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Abstract

An Intermediate Representation (IR) is an important part of a compiler. Selecting

the right IR can significantly improve not only analyses and optimizations processes of a

compiler but also reduce overall time of compiler design. There are many IRs found

today but selecting the right IR for compiler is difficult job because different IRs have

different properties. In this dissertation, two important IRs, Static Single Assignment

(SSA) and Program Dependence Graph (PDG), are studied and presented comparative

analyses between PDG and three flavors of SSA form: minimal, pruned and semi-pruned.

Selected IRs are implemented in the Machine SUIF compiler infrastructure. PDG pass is

implemented in this work but has used Machine SUIF Static Single Assignment Library

of Machine SUIF for SSA form. Selected IRs are tested and analyzed with benchmark

programs. The results showed that the comparative study presented in this work is very

useful to the compiler designer for selecting appropriate IR.
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