represent a single

solution, or even a partial solution. Even the path from the root to a leaf may represent a

feasible solution in some implementation. Similarly, there is no standard of search

48

technique also, though breadth first search is popular. The main essence of branch-and-

bound strategy lies in the pruning of the search tree to minimize steps for searching the

solution. For this, two procedures are essential, branching and bounding (see [7], [8],

[11], [49]):

Branching: Given a node, this procedure generates its children. Branching procedure

conceptually divides the solution space into sub-spaces, usually mutually exclusive.

Bounding: Branching procedure is also called as elimination criteria. If a node represents

a set of feasible solution, the bounding procedure calculates the lower bound for cost of

solution in that set: if this lower bound is greater than the best cost found so far, this node

need not be expanded.

Branch-and-bound greatly reduces the search complexity, but still goes exponential in the

worst case (see [49]). Efficiency of this technique depends upon the lower bounding sub-

algorithm. If the lower bound of the solutions in a current node obtained from this sub-

algorithm is near to the highest lower bound, then the search may be quickly guided to

the optimum solution. On the other hand, evaluating such a lower bound may be time-

consuming, hence decrease in overall efficiency. In general: it is next to impossible to

give any idea of how well the technique will perform on a given problem using a given

bound (see [8]). The following example illustrates the concepts of search tree and

branching/bounding schemes in the context of a scheduling problem.

Example 5.3 Branch-and-bound applied to problem 1 | rj, d j | Cmax

The NP-hard problem 1 | rj, d j | Cmax can be solved using the branch-and-bound

algorithm due to Bratley et al. [9]. All possible task schedules are implicitly enumerated

in this way: The root is assumed to be on level 0. Given n jobs, there are n children of the

root. This first level represents the jobs that can occur at the first position of the schedule.

Similarly, there can be n-1 children of each first level node. This second level represents

the jobs that can occur at the second position of the schedule, and so on. In this way, the

search tree is completed. A path from the root to a leaf represents a schedule, but this

49

schedule may not be feasible because some of the jobs in the path can miss the deadline.

Consider three jobs J1, J2, and J3 with the following information.

J 1 2 3

pj 3 2 4

rj 2 5 1

đj 10 7 6

The following figure is the search tree for this problem instance generated as described

above. The numerical value in each node indicates the completion time of the

corresponding job. In the first level, completion time of each job is sum of its release and

processing times. In other levels, the completion time of a job is sum of its processing

time and the completion time of its parents.

Figure 5.3 Search tree for Example 5.3

From the above search tree, (J3, J1, J2) and (J3, J2, J1) both have minimal Cmax value. But

in the former schedule, J2 misses its deadline and hence invalid. The latter schedule is the

optimal one. This example demonstrates representation of the search tree, and branching

schemes for 1 | rj, đ | Cmax. The bounding procedure of Bratley et al. [9] is based on the

following ideas:

1. If the completion time associated with a node exceeds its deadline, the sub-tree

belonging to that node is excluded from further examination.

50

2. If the completion time Cj of a job Jj at level k is less than or equal to the smallest

release date rmin among yet unscheduled jobs, then there is no need to enter

another branch of the tree, i.e., there is no need to backtrack beyond level k. This

is because the best schedule for the remaining n-k jobs can not be started earlier

than rmin, and hence not earlier than Cj.

This is just an outline of techniques for tackling NP-hard scheduling problems. One can

refer the references in above discussions for further details.

51

Chapter 6

Heuristic Algorithms

Heuristic algorithms are frequently used for finding near-to-exact solution of NP-hard

problems. This chapter includes heuristic algorithms popular in optimization literarature.

Though these algorithms do not provide any theoretical guarantee for the quality of

obtained solution, they are frequently used chiefly because of their generality. Heuristic

techniques are applicable to almost any kind of optimization problems. A heuristic

algorithm, also simply called a heuristic, is often devised from experience. From

empirical analysis, one may observe that certain algorithm is good in most of the cases,

such an algorithm is called a heuristic. According to the book of Blazewicz et al. [7], a

good heuristic should have the following two qualities:

1. Complexity of the algorithm should be bounded above by a small degree

polynomial.

2. The solution should be close enough to optimal solution. This quality of solution

is evaluated empirically, considering the worst or mean case behavior.

Heuristic algorithms can be deterministic or probabilistic (see [8]). Given a problem

instance, a deterministic algorithm will produce the same solution on every execution. On

the other hand, given a problem instance, a probabilistic algorithm may produce different

solution in different executions. Probabilistic algorithms use pseudo-random number

generators for generating probability distributions. As illustrated in the following

sections, most of the heuristic algorithms use some sort of probabilistic techniques.

However, the distinction of deterministic and probabilistic heuristics is not of importance

for our purpose.

6.1 Local and Global Optima

Analysis of heuristic algorithms needs the concepts of neighborhood, local and global

optima. These concepts are elaborated in books like [49]. First of all, the definition of a

52

neighborhood is needed. Given an optimization problem with instances (F, c), where F is

the set of feasible solutions and c the cost function, a neighborhood is a mapping

N:F2F. The definition can be interpreted in this way: Search for the optimal solution

begins with an initial feasible solution. At any step, given a sF, one has to consider

solutions ‘near to’ s in the solution space. This proximity is given by N(s). Local

optimum is defined using the concept of a neighborhood. Given an instance (F, c) of an

optimization problem and a neighborhood N, a feasible solution fF is called locally

optimal with respect to N if c(f)  c(g) for all g  N(f).

The exact solution of any optimization problem is called as the global optimum. In the

definition of global optimum, the term ‘global’ reminds that the solution is best among all

locally optimum value. But note that the concept of global optimum does not demand the

definition of any neighborhood.

Figure 6.1 Concept of local and global optimum

Above figure demonstrates the concept of local and global optimum in context of

minimization problems. The proximity of an optimum is often called as a valley, this

terminology is clarified by the figure (for maximization problems, valleys are replace as

hills). Based on these definitions, the following types of heuristic algorithms are seen in

literature:

53

1. Algorithms that evaluate near-to-exact value for the global optimum.

2. Algorithms that evaluate the exact value for a local algorithm

3. Algorithms that merge the technique of above two types of algorithms

Perhaps due to inexpensiveness of memory and speed of modern computers, the third

approach is much popular nowadays. Actually, in the current literature, no such

distinctions are made

6.2 Genetic Algorithms

Genetic algorithms fall on the first category of the classification mentioned in the

previous section, i.e., these algorithms search for near-to-exact value of the global

optimum solution. However, as we shall soon see, the basic genetic algorithm does not

require the definition of a neighborhood, and hence at least conceptually, genetic

algorithm has no relevance to locality. In this section, the basic genetic algorithm is

described taking example of the problem 1 | | Fvar. The genetic algorithm for this problem

has been implemented by Gupta et al. [22], their heuristic is taken for the example.

Genetic algorithms have been developed as an analogy of evolution in nature. Thus they

require the concepts of a chromosome, a fitness function, crossover, mutation, population

and selection. The two operations, crossover and mutation are analogues of reproduction.

Fitness function is used to simulate the process of natural selection.

Chromosome A chromosome is an encoding of a feasible solution. Classically, this

encoding is a binary encoding. But binary encoding is not suitable for all types of

problems. So, in general, feasible solutions are encoded using a finite alphabet. For the

problems 1 || Fvar, a chromosome is taken as a sequence of integers in {1, .., n}, where n

is the total number of jobs. Each integer represents a job, and the position of that job in

the sequence represents the corresponding position of the job in the schedule.

Fitness function A fitness function gives the quality of a feasible solution. Generally

fitness is defined in such a way that higher the fitness value, better the quality of a

feasible solution. For the problem 1 || Fvar, let g(x) be the actual cost for a feasible

54

solution x, i.e., the flow time variance of the schedule represented by x. Then the fitness

of x, f(x), is defined by Gupta et al. [22] as:

Cmax – g(x) when g(x) < Cmax

f(x) =

0 otherwise

where Cmax denotes the maximum completion time of a job in schedule x.

Crossover Crossover is a binary operation. Given two feasible solutions, f1 and f2, known

as parents, the crossover operation produces two new feasible solutions, o1 and o2, know

as children. This is done by interchanging portions of strings f1 and f2 in this way:

randomly select two positions, known as crossover positions, and swap the substring

between these two points to produce to children. The crossover operation implemented

by Gupta et al. [22] is illustrated by this example. Consider an instance of 10 jobs for the

problem 1 || Fvar. Let f1 be the sequence 9,8,4,5,6,7,1,3,2,10 and f2 be 8,7,1,2,3,10,9,5,4,6.

The crossover of f1 and f2 produces children o1 and o2 as described below:

f1 : 9, 8, 4, | 5, 6, 7, | 1, 3, 2, 10 f2 : 8, 7, 1, | 2, 3, 10, | 9, 5, 4, 6

o1 : 9, 8, 4, 2, 3, 10, 6, 5, 7 o2 : 8, 10, 1, 5, 6, 7, 9, 2, 4, 3

First, the crossover points for the parents f1 and f2, denoted by the symbol ‘|’, are selected

randomly. Then the sub-sequences between the crossover points are considered: For f1

this subsequence is (5, 6, 7) and for f2 (2, 3, 10). Now, considering the jobs in these

subsequences, job 5 corresponds to job 2, 6 to 3 and 7. So the permutations (5, 2), (6, 3)

and (7, 10) are applied to the parents: These permutations convert f1 into o1 and f2 into o2.

Population and generation Let P(t) be a set of nP feasible solutions at any iteration t. In

genetic terminology, P(t) is called population and t the generation.

Mutation Mutation is a unary operation. Given a feasible solution f, randomly swap two

jobs in f. Only few solutions in a given population are mutated. This choice is generally

random, or uses some special probability distribution function.

55

Selection Given a population P(t), the selection operator returns two feasible solutions for

doing crossover. This choice of selection is often random, but sometimes, fitness function

may also be considered. For the problem 1 || Fvar, selection is made by taking two

solutions using uniform distribution. Fitness value is not considered.

Description of a genetic algorithm can be found in texts [41] and [52].

Algorithm (see [41]) Genetic algorithm

Begin

t := 0

Initialize P(t)

While some stopping condition is not reached

Begin

While population size nP is not reached

Begin

Select two parents from P(t)

Crossover

Store children in P’(t)

End of while

Sort P’(t) according to the fitness values

Select best nP solutions from P’(t) and save in P(t)

Randomly choose some solutions from P(t)

Mutate the chosen solutions replace their original versions in P(t)

End of while

End of algorithm

The solutions in the initial population are distributed uniformly in the solution space. This

concept is illustrated in the following figure.

56

Figure 6.2 Conceptual illustration of initial population

In above figure, the black dots denote initial feasible solutions. After several generations,

the population centers about the local minima as demonstrated by the following figure.

Figure 6.3 Population after several generations

Gupta et al. [22] implemented this genetic algorithm for 1 || Fvar as discussed above in this

section. They considered various population sizes, probability distribution, and other

57

factors. The conclusion is, the obtained solutions were within error of less than 0.2% of

the optimal solution [22].

6.3 Local Search Heuristics

As mentioned earlier, a local search algorithm finds exact value of a local optimum. The

solution space is generally a directed acyclic graph. The basic local search algorithm is

mentioned below. Recall that N(x) represents the neighborhood of x.

Algorithm (see [24]) Local search

Begin

1. select a feasible solution x

2. find x’N(x) such that cost of x’ < cost of x

3. if no such x’ can be found, x is the local optimum and the method stops

4. otherwise let x = x’ and go to step 2.

End of algorithm

Here, it is implicitly assumed that the objective function has to be minimized. For

maximization problems, one have to replace the ‘less than’ symbol ‘<’ in step 2 by the

‘greater than’ symbol ‘>’. Above algorithm is known as descent method. For

maximization problems, the same algorithm is known as hill climbing.

A local optimum solution may differ largely form the global optimum value. So, one

must try to escape trapping within a neighborhood. For this various techniques are used:

If one knows that the problem has a few local optima, then restarting the search a few

number of times using random initial solutions may work. But is the case of NP-hard

problems, the number of local minima grow exponentially with the input size, thus this

simple modification will not work.

58

There are many modifications of the basic local search algorithm. Among them,

simulated annealing and tabu search are popular. These techniques basically modify step

2 of the local search algorithm stated above. They are discussed briefly in the following

sub-sections.

6.3.1 Simulated Annealing

As genetic algorithms, simulation annealing is also an analogue of some natural

phenomena. Simulated annealing was actually developed as a tool for some research in

thermodynamics; more precisely, to simulate cooling process of a metal.

Simulated annealing modifies Step 2 of the naïve local search algorithm in the following

way:

1. Instead of selecting best s’ from N(s), s’ is selected randomly

2. s’ is accepted with the probability min{1, exp(-E/T}, where the parameter E is

called as the badness of the move. It is defined as

E = cost of s’ – cost of s.

Parameter T is known as temperature, which decreases with the iteration.

It is evident that the probability of accepting s’ decreases exponentially with the badness

E. Since temperature T decreases with iteration, the probability also decreases with

iteration. Assuming E to be constant, one can see, the probability of selecting s’

decreases as iteration increases. This means that bad moves are likely to be allowed at

initial iterations when the temperature is high. As iteration increases and temperature

decreases, best moves are likely to be chosen. Due to this, at higher level of iterations, the

search gets trapped in one of the local optima. However, if T decreases slowly enough,

the algorithm finds the global optimum with probability approaching unity (see [52]).

The algorithm is presented below.

59

Algorithm (see [52]) Simulated annealing

Begin

Select an initial solution s

For t := 1 to infinity do

Begin

If T = 0 then return s

s’ := a randomly selected solution from N(s).

E := cost(s’) -cost(s)

if E < 0 then s := s’

else s := s’ only with probability eE/T

end

End of algorithm

Simulated annealing has two major drawbacks

1. It may revisit previously examined solutions, and this repetition can occur several

numbers of times, thus the search oscillates about a local optimum. Note that

NP-hard discrete optimization problems have exponential number of feasible

solutions, so, listing all visited solutions is a very inefficient and practically

impossible remedy for this drawback.

2. Simulated annealing is not intelligent. Though it tries to escape local optima, this

effort is not guided by the knowledge of the problem domain.

6.3.2 Tabu Search

Tabu search overcomes both drawbacks of simulated annealing listed in the previous

section. The basic idea behind tabu search is that adding short-term memory to a local

search improves its ability to locate optimal solutions. The word ‘tabu’ (or sometimes

60

‘taboo’) literally means ‘cultural prohibition for some type of activity’. In the context of

Tabu Search, the word ‘tabu’ has this meaning: a recently visited solutions cannot be

revisited. Let us first introduce some basic terms used in Tabu Search.

Tabu List: It is a data structure which keeps track of recently visited solutions and their

quality. Generally actual solutions are not stored in the tabu list, because it may be costly

in terms of space and time. Instead of the solutions, the significant steps leading towards

solutions are stored. Such a step is called a move. A move already in the tabu list is said

to be a tabu move. The concept of a move is elaborated below.

Move: Assume s be the current best solution. Suppose a better solution s’ is found in

N(s), the neighborhood of s. Then, the key difference between s and s’ is called as a

move. One can also think a move as an operation that converts s to s’. For example, in

many graph problems, a commonly used move is to replace an edge in the current

solution with another edge not in the solution.

Aspiration condition: Sometimes a move leading to a better solution may be a tabu move.

So, in addition of checking whether a move is tabu or not, one has to further check

whether that move satisfies some condition known as aspiration condition. If a tabu move

satisfies the aspiration condition, it is accepted for further operations, otherwise

neglected.

Tabu search was introduced by Fred Glover in late 1980’s. Since then, it has been applied

in several discrete optimization problems. Till now, many variations of Tabu Search have

emerged. The basic tabu search algorithm is shown below.

61

Algorithm Basic Tabu Search (see [11])

Begin

s := an initial solution

best_cost = cost(s)

TabuList = empty

while some stopping condition is not reached

begin

select s’ from N(s)

Move := the move leading s to s’

If Move is not is TabuList OR Move satisfies aspiration condition

If cost(s’) < cost(s)

Begin

best_cost := cost(s’)

s := s’

insert Move in TabuList

End

End of while

End of algorithm

The basic tabu search algorithm mention above avoids unwanted oscillation about a local

optimum. But it is still not intelligent. The intelligence of tabu search comes from two

operations, viz., intensification and diversification, described below.

Intensification: Intensification of a search means restricting the search to some narrow

region of the solution space where probably the global optimum lies. Obviously, this

requires knowledge of the problem domain, hence, intensification can be termed as an

intelligent operation. Although there is no standard guiding how to perform

62

intensification, it is often done by restarting the tabu search, beginning with a solution

obtained form the basic tabu search. Sometimes, size of the tabu list is also reduced while

performing intensification.

Diversification: Diversification is done to escape local optimum. The simplest way to do

it is to perform several random restarts. That is, for several times, randomly select an

initial solution and perform the basic tabu search. However, as with intensification, there

is no specific rule of implementing diversification. One has to make his own scheme.

Now, the complete tabu search algorithm is presented:

Algorithm (see [24]) Tabu Search

Begin

Perform basic tabu search

While some stopping condition is not reach

Begin

Intensify and perform basic tabu search

Diversify and perform basic tabu search

End

End of algorithm

6.3.3 Some Issues Related to Tabu Search

Since a partial objective of this dissertation is to design a tabu search algorithm, some

issues related to tabu search are briefly mentioned below.

Levels of memory: Tabu list, introduced in Section 5.1, is a short-term memory which

keeps the track of recently visited solutions. The complete tabu search algorithms

performs the basic tabu search for several iterations, performing intensifications and

63

diversifications. This suggests to use a long-term memory which keeps track of good

moves found in each iteration. In general, tabu search can use several levels of memory

(see [20]).

Length of the tabu list: If the length of the tabu list is kept small, then the problem of

oscillation about a local optimum may still exist. On the other hand, larger sized lists

decrease overall efficiency of the search. Mazure et al. [43] designed tabu search

algorithm for the SAT problem and experimentally concluded that optimal length of tabu

list grows linearly with the number of variables in this particular problem. In general, no

standard is known. Tabu lists with length near to the input size often work well [43].

Candidate list strategies: Instead of evaluating all possible moves in a current

neighborhood, the efficiency of the search can be greatly improved if good moves are

evaluated before the bad moves. Such good moves are called candidate moves.

Moreover, in many problems, even the size a neighborhood is large, so it is better to

restrict on a small part of the neighborhood at first. A candidate list maintains good

moves of a neighborhood. For details of candidate lists in scheduling refer [50].

Local search heuristics are extensively used in the field of scheduling. For example,

consider the NP-hard scheduling problems 1 | | wjTj and 1 | rj | wjTj. Babu et al. [4]

designed a branch-and-bound algorithm for 1 | | wjTj which works up to instances of 50

jobs. However, for instances larger than 50 jobs, no branch-and-bound algorithm is

available for both of these problems. But Braune et al. [10] have implemented basic local

search tabu search and a genetic algorithm for these problems, and claim that their

algorithms give reasonable accuracy.

6.4 Hybrid Algorithms

Genetic algorithms are general and have high range of applicability. But they are weaker

in results. Local search heuristics like simulated annealing and Tabu Search are specific,

they give better results for particular problems, but lack generality. Due to this, many

64

hybrid algorithms are described in the current literature. By hybrid, algorithms that

encompass the essentials of both genetic algorithms and local search heuristics are

understood.

Consider the Quadratic Assignment Problem, QAP: Given two sets A = {a1, a2, .., an} and

B with |B| = n, and a cost function c:AB, find a one-to-one mapping f:AB such

that

i c(ai, f(ai))

is minimized (see [44]). In simple words, assign each member of A to a member of B

such that each aA is assigned with a unique bB and the total assignment cost is

minimized.

QAP has many areas of application. For example, every single machine scheduling

problem without preemption and without precedence constraints is an instance of QAP.

To see this, let A be the set of jobs, that is A = {J1, J2, …, Jn}, and let B = {1, 2, .., n}.

Then a one-to-one mapping from A to B represents a schedule of jobs in J. The problem

is to find such a schedule minimizing the total weighted penalty.

McLoughlin and Cedeno [44] have designed a hybrid algorithm for QAP by combining

genetic algorithm and Tabu search. They give the name “Enhanced Evolutionary Tabu

Search” for their algorithm. This algorithm obtained a reasonable solution for the QAP.

Combination of genetic algorithm and simulated annealing is also seen in the field of

scheduling. Affenzeller and Mayrhofer [2] design such a hybrid algorithm. They applied

their algorithm to a routing problem and obtained reasonable results.

6.5 Performance Evaluation of Heuristic Algorithms

Efficiency of heuristic algorithm is examined experimentally. This is generally done by

comparing obtained results with benchmark suites.

65

Taillard [55] has designed benchmarks for the flow-shop, job-shop and open-shop

problems. However, the described scheme of designing benchmark is applicable to all

sorts of scheduling problems. The scheme used by Taillard [55] is as follows.

1. Generate job data like processing times, weights, etc., using uniform distribution.

Uniform distribution is obtained by the linear congruential pseudorandom number

generator.

2. Obtain near-to-exact solution using Tabu search. The easy point is, benchmark is

designed only once, so the algorithm need not be fast, but give as better solution

as possible.

It is not always necessary to use uniform distribution for generating job data. Depending

upon the application domain, other distributions may be used. For example, in operating

systems, it is better to use Poisson’s distribution for generating release dates of processes

(see [45]).

Though the methods of evaluating the efficiency of heuristic algorithms depend on

computer simulation, currently, a new trend is emerging. This new approach tries to

rigorously analyze heuristics. Fiege [19] proposes that if the nature of input is fixed, then

heuristics can be theoretically analyzed. Fiege further proposes some rigorous models of

input in which one can study heuristics. However, analytic evaluation of heuristics is not

totally a new idea. Particularly when the solution space is modeled as a graph, there are

several measures which define a good heuristic. Some of these measures are

admissibility, informedness and monotonicity (see [41]). Here is a short description:

1. Admissibility: Heuristics that find the shortest path to a goal whenever it exists are

said to be admissible.

2. Informedness: During the traversal of graph representing the solution space,

whenever there is a choice among nodes (feasible solutions), the heuristic that

selects the node (feasible solution) near to the goal (optimal solution) is said as an

informed heuristic. The nearer node the heuristic selects, the more informed it is.

Note that this nearness is measured as the path length of the node to goal node,

66

not the difference between cost of a feasible solution and optimal solution as

defined in optimization theory.

3. Monotonicity: When a node is reached by the heuristic search, and if there is a

guarantee that the same node would not be found later through a shorter path, then

such heuristic is said to satisfy monotonicity property.

In the following chapter, a tabu search algorithm is devised for the problem

1 | rj | Cj, modeling the solution space as a graph. But only an empirical analysis of the

algorithm is performed, these formal properties of graph search heuristics are not

considered. One can refer [41] and [52] for details of graph search heuristics.

67

Chapter 7

Tabu Search for a Scheduling Problem

In this chapter, two versions of tabu search algorithms are developed for the NP-hard

scheduling problem 1 | rj | Cj and their quality are analyzed experimentally. Section 7.1

describes two well-known algorithms for this problem: the Earliest Completion Time

(ECT) and Earliest Start Time (EST) heuristics. In Section 7.3, a very inefficient but

exact algorithm for this problem is devised. In the remaining sections 7.2, 7.4, 7.5, 7.6

and 7.7, the two tabu search algorithms are developed. Finally in the experimentation part

(Section 7.8), the efficiency of these tabu search algorithms is compared against that of

ECT and EST heuristics.

7.1 ECT and EST Heuristics

These heuristics are described, for instance, in [7]. Here, these algorithms have been

slightly modified to ease in implementation. First consider the ECT heuristic. Let there be

n number of jobs denoted as Jj, j = 1 to n. The algorithm goes on building the schedule

picking one job at a time. Let at any instant  denote the partial schedule, i.e.,

 = 12….k

where k  n. Now, consider the following modification rule.

Rule 7.1 Modification rule for start and complete times

rj if j = 1

sj = max{ rj, C[j-1]} if j is in 

Max{ rj, C[last]} otherwise [[last] is last job in ].

Cj = sj + pj

68

Recall that rj, sj, pj and Cj denote release date, start time, processing time and completion

time of a job Jj.

Now, the ECT heuristic is presented:

Algorithm (see [7]) ECT

Begin

 := empty sequence

for all job Jj do //initialization

sj := rj and Cj := sj + pj

unmark all jobs

for count = 1 to n do

begin

Jj := unmarked job with minimum completion time

Mark Jj

Append Jj in 

For all jobs Ji apply rule 7.1

End

return 

End of algorithm

Example 7.1 Consider five jobs J1,….,J5 with the following information:

j 1 2 3 4 5

pj 11 27 14 21 17

rj 96 44 26 63 34

Application of the ECT algorithm will give the schedule (3, 5, 2, 4, 1) with total cost 402.

69

The EST heuristic is a slight modification of ECT. In each iteration of the for-loop,

instead of selecting job with minimum completion time, the job with minimum start time

is selected. The EST algorithm is not presented here because rest of the algorithm is

exactly the same as for ECT.

Time complexity of both ECT and EST algorithms is (n2), this can be easily seen.

7.2 Representation of Solution and Solution Space

A solution and the solution space is represented in this way: A feasible solution is

represented by a sequence of n numbers from (1, 2, .., n), where n is the number of jobs.

Let  be such a sequence. More specifically, let  = (1, 2, …., n), then, k = j means

job Jj is in k’th position of the schedule. Since there are no precedence constraints, any

permutation of  will still be a feasible solution, the only problem is, an arbitrary

permutation may insert idle times in the schedule. Clearly there are n! number of

permutations of , hence, the solution space will be a graph having n! number of nodes.

Cost of the feasible solution  is denoted by cost(). Since the objective function is Cj,

clearly, cost() = jCj.

7.3 An Exact Algorithm for 1 | rj | Cj

This algorithm, though very inefficient, can be used for small instances of the problem.

Assume that there are n jobs.

In the following algorithm, a subroutine next_permutation() has been used.. Given a

sequence , this subroutine generates permutation of  in lexicographic ordering. For

example, next permutation of (1, 2, 3, 4, 5) is (1, 2, 3, 5, 4), that of (1, 2, 3, 5, 4) is

(1, 2, 5, 3, 4), and so on. For details of this permutation generator, see [51].

The following algorithm is formulated here.

70

Algorithm Exact-algorithm-for- 1 | rj | Cj

Begin

 := (1, 2,…., n)

best_ := 

best_cost := cost()

for count := 2 to n! do

begin

 := next_permutation()

if cost() < best_cost

best_ = 

best_cost = cost()

end

return best_

End of algorithm

Even if it is assumed that permutation generation and evaluation of cost both can be done

in constant time, the time complexity of this algorithm is still (n!), which is too high.

7.4 Neighborhood Structure for Tabu Search

Now a neighborhood structure is defined for implementing tabu search. For clarity, call

this neighborhood as ‘swap neighborhood’. Let  = (1, 2, …., n) be a feasible

solution for the problem 1 | rj | Cj, where n is the number of jobs. Then the swap-

neighborhood of , Ns(), is defined as

Ns() = {’ : ’ is obtained by swapping two jobs in }

Clearly, |Ns()| = nC2.

For example, let  = (1, 2, 3). Then Ns() = {(2, 1, 3), (3, 2, 1), (1, 3, 2)}.

71

7.5 Tabu List Structure

In this section, a tabu list structure is designed for the problem under consideration. As

discussed in Section 4.2.2, tabu list stores moves instead of actual solutions. Before

defining a move for the tabu search algorithm, first define a ‘swap-move’: Let  = (1, 2,

..., n) be a feasible solution for the problem 1 | rj | Cj, where n is the number of jobs.

Let ’Ns() be obtained from  by swapping j and k. Then the unordered pair {j, k}

is the swap-move which converts  to ’.

For example, let  = (1, 2, 3, 4, 5). Then the unordered pair {2, 5} is a swap-move which

converts  to ’, where ’ = (1, 5, 3, 4, 2).

In the definition of swap-move, choice of unordered pair is intentional. For clarification,

consider what will happen if ordered pair is used. Let  = (1, 2, 3, 4, 5) and apply the

swap-move (2,4), the resulting solution will be ’ = (1, 4, 3, 2, 5). Now, note that the

ordered pairs (2,4) and (4,2) are different, so we can again apply the swap-move (4,2) to

’, resulting in ’’ = (1, 2, 3, 4, 5), which is same as . This means a recently visited

solution is revisited, which is against the basics of tabu search. On the other hand, use of

unordered pair means the swap-moves {2, 4} and {4, 2} are same, hence {4, 2} will not

be allowed.

The simple definition of swap-move may not resemble a solution properly. So a move is

defined by embedding the cost of resulting solution in the definition of swap-move in this

way : Let  be a feasible solution for the problem 1 | rj | Cj. Let ’ be the solution

obtained by applying swap-move m to . Then the unordered pair {m, cost(’)} is the

move that converts  to ’.

The tabu list is implemented as a circular queue of moves. This is illustrated in the

following figure.

72

Figure 7.1 Tabu list implemented as circular queue for the problem 1 | rj | Cj

7.6 The Tabu Search Algorithm

In this section, the two versions of tabu search algorithm for 1 | rj | Cj are developed. As

described in Section 4.2.2, a tabu search algorithm uses the basic tabu search algorithm as

a subroutine. Their implementations are described separately, for it makes the complexity

analysis easier.

7.6.1 Basic Tabu Search

Initialization of the search is implemented and the aspiration conditions are defined in the

following way:

Initialization: Guessing that in the optimal solution jobs with earlier completion time

come earlier, take the sequence of jobs in non-decreasing order of completion times as

the initial solution. This sorting is achieved using quicksort algorithm.

Aspiration criterion: If a tabu move produces a solution that is better than the best

solution found so far, accept such a move.

73

Here, an outline of the basic tabu search is restated so that analysis becomes easier. The

algorithm is:

1. s = initial solution

2. For MAXIT number of times do step 3 to 4

3. select s’, the best neighbor of s which is not tabu or which satisfies the aspiration
condition.

4. s = s’

5. update the tabu list

First, consider step 3. Let n be the number of jobs in following discussions. Cost

evaluation of a feasible solution takes O(n) time. There are nC2 number of neighbors, and

note that nC2 =(n2-n)/2, i.e., there are O(n2) neighbors. Hence complexity of finding best

neighbor is O(n3). Now, since tabu list length is TABUSIZE, checking tabu status takes

O(TABUSIZE) time, and complexity of step 3 becomes O(n3)+O(TABUSIZE). But

since, in practice, tabu list length is much smaller than number of jobs, overall

complexity of step 3 is O(n3).

Since quicksort is taken for initialization, step 1 takes O(nlogn) time. Tabu list as a

circular queue, so, step 5 takes constant time. Step 3 iterates for MAXIT number of

times, hence, overall complexity is

O(n) + O(MAXIT.n3)

= O(MAXIT.n3).

This basic tabu search does not consider best, average or worst cases separately. Hence,

complexity of this basic tabu search is O(MAXIT.n3) for all cases.

7.6.2 Complete Tabu Search

Intensification and diversification are implemented in the following way:

Intensification: Intensification is done by swapping two random jobs from the solution

sequence obtained by basic tabu search of Section 5.6.1. This scheme is chosen chiefly

74

because it is easier to implement. However, one can guess that the optimum solution is in

the proximity of solution obtained by the basic tabu search.

Diversification: Diversification is done by generating random solution.

The complete tabu search is implemented as follows:

1. Initialize and do basic tabu search

2. For MAX_INTESIFY number of times

- do intensification

- do basic tabu search

3. for MAX_DIVERSIFY number of times

- do diversification

- do basic tabu search

Assuming that a long list of pseudorandom numbers for 1 to n is given, intensification

and diversification take constant time. Now, let MAX_INTENSIFY =

MAX_DIVERSIFY = MID. Then complexity of tabu search becomes

O(MID.MAXIT.n3)

Assuming MAXIT = O(n) and MID << n, which is practical, total complexity becomes

O(n4) for all cases.

7.7 ECT_tabu Algorithm

The second version of tabu search algorithm is as follows:

1. Apply the ECT heuristic

75

2. Take the solution of ECT algorithm as the initial solution, and perform tabu

search.

Since the ECT algorithm takes (n2), ECT_tabu also has complexity of O(n4) for all

cases.

7.8 Experiments and Results

In this experimentation part, all of the algorithms mentioned in this chapter were

implemented in Turbo C++ version 3.0. The source codes for these programs are given

in the Appendix.

The objective of implementing ECT, EST and the exact algorithms, described in section

7.1 and 7.3, is simply to compare their output with the output of the two tabu search

algorithms developed in this chapter.

For both tabu search algorithms, the following parameters were set:

length of tabu list = 30.

no. of iterations = 50

7.8.1 Input Data Set

First, a program for generating data set was implemented (see Appendix). This program

uses the linear congruential pseudorandom number generator provided by the Turbo C++

library. Using this program, six sets of input data were generated, containing instances for

5, 10, 15, 20, 25, and 30 jobs. Each input data set contains 100 instances. In all instances,

processing times are in the range [1, 30] and release times are in the range [1, 100].

76

7.8.2 Output

Input
data
set

Number
of jobs

Exact

Solution

ECT EST Tabu ECT_tabu

1 5 356.42 361.88 364.88 356.57 356.13

2 10 864.31 913.02 955.39 898.73 891.13

3 15 -------- 1751.68 2000.81 1823.00 1710.28

4 20 -------- 2869.27 3416.20 3079.39 2794.22

5 25 -------- 4193.81 5181.75 4650.02 4094.62

6 30 -------- 5748.52 7330.81 6506.90 5612.95

Table 5.1 Average of total completion times given by various algorithms

(For all input data sets, number of instances = 100, maximum processing time = 30,

maximum release date = 100)

As shown in above table, tabu search obtained better results than both ECT and EST for

number of jobs not exceeding 10. For larger number of jobs, tabu search obtained results

better than EST but worse than ECT. Above table is summarized in the following figure.

77

0

1000

2000

3000

4000

5000

6000

7000

8000

5 10 15 20 25 30

no. of jobs

A
ve

ra
ge

 o
f T

ot
al

 C
om

pl
et

io
n

Ti
m

e

ECT

EST

Tabu

ECT_tabu

Figure 7.2 Average of total completion time given by various algorithms

The experiment did not include instances having number of jobs greater than 30 because

the program implementation does not consider overflow errors that may occur while

processing large data. These programs can be extended to handle large data by using

error-handling mechaninsms provided by Turbo C++. However, it is obvious that

ECT_tabu is at least efficient as the ECT heuristic, and once can hope ECT_tabu beats

ECT for large instances.

Execution times of all of these programs were in the order of seconds, the detailed

description is irrelevant. When excecuted in Intel Pentium IV processor, Windows XP

operating system, to process data set of 30 jobs and 100 instances, the ECT_tabu

algorithm took 85.18 seconds. This is the largest execution time required in all of these

experiments.

78

Chapter 8

Conclusion and Future Works

In this dissertation, NP-hard discrete optimization problems were studied in the context

of single machine scheduling. The study also included some polynomially solvable

problems and general approaches of tackling NP-hard problems, but special focus was

given on heuristic evaluation of NP-hard single machine scheduling problems. Finally,

two versions of tabu search algorithm were devised for the scheduling problem

1 | rj | Cj.

The first version of the tabu search beats both ECT and EST heuristics for instances of 10

jobs or less. But as the number of jobs grows, this tabu search gives solution weaker that

ECT, but still better than EST heuristic. The second version of tabu search is much

similar to the first version; the only difference is it takes the solution given by ECT as an

initial solution. Both versions of tabu search are bounded above by a small polynomial;

more specifically, they have complexity of O(n4) for all cases. This fulfills both of

requirements of being a good heuristic, i.e., the heuristic should provide a ‘good’

solution, and the algorithm should be bounded by a small degree polynomial in the worst

case. Thus, in summary, a good tabu search algorithm was implemented for the problem

1 | rj | Cj.

This dissertation could not go into one important area: Categorization of NP-hard

problems. Knowing NP-hardness of a problem is not always pessimistic. There can be

NP-hard problems whose exact algorithms have complexities higher than polynomial but

not too much. Such problems are called pseudo-polynomially solvable problems (for

example, see [49]). Scheduling problems have also been classified according to hierarchy

of such hardness (see [12]). A prospected study is to go into the details of these concepts.

Furthermore, as another future study, heuristic algorithms like genetic algorithms can be

designed for the problem 1 | rj | Cj and results compared with the results of tabu search

algorithm devised in this dissertation.

79

Basic Mathematical Notations

Here are the notations used but not defined in this document.

Set theory
{a1, a2, …, an} Set of objects a1, a2, …, an

 Set inclusion

AB Cartesian product of set A and set B

f:ABC f is a function from set AB to set C

2A Power set of set A

N Set of natural numbers

 Set of real numbers

+ Set of positive real numbers

Sequence and series
(a1, a2, …., an) A sequence of numbers a1, a2, …., an

j Summation over the index j

(a1, a2) Ordered pair

{a1, a2} Unordered pair

Miscellaneous
max{a, b} Larger number among a and b

max{a1, a2, …, an) Largest among the numbers a1, a2, …, an

x+ max{x, 0}

n! Factorial of integer n

{a1, a2, …, an}
* Kleene closure of finite alphabet {a1, a2, …, an}

[i, j] Set of integers i, i+1, …, j

80

References

1. Adolphson, D., and Hu, T. C. (1973): Optimal Linear Ordering. SIAM Journal of
Applied Mathematics, Vol. 25, pp 403-423.

2. Affenzeller, M., and Mayrhofer, R. (2002): Generic Heuristics for Combinatorial
Optimization Problems. Proceedings of the 9th International Conference on
Operation Research (KOI), pp 83-92.

3. Anderson, E. J., and Potts, C. N. (2002): On-Line Scheduling of a Single Machine
to Minimize Total Weighted Completion Time. Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, January.

4. Babu, P., Peridy, L., and Pinson, E. (2004): A Branch and Bound Algorithm to
Minimize Total Weighted Tardiness on a Single Processor. Annals of Operation
Research, Vol. 129, pp 33-46.

5. Baker, K. R. (1974): Introduction to Sequencing and Scheduling. John Wiley &
Sons, NewYork.

6. Baker, K. R., Lawler, E. L., Lenstra, J. K., and Rinnoy Kan, A. H. G. (1983):
Preemptive Scheduling of s Single Machine to Minimize Maximum Cost Subjet to
Release Dates and Precedence Constraints. Operations Research, Vol. 31, no. 2,
pp 381-386.

7. Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., and Weglarz, J. (1996):
Scheduling Computer and Manufacturing Processes. Springer.

8. Brassard, G., and Bratley, P. (1998): Fundamentals of Algorithmics, Prentice-Hall
of India Pvt. Ltd.

9. Bratley, P., Florain, M., and Robillard, P. (1996): Scheduling with Earliest Start
and Due Date Constraints. Naval Research Logistics Quarterly, Vol. 18, pp 511-
517.

10. Braune, R., Affenzeller, M., and Wagner, S. (2006): Efficient Heuristic
Optimization in Single Machine Scheduling.
http://www.heuristiclab.com/publications

11. Brucker, P. (1995): Scheduling Algorithms. Springer.

12. Brucker, P., and Knust, S. (2007): Complexity Results for Scheduling Problems.
http://www.mathematik.uni-osnabrueck.de/research/OR/class

81

13. Cook, S. (2003), The Importance of P versus NP Question, Journal of the ACM,
January, Vol. 50, no. 1, pp. 27-29.

14. Cook, S. (2003): The P versus NP Problem.
http://www.claymath.org/prizeproblems/pvsnp.htm

15. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2004): Introduction
to Algorithms. Prentice-Hall of India Pvt. Ltd.

16. Dhamala, T. N. (2002): Shop Scheduling Solution Spaces with Algebraic
Characterizations. Otto-von-Geuricke University, Magdeberg, Germany. Ph. D.
Thesis (Shaker Verlag, Germany).

17. Dhamala, T.N., and Kubiak, W. (2005): A Brief Survey of Just-In-Time
Sequencing for Mixed Model Production. International Journal of Operatons
Research, Vol.2, pp 38-47.

18. Dhamala, T.N., and Khadka, S. R. (2007): Just-In-Time Sequencing for Mixed
Model Production Systems Revisited. Discrete Optimization, submitted.

19. Feige, U. (2005): Rigorous Analysis of Heuristics for NP-Hard Problems.
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, January.

20. Glover, F., and Laguna (1997): M., Tabu Search.
http://citeseer.ist.psu.edu/glover97tabu.html.

21. Graham, R. E., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1979):
Optimization and Approximation in Deterministic Sequencing and Scheduling, A
Survey. Annals of Discrete Mathematics, Vol. 5, pp 287-326.

22. Gupta, M. C., Gupta, Y. P., and Kumar (1993): A., Genetic Algorithm Application
in a Machine Scheduling Problem. ACM 0-89791-558-5/93/0200/0372.

23. Hariri, A. M. A., and Potts, C.N. (1997): Single Machine Scheduling with Batch
Set-Up Times to Minimize Maximum Lateness. Annals of Operations Research ,
Vol. 70, pp 75-92.

24. Hertz, A., Taillard, E., and Werra, D. de (1994): A Tutorial on Tabu Search.
http://www.cs.colostate.edu/~whitley/cs640/hertz92tutorial.pdf.

25. Hoogeven, J. A., and Vestjens, A. P. A. (1995): Optimal on-line Algorithms for
Single Machine Scheduling. Memorandum COSOR, 1995, Eindhoven University
of Technology, Eindhoven, The Netherlands.

82

26. Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001): Introduction to Automata
Theory, Languages and Computation. Pearson Education.

27. Horn, W. A. (1974): Some Simple Scheduling Algorithms. Naval Research
Logistics Quarterly, Vol. 21, pp 177-185.

28. Jackson, J. R. (1955): Scheduling a Production Line to Minimize Maximum
Tardiness. Management Science Resource Project, UCLA, Research Report, Vol.
43.

29. Jawor, W. (2005): Three Dozen Papers on Online Algorithms. ACM SIGACT
News, March, Vol. 36, no. 1.

30. Karp, R. M. (1972): Reducibility Among Combinatorial Optimization Problem.
In: Miller, R. E., and Thatcher, J. W. (editors), Complexity of Computer
Computations, pp 85-103, Plenum Press, New York.

31. Kellerer, H., Tautenhahn, T., and Woeginger, G. J. (1996): Approximability and
Nonapproximability Results for Minimizing Total Flow Time on a Single
Machine. ACM 0-89791-785-5/96/05.

32. Lawler, E. L. (1973): Optimal Sequencing of a Single Machine Subject to
Precedence Constraints. Management Science, Vol. 19, pp 544-546.

33. Lawler, E. L. (1976): Sequencing to Minimize the Weighted Number of Tardy
Jobs. RAIRO Operations Research, Vol. 10, pp 27-33.

34. Lawler, E. L. (1978): Sequencing Jobs to Minimize Total Weighted Completion
Time Subject to Precedence Constraints. Annals of Discrete Mathematics, Vol. 2,
pp 75-90.

35. Lawler, E. L. (1982): Sequencing a Single Machine to Minimize the Number of
Late Jobs. Preprint, Computer Science Division, University of California,
Berkeley.

36. Lawler, E. L. (1983): Recent Results in the Theory of Mahicne Scheduling. In:
Bachem, A., Grotschel, M., and Korte, B. (editors), Mathematical Programming:
The State of the Art, pp 202-234. Springer, Berlin.

37. Lenstra, J. K., Rinnoy Kan, A. H. G., and Brucker, P. (1977): Complexity of
Machine Scheduling Problem. Annals of Discrete Mathematics, Vol. 1, pp 343-
363.

38. Lenstra, J. K. and Rinnoy Kan, A. H. G. (1979): Computational Complexity of
Discrete Optimization Problems. Annals of Discrete Mathematics, Vol. 4, pp 121-
140.

83

39. Lewis, H. R., and Papadimitriou, C. H. (1996): Elements of the Theory of
Computation, Prentice-Hall of India Pvt. Ltd..

40. Liman, S. D., Panwalkar, S. S., and Thongmee, S. (1997): A Single Machine
Scheduling Problem with Common Due Window and Controllable Processing
Times. Annals of Operation Research, Vol. 70, pp 145-154.

41. Luger, G. F. (2001): Artificial Intelligence: Structures and Strategies for Complex
Problem Solving. Pearson Education.

42. Mao, W., Kincaid, R. K., and Rifkin A. (1995): On-line Algorithms for a Single
Machine Scheduling Problem. http://www.citeseer.ist.psu.edu/mao95line.html.

43. Mazure, B., Sais, L., and Gregoire, E. (1997): Tabu Search for SAT. American
Association for Artificial Intelligence, http://www.aaai.org.

44. McLoughlin III, J.F., and Cedeno, W. (2005): The Enhanced Evolutionary Tabu
Search and Its Application to the Quadratic Assignment Problem. ACM 1-59593-
010-8/05/0006.

45. Milenkovic, M. (1997): Operating Systems. Tata McGraw-Hill.

46. Monma, C. L. (1982): Linear Time Algorithms for Scheduling on Parallel
Processors. Operations Research, Vol. 30, pp 116-124.

47. Moore, J. M. (1968): A n Job One Machine Sequencing Algorithm for Minimizing
the Number of Late Jobs. Management Science, Vol. 15, pp 102-109.

48. Muth, J. F. and Thompson, G. L. (1963): Industrial Scheduling. Prentice Hall,
Englewood Cliffs.

49. Papadimitriou, C. H., and Steiglitz, K. (2006): Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall of India Pvt. Ltd.

50. Rangaswamy, B., Jain, A. S., and Glover, F. (1998): Tabu Search Candidate List
Strategies in Scheduling. 6th INFORMS Advances in Computational and
Stochastic Optimization, Logic Programming and Heurisitic Search: Interface in
Computer Science and Operations Research Conference in Monterrey Bay,
California, January..

51. Rosen, K. H. (2003): Discrete Mathematics and Its Applications. Tata McGraw-
Hill.

52. Russell, S., and Norvig, P. (2006): Artificial Intelligence: A Modern Approach.
Pearson Education.

84

53. Sahni, S. (1976): Algorithms for Scheduling Independent Tasks. Journal of the
ACM, Vol. 23, pp 116-127.

54. Savelsbergh, M. W. P., Uma, R. N., and Wein, J. (1998): An Experimental Study
of LP-Based Approximation for Scheduling Problem. Proceedings of the ninth
annual ACM-SIAM symposium on Discrete Algorithms SODA, January.

55. Taillard, E. (1993): Benchmark for Scheduling Problems. European Journal of
Operational Research, North Holland, Vol. 64, pp 278-285.

56. Tanenbaum, A. (2004): Modern Operating Systems. Prentice-Hall of India Pvt.
Ltd.

85

Appendix

Program Code of Various Algorithms

We give the source code for the algorithms discussed in Chapter 5. The code is in Turbo C++
Version 3.0. Each cpp file contains a complete console based application. Below is a summary of
all program files and their details.

S.N. File name Page no. Details
A.1 gdata.cpp 85 File containing code for generating input data
A.2 exact.cpp 86 Source code for the exact algorithm
A.3 ECT.cpp 89 Source code for the ECT heuristic
A.4 Tabu.cpp 92 Source code for tabu search (first version)
A.5 Array.h 97 File containing code for various array manipulations
A.6 Global.h 99 File containing global variables, file handling and

miscellaneous functions

Program for the EST heuristic can be obtained by slightly modifying that for ECT heuristic.
Similary, program for ECT_tabu can be obtained by combining program codes for ECT heuristic
and tabu search, and some minor modifications. We do not include the codes for EST and
ECT_tabu due to their redundancy.

A.1 gdata.cpp

//generate data set for the problem 1 | rj | SIGMA(cj)
#include <iostream.h>
#include <stdio.h>
#include <conio.h>
#include <time.h>
#include <stdlib.h>
#include <fstream.h>
#include "d:\thesis\fversion\headers\global.h"
//******************INPUT PARAMETERS**************************

int n_j; //no. of jobs
int pMax;// maximum processing time of a job
int rMax;// maximum release date
int iMax;// number of input data sets to be generated
//**
char fname[15];

void generate(char c){
int i, j, k, num, limit;
char number[5];
time_t t;
if(c == 'r') limit = rMax;
else if(c=='p') limit = pMax;
else return;
ofstream file(fname);

86

//write the header
write_string("No. of jobs = ", file);
write_num(n_j, file);//number of jobs
file.put(', ');
write_string(" No. of instances = ", file);
write_num(iMax, file);
if(c == 'r') write_string("\nrelease dates:\n",file);
else write_string("\nprocessing times:\n", file);
//now generate the instances of random numbers and save
srand((unsigned) time(&t));
for(i=1; i<=iMax; i++){

for(j=1; j<=n_j; j++){
num = rand() % limit + 1;
itoa(num, number, 10);
for(k = 0; number[k] != '\0'; k++)

file.put(number[k]);
file.put(' ');

}
file.put('\n');

}
}

void main(){
clrscr();
cout<<"Enter the number of jobs: ";
cin>>n_j;
cout<<"\nEnter the number of instances to be generated: ";
cin>>iMax;
cout<<"\nEnter the maximum processng time: ";
cin>>pMax;
cout<<"\nEnter the maximum release date: ";
cin>>rMax;
cout<<"Enter the file to store processing time: ";
gets(fname);
generate('p');
cout<<"\nProcessing times generated.";
cout<<"\nEnter the file to store release dates: ";
gets(fname);
generate('r');
cout<<"\nRelease dates generated";
getch();

}

A.2 exact.cpp

//very inefficient but exact algorithm for 1 | rj | SIGMA(cj)
#include <iostream.h>
#include <conio.h>
#include <stdio.h>
#include "d:\thesis\fversion\headers\array.h"
#include "d:\thesis\fversion\headers\global.h"

int best_cost;//the current best cost

87

long factorial(int n){
if(n == 1) return 1;
else return factorial(n-1)*n;

}

void next_permutation(int *a){
int j = n_jobs -1;
while(a[j] > a[j+1])

j = j-1;
int k = n_jobs;
while(a[j] > a[k])

k = k-1;
swap(a[j], a[k]);
int r = n_jobs;
int s = j+1;
while(r>s){

swap(a[r], a[s]);
r = r-1;
s = s+1;

}
}

void compute_s_and_c(){//not needed by exact() but for displaying o/p.
s[pi[1]] = r[pi[1]];
c[pi[1]] = r[pi[1]] + p[pi[1]];
for(int i=2; i<=n_jobs; i++){

s[pi[i]] = max(r[pi[i]], c[pi[i-1]]);
c[pi[i]] = s[pi[i]] + p[pi[i]];

}
}

void exact(){
int temp_pi[MAX];
for(int i=1; i<=n_jobs; i++)

pi[i] = i; //an initial soultion to begin
best_cost = cost(pi);
copy(pi, temp_pi);
long max_count = factorial(n_jobs);
for(long count =2; count <= max_count; count++){

next_permutation(temp_pi);
int cst = cost(temp_pi);
if(cst < best_cost){

best_cost = cst;
copy(temp_pi, pi);

}
}
compute_s_and_c();//not needed by exact() but s and c array are useful

}

void adjust_items(int *A, int *x){//adjust the items of x as per the
//order of items in solution sequnce pi, save the results
//in A

for(int j=1; j<=n_jobs; j++)
A[j] = x[pi[j]];

}

88

void main(){
int no_of_instances;
int A[MAX], i, j, n_jobs1, n_jobs2, n_i1, n_i2;
char fname[15], choice = 'n';
clrscr();
cout<<"\nVery inefficent but exact solution";
cout<<" for the problem 1 | rj | SIGMA(cj)";
cout<<"\nEnter file containing processing times: ";
gets(fname);
ifstream pfile(fname);
if(!pfile)

error(FILE_OPEN,fname);
cout<<"\nEnter file containing release dates: ";
gets(fname);
ifstream rfile(fname);
if(!rfile)

error(FILE_OPEN,fname);
cout<<"\nEnter file for storing output: ";
gets(fname);
ofstream outfile(fname);
//read headers of the input files and check compatibility
read_header(pfile, &n_jobs1, &n_i1);
read_header(rfile, &n_jobs2, &n_i2);
if(n_jobs1 != n_jobs2 || n_i1 != n_i2)

error(INCOMPATIBLE_FILES);
//
n_jobs = n_jobs1; no_of_instances = n_i1;
if(n_jobs > 30) error(MAX_JOB);
if(n_jobs <= 10){

cout<<"\nWant to save details? Y/N : ";
cin>>choice;

}
cout<<"\ncomputation in progress, please wait....";
for(i=1; i<=no_of_instances; i++){

//read input from data files
read_row(r, n_jobs, rfile);
read_row(p, n_jobs, pfile);
//save input data
if(choice == 'Y' || choice == 'y') {//save details

write_string("INSTANCE ", outfile);
write_num(i, outfile);
write_string("\nProcessing times: ", outfile);
write_row(p, n_jobs, outfile);
write_string("\nRelease dates: ", outfile);
write_row(r, n_jobs, outfile);

}
//compute the solution
exact();
//save output data
if(choice == 'Y' || choice == 'y') {//save details

write_string("\nOUTPUT DATA:", outfile);
write_string("\nSolution sequence: ",outfile);
write_row(pi, n_jobs, outfile);
write_string("\nProcessing times: ", outfile);
adjust_items(A, p);

89

write_row(A, n_jobs, outfile);
write_string("\nRelease dates: ", outfile);
adjust_items(A, r);
write_row(A, n_jobs, outfile);
write_string("\nStart times: ",outfile);
adjust_items(A, s);
write_row(A, n_jobs, outfile);
write_string("\nCompletion times: ", outfile);
adjust_items(A, c);
write_row(A, n_jobs, outfile);
write_string("\nCost: ", outfile);
write_num(best_cost, outfile);
write_string("\n\n\n", outfile);

}
else{//just save complete times

write_num(best_cost, outfile);
outfile.put('\n');

}
}
cout<<"\ncomputation completed";
getch();

}

A.3 ECT.cpp

//implementing ECT heuristic for the problem 1 | rj | SIGMA(cj)
#include <iostream.h>
#include <stdio.h>
#include <conio.h>
#include "d:\thesis\fversion\headers\array.h"
#include "d:\thesis\fversion\headers\global.h"

int pi_last_index = 0, //marker to end of sequence in the arry pi
pi_index =0;//needed by comput_s_c() to know the positon of currently

//considered job in pi

void insert_in_pi(int j){//insert job j in the current schedule
pi_last_index++;
pi[pi_last_index] = j;
}

int find_in_pi(int j){//find whether job j is in current schedule or not
for(int i=1; i<=n_jobs; i++)

if(j == pi[i]){
pi_index = i;
return 1;

}
return 0;

}

void initialize_s_and_c(){
for(int i=1; i<=n_jobs; i++){

s[i] = r[i];
c[i] = s[i] + p[i];

}

90

}

void compute_s_and_c(){
for(int i=1; i<=n_jobs; i++){

if(i == pi[1])
s[i] = r[i];

else if(find_in_pi(i))
s[i] = max(r[i], c[pi[pi_index-1]]);

else
s[i] = max(r[i], c[pi[pi_last_index]]);

c[i] = s[i] + p[i];
}

}

void copy_finite(int *A,int *B){//copy all values from A to B except infinity
for(int i=1; i<=n_jobs; i++)

if(B[i] != infinity) B[i] = A[i];
}

void ECT(){
int temp_c[MAX];
for(int i=0; i<=n_jobs; i++) pi[i] = 0;
for(i=0; i<=n_jobs; i++) temp_c[i] = 0;
initialize_s_and_c();
for(i=1; i<=n_jobs; i++){

//compute_s_and_c();
copy_finite(c, temp_c);
int min_index = index_to_min(temp_c, n_jobs);
temp_c[min_index] = infinity;
insert_in_pi(min_index);
compute_s_and_c();

}
}

void adjust_items(int *A, int *x){//adjust the items of x as per the
//order of items in solution sequnce pi, save the results
//in A

for(int j=1; j<=n_jobs; j++)
A[j] = x[pi[j]];

}

void main(){
int no_of_instances;
//global variable

int A[MAX], i, j, n_jobs1, n_jobs2, n_i1, n_i2;
char fname[15], choice = 'n';
clrscr();
cout<<"\nUsing ECT heuristic for the problem 1 | rj | SIGMA(cj)";
cout<<"\nEnter file containing processing times: ";
gets(fname);
ifstream pfile(fname);
if(!pfile)

error(FILE_OPEN,fname);
cout<<"\nEnter file containing release dates: ";
gets(fname);

91

ifstream rfile(fname);
if(!rfile)

error(FILE_OPEN,fname);
cout<<"\nEnter file for storing output: ";
gets(fname);
ofstream outfile(fname);
//read headers of the input files and check compatibility
read_header(pfile, &n_jobs1, &n_i1);
read_header(rfile, &n_jobs2, &n_i2);
if(n_jobs1 != n_jobs2 || n_i1 != n_i2)

error(INCOMPATIBLE_FILES);
//
if(n_jobs > 30) error(MAX_JOB);
n_jobs = n_jobs1; no_of_instances = n_i1;
if(n_jobs <= 10){

cout<<"\nWant to save details? Y/N : ";
cin>>choice;

}
cout<<"\ncomputation in progress, please wait....";
for(i=1; i<=no_of_instances; i++){

//read input from data files
read_row(r, n_jobs, rfile);
read_row(p, n_jobs, pfile);
//save input data
if(choice == 'Y' || choice == 'y'){//save details

write_string("INSTANCE ", outfile);
write_num(i, outfile);
write_string("\nProcessing times: ", outfile);
write_row(p, n_jobs, outfile);
write_string("\nRelease dates: ", outfile);
write_row(r, n_jobs, outfile);

}
//compute the solution
pi_last_index = pi_index = 0; //global varialbes initialized
ECT();
int sum=0;
for(j=1; j<=n_jobs; j++) sum = sum + c[j];
//save output data
if(choice == 'Y' || choice == 'y') {//save details

write_string("\nOUTPUT DATA:", outfile);
write_string("\nSolution sequence: ",outfile);
write_row(pi, n_jobs, outfile);
write_string("\nProcessing times: ", outfile);
adjust_items(A, p);
write_row(A, n_jobs, outfile);
write_string("\nRelease dates: ", outfile);
adjust_items(A, r);
write_row(A, n_jobs, outfile);
write_string("\nStart times: ", outfile);
adjust_items(A, s);
write_row(A, n_jobs, outfile);
write_string("\nCompletion times: ", outfile);
adjust_items(A, c);
write_row(A, n_jobs, outfile);
write_string("\nCost: ", outfile);
write_num(sum, outfile);

92

write_string("\n\n\n", outfile);
}
else{// just save complete times

write_num(sum, outfile);
outfile.put('\n');

}
}
cout<<"\ncomputation completed";
getch();

}

A.4 tabu.cpp

//implementing tabu search for 1 | rj | SIGMA(cj)
#include <iostream.h>
#include <conio.h>
#include <stdio.h>
#include "d:\thesis\fversion\headers\array.h"
#include "d:\thesis\fversion\headers\global.h"

/**
IMPLEMENTING TABU LIST

**/
#define MAX_TABUSIZE 30
class Move{

public:
int x, y;
int cost; //cost of the new solution after a move is applied
Move():x(0),y(0){};
int operator==(const Move& m);

};

int Move::operator==(const Move& m){
if((m.x == x) && (m.y == y))

if(cost == m.cost) return 1;
return 0;

}

class TabuList{
private://implemented as a cirular queue

Move move[MAX_TABUSIZE+1];
int rear, front, tabusize;

public:
TabuList():rear(0),front(0),tabusize(n_jobs) {};
void initialize();
void insert(Move m);
int find(Move m);//returns 1 on success else 0

};

void TabuList::insert(Move m){
move[rear].x = m.x;
move[rear].y = m.y;

93

if(rear == tabusize - 1)
rear = 0;

else rear = rear + 1;
}

int TabuList::find(Move m){
for(int i=0; i<tabusize; i++)

if(move[i] == m)
return 1;

return 0;
}

void TabuList::initialize(){
front = rear = 0;
for(int i=0; i<tabusize; i++)

move[i].x = move[i].y = move[i].cost = 0;;
}
//***
/**

IMPLEMENTING TABU SEARCH
***/
int best_cost;//cost of the current best sequence

void initialize(){//generate an initial feasible solution in ascending order
int temp_rp[MAX];// of rj + pj
temp_rp[0] = infinity;
for(int i=1; i<=n_jobs; i++)

temp_rp[i] = r[i] + p[i];
for(i=1; i<=n_jobs; i++){//create pi order of r[i]+p[i]

int min_index = index_to_min(temp_rp, n_jobs);
pi[i] = min_index;
temp_rp[min_index] = infinity;

}
//now compute the corresponding start and complete times
s[pi[1]] = r[pi[1]];
c[pi[1]] = s[pi[1]] + p[pi[1]];
best_cost = c[pi[1]];
for(i=2; i<=n_jobs; i++){

s[pi[i]] = max(c[pi[i-1]], r[pi[i]]);
c[pi[i]] = s[pi[i]] + p[pi[i]];
best_cost = best_cost + c[pi[i]];

}
}

TabuList tList;
Move best_move; //move leading to the best neighbor
int best_negh_cost; //cost of the best neighbour
int best_negh[MAX]; //the best neighbor

void generate_neighborhood(){
best_negh_cost = infinity;
for(int i=1; i<=n_jobs; i++){

for(int j=i+1; j<=n_jobs; j++){
//best_move is the probable move
best_move.x = pi[i];
best_move.y = pi[j];

94

copy(pi, best_negh);
//now create a to-be neighbor by swapping p[i] with p[j]
swap(best_negh[i], best_negh[j]);
int cst = cost(best_negh);
if(cst < best_negh_cost)

best_negh_cost = cst;
best_move.cost = cst;
if(tList.find(best_move))

if(best_negh_cost >=best_cost)/*if best_move is tabu and it does
not satisfy the aspiration condition, skip this move*/

continue;
}

}
}

#define MAXIT 50 //iterations for the tabu search

//basic tabu search: without diversification and intensification
void tabu_search(){

best_cost = cost(pi);//global variable initialized
tList.initialize();
randomize();//initialize the random number generator
for(int count =1; count<= MAXIT; count++){

generate_neighborhood();//find cost of the best neighbor
if(best_negh_cost < best_cost){

best_cost = best_negh_cost;
copy(best_negh, pi);
tList.insert(best_move);

}
}

}

void random_swap(){//randomly swap two jobs in pi
int i, j;
i = random(n_jobs)+1;
do{

j = random(n_jobs)+1;
}while(j != i);
swap(pi[i], pi[j]);

}

void random_solution(){//randomly create a feasible solutin pi
int i, j;
for(i =1; i<=n_jobs; i++){

do{
j = random(n_jobs)+1;

}while(search(pi,j,i-1));//j is not in in pi[1],pi[2],..,pi[i-1]
pi[i] = j;

}
}

#define MAX_INTENSIFY 10
#define MAX_DIVERSIFY 10

95

int overall_best_cost, overall_pi[MAX];

void compute_s_and_c(){//not needed by full_tabu_serach() but for displaying o/p
s[overall_pi[1]] = r[overall_pi[1]];
c[overall_pi[1]] = r[overall_pi[1]] + p[overall_pi[1]];
for(int i=2; i<=n_jobs; i++){

s[overall_pi[i]] = max(r[overall_pi[i]], c[overall_pi[i-1]]);
c[overall_pi[i]] = s[overall_pi[i]] + p[overall_pi[i]];

}
}

//full tabu search: including diversification and intensification
void full_tabu_search(){

int temp_pi[MAX];
initialize(); //chose an initial solution pi
tabu_search();
overall_best_cost = best_cost;
copy(pi, overall_pi);
//intensify: begin search in the proximity of best solution
for(int i=1; i<=MAX_INTENSIFY; i++){

tabu_search();
if(best_cost < overall_best_cost){

overall_best_cost = best_cost;
copy(pi, overall_pi);

}
random_swap();//slightly change the best solution;

}

for(i = 1; i<=MAX_DIVERSIFY; i++){
tabu_search();
if(best_cost < overall_best_cost){

overall_best_cost = best_cost;
copy(pi, overall_pi);

}
random_solution();

}
compute_s_and_c();//not needed by full_tabu_search() but for displaying

}

void adjust_items(int *A, int *x){//adjust the items of x as per the
//order of items in solution sequnce pi, save the results
//in A

for(int j=1; j<=n_jobs; j++)
A[j] = x[overall_pi[j]];

}

void main(){
int no_of_instances;
int A[MAX], i, j, n_jobs1, n_jobs2, n_i1, n_i2;
char fname[15], choice = 'n';
clrscr();
cout<<"\nUsing Tabu Search for the problem 1 | rj | SIGMA(cj)";
cout<<"\nEnter file containing processing times: ";
gets(fname);

96

ifstream pfile(fname);
if(!pfile)

error(FILE_OPEN,fname);
cout<<"\nEnter file containing release dates: ";
gets(fname);
ifstream rfile(fname);
if(!rfile)

error(FILE_OPEN,fname);
cout<<"\nEnter file for storing output: ";
gets(fname);
ofstream outfile(fname);
//read headers of the input files and check compatibility
read_header(pfile, &n_jobs1, &n_i1);
read_header(rfile, &n_jobs2, &n_i2);
if(n_jobs1 != n_jobs2 || n_i1 != n_i2)

error(INCOMPATIBLE_FILES);
//
n_jobs = n_jobs1; no_of_instances = n_i1;
if(n_jobs > 30) error(MAX_JOB);
if(n_jobs <= 10){

cout<<"\nWant to save details? Y/N : ";
cin>>choice;

}
cout<<"\ncomputation in progress, please wait....";
for(i=1; i<=no_of_instances; i++){

//read input from data files
read_row(r, n_jobs, rfile);
read_row(p, n_jobs, pfile);
//save input data
if(choice == 'Y'|| choice == 'y') {//save details

write_string("INSTANCE ", outfile);
write_num(i, outfile);
write_string("\nProcessing times: ", outfile);
write_row(p, n_jobs, outfile);
write_string("\nRelease dates: ", outfile);
write_row(r, n_jobs, outfile);

}
//compute the solution
full_tabu_search();
//save output data
if(choice == 'Y' || choice == 'y') {//save details

write_string("\nOUTPUT DATA:", outfile);
write_string("\nSolution sequence: ",outfile);
write_row(overall_pi, n_jobs, outfile);
write_string("\nProcessing times: ", outfile);
adjust_items(A, p);
write_row(A, n_jobs, outfile);
write_string("\nRelease dates: ", outfile);
adjust_items(A, r);
write_row(A, n_jobs, outfile);
write_string("\nStart times: ",outfile);
adjust_items(A, s);
write_row(A, n_jobs, outfile);
write_string("\nCompletion times: ", outfile);
adjust_items(A, c);
write_row(A, n_jobs, outfile);

97

write_string("\nCost: ", outfile);
write_num(overall_best_cost, outfile);
write_string("\n\n\n", outfile);

}
else{//just save complete times

write_num(overall_best_cost, outfile);
outfile.put('\n');

}
}
cout<<"\ncomputation completed";
getch();

}

A.5 array.h

/*CONTAINS
quicksort(A, n) :- A is the array and n its size
int search(A, Asize, key) :- peform linear search
T max(A, ASize)
T min(A, ASize)
T max(x, y)
T min(x, y)

*/

#ifndef SORT_H_
#define SORT_H_

#include <assert.h>

template <class T>
void swap(T& x, T& y){

T temp = x;
x = y;
y = temp;

}

template <class T>
void quicksort(T data[], int first, int last){

int lower = first +1, upper = last;
swap(data[first], data[(first+last)/2]);
T bound = data[first];
while(lower <= upper){

while(data[lower] < bound)
lower++;

while(bound<data[upper])
upper--;

if(lower<upper)
swap(data[lower++],data[upper--]);

else lower++;
}
swap(data[upper],data[first]);
if(first<upper-1)

98

quicksort(data,first,upper-1);
if(upper+1<last)

quicksort(data,upper+1,last);
}

template <class T>
void quicksort(T data[], int n){

if(n<2) return;
for(int i=1, max=0; i<n; i++)

if(data[max]<data[i])
max = i;

swap(data[n-1],data[max]);
quicksort(data,0,n-2);

}

//linear search: return 1 on sucess, 0 on failure
template <class T>
int search(T A[], T key, int ASize){

for(int i=1; i<=ASize; i++)
if(A[i] == key) return 1;

return 0;
}

template <class T>
T max(T A[], int ASize){

int tmax = A[1], i;
for(i=1; i<=ASize; i++)

if(tmax<A[i]) tmax = A[i];
return tmax;

}

template <class T>
T min(T A[], int ASize){

int tmin = A[1], i;
for(i=1; i<=ASize; i++)

if(tmin>A[i]) tmin = A[i];
return tmin;

}

template <class T>
int index_to_min(T A[], int ASize){

int min_index = 1, i;
for(i=1; i<=ASize; i++)

if(A[min_index] > A[i]) min_index = i;
return min_index;

}

template <class T>
T max(T x, T y){

if(x>y) return x;
else return y;

}

template <class T>
T min(T x, T y){

if(x<y) return x;

99

else return y;
}

/*
template <class T>
void create_array(T *A, int ASize){

A = new T[ASize];
assert(A!=0);

}

template <class T>
void create_array(T **A, int nRows, int nCols){

A = new T*[nCols];
assert(A!=0);
for(int i=0; i<nCols; i++){

A[i] = new T[nRows];
assert(A[i]!=0);

}
}
*/
#endif

A.6 global.h

#include <fstream.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
#include "d:\thesis\fversion\headers\array.h"

#define MAX 31 //maximum of 30 jobs
#define infinity 9999 //maximum integer.

int n_jobs; //no. of jobs
//int *p, *r, *s, *c, *pi;//pointers to array of processing times, release times,

//start times and completion times, respectively.

int p[MAX], r[MAX], s[MAX], c[MAX], pi[MAX];

enum ERROR_TYPE { FILE_OPEN, INCOMPATIBLE_FILES, MAX_JOB, UNKNOWN};

void error(ERROR_TYPE err, char *string = 0){
switch(err){

case FILE_OPEN:
cout<<"\nCould not open "<<string;
break;

case INCOMPATIBLE_FILES:
cout<<"\ndata files containg p and r times are incompatible";
cout<<"\nno. of jobs and/or no. of instnances do not match";
break;

case MAX_JOB:

100

cout<<"\nMaximum allowable number of jobs is 30.";
break;

default:
cout<<"\nFatal error. ";

}
getch();
exit(0);

}

void copy(int *A, int *B){//copy contents of A into B
for(int i=1; i<=n_jobs; i++)

B[i] = A[i];
}

int cost(int *seq){//gives cost of a sequence
int cst, s_time;
s_time = r[seq[1]];
cst = s_time + p[seq[1]];
for(int i=2; i<=n_jobs; i++){

s_time = max(s_time + p[seq[i-1]],r[seq[i]]);
cst = cst + s_time + p[seq[i]];

}
return cst;

}

int odd(int x){
return (x/2 == (x+1)/2);

}

void read_header(ifstream& file, int *num_jobs, int *n_instances){
int i, j;
char ch, numstring[5];
for(i=1; i<=2; i++){

ch = file.get();
while(!isdigit(ch))

ch = file.get();
j=0;
numstring[j++] = ch;
ch = file.get();
while(isdigit(ch)){

numstring[j++] = ch;
ch = file.get();

}
numstring[j] = '\0';
if(i==1)

*num_jobs = atoi(numstring);
else *n_instances = atoi(numstring);

}
}

void read_row(int *A, int row_length, ifstream& file){
char ch, numstring[5];
int i, j;
for(i=1; i<=row_length; i++){

ch = file.get();
while(!isdigit(ch))

101

ch = file.get();
j=0;
numstring[j++] = ch;
ch = file.get();
while(isdigit(ch)){

numstring[j++] = ch;
ch = file.get();

}
numstring[j] = '\0';
A[i] = atoi(numstring);

}
}

void write_row(int *A, int row_length, ofstream& file){
int i, j, k, len;
char numstring[5];
for(i=1; i<=row_length; i++){

itoa(A[i], numstring, 10);
j=0;
while(numstring[j] != '\0')

file.put(numstring[j++]);
for(k = j; k<=7; k++)//do format by inserting blanks

file.put(' ');
}

}

void write_string(char *string, ofstream& file){
int i=0;
while(string[i] != '\0')

file.put(string[i++]);
}

int read_num(ifstream& file){
char ch, numstring[5];
int j;
ch = file.get();
while(!isdigit(ch))

ch = file.get();
j=0;
numstring[j++] = ch;
ch = file.get();
while(isdigit(ch)){

numstring[j++] = ch;
ch = file.get();

}
numstring[j] = '\0';
return atoi(numstring);

}

void write_num(int num, ofstream& file){
char numstring[5];
itoa(num, numstring, 10);
int i=0;
while(numstring[i] != '\0')

file.put(numstring[i++]);
}

