
Chapter 1 

Introduction 
 

1.1 Introduction 
 
Database is the collection of related data that represents some aspect of real world. In 

another term, database is the source of data with which the interested user can interact to 

find some useful information in a systematic way. As database can be of any size and of 

varying complexity, database and database system have become an important aspect of 

everyday life in modern society. In addition, recent progress in communication and 

database technologies has changed the environment in which the user data is processed. 

Nowadays, user applications require data access from various data sources. These data 

sources may be located in different environments and distributed over the network. 

Furthermore, a database offers many advantages compared to a simple file system with 

regard to speed, accuracy, and accessibility such as: shared access, minimal redundancy, 

data consistency, data integrity, and controlled access. All of these aspects are enforced 

by a database management system. “A distributed database (DDB) is a collection of 

multiple, logically interrelated databases distributed over a computer network. A 

DDBMS is the software system that permits the management of DDBs and makes the 

distribution transparent to the user.” A Distributed System is a number of autonomous 

computers communicating over a Network with software for integrated tasks. In short a 

distributed database is a collection of databases that can be stored at different computer 

network sites. Each database may involve different database management systems and 

different architectures that distribute the execution of transactions [7]. The objective of a 

distributed database management system (DDBMS) is to control the management of a 

distributed database (DDB) in such a way that it appears to the user as a centralized 

database [18]. 
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1.2 Objective of the Study 

The specific objective of this study was to develop and to analyze a lock based 

concurrency control algorithm (Two-Phase) in distributed database system.  The general 

objectives of this study were stated as: 

1. To analyze the distributed database system architecture,  

2. To differentiate the distributed database from other database systems.  

3. To find out the necessity of different transaction management model for 

distributed database, and 

4. To find out the deadlock problem in distributed database. 

 

1.3 Significance and Limitations of the Study 

This study focuses on the concurrency control (Two-phase locking algorithm) for 

distributed database system. This also introduces the basic concepts associated with the 

distributed database environment and its architecture.  Every research work has to face 

some limitations. This study was completed within a confined time with limited 

resources. However, the researcher had tried to make every possibility to carry out the 

study works more accurately as far as possible rather than just being perfunctory.   

 

1.4 Thesis Structure 

This section introduced some idea about the distributed database system and motivation 

behind this. This section also presented some aspects of this study. 

 

Chapter 2 “Components of Distributed Database” includes an introduction to the 

distributed database, a discussion on the distinguishing features of the system, and 

describes different components and distributed database system architecture including 

transaction manager and scheduler. 
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Chapter 3 “Transaction Processing” describes different properties of transaction and how 

transaction takes place in distributed database management system. 

 

Chapter 4 “Concurrency Control Problem” describes the major concurrency control 

problem: dirty read problem, fuzzy read problem, lost update problem, inconsistent 

retrievals problem and phantom problem. These problems are generally arises in database 

management system due to concurrent access in database system. Concurrency control 

algorithms must deals with these problems to ensure database consistency. Moreover, this 

chapter describes non-recoverability and cascading abort as a concurrency control 

problems.  

 

Chapter 5 “Serializability” describes Serializability theory in detail, describes Serial 

schedule, Serializability test and Recoverability. Serializability is a major correctness 

criteria of concurrent control problems. Execution history of each concurrency control 

algorithm must be serializable to ensure the correctness of concurrency control algorithm. 

 

Chapter 6 “Concurrency Control via Locking” describes the locking principle and various 

concurrency control algorithms in locking protocol. 2PL is a major concurrency control 

algorithm in locking, it describes in detail including Transaction manager and Lock 

manager’s algorithm. This chapter also describes deadlock management and detection 

technique. 

 

Chapter 7 “Implementation and Testing” has described a complete organization of the 

program to implement the model presented in the sixth chapter. Sample testing and 

output analysis has been presented in this chapter. 

 

Chapter 8 “Conclusion and Further Recommendations” has presented the concluding 

remarks of this study and future work on the concurrency control in distributed database 

management system. 
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1.5. Problem definition 

 
Distributed concurrency control, by contrast, is in a state of extreme turbulence. More 

than 20 concurrency control algorithms have been purposed for DDBMSs, and several 

have been, or are being implemented. These algorithms are complex, hard to understand 

and difficult to prove correct. We will introduce a standard terminology for describing 

DDBMS concurrency control algorithms and a standard model for the DDBMS 

environment. For analysis purpose we decompose the concurrency control problem into 

two major sub problems called read-write and write-write synchronization. Different 

researchers have published papers in the field of distributed database system in its 

transaction processing and concurrency control system. In the case of transaction of data,  

different problems occurs such as the unrepeatable read problem, the lost update problem, 

the temporary update problem, the incorrect summary problems etc. To solve such types 

of problems in data transaction, different researchers used different algorithms such as 

two phase locking techniques and timestamp based concurrency control algorithm.  The 

main purpose of concurrency control is to enforce isolation among conflicting 

transaction, to preserve database consistency through consistency preserving execution of 

transactions, to resolve read-write and write-write conflicts. 

 

We are able to show the different algorithms used in concurrency control of distributed 

database system and its implementation in   JAVA. 

 

1.6 Literature Survey  
 

In this phase, we shall study various research papers about the distributed database and 

we shall going to study other different texts and research papers in the transaction 

processing and concurrency control algorithms which helps us to complete our research 

work. 
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Chapter 2 

Components of  Distributed Database 
 

2.1 Introduction 
 
The database system components are the foundation for the study of concurrency control 

in database management system. This chapter briefly describes the distributed database 

system and its components providing the foundation for the study of concurrency control 

in database management system. 

 

In a distributed database system, the database is stored on several computers. The 

computers on a distributed database system communicate with one another through 

various communication media. The computers on a distributed database system are 

referred to by a number of different names, such as sites or nodes. In distributed database 

system there are mainly two types of transactions: local transactions and global 

transactions. A local transaction is one that accesses data only from sites where the 

transaction was initiated. A global transaction, on the other hand, is one that either 

accesses data in several different sites.  

 

There are several reasons for building distributed database systems, including sharing of 

data, autonomy and availability [42, 47]. 

 

1. Sharing data. The major advantage in building a distributed database system is 

the provision of an environment where users at one site may be able to access the 

data residing at other sites. For example, in a distributed banking system, where 

each branch stores data related to that branch, it is possible for a user in one 

branch to access data in another branch. 

 

2. Autonomy. The primary advantage of sharing data by means of data distribution 

is that each site is able to retain a degree of control over data that are stored 
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locally. In centralized system, the database administrator of the central site 

controls the database. In a distributed system, there is a global database 

administrator responsible for the entire system. A part of these responsibilities is 

delegated to the local database administrator for each site. Depending on the 

design of the distributed database system, each administrator may have a different 

degree of local autonomy. The possibility of local autonomy is often a major 

advantage of distributed databases. 

 

3. Availability. If one site falls in a distributed system, the remaining sites may be 

able to continue operating. In particular, if data items are replicated in several 

sites, a transaction needing a particular data item may find that item in any of 

several sites. Thus, the failure of a site does not necessarily imply the shutdown of 

the system.  

 

 

Site A      Site C  

   
                 Communication 

  Via network 

 

 
 

 

 

 

 

           Site B 

 
Figure 2.1 A distributed system. 
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2.2 Homogeneous and Heterogeneous Database 
 

In a homogeneous distributed database [20], all sites have identical database management 

system software, are aware of one another, and agree to cooperate in processing user’s 

requests. In such a system, local sites surrender a portion of heir autonomy in terms of 

their right to change schemas or datable management system software. The software must 

also cooperate with other sites in exchanging information about transactions, to make 

transaction processing possible across multiple sites. 

 

In a heterogeneous distributed database [17], different sites may use different schemas, 

and different database management system software. The sites may not be aware of one 

another, and they may provide only limited facilities for cooperation in transaction 

processing. In a heterogeneous distributed system, individual systems can have different 

architectures and query languages. 

 

2.3 Distributed Database System Architecture 
 

In general, database system consists four components: Transaction Manager(TM), 

Scheduler, Recovery Manager (RM) and Transaction Coordinator. Transaction Manager 

is responsible to perform any required preprocessing for database and transaction 

operations that receives from transaction. Scheduler is major component for concurrency 

control. It is responsible to control the relative order of database and transaction 

operations to execute. Recovery Manager (RM) is major component for recovery from 

failures. It is responsible [7, 17] to commit and abort the transaction. A transaction 

coordinator is responsible for coordinating the execution of all the transactions initiated at 

that site. 
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Figure2.2 Distributed Database System Architecture 

 

2.3.1 The Scheduler and Data Manager 
 

The scheduler is primary database system component for concurrency control. The 

scheduler controls the order in which DM's process Reads and Writes. When a scheduler 

receives a Read or Write operation, it can either output the operation right away (usually 

to a DM, sometimes to another scheduler), delay the operation by holding it for later 

action, or reject the operation. A rejection causes the system to abort the transaction that 

issued the operation: every Write processed on behalf of the transaction is undone 

(restoring the old value of the data item), and every transaction that read a value written 

by the aborted transaction is also aborted. This phenomenon of one abort triggering other 

aborts is called cascading aborts. (It is usually avoided in commercial DBS's by not 

allowing a transaction to read another transaction's output until the DBS is certain that the 

latter transaction will not abort.) In fact, scheduler is a program, based on concurrency 

control algorithms for serializable execution of database and transaction operations [36]. 

 

There are three basic actions scheduler performs once scheduler receives database and 

transaction’s operations from transaction. 
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Execute: Scheduler pass transaction’s operation to Data Manager (DM) to execute. When 

DM finishes execution of passed operation it informs scheduler. Moreover, if operation is 

read, it reads data value from database and it relays back to transaction. 

 

Reject: Scheduler may reject to process the operation which causes transaction to be 

aborted. Abort can be issued by transaction or TM. 

 

Delay: Scheduler may delays operation placing in a queue. Later scheduler can either 

execute or reject it.   

 

The three actions of scheduler are preliminary to control the order of execution of 

database and transaction’s operations. When it receives an operation from the transaction, 

it usually tries to pass it on the DM. if it is unable to execute without producing non-

serializable execution, either it delays or reject it. If scheduler finds possibility to 

correctly process operation in future it simply delays the operation. 

 
Figure: 2.3 Processing Operations 

 

The DM executes each Read and Write it receives. For Read, the DM looks in its local 

database and returns the requested value. For Write, the DM modifies its local database 

and returns an acknowledgment. The DM sends the returned value or acknowledgment to 

the scheduler, which relays it back to the TM, which relays it back to the transaction. 

DM's do not necessarily execute operations first-come-first-served. If a DM receives a 

Read(x) and a Write(x) at about the same time, the DM is free to execute these operations 
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in either order. If the order matters (as it probably does in this case), it is the scheduler's 

responsibility to enforce the order. This is done by using a handshaking communication 

discipline between schedulers and DM's (Figure 2.4): if the scheduler wants Read(x) to 

be executed before Write(x), it sends Read(x) to the DM, waits for the DM's response, 

and then sends Write(x). Thus the scheduler doesn't even send Write(x) to the DM until it 

knows Read(x) was executed. Of course, when the execution order doesn't matter, the 

scheduler can send operations without the handshake. Handshaking [8] is also used 

between other modules when execution order is important. To execute Read(x) on behalf 

of transaction 1 followed by Write(x) on behalf of transaction 2. 

  

Scheduler     DM
 

Send Read (x) 
       receive Read (x)  

           executive Read (x) 
        send value 

receive value 
send Write (x) 

  receive Write (x) 
        execute Write(x) 
        send ack 

 
Figure 2.4 handshaking 

 

2.3.2 Transaction Manager  
 

The major function of transaction manager is to establish the communication between 

user transaction and database. That is, transaction interacts with the database through a 

transaction manager (TM). The TM receives database and transactions operations issued 

by transactions and forwards them to the scheduler. If transaction is aborted transaction 

manager (TM) is responsible to resubmit the transaction to scheduler. In distributed 

database system environment TM is more responsible, it has to decide in which site 

transaction operation has to send for scheduler. TM supervises transactions. Each 

transaction executed in the distributed database management system is supervised by a 

single TM, meaning that thee transaction issues all of its database operations to that TM. 
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Any distributed computation that is needed to execute the transaction is managed by TM. 

Each site of a DDBS runs one or more of the following software modules (Figures2.2 and 

2.3): a transaction manager (TM), a data manager (DM) or a scheduler. Transactions talk 

to TM's; TM's talk to schedulers; schedulers talk among themselves and also talk to 

DM's: and DM's manage the data. 

 

Each transaction issues all of its Reads and Writes to a single TM. A transaction also 

issues a Begin operation to its TM when it starts executing and an End when it's finished. 

The TM forwards each Read and Write to a scheduler. (Which scheduler depends on the 

concurrency control algorithm; usually, the scheduler is at the same site as the data being 

read or written. In some algorithms, Begins and Ends are also sent to scheduler). 

 

The transaction manager [25] manages the execution of those transactions that access 

data stored in local site. Each such transaction may be either a local transaction (that is, a 

transaction that executes at only that site) or part of a global transaction (that is, a 

transaction that executes at several sites). Each transaction manager is also responsible 

for 1) maintaining a log for recovery purposes 2) participating is an appropriate 

concurrency control scheme to coordinate the concurrent execution of the transactions 

executing at that site. 

 

2.3.3 Transaction Coordinator 
 

The transaction coordinator coordinates the execution of the various transactions (both 

local and global) initiated at that site. The transaction coordinator [19] subsystem is not 

needed in the centralized environment, since a transaction access data at only a single 

site. For each such transaction, the coordinator is responsible for 

1. Starting the execution of the transaction. 

2. Breaking the transaction into a number of sub transactions and distributing these 

sub transactions to the appropriate sites for execution. 

3. Coordinating the termination of the transaction, which may result in the 

transaction being committed at all sites or aborted at all sites. 
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Chapter 3 

Transaction Processing 

 
3.1 Motivation 
 
Concurrency is a mandatory property of a database system it must allow by the database 

system. In concurrent environment, read and write operation of one database user may 

interface with other. Due to interference only some read/write operations of database user 

may execute rest of read/write operations could not be executed since database system 

assumes each read/write operation as individual and independent task. if all read and 

write operations are issued by database user are really independent in nature, partial 

execution of read/write operations does not create big problem. But in reality, each 

database read or write operations really represent a complete task of database user. In 

such situation, it may lead inconsistency problem [9, 35]. This really demands 

encapsulation of set of database operations which can perform a complete task. In fact, 

transaction is initiated with this concept. It isolates set of database operations providing 

set of operations as a single unit. If any one of the operations that exists in set of database 

operation could not execute either because of concurrent transaction interface or because 

of failure, database system ignores set of all operations that exist. This helps to ensure 

consistency of database in concurrent environment. That is the major motivation of 

transaction is to ensure consistency allowing concurrent execution. 

 

3.2 Transaction 
 

Users interact with the DDBS by executing programs called transactions. A transaction 

only interacts with the outside world by issuing Reads and Writes to the DDBS or by 

doing terminal I/O. A transaction [25] is a unit of program consisting set of database 

operations whose execution may change the database state. Transaction can also define as 

a collection of actions that make consistent transformations preserving database 

consistency. To ensure consistency of database before and after execution of transaction, 
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it needs to be atomic. Read, Write, Commit and Abort are major database operations that 

exist in transaction. 

 

Formal Definition of Transaction 

 

We can define a transaction  as a partial ordering over its operation and the termination 

condition. A partial order P = {

iT

p,∑ } defines an ordering among elements of ∑ (called 

domain) according to an transitive binary relation  defined over ∑. ∑ consists of the 

operations and termination condition of a transaction, whereas  indicates the execution 

order of these operations. Formally, then, a transaction Ti as a partial order Ti= { }, 

where, 

p

p

ji p,∑

 

1. =  i∑ }{ ii NOS ∪

2. For any two operations kiij OO , iOS∈ , if )}()({ xorWxROij = and  for 

any data item x, then either  

)(xWOik =

ijiikikiij OorOOO pp

3.  iiijiij NOOSO p,∈

 

Where  denote some operation of transaction  that operates on a database 

entry x. {read, write}. Operations are assumed to be atomic. denote the set of 

all operations in  (i.e.,  =  ( ). And  denote the termination condition 

for , where {abort, commit}. 

)(xOij jO iT

∈ijO iOS

iT iOS ijij O∪ iN

iT ∈iN

 

The first condition formally defines the domain as the set of read and write operations 

that make up the transaction, plus the termination condition, which may be either commit 

or abort. The second condition specifies the ordering relation between the conflicting 

read and write operations of the transaction, while the final condition indicates that the 

termination condition always follows all other operations. 
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Example 3.2.1 

ple transaction T that consists of following steps: 

 

he specification of this transaction according to the formal notation is: 

 = {R(x), R(y), W(x), C} 

(x)), (W(x), (CT)), (R(x), C), (R(y), C)} 

W

.3 Distributed Transaction- Processing Model 

ransaction processing in a distributed environment [7] differs from that in a centralized 

Consider the sim

Read (x) 

Read (y) 

x ← x + y

Write (x) 

Commit 

 

T

 

∑

p= {(R(x), W(x)), (R(y), W

here ( ji OO , ) as an element of the p  relation indicates that ji OO p . 

 

3
 

T

one in two areas: handling private workspace and implementing two phase commit. In a 

centralized DBMS we assumed that (1) private workspaces were part of the TM, and (2) 

data could freely move between a transaction and its workspace, and between a 

workspace and the DM. These assumptions are not appropriate in a DDBMS because 

TMs and DMs may run at different sites and the movement of data between a TM and a 

DM can be expensive. To reduce this cost, many DDBMSs employ query optimization 

procedures which regulate the flow of data. The problem of atomic commitment is 

aggravated in a DDBMS by the possibility of one site failing while the rest of the system 

continues to operate. Suppose T is updating x, y, z stored at DMx, DMy, DMz, and 

suppose T's TM fails after issuing dm-write(x), but before issuing the dm-writes for y and 

z. At this point the database is incorrect. In a centralized DBMS this phenomenon is not 

harmful because no transaction can access the database until the TM recovers from the 

failure. However, in a DDBMS, other TMs remain operational and can access the 

incorrect database. To avoid this problem [7, 18], prewrite commands must be modified 
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slightly. In addition to specifying data items to be copied onto secure storage, pre writes 

also specify which other DMs are involved in the commitment activity. Then if the TM 

fails during the second phase of  two-phase commit, the DMs whose dm-writes were not 

issued can recognize the situation and consult the other DMs involved in the 

commitment. If any DM received a dm-write, the remaining ones act as if they had also 

received the command.  

 

As in a centralized DBMS, a transaction T accesses the system by issuing BEGIN, 

EGIN: The TM creates a private workspace for T. We leave the location and 

EAD(X): The TM checks T's private workspace to see if a copy of X is present. If so, 

 

RITE(X, new-value): The value of X in T's private workspace is updated to new value, 

ND: Two-phase commit begins. For each X updated by T, and for each stored copy

y

w

execution is finished. 

READ, WRITE, and END operations. In a DDBMS these are processed as follows. 

 

B

organization of this workspace unspecified. 

 

R

that copy's value is made available to T. Otherwise the TM selects some stored copy of 

X, say ix , and issues dim-read ( ix ) to the DM at which x, is stored. The DM responds by 

retrieving the stored value of ix rom the database, placing it in the private workspace. 

The TM returns this value to T.

 

 f

W

assuming the workspace contains a copy of X. Otherwise; a copy of X with the new value 

is created in the workspace. 

 

E  ix  

of X, the TM issues a prewrite ( ix ) to the DM that stores xi. The DM responds b  

copying the value of X from T's private workspace onto secure storage internal to the 

DM. After all prewrites are processed, the TM issues dm-writes for all copies of all 

logical data items updated by T. A DM responds to dm-write ( ix ) by copying the value of 

ix  from secure storage into the stored database. After all dm- rites are installed, T's 
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3.4 Properties of Transaction 

 

 

f transaction and its actions are not visible to 

ther transactions or database users until transaction terminates. That is, partial changes 

the fact that a transaction is treated as a unit of operation. Therefore, 

ither all the transaction’s actions are completed, or none of them are. This is also known 

 

 

The definition of transaction tells states o

o

made by transaction are not visible outside this transaction. Only when transaction 

terminates, database users notified its success or failure and changes made by transaction 

are made visible. We already discuss that these are the foundation for concurrency 

control. To achieve these characteristics, transaction should have atomicity, consistency, 

isolation, and durability properties, called ACID properties [47, 15, 25, 27] of transaction.  

 

3.4.1 Atomicity 
 

Atomicity refers to 

e

as the “all-or-nothing property”. We have just extended the concept of atomicity from 

individual operations to the entire transaction. Atomicity requires that if the execution of 

a transaction is interrupted by any sort of failure, the DBMS will be responsible for 

determining what to do with the transaction upon recovery from the failure. There are, of 

course, two possible courses of actions: it can either be terminated by completing the 

remaining actions, or it can be terminated by undoing all the actions that have already 

been executed. A transaction itself may fail due to input data errors, deadlocks, or others 

factors. Maintaining transaction atomicity in the presence of this type of failure is 

commonly called the transaction recovery. Let us consider a task, which is responsible to 

transfer funds from account A to B. Assume that failure occurs (power failure or 

hardware failure or software error) immediately account A is updated but before update 

perform in account B. Definitely, such incomplete transaction leads database in 

inconsistent state such incomplete execution of transaction’s effect should wipe out. 

Transaction’s atomicity property does not allow violating such integrity [9, 35]. 

Transaction Manager (TM) is responsible for ensuring atomicity property of transaction.  
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3.4.2 Consistency  
 

The consistency property [19, 20] of transaction ensures transaction should preserve 

onsistency of database during its execution. The consistency of a transaction is simply 

 words, a transaction is a correct program that maps one consistent 

atabase state to another. A correct execution of the transaction must take the database 

ns which requires each transaction to be consistent 

atabase at all times. In other word, an executing transaction cannot reveal its result to 

ansactions before its commitment. There are a number of reasons for 

sisting on isolation. One has to do with maintaining the inter consistency of 

Read (x)   Read (x) 

 x ← x + 1   x ← x + 1 

Write (x)   Write (x) 

The following is one possible sequence of execution of the actions of these transactions: 

T1: Write(x) 

c

its correctness. In other

d

from one consistent state to another. 

 

3.4.3 Isolation 

 
Isolation is the property of transactio

d

other concurrent tr

in

transactions. If two concurrent transactions access a data item that is being updated by 

one of them, it is not possible to guarantee that the second will read the correct value. A 

transaction should not make its updates visible to other transactions until it is committed. 

The database system component scheduler is responsible for ensuring isolation property 

of transaction. 

 

Example 3.4.3.1 

T1    T2

Commit   Commit 

 

T1: Read(x) 

T1: x ← x + 1 

 17



T1: Commit 

 

In this case there are no prob tion T1 and T2 are executed one after the other 

and transaction T2 reads 51 a . If T2 executes before T1, T2 reads 51 as the 

value of x. So, if T1 and T2 a e after other, the second transaction will read 

51 as the value of x and x w  its value at the end of execution of these two 

transactions. However, since transactions are executing concurrently, the following 

 

T2: x ← x + 1 

In this case, transaction T2 re alue of x. This is incorrect since T2 reads x 

while its value is being chan o 51. Furthermore, the value of x is 51 at the 

end of execution of T1 and T2 ite will overwrite T1’s write.  

 

The problems occurs in these examples will be explain in next chapter (concurrency 

T2: Read(x) 

T2: x ← x + 1

T2: Write(x) 

T2: Commit 

 

lems: transac

s the value of x

re executed on

ill have 52 as

execution sequence is also possible: 

 

T1: Read(x) 

T1: x ← x + 1 

T2: Read(x) 

T1: Write(x)

T2: Write(x) 

T1: Commit 

T2: Commit 

 

ads 50 as the v

ged from 50 t

 since T2’s wr

control problem). 
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3.4.4 Durability 

 
Durability [21] refers to that property of transactions which ensures that once a 

ansaction commits, its result are permanent and cannot erased from the database. Or, 

nce a transaction changes the database and the changes area committed, these changes 

cause of subsequent failure. The recovery manager is responsible for 

nsuring durability property of transaction. A simple ides for ensuring durability property 

 

tr

o

must never be lost be

e

of transaction is to keep the log of all changes carried out before writing the effect of 

updated transaction to disk. The concept of log can use by TM to restore the database 

state during the system failure or system restart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 19



Chapter 4 

oncurrency Control Problems 

.1 Introduction 

sses to the distributed database, 

nerally database system allows 

ultiple transactions to run concurrently. An important consideration in the design of 

 concurrency control. The concurrency control is that portion of 

e system that is concerned with deciding what actions should be taken in response to 

nical difficulty in attaining this goal is to prevent database updates performed 

C
 
4
 

Concurrency control involves the synchronization of acce

such that the integrity of the database is maintained. Ge

m

distributed systems is the

th

requests by the individual processes to read and write into the database. Concurrency 

control is the activity of coordinating concurrent access to a database in a multi-user 

database management system (DBMS). Concurrency control permits users to access a 

database in a multi- programmed fashion while preserving the illusion that each user is 

executing alone on a dedicated system. The goal of concurrency control is to prevent 

interference among users who are simultaneously accessing a database [3, 12]. The 

concurrency control is concerned with avoiding deadlocks or similar occurrences and 

with maintaining the consistency of the database. The concurrency control has the same 

task whether the database is centralized or distributed. Concurrent execution of 

transaction in database system improves database system performance, reducing 

transaction waiting time to proceed. It improves resource utilization. But it may leads 

database inconsistent state due to interference among actions of concurrent transactions. 

Concurrent execution of transaction in database system leads several concurrency control 

problems [35] that may generally arise in concurrent execution will discuss in this 

chapter. 

 

4.2 Concurrency Control Problems 
Concurrency control permits users to access a database in a multi-programmed fashion 

while preserving the illusion that each user is executing alone on a dedicated system. The 

main tech
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by one user from interfering with database retrievals and updates performed by another. 

ted in a distributed DBMS (DDBMS) 

re transaction T1 modifies a data item value, 

hich is then read by another transaction T2 before T1 performs a Commit or Abort. In 

hich never exists in the database.  

A precise specification of this phenomenon as follows: 

et us examine a concurrent schedule that demonstrates a possible dirty read problem. 

2

The concurrency control problem [35] is exacerba

because (1) users may access data stored in many different computers in a distributed 

system, and (2) a concurrency control mechanism at one computer cannot instantaneously 

know about interactions at other computers. 

 

4.2.1 Dirty Read Problem 

 
Dirty data refer to the data items whose values have been modified by a transaction that 

has not yet committed. Consider the case whe

w

case T1 aborts, T2 has read value w

 

……, W1(x), ……, R2(x), ……., C1(or A1),…..,C2(or A2) 

Or  

……, W1(x), ……., R2(x), ……., C2(or A2),…..,C1(or A1)  

 

L

T1 T

Write1(x)  

 Read2(x) 

 Write2(y) 

Abort1  

 
le 4.1 Schedule illustrating rty read problem. 

 

Since T2 read x (dirty read) that was already written by T1 but not committed yet T1 

aborts also cause T  to be abort, changes m de by T2 is never committed. Dirty read 

problem in concurrent execution occur if transaction T reads uncommitted transaction 

nd subsequently aborts before T’s commit [9]. Similar case is shown in above schedule. 

Tab  di

2 a

a

 21



4.2.2 Lost Update 

 

hen update made by T1 is lost [35]. Let us consider a 

onstrates lost update problem.  

Problem 
 

If two or more transaction modifies data item x at a time then lost update problem occurs, 

update made by one transaction may overwrite by other transaction update. If T1 updates 

x but not committed yet, before T1 commit, if another transaction T2 update x and

eventually T2 commits before T1 t

schedule which dem

 

T1 T2

Read1(x)  

 Read2(x) 

Write1(x)  

 Write2(y) 

 Commit2

 
Table 4.2 Schedule illustrating roblem. 

 

Initially T1 and T2 read same data value of x. when T2 commits, T1’s write to x is 

overwritten by T ’s write x. 

Anomaly: Lost Updates 

 Suppose customers simultaneously try to deposit money into the same account. In the 

absence of concurrency control, these two ac e (Figure 4.1). The two 

ers could read the account balance at approximately the 

and then store the balances back into the 

ers deposited money, the database 

; the other deposit is lost by system. 

 Lost Update p

2

tivities could interfer

ATMs handling the two custom

same time, compute new balances in parallel, 

database. The effect is incorrect: although two custom

only reflects one activity
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Figure: 4.1 Lost Update Problem [7]. 

 

4.2.3 Non-Repeatable (Fu
 

r transaction T2 then modifies or 

eletes that data item and commits. If T1 then attempts to reread the data item, it either 

r  

 

s examine a concurrent schedule that demonstrates a possible fuzzy read problem. 

2

zzy) Read Problem 

Suppose a transaction T1 reads a data item value. Anothe

d

reads a different value or it cannot find the data item at all; thus two reads within the 

same transaction T1 returns different results.  

A precise specification of this phenomenon is as follows: 

 

……, R1(x), ……, W2(x), ……., C1(or A1),…..,C2(or A2) 

O

……, R1(x), ……., W2(x), ……., C2(or A2),…..,C1(or A1)

Let u

T1 T

Read1(x)  

 Write2(x) 

 Commit2

Read1(y)  

Write1(x +y→ z)  

Commit1  

 

  Table 4.3 Schedule illustrating Fuzzy read problem. 
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4.2.4 Phantom Problem 

mic; meaning is that there are no fixed numbers of records 

 which we always perform query to update and to retrieve required data. In normal, we 

r  

ed to store their sum in z 

nd T2 is responsible to delete the data item x. assume possible concurrent schedule with 

T1 T2

 

Most of the databases are dyna

in

need to add, remove or moved data within database. Such database is called dynamic 

database [39, 45]. In dynamic database phantom problem may arise. When T1 does a 

search with a predicate and T2 inserts new tuples that satisfy the predicate. The predicate 

specification of this phenomenon is (where P is the search predicate). 

 

……, R1(P), ……, W2(y in P), ……., C1(or A1),…..,C2(or A2) 

O

……, R1(P), ……., W2(y in P), ……., C2(or A2),…..,C1(or A1) 

 

Suppose T1 is responsible to read data values of x and y then ne

a

T1 and T2 as below. 

 

 

Read1(x)  

 Delete2(x) 

 Commit2

Read1(y)  

Write1(x +y→ z)  

Commit1  

 
Table 4.4 Schedule illust ting Phantom problem. 

 
ra
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Initially T1 reads data value of x and keep it to add with data value of y but immediately 

T2 deletes data item x before T1 store sum of x and y to z. when T1 commits T1 stores 

sum of x and y even data item x is no longer exist in database. 

 

4.2.5 Inconsistent Retrievals 

 
Some problems that occur when concurrent execution is uncontrolled. Suppose  two 

transactions T1 and T2 are two execute simultaneously.  

 

 T1 T2

 Sum=0 

Read(A) 

Sum= Sum+A 

Read(X)  

X= X-N  

Write(X)  

 Read(X) 

Sum= Sum+X 

Read(Y) 

Sum= Sum+Y 

Read(Y) 

Y=Y+N 

Write(Y) 

 

 
Table 4.5 Schedule illustrating Inconsistent Retrievals 

 

T2 reads X after N is subtracted and reads Y before N is added; a wrong summary is the 

result (off by N). 

Anomaly: Inconsistent Retrievals [7]. 

Suppose two customers simultaneously execute the following transactions. 

Customer 1: Move $1,000,000 from savings account to its checking account. 
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Customer 2: Print total balance in savings and checking. 

The first transaction might read the savings account balance, subtract $1,000,000, and 

store the result back in the database. Then the second transaction might read the savings 

and checking accounts balances and print the total. Then the first transaction might finish 

the funds transfer by reading the checking account balance, adding $1,000,000, and 

finally storing the result in the database. Unlike Lost Update Anomaly, the final values 

placed into the database by this execution are correct. Still, the execution is incorrect 

because the balance printed by Customer 2 is $1,000,000 short. 

 

 
Figure 4.2 Inconsistent Retrievals [7] 

 
 
 
4.3 Non Recoverability and Cascading Aborts as a 
Concurrency Control Problem 
 
 
When transaction T aborts, database system must undo its effects for each data item 

updated by T. That is, database system need to rollback T’s effect from database during 

abort of T. There are two possible effect of transaction T. T may effects on data value 
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written in the database or it may also effects on other transaction. In both case, aborted 

transaction’s effects should undo from database. If aborted transaction may trigger further 

abortion, it is known as cascading abort. 

 

Let us consider a schedule which illustrates cascading abort. Assume x and y are data 

items having initial data value 1 for both x and y. 

  

 

T1 T2

Write1(x,2)  

 Read2(x) 

 Write2(y,3) 

Abort1  

 

Table 4.6 Schedule illustrate Cascading Abort 

 

In the above schedule, when transaction T1 aborts database system must restore update 

made by T1. That is, database system must undo Write1(x, 2) restoring x=1. Restoring the 

update made by T1 is not sufficient since T2 reads value of x written by T1, T2 also need 

to abort. That is, database system need to undo Write2 (y, 3) restoring y=1. Even 

cascading abort maintain consistency of database by aborting series of transactions, it is 

in fact a concurrency control problem. Cascading abort is really unpleasant. This can be 

consider as a concurrency control problem because it required significant bookkeeping to 

track which transactions reads from which others, single transactions abortion force to 

abort one or more other transactions; which is very expensive. 

 

Cascading abort is not always possible. Durability property of transaction tells once a 

transaction is committed, the database system must guarantee it could not abort. There 

would be a situation that where cascading abort required but not possible. This usually 

happen if transaction Tj reads changes made by other transaction Ti and Ti aborts after 

Tj’s commit. Let’s examine such situation by the following schedule. 
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T1 T2

Write1(x,2)  

 Read2(x) 

 Write2(y,3) 

 Commit2

Abort1  

 
Table 4.7 Schedule illustrate non recoverable schedule 

 

Here, once transaction T1 aborts, T2 need be aborted but it violets durability property of 

transaction. T2 is already committed before T1 aborted. So here, cascading abort is not 

possible. Here schedule demands cascading abort but it is not possible, such schedule 

called non recoverable schedule. Non-recoverability is in fact concurrency problem and 

recoverability is required property for concurrency control. Non-recoverable execution is 

more danger than cascading abort. Cascading abort is expensive but it does not violate 

transaction property (durability property o transaction). 

 

Formally, recoverable schedule is defined as follows. 

 

Suppose transaction Tj reads x that was written by transaction Ti in the execution then 

schedule S is called recoverable if it follows following conditions. 

1. Tj reads x after Ti has written into it. 

2. Ti does not abort before Tj reads x and  

3. Every transaction (if any) that write x between Ti writes x and Tj reads x, aborts 

before Tj read x. 

 

It indicates that, for recoverable execution if Tj reads from Ti then Tj must follow Ti’s 

commit. An execution is recoverable if database system always able to reverse the effects 
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of aborted transaction on other transaction [39]. Recoverability is required to ensure 

aborting transaction does not change the semantics of committed transaction’s operations. 

 

4.4 Avoiding Cascading Aborts and Ensuring Recoverability 
 

We already discuss that cascading abort and non-recoverable execution are concurrency 

problems [1, 35], it should avoid during concurrent execution. 

 

Cascading aborts can avoid if database ensures that every transaction read only those data 

values that were written by committed transactions. To achieve cascadelessness, database 

system need to delay each Read(x) until transaction that has previously issued a Write(x, 

val) have either aborted or committed. Avoiding cascading abort also ensures 

recoverability but enforcing recoverability does not remove the possibility of cascading 

aborts. Let us reexamine the schedule define in table. 

 

T1 T2

Write1(x,2)  

 Read2(x) 

 Write2(y,3) 

 Commit2

Abort1  

 
Table 4.8 Schedule illustrate Cascading Aborts Schedule 

 

Here, this schedule is not cascadelesness and not recoverable. To achieve cascadelessness 

Read2(x) must wait till T1’s abort. And definitely it ensures recoverability as well as 

cascadelessness. In the above schedule if T1 aborts just before T2’s commits, then 

schedule becomes recoverable but it does not avoids cascading aborts, abortion of Ti lead 

T2 to abort. 
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4.5 Strict Execution 
 

From the practical point of view, avoiding cascading aborts is not always enough [39]. A 

further restriction on execution is often desirable. The cascadelessness schedule only 

enforces transaction could not read data item x that was already written by uncommitted 

transaction. But it does not enforce transaction could not write x that was already written 

by uncommitted transaction. Lets examine cascadelessness schedule how it can lead 

problem in concurrent execution. 

 

 T1 T2

Write1(x,2)  

 Write2(y,3) 

Abort1  

 
Table 4.9 Cascadelessnes Schedule 

 

Here, T2 didn’t read x that already written by T1 so schedule is cascadelessness. 

According to the definition of cascadelessness schedule, it needs not to enforce T2 to 

abort but T2’s write may dependent to T1’s write. If so such cascadlessness schedule may 

cause problem. Let’s look the scenario more precisely, assume that initial value of x is 

say 50. Transaction T1 is responsible to add 20 in x and transaction T2 is responsible to 

add say 5% of current value of x then T2’s write becomes logically invalid when T1 

aborts but T1 does not to enforce T2 abort. 

 

The strict execution is serious about such problem. Strict execution delays T2’s write to x 

until T1 abort or commit. That is, strict execution restricts both reads and writes to x if x 

is already written by T1 until T1 is either committed or aborted. Strict execution ensures 

[38] both cascadelessness and recoverability. 
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Chapter 5 

Serializability 
 
5.1 Introduction 
 
The concurrency control problems section we discuss different concurrency control 

problems that may arise in distributed database system. We also experience that these 

problems arise due to interference among conflict operations of concurrent transactions. 

Interference may cause improper order of conflicting operations [35, 30]. Here the 

requirement is to control the execution order of conflicting operations so that interference 

problem is solved. One way to avoid interference problem is not allow transaction to be 

interleaved at all. Execution in which no two transactions are interleaved called serial. 

More precisely, an execution is serial if, for every pair of transactions, all of the 

operations of one transaction execute before any of the operations of other. Serial 

execution is always correct on the assumption that each individual transaction is correct 

and the transactions hat execute serially cannot interface with each other. If database 

system only allows serial execution, it may make poor use of its resources so it may not 

efficient. For only simple system, serial execution may appropriate to avoid interference. 

So the concept of Serializability is required for the solution of interferences problems in 

concurrent environment. Serializability controls the execution order of conflicting 

operations and ensures correctness of concurrent execution. Serializability theory can be 

considered as a mathematical tool to examine whether or not a scheduler works correctly. 

Serializability theory [7, 8, 39] tells every concurrent execution is correct if execution 

history of concurrent execution is serializable. Serializable execution is a major principle 

of Serializability theory which we will discuss in detail. 

In databases and transaction processing, schedule (transaction history) is serializable, has 

the Serializability property, if its outcome (the resulting database state, the values of the 

database's data) is equal to the outcome of its transactions executed sequentially without 

overlapping. Transactions are normally executed concurrently (they overlap), because it 
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is the most efficient way. Serializability is considered the highest level of isolation 

between transactions, and plays an essential role in concurrency control. 

Serializability is the major criterion for the correctness of concurrent transactions 

executions. As such it is supported in all general purpose database systems. The rationale 

behind it is the following: 

If each transaction is correct by itself, then any serial execution (at any transaction order) 

of these transactions is correct. As a result, any execution that is equivalent (in its 

outcome) to a serial execution is correct.  

Schedules that are not serializable are likely to generate erroneous outcomes. Well known 

examples are with transactions that debit and credit accounts with money. If the related 

schedules are not serializable, then the total sum of money may not be preserved. Money 

could disappear, or be generated from nowhere. This and violations of possibly needed 

other invariant preservations are caused by one transaction writing, and "stepping on" and 

erasing what has been written by another transaction before it has become permanent in 

the database. It does not happen if serializability is maintained. 

5.2 Serializability Theory 

A schedule S (also called history) [28, 43] is defined over a set of transactions T = {T1, 

T2,… , Tn} and specifies an interleaved order of execution of these transactions 

operations. Based on the definition of transaction, the schedule can be specified as a 

partial order over T.  Schedule (History) specifies the order of conflicting operations that 

appear in concurrent execution. Operations upon data are read or write (insert or modify 

or delete). Two operations are conflicting, if they are of different transactions, upon the 

same data item, and at least one of them is write. The transaction of the second operation 

in the pair is said to be in conflict with the transaction of the first operation. A more 

general definition of conflicting operations (also for complex operations, which may 

consist each of several "simple" read/write operations) requires that they are non 

commutative (changing their order also changes their combined result). Each such 
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operation needs to be atomic by itself (by proper system support) in order to be 

commutative (non conflicting) with the otherTwo operations are said to be conflict if they 

both operate on the same data item and at least one of them is write. Thus, Read(x) 

conflicts with Write(x), while Write(x) conflicts with both Read(x) and Write(x). 

 

Operations of different transactions 

 

Conflict Reason 

 

Read 

 

Read 

 

No 

Because the effect of a pair of read 

operations does not depend on the order 

in which they are executed. 

 

Read 

 

Write 

 

Yes 

Because the effect of read and write 

operations depends on the order of their 

execution. 

 

Write 

 

Write 

 

Yes 

Because the effect of a pair of write 

operations depends on the order of their 

execution. 

 

Complete schedule [1, 4], which defines the execution order of all operations in its 

domain. We will then define a schedule as a prefix of a complete schedule. Formally, a 

complete schedule C
TS    defined over a set of transaction T = {T1, T2,……, Tn} is a partial 

order C
TS  = { } where TT p,∑

1.  
n
iT 1=∪=∑

i∑

2.   ⊇Tp
n
i 1=∪ ip

3. For any two conflicting operations ,, Tklij OO ∑∈ > either , 

or . 

klTij OO p

ijTkl OO p

 

The first condition simply states that the domain of the schedule is the union of the 

domains of individual transactions. The second condition defines the ordering relation as 
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a superset of the ordering relations of individual transactions. The final condition simply 

defines the execution order among conflicting operations. 

Example 5.2.1 

Consider the two transactions from example 3.4.3.1. They were specified as 

 

  T1      T2 

Read (x)   Read (x) 

 x ← x + 1   x ← x + 1 

Write (x)   Write (x) 

Commit   Commit 

 

A possible complete schedule  over T = {TC
TS 1, T2} can be written as the following 

partial order (where the subscripts indicate the transactions): 
C
TS  = { TT p,∑ } 

Where 

1∑  = {R1(x), W1(x), C1} 

2∑ = {R2(x), W2(x), C2} 

Thus  

T∑  = = {R1(x), W1∑ ∪ 2∑ 1(x), C1, R2(x), W2(x), C2} 

And  

Tp = {(R1, R2), (R1, W1),(R1, C1), (R1,W2), (R1, C2),(R2,W1), (R2, C1),(R2, W2), (R2, 

C2),(W1, C1), (W1,W2), (W1,C2), (C1,C2),(W2, C2)} 

This can be specified as a DAG  

 

R1(x)  R2(x) 

                   

                                                     W1(x)       W2(x) 

 

                         C1                     C2

Figure 5.1 DAG Representation of a Complete Schedule 

 34



Thus  can be specified as C
TS

C
TS  = {R1(x), R2(x), W1(x), C1, W2(x), C2} 

A schedule is defined as a prefix of a complete schedule 

 

Example 5.2.2 Consider the following three transactions: 

 

  T1      T2   T3

Read(x)   Write(x)  Read(x) 

 Write(x)   Write(y)  Read(y) 

Commit   Read(z)  Read(z) 

       Commit  Commit 

 

A complete schedule of these transactions is:  
 

R1(x)  W2(x)  R3(x) 
 
 

       W1(x)         W2(y)        R3(y) 
 
  

C1          R2(z)        R3(z) 
 
 
            C2           C3 

 
Figure 5.2 A Complete Schedule 
 

And a schedule S (as a prefix of complete schedule) is: 
 

R1(x)  W2(x)  R3(x) 
 
 

                        W2(y)        R3(y) 
 
  

                     R2 (z)        R3 (z) 
 
 
Figure 5.3 Prefix of Complete schedule 
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5.3 Serial Schedule 

If in a schedule S, the operations of various transactions are not interleaved that is the 

operations of each transaction occur consecutively, the schedule is to be serial. The serial 

execution of as set of transactions maintains he consistency of the database. The three 

transactions of Example 5.2.2. The following Schedule, 

 

S = {W2(x), W2(y), R2 (z), C2, R1(x), W1(x), C1, R3(x), R3(y), R3 (z), C3} 

 

Is serial since all the operations of T2 are executed before all the operations of T1 and all 

operations of T1 are executed before all operations of T3. The relationship between 

transaction executions can be denoted as: T2 Sp T1 Sp T3 or T2 → T1→T3. 

 

Two Schedules S1 and S2, defined over the same set of transactions T, are equivalent if 

they have the same effect on the database. Formally, two schedules, S1 and S2, defined 

over the same operations and  (iijO klO ≠ k), whenever  , then   . This 

is called conflict equivalence since it defines equivalence of two schedules in terms of 

the relative order of execution of the conflicting operations in those schedules.   

ijO 1p klO ijO 2p klO

 

Again consider the three transactions of Example 5.2.2.   = {W'S 2(x), R1(x), W1(x), C1, 

R3(x), W2(y), R3(y), R2 (z), C2, R3 (z), C3}. 

This schedule S’ is conflict equivalent to schedule S. 

 

A schedule S is said to be serializable if and only if it is conflict equivalent to a serial 

schedule. Serializable is also called conflict-based serializability since it is defined 

according to conflict equivalence. Schedule S’ is serializable since it is equivalent to the 

serial schedule S.  

 

The problem with the uncontrolled execution of transactions T1 and T2 in Example 

(3.4.3.1) they could generate an unserializable schedule. In distributed system the 

schedule of transaction execution at each site is called a local schedule. If the database is 
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not replicated and each local schedule is serializable, their union (called a global 

schedule) is also serializable as long as local serialization orders are identical. It is 

possible that the local schedules are serializable, but the mutual consistency of the 

database is still compromised. 
            

Example 5.2.3 
 
Consider a two sites and one data item (x) that is duplicated on both sites. Further 
consider the following two transactions: 
 
 
 

T1      T2

Read (x)   Read (x) 

 x ← x + 5   x ← x ×10 

Write (x)   Write (x) 

Commit   Commit 

 

Both of these transactions need to run at both sites. Consider the following two schedules 

that may generated locally at the two sites: 

 

S1 = {R1(x), W1(x), C1, R2(x), W2(x), C2} 

S2 = {R2(x), W2(x), C2, R1(x), W1(x), C1} 

 

Suppose both of these schedules are serializable, they are serial. Therefore, each 

represents a correct execution order. However, observe that they serialize T1 and T2 in 

reverse order. Assume that the value of x prior to the execution of these transactions was 

1. At the end of the execution of these schedules, the value of x is 60 at site 1 and the 

value of x is 15 at site 2. This violates mutual consistency of the two schedules. 
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Chapter 6 
Concurrency Control via Locking 
 
6.1 Introduction 
 
To preserve the consistency of database [1, 2, 11, 12], the database system must adopt 

some concurrency control mechanism to ensure that the modifications made by 

transactions are not lost. To ensure the correctness of database, database system required 

to enforce some mutual exclusion in concurrent execution. One way to enforce mutual 

exclusion is implementing locking mechanism. Locking based strategies are most 

commonly used for the concurrency control method for distributed database system. The 

main idea of locking-based concurrency control is to ensure that the data that is shared by 

conflicting operations is accessed by one operation at a time. This is accomplished by 

associating a “lock” with each lock unit [22, 23, 28, 29]. This lock is set by a transaction 

before it is accessed and is reset at the end of its use. A lock unit cannot be accessed by 

an operation if it is already locked by another. Thus a lock request by a transaction is 

granted only if the associated lock is not being held by any other transaction. 
 

6.2 Locking Principle 
 

The basic idea of locking is simple. Before accessing any database item user transaction 

need to acquire appropriate lock on that data item such that other transactions cannot 

acquire lock on same data item which leads conflict. Before terminate user transactions, it 

is necessary to unlock all data item that was locked by terminating transactions. 

 

We are concerned with synchronizing the conflict operations of conflict transactions, 

there are two types of locks (commonly called lock modes) associated with each lock 

unit: Shared Lock (S-Lock) and Exclusive Lock (X- Lock) which are also called Read 

Lock (rl) and Write Lock (wl) respectively.  A transaction Ti that wants to read a data 

item contained in lock unit x obtains a read lock on x denoted by rli(x). The same 

happens for write operations. It is commonly talk about compatibility of lock modes. 
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Two lock modes are compatible if two transactions which access the same data item can 

obtain these locks on the data item at the same time [40, 46]. 

 

If transaction  holds an write lock on data item x then no other transaction  can 

achieve a lock of either types (S-Lock or X- Lock) on x until and unless  release 

associated write lock on data item x. if transaction Ti holds a read lock on data item x 

then no other transaction can achieve write lock on data item x until  release 

associated read lock on x but it can achieve read lock on x. this locking rule can be shown 

by lock compatibility matrix. 

iT jT

iT

jT iT

 

 rl(x) wl(x) 

rl(x) √ ×  

wl(x) ×  ×  

 

√: compatible   × : incompatible 

 
Table:  6.1 Compatibility of Lock modes 

 

Two locks (x) and (y) conflict if x = y, i ≠ j and if p or q or both (p and q) are write 

lock. Two locks p and q on different data item x and y (x ≠ y) do not conflict. 

ipl jql

 

The basic principle of locking is not sufficient for ensuring the consistency of database. 

Stronger scheduler required to ensure database consistency.  

 

The distributed DBMS not only manages locks but also handles the lock management 

responsibilities on behalf of the transactions. In other words, the users do not need to 

specify when data needs to be locked: the distributed DBMS [49] takes care of that every 

time the transaction issues a read or write operation. 
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In locking based system, the scheduler is a lock manager (LM). The transaction manager 

passes to the lock manager the database operation (read and write) and associated 

information (such as the item that is accessed and the identifier of the transaction that 

issues the database operation). The lock manager then cheeks if the lock unit that 

contains the data item is already locked. If so and if the existing lock mode is 

incompatible with that of the current transactions, the current operation is delayed. 

Otherwise, the lock is set in the desired mode and the database operation is passed on to 

the data processor for actual database access. The transaction manager is then informed 

of the release of its locks and the initiation of another transaction that might be waiting 

for access to the same data item.   

 

Algorithm: 6.1 (Basic Lock Manager)                                                                                                             

 

Algorithm Basic-LM 

 

declare-var 

 msg : Message 

 dop : Dbop 

 Op : Operation                                         

 x : DataItem 

 T : TransactionId 

 pm : Dpmsg 

 res : DataVal 

 SOP : OpSet 

begin 

      repeat 

          WAIT(msg) 

          case of msg 

            Dbop: 

begin 

   Op ← dop.opn 
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    x  ← dop.data 

    T ← dop.tid 

    Case of Op 

        Begin_transaction: 

        begin 

send dop to the data processor 

       end 

       Read or Write:   {requires locking} 

      begin 

          find the lock unit lu such that x  lu ⊆

if  lu  is unlocked or lock mode of  lu  is compatible with Op then 

begin 

     set lock on  lu  in appropriate mode 

     send  dop to the data processor 

end 

    else   

        put dop on a queue for lu 

   end-if 

            end 

Abort or Commit: 

begin 

    send dop to the data processor 

   end 

    end-case 

Dpmsg:   {acknowledgment from the data processor} 

Begin       {requires locking} 

  Op ← pm.opn 

  res ← pm.result 

  T ← pm.tid 

   find lock unit lu such that   x ⊆  lu  release lock on lu held by T 
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if there are no more locks on lu and 

    there are operations waiting in queue for lu then 

begin 

     SOP ← first, operation from the queue 

     SOP ← SOP ∪ {O|O is an operation on queue that  

can lock lu in a compatible mode with 

 the current operations in SOP} 

          Set the locks on lu on behalf of operation is SOP 

           for all the operations in SOP do 

send each operation to the data processor 

             end-for 

                      end-if 

                 end 

        end-case 

     until forever 

end. {Basic-LM} 

 

The basic algorithm that is given in algorithm 6.1 will not unfortunately, properly 

synchronize transaction executions. This is because to generate serializable schedules, the 

locking and releasing operations of transactions also need to be coordinated. 

Example 6.2.1 

Consider the following two transactions: 

 

  T1      T2

Read (x)   Read (x) 

 x ← x + 1   x ← x *2 

Write (x)   Write (x) 

Read (y)   Read (y) 

y ←y-1   y ← y*2 

Write (y)   Write (y) 

Commit   Commit 
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The following is a valid schedule that a lock manager employing the algorithm 6.1 and 

that may generate: 

S = {wl1(x), R1(x), W1(x), lr1(x), wl2(x), R2(x), W2(x), lr2(x), wl2(y), R2(y), W2(y), 

lr2(y), C2, wl1(y), R1(y), W1(y), lr1(y), C1} 

 

Here lri indicates the release of the lock on z that transaction Ti holds. Note that S is not 

a serializable schedule. For example, if prior to the execution of these transactions, the 

values of x and y are 50 and 20, respectively, one would except their values following 

execution to be, respectively, either 102 and 38 if T1 executes before T2, or 101 and 39 

if T2 executes before T1. However, the result of executing S would give x and y the 

values 102 and 39. Obviously, S is not a serializable. 

 

The problem with schedule S in Example 6.2.1 is the following. 

The locking algorithm releases the locks that are held  by a transaction (say Ti) as soon 

as the associated database command ( read or write) is executed, and that lock unit (say 

x) no longer needs to be accessed. However, the transaction itself is locking other items 

(say y), after it releases its lock on x. Even though this may seem to be advantageous 

from the view point of increased concurrency, it permits transaction to interfere with 

one another, resulting in the loss of total isolation and atomicity.  

 

6.2.1 Two-phase locking (2PL) 
 

Two-phase locking (2PL) synchronizes reads and writes by explicitly detecting and 

preventing conflicts between concurrent operations. Before reading data item x, a 

transaction must “own” a read lock on x. before waiting into x, it must “own” a write 

lock on x. the ownership of locks is governed by two rules. 

1. Different transactions can not simultaneously own conflicting locks and  

2. Once a transaction surrenders ownership of lock, it may never obtain additional 

locks. 
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 To, solve the problems that occur in above algorithm, we use the concept of 2PL. Two-

phase locking rule simply states that [49, 44, 40] no transaction should request a lock 

after it releases one of its lock. Alternatively, a transaction should not release a lock 

until it is certain that it will no request another lock. 2PL algorithms execute transaction 

in two phases: 

 

Growing Phase 

Each transaction has a growing phase, where it obtains a locks and accesses data items. 

 

Shrinking Phase 

In shrinking phase, it releases locks.  

 

The lock point is the moment when the transaction has achieved all its locks but has not 

yet started to release any of them. Thus the lock point determines the end of the 

growing phase and the beginning of the shrinking phase of a transaction. It is well- 

known theorem that any schedule generate by a concurrency control algorithm that 

obeys the 2PL rule is serializable. 

 

 
Figure 6.2 2PL Lock Graph 

 

Figure 6.2 indicates that the lock manager releases locks as soon as access to the data 

item has been completed. This permits other transaction awaiting access to go ahead and 

lock it, there by increasing the degree of concurrency [41]. However, this difficult to 

implement since the lock manager has to know that the transaction has obtained al its 
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lock and will not need to lock another data item. The lock manager also needs to know 

that the transaction no longer needs to access the data item in question, so that the lock 

can be released.  

If the transaction aborts after it releases a lock, it may cause other transactions that may 

have accessed the unlocked data item to abort as well. This is known as cascading aborts. 

 

6.2.2 Strict two-phase locking 
 

Because of these difficulties, most 2PL schedulers implement what is called strict two-

phase locking [3, 8, 9], which releases all the locks together when the transaction 

terminates (commits or aborts).  

 
 

Figure 6.3 Strict 2PL Lock Graph 

 

This is necessary to ensure that the locks are released only if the operation is a commit or 

abort. So, there is some modification of the algorithm 6.1. 
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Algorithm 6.2 (Strict Two-Phase Locking) 

 

Algorithm S2PL-LM 

 

declare-var 

 msg : Message 

 dop : Dbop 

 Op : Operation 

 x : DataItem 

 T : TransactionId 

 pm : Dpmsg 

 res : DataVal 

 SOP : OpSet 

begin 

      repeat 

          WAIT(msg) 

          case of msg 

            Dbop: 

begin 

   Op ← dop.opn 

    x  ← dop.data 

    T ← dop.tid 

    Case of Op 

        Begin_transaction: 

        begin 

send dop to the data processor 

       end 

       Read or Write:   {requires locking} 

      begin 

          find the lock unit lu such that x  lu ⊆

if lu is unlocked or lock mode of lu is compatible with Op then 
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begin 

     set lock on lu in appropriate mode 

     send dop to the data processor 

end 

    else   

        put dop on a queue for lu 

   end-if 

            end 

Abort or Commit: 

begin 

    send dop to the data processor 

   end 

    end-case 

Dpmsg: 

begin 

  Op ← pm.opn 

  res ← pm.result 

  T ← pm.tid 

  If Op = Abort or Op= Commit  then 

  begin 

      for  each lock unit lu locked by T do 

      begin 

            release lock on lu held by T 

if there are no more locks on lu and 

    there are operations waiting in queue for lu then 

begin 

     SOP ← first, operation from the queue 

     SOP ← SOP ∪ {O|O} is an operation on queue that  

can lock lu in a compatible mode with 

 the current operations in SOP} 

          Set the locks on lu on behalf of operation is SOP 
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           for all the operations in SOP do 

send each operation to the data processor 

             end-for 

                      end-if 

                  end-for 

               end-if 

             end 

        end-cae 

     until forever 

end. {S2PL-LM} 

 

Algorithm 2PL-TM 

 

declare-var 

  msg : Message 

  Op : Operation 

  x : DataItem 

  T : TransactionId 

  O : Dbop 

  sm : Scmsg 

  res : DataVal 

  SOP : OpSet 

begin 

    repeat 

       WAIT(msg) 

     case of msg 

           Dbop :  

begin 

      send O to the lock manager 

 end 

Scmsg :     {acknowledgement from the lock manager} 
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begin 

   Op ← sm.opn 

   res ← sm.result 

   T ← sm.tid 

   Case of Op 

Read : 

begin 

      return res to the user application  (i.e., the transaction) 

end 

Write: 

begin 

       inform user application of completion of the write 

                               return res to the user application 

 end 

 Commit: 

  begin 

      destroy T’s workspace 

       inform user application of successful completion of transaction 

 end 

  Abort: 

   begin 

        inform user application of completion of the abort of T 

             end 

          end-case 

      end 

end-case 

       until forever 

end. {2PL-TM} 
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The 2PL algorithm can be extended to the distributed DBMS environment. One way of 

doing this is to delegate lock management responsibility to a single site only. This means 

that only one of the sites has a lock manager, the transaction managers at the other sites 

communicate with it rather than with their own lock managers. This approach is also 

known as the primary site 2PL algorithm. 

 

The communication between the cooperating sites in executing a transaction according to 

a centralized 2PL (C2PL) algorithm is shown in figure 6.4, this communication is 

between the transaction manager at the site where the transaction is initiated (called the 

coordinating TM), the lock manager at the central site, and the data processor (DP) at the 

other participating sites. The participating sites are those at which the operation is to be 

carried out. The order of messages is denoted in the figure.   

 

 
 

Figure 6.4 Communication Structure of Centralized 2PL 

 

Algorithm 6.3  

 

Algorithm C2PL-TM 

 

declare-var 

    T : Transaction 

    Op : Operation 

    x : DataItem 
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    msg : Message 

 

    O : Dbop 

     pm : Dpmsg 

     res : DataVal 

    S : SiteSet 

begin 

      repeat 

           WAIT(msg) 

           case of msg 

  Dbop :  

  begin 

     Op ← O.opn 

     x  ← O.data 

    T ← O.tid 

   Case of  Op 

        Begin_transaction: 

        begin 

             S ← θ  

        end 

        Read: 

        begin 

 S ← S {the site that stores x and has the lowest access cost to it} ∪

 Send O to the central lock manager 

        end 

        Write: 

         begin 

 S ← S {Si|x is stored at site Si} ∪

 Send O to the central lock manager 

         end 

         Abort or Commit: 
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         begin 

   send O to the central lock manager 

         end 

     end-case 

     end 

     Scmsg:    {lock request granted on locks released} 

      begin 

            if lock request granted then 

     send O to the data processor in S 

else 

     inform user about the termination of transaction 

end-if 

        end 

        Dpmsg: 

        begin 

Op ← pm.opn 

res ← pm.result 

T ← pm.tid 

Case of  Op 

      Read: 

       begin 

return res to the user application(i.e. the transaction) 

        end 

       Write: 

        begin 

  inform user application of completion of the write 

        end 

       Commit: 

        begin 

if commit msg has been received from all participants then 

begin  
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      inform user application of successful completion of transaction 

       send pm to the central lock manager 

else   {wait until commit msg comes from all} 

      record the arrival of the commit message 

end-if 

        end 

        Abort: 

         begin 

   inform user application of completion of the abort of T 

    send pm to the central lock manager 

          end 

            end-case 

        end 

            end-case 

       until forever 

end. {C2PL-TM} 

 

 

Algorithm C2PL-LM 

 

declare-var 

     msg : Message 

     dop : SingleOp 

    Op : Operation 

    x : DataItem 

    T : TransactionId 

    SOP : OpSet 

 begin 

       repeat 

           WAIT(msg)  {the only msg that can arrive is from coordinating TM} 

 Op ← dop.opn 
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  x  ← dop.data 

 T ← dop.tid 

 Case of  Op 

       Read or Write: 

        begin 

 find the lock unit lu such that x lu ⊆

 if lu is unlocked or lock mode of lu is compatible, with Op then 

        begin 

 set lock on lu in appropriate mode 

 msg ← “Lock granted for operation dop” 

 send msg to the coordinating TM of T 

        end 

                     else 

 put Op on a queue for lu 

         end-if 

     end 

     Commit or Abort: 

      begin 

for each lock unit lu locked by T do 

begin 

      release lock on lu held by T 

      if there are operations waiting in queue for lu then 

      begin 

SOP ← first operation (call O) from the queue 

SOP ← SOP {O|O} is an operation on queue that  ∪

can lock lu in a compatible mode with 

   the current operations in SOP} 

Set the locks on lu on behalf of operation is SOP 

for all the operations O in SOP do 

begin 

       msg ← “Lock granted for operation O” 
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      send msg to the coordinating TM’s  

            end-for 

      end-if 

                        end-for 

msg ← “Locks of  T  released” 

send msg to the coordinating TM of T 

       end 

             end-case 

       until forever 

end. {C2PL-LM} 

 

 

 

 

 

6.3 Deadlock Detection 
 

Any locking based concurrency control algorithm may result in deadlocks, since there is 

mutual exclusion of access to shared resources (data) and transaction may waits on locks. 

Therefore, the distributed DBMS requires special procedures to handle them. 

 

Consider two transactions Ti and Tj that hold write locks on two entities x and y [i.e., 

wli(x) and wlj(y)]. Suppose that Ti now issues a rli(y) or a wli(y). Since y is currently 

locked by transaction Tj, Ti will have to wait until Tj releases its write lock on y. 

However, if during this waiting period, Tj now request a lock (read or write) on x, there 

will be a deadlock. This is because Ti will be blocked waiting for Tj  to release its lock on 

y while for Tj will be waiting for Ti to release its lock on x. In this case, the two 

transactions Ti and Tj will wait indefinitely for each other to release their respective 

locks.  
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A deadlock is a permanent phenomenon. If one exists in a system, it will not go away 

unless outside intervention takes place. This outside interference may come form the 

user, the system operator, or the software system (the operating system or the distributed 

DBMS).  

 

A useful tool in analyzing deadlocks [2, 4, 14] is a wait-far graph (WFG). A WFG is a 

directed graph that represents the wait-for relationship among transactions. The nodes of 

this graph represent the concurrent transactions in the system. An arc Ti Tj exists in the 

WFG if transaction Tj is waiting for Tj to release a lock on some entity. Figure depicts the 

WFG contains a cycle. We should indicate that the formation of the WFG is more 

complicated in distributed systems, since two transactions that participate in a deadlock 

condition may be running at different sites. We call this situation a global deadlock. In 

distributed systems, then, it is not sufficient that each local distributed DBMS form a 

local wait-for graph (LWFG) at each site; it is also necessary to form a global wait-for 

graph (GWFG), which is the union of all the LWFGs. 

 
Figure 6.5: A WFG example 
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Chapter 7 

Implementation and Testing 

7.1 Implementation 

As the implementation part of this study, a simulation environment has been developed. 

This environment simulates the deadlock detection in distributed database system. The 

program has been developed using Java programming language (JDK 1.6.0). There has 

been a distributed system consisting of Lock Manager, Transaction Manager and three 

Clients.  

7.2 Program Structure 

The simulation consists of Lock Manager, Transaction Manager and different clients. 

Lock Manager is centralized and Transaction Manager is distributed over the different 

sites. The following figure depicts the simple structure of the program. 

Lock Manager 

TM TM TM 

Client 1 Client 2 Client 3 
 

Figure 7.1 Simple Program Structure 
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As the main part of the impl wo-phase locking Algorithm 

.3 Testing 

 this section, a sample testing and the result have been described. The testing was 

ransaction 1

ementation, the centralized t

(presented in previous chapter) has been implemented and by using deadlock detector the 

deadlock can be detected. 

 

7

 

In

carried out on the simulated environment developed in the implementation.  The sample 

program for testing is given below. 

 

T               Transaction 2  

The two transactions are in deadlock in different clients (client 1 and client 2) 

 

Begin         Begin 

Lock(x)        Lock (y) 

Read (y)        Read (x) 

………        ……….. 

………        ……….. 

End         End 
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Figure 7.2: Client1 and Client2 are ready to accept any transactions. 
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Figure7.3 : Client1 and Client2 are in deadlock 
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7.4 Output Analysis 

The output of the program execution has been shown in the above java screen (figure 7.2 

and 7.3). Here, in client 1 a transaction lock the data item x and ready to read the data 

item y and transaction complete. In client 2 a transaction lock the data item y and ready to 

read the data item x. Here deadlock occurs because transaction 1 is ready to read the data 

item y but that is already locked by transaction 2 and transaction 2 is ready to read the 

data item x that is already locked by transaction 1. So, deadlock is found between 

transactions of different clients on data item x and y.  

 
Figure 7.4 deadlock in two clients 
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Chapter 8 
 
Conclusion and Further Recommendations 
 

8.1 Conclusion 
 
The study was mainly focused the two-phase locking and deadlock detection in a 

distributed database system. This study describes the transaction processing and the 

concurrency control problem in distributed system. The concurrency control problem is 

exacerbated in a distributed database management system because users may access data 

stored in many different computers in a distributed system. This study includes different 

types of problems such as: dirty read problem, lost update problem, fuzzy read problem, 

phantom problem etc. These problems arise due to interference among conflict operations 

of concurrent transactions. So, the seralizability is required for the solution of 

interference problems in concurrent environment. Seializability controls the execution 

order of conflicting operations and ensures correction of concurrent execution.  

 

To preserve the consistency of distributed database, this study adopts locking mechanism. 

This study focused on C2PL algorithm, where LM is centralized and TM is distributed 

over the different clients. In this study, LM checks the different clients for particular data 

item to detect a deadlock or not. Deadlock occurs due to if any transaction read the data 

item that has already locked by another transaction. 

 

8.2 Further Recommendations 

 
This study has certain limitations which can be fulfill by further study. This study 

specially focused on lock based concurrency control algorithm and deadlock detection in 

distributed database system. This study can be extended to solve deadlock problem by 

using Timestamp Ordering (TO). This study could not be evaluated in heterogeneous 
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database system. This study can be extended to examine deadlock detection and 

prevention in heterogeneous database system. 
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