
i

SELECTION OF AN INTERMEDIATE REPRESENTATION
FOR PROGRAM ANALYSIS AND OPTIMIZATION

by

Amar Man Maharjan

A dissertation submitted to the
Central Department of Computer Science and Information Technology,

Tribhuvan University
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and
Information Technology

TRIBHUVAN UNIVERSITY
Kirtipur, Kathmandu

Nepal

December 2007

ii

Acknowledgements

I am truly thankful to my supervisor and respected teacher Prof. Dr. Shasidhar Ram

Joshi, Department of Electronics and Computer Engineering, Institute of Engineering,

Pulchowk, for his immeasurable guidance and support to this thesis. I also thank to the

Head of the Central Department of Computer Science and Information Technology

(CDCSIT) Dr. Tanka Nath Dhamala. Special thanks to my co-supervisor Mr. Samujjwal

Bhandari for his kind cooperation, insightful ideas, advice and suggestions.

Many friends and colleagues have contributed greatly to this thesis. Mr. Jagdish Bhatta is

the special one who helped me in great deal. Much gratitude to my friends Mr. Bardan

S.J.B. Rana, and Mr. Shishir Paudyal also for their incomparable support.

I thank my teachers Prof. Dr. Devi Dutta Paudyal, Prof. Dr. Onkar P. Sharma (Marist

College, USA), Asst. Prof. Dr. Subarna Shakya, Asst. Prof. Sudharshan Karanjit, Asst.

Prof. Arun Timalsina, Mr. Bishnu Gautam, Mr. Hemanta Bahadur G.C. for their

invaluable knowledge, support and confidence during my master degree.

CDCSIT’s laboratory and its members have provided an excellent environment. In

particular, my appreciation goes to Mr. Niraj Manandhar for his technical support. I also

thank to all the people who helped me in this thesis directly or indirectly.

And finally, I thank my loving parents and family for their tireless support and patience

throughout my life and studies.

Amar Man Maharjan

2007/12/4

iii

Abstract

An Intermediate Representation (IR) is an important part of a compiler. Selecting

the right IR can significantly improve not only analyses and optimizations processes of a

compiler but also reduce overall time of compiler design. There are many IRs found

today but selecting the right IR for compiler is difficult job because different IRs have

different properties. In this dissertation, two important IRs, Static Single Assignment

(SSA) and Program Dependence Graph (PDG), are studied and presented comparative

analyses between PDG and three flavors of SSA form: minimal, pruned and semi-pruned.

Selected IRs are implemented in the Machine SUIF compiler infrastructure. PDG pass is

implemented in this work but has used Machine SUIF Static Single Assignment Library

of Machine SUIF for SSA form. Selected IRs are tested and analyzed with benchmark

programs. The results showed that the comparative study presented in this work is very

useful to the compiler designer for selecting appropriate IR.

iv

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION 1

1.1 Motivation..…………………..1

1.2 Compiler...2

1.3 Translation Process……………………………….…………………........3

1.3.1 Analysis Phase……………………………………………...............4

1.3.2 Synthesis Phase……………………………………………..............5

1.4 Intermediate Representation (IR)………………………………………....5

1.5 Comparative Analysis..……………………………………………...........6

1.6 Outline of the Thesis.………………………………………………..........6

2. BACKGROUND 7

2.1 Literature Review………………………………………………….......…7

2.1.1 Sequential IR……………………………………………….............7

2.1.2 Tree-based IR………………………………………………............8

2.1.3 Graph-based IR…………………………………………….............8

2.2 Tools……………………………………………………………….........13

2.2.1 Stanford University Intermediate Format (SUIF).......……............13

2.2.2 Machine SUIF…………………………………………….............13

2.2.3 LCC……………………………………………………….............14

2.2.4 Visualization for Compiler Graphs (VCG)…………………….....14

3. TOOLS AND

INTERMEDIATE REPRESENTATIONS’ ANALYSIS 15

3.1 Stanford University Intermediate Format (SUIF)............………............15

3.1.1 Key features of SUIF System…………………………….............16

3.1.2 The SUIF Architecture…………………………………...............16

3.2 Machine SUIF…………………………………………………….........18

v

3.2.1 Goals of Machine SUIF…………………………………..........18

3.3 Static Single Assignment (SSA)…………………………………...…20

3.3.1 Definition of SSA…………………………………………........20

3.3.2 Dominance………………………………………………...........22

3.3.3 Dominator Trees…………………………………………..........23

3.3.4 Dominance Frontiers……………………………………...........23

3.3.5 Relations between Dominance Frontiers and Joins……….........24

3.3.6 Minimal SSA form………………………………………..........25

3.3.7 Pruned SSA form………………………………………….........25

3.3.8 Semi-pruned SSA form……………………………………........26

3.3.9 Destruction of SSA form………………………………….........28

3.4 Program Dependence Graph (PDG)……………………………….....29

3.4.1 Control Dependence Graph (CDG)……………………….........30

3.4.2 Data Dependence Graph (DDG)………………………….........33

4. IMPLEMENTATION 35

4.1 Implementing Static Single Assignment (SSA)……………………....36

4.1.1 Implementing minimal SSA form………………………............36

4.1.2 Implementing pruned SSA form………………………...............41

4.1.3 Implementing semi-pruned SSA form…………………..............41

4.2 Implementing Program Dependence Graph (PDG)………………......43

4.2.1 Control Dependence Graph (CDG)…………………….............43

4.2.2 Data Dependence Graph (DDG)………………………..............44

4.3 Inputs and Outputs...44

5. TESTING AND ANALYSIS 47

5.1 Empirical Comparison......................………………………................47

5.2 Analysis...49

6. CONCLUSIONS 53

6.1 Summary………………………………………………………...…....53

vi

6.2 Future Work………………………………………………………......54

REFERENCES 55

vii

List of Figures

Figure Page

Figure. 1.1 A Compiler……………………………………………………………..2

Figure 1.2 Phases of a Compiler……………………………………………….…...3

Figure 1.3 Position of IR in Compiler…....…………………………………….…...6

Figure 2.1 Abstract Syntax Tree………………………………………………...….8

Figure 2.2 Directed Acyclic Graph………………………………………………....9

Figure 2.3 Control Flow Graph……………………………………………………..9

Figure 2.4 Data Dependence Graph…………………………………………….....10

Figure 3.1 The SUIF system architecture………………………………………....17

Figure 3.2 Role of SSA form in compilers………………………………………..20

Figure 3.3 (a) a simple control flow graph..21

Figure 3.3 (b) its SSA form………………...21

Figure 3.4 Algorithm for building minimal SSA form………………………........25

Figure 3.5 Three flavors of SSA form………………………………………….....27

Figure 3.6 (a) SSA form...29

Figure 3.6 (b) after insertion of copy operation……………...................................29

Figure 3.7 Structure of PDG……………………………………………………....30

Figure 3.8 Example of control and data dependencies………………………........30

Figure 3.9 (a) Augmented control flow graph...32

Figure 3.9 (b) its post-dominator tree…….…...32

Figure 3.10 (a) basic control dependence graph …………………………….…....33

Figure 3.10 (b) CDG with region nodes……………………………………….….33

Figure 3.11 Example of data dependences………………………………….….....34

Figure 4.1 Implementation Structure………………………………………..….....35

Figure 4.2 Algorithm for building minimal SSA form……………………..…......38

Figure 4.3 Algorithm for calculating DF(X) for each CFG node X………..…......39

Figure 4.4 Algorithm for placing -node……………………………………..…...40

Figure 4.5 Algorithm for finding non-local names………....…………………..…42

viii

Figure 4.6 Algorithm for computing the set CD(X) nodes

that are control dependent on……………………......……………….....43

Figure 4.7 Sample input C program sample.c..45

Figure 4.8 Visualization of SSA form in X11..46

Figure 4.9 Visualization of PDG in X11..46

Figure 5.1 Comparison of construction time between PDG

and three flavors of SSA form……………...…………..…………..…...49

Figure 5.2 Comparison of number of edges between PDG

and three flavors of SSA form………………...………...………………50

Figure 5.3 Comparison of number of -nodes between

three flavors of SSA form………………….…..……...………….……..51

ix

List of Table

Table Page
Table 5.1 Comparing construction time, edges between PDG

and SSA, and number of -nodes between three flavors
of SSA form.........................……………………….………………..48

x

List of Abbreviations

IR Intermediate Representation

SSA Static Single Assignment

PDG Program Dependence Graph

SUIF Stanford University Intermediate Format

MIR Middle Level Intermediate Representation

AST Abstract Syntax Tree

DAG Directed Acyclic Graph

CFG Control Flow Graph

DDG Data Dependence Graph

SSI Static Single Information

VDG Value Dependence Graph

DFG Dependence Flow Graph

PDW Program Dependence Web

VCG Visualization for Compiler Graphs

OPI Optimization Programming Interface

NCI National Compiler Infrastructure

FORTRAN Formula Translation

SuifEnv SUIF Environment

