

Lock Based Concurrency Control and Deadlock Detection In **Distributed Database System**

Dissertation

Submitted To

Central Department of Computer Science and Information Technology Institute of Science and Technology Tribhuvan University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

In

Computer Science and Information Technology

By Kamal Raj Sharma

March, 2008

Kirtipur, Nepal

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Date:

LETTER OF RECOMMENDATION

Mr. *Kamal Raj Sharma* has carried out this thesis work entitle "Lock Based Concurrency Control and Deadlock Detection in Distributed Database System" under my supervision and guidance. In my best knowledge this thesis successfully completed which fulfills the requirements for the aware of the Degree of Master's in Computer Science and Information Technology, therefore I recommended for further evaluation.

Asso. Prof .Dr. Subarna Shakya Department of Electronics and Computer Engineering Pulchowk Campus, Pulchowk (Supervisor)

Institute of Science and Technology

Central Department of Computer Science and Information Technology

We certify that we have read this dissertation work and in our opinion it is satisfactory in the scope and quality as a dissertation as the partial fulfillment of the requirement of Master of Computer Science and Information Technology from Tribhuvan University, Nepal.

Evaluation Committee

Dr. Tanka Nath Dhamala Head, Central Department of Computer Science and Information Technology Tribhuvan University, Kirtipur

Asso. Prof. Dr. Subarna Shakya Department of Electronics and Computer Engineering Pulchowk Campus, Pulchowk (Supervisor)

(External Examiner)

(Internal Examiner)

Date:

Abstract

This study examines Lock based Concurrency algorithms for distributed database system. This study includes basic Lock Manager, Strict Two-Phase Locking and Centralized Two-Phase Locking algorithms and implementation of CLPL in distributed database system where Lock Manager is centralized and Transaction Manager is distributed. Numbers of experiments are performed to evaluate the locking algorithm on the behaviors of transaction. This study also includes a distributed deadlock detection algorithm and its implementation.

Acknowledgements

I would like to thank my advisor, Asso. Prof. Dr. Subarna Shakya (Department of Electronics and Computer Engineering, Pulchowk Campus, Pulchowk) for this constant support and guidance for his dissertation. I have learned many principles on performing good research from him. I am thankful to Dr. Tanka Nath Dhamala (Head, CDCSIT-TU) for his inspiration and encouragement throughout the work as well as his continuous support throughout two years of Master degree.

At this time, I have no words to fully express my gratitude to the respected teachers, Professor Dr. Devi Dutta Paudyal, Professor Dr. Shashidhar Ram Joshi, Dr. Onkar P. Sharma (Marist College, USA), Mr. Arun Timalsina, Mr. Sudarshan Karanjit, Mr. Min Bahadur Khati, Mr. Samujjwal Bhandari, Mr. Bishnu Gautam, Mr. Hemanta G.C., Mr. Dinesh Bajracharya and others for the knowledge and inspirations they gave to me in the time period of two years.

I would like to thank my beautiful wife Mrs. Kabita Pokharel and my friends Mr. Shishir Paudyal, Mr. Madhav Dhakal, Mr. Arjun Singh Saud, Mr. Hikmat Rokaya, Mr. Murari Acharya, Mr. Navaraj Vinady and others for their cooperation in this work.

At last but not the least, I wish to express my gratitude to my parents and all my family members without whose support and encouragement, this work would not have been completed.

Kamal Raj Sharma

ABBREVIATIONS

DBMS Data	tabase Management System
2PL Two	o-Phase Locking
S2PL Strie	ct Two-Phase Locking
C2PL Cen	ntralized two-Phase Locking
LM Loc	ck Manager
TM Tra	nsaction Manager
RM Rec	covery Manager

CONTENTS

ABSTRACT	IV
ACKNOWLEDGEMENT	V
ABBREVIATONS	VI
CONTENTS	VII
LIST OF TABLES	IX
LIST OF FIGURES	Х
1 Introduction	1-4
1.1 Introduction	1
1.2 Objective of the Study	2
1.3 Significance and Limitations of the Study	2
1.4 Thesis Structure	2
1.5. Problem definition	4
1.6 Literature Survey	4
2 Components of a Distributed Database	5-11
2.1 Introduction	5
2.2 Homogeneous and Heterogeneous Database	7
2.3 Distributed Database System Architecture	7
2.3.1 The Scheduler and Data Manager	8
2.3.2 Transaction Manager	10
2.3.3 Transaction coordinator	11
3 Transaction Processing	12-19
3.1 Motivation	12
3.2 Transaction	12
3.3 Distributed Transaction- Processing Model	14
3.4 Properties of Transaction	16
3.4.1 Atomicity	16
3.4.2 Consistency	17
3.4.3 Isolation	17
3.4.4 Durability	19

4 Concurrency Control Problems	20-30
4.1 Introduction	20
4.2 Concurrency Control Problems	20
4.2.1 Dirty Read Problem	21
4.2.2 Lost Update Problem	22
4.2.3 Non-Repeatable (Fuzzy) Read Problem	23
4.2.4 Phantom Problem	24
4.2.5 Inconsistent Retrievals	25
4.3 Non Recoverability and Cascading Aborts as a Concurrency Control Problem	26
4.4 Avoiding Cascading Aborts and Ensuring Recoverability	29
4.5 Strict Execution	30
5 Serializability	31-37
5.1 Introduction	31
5.2 Serializability Theory	32
5.3 Serial Schedule	36
6 Concurrency Control via Locking	38-56
6.1 Introduction	38
6.2 Locking Principle	38
6.2.1 Two-Phase Locking	43
6.2.2 Strict Two-Phase Locking	45
6.3 Deadlock Detection	55
7 Implementation and Testing	57-59
7.1 Implementation	57
7.2 Program Structure	57
7.3 Testing	58
7.4 Output Analysis	61
8 Conclusions and Further Recommendations	62-63
8.1 Conclusions	62
8.2 Further Recommendations	62
References	64-68

LIST OF TABLES

TABLE	TITLE	PAGE NO.
Table4.1	Schedule illustrating dirty read problem	21
Table4.2	Schedule illustrating Lost Update problem	22
Table4.3	Schedule illustrating Fuzzy read problem	23
Table4.4	Schedule illustrating Phantom problem	24
Table4.5	Schedule illustrating Inconsistent Retrievals	25
Table4.6	Schedule illustrate Cascading Abort	27
Table4.7	Schedule illustrate non recoverable schedule	28
Table4.8	Schedule illustrate Cascading Aborts Schedule	29
Table4.9	Cascadelessnes Schedule	30
Table6.1	Compatibility of lock modes	39

LIST OF FIGURES

FIGURE TITLE PAGE NO.

Figure 2.1	A distributed System	6
Figure2.2	Distributed System Architecture	8
Figure2.3	Processing Operations	9
Figure2.4	Handshaking	10
Figure4.1	Lost Update Problem	23
Figure4.2	Inconsistent Retrievals	26
Figure5.1	DAG Representation of a complete schedule	34
Figure5.2	A complete schedule	35
Figure5.3	Prefix of a complete schedule	35
Figure6.2	2PL Lock Graph	44
Figure6.3	Strict 2PL Lock Graph	45
Figure6.4	Communication Structure of C2PL	50
Figure6.5	A WFG example	56
Figure 7.1	Simple Program Structure	57
Figure 7.2	Client1 and Client2 are ready to accept any transaction	59
Figure 7.3	Client1 and Client2 are in deadlock	60
Figure 7.4	Deadlock in two clients	61