
1

CHAPTER 1

1 INTRODUCTION

Computers are used in many areas today, for example: in education, multimedia, games,

research etc. Using computers in their own languages is very difficult. So some kind of

translation processes to the language of computer is needed. And compiler does that

translation. The performance of the compiler can be increased in many ways like

optimizations, using appropriate intermediate representation (IR), good memory

management etc. IR is a vital part in designing compiler analyses and optimizations.

Ultimately, the choice of IR for compiler is fundamental. Advances in IRs translate into

advances in compilers. Understanding IRs in detail is important for achieving efficiency

of compiler. Section 1.1 provides the motivation of this dissertation. Section 1.2 provides

the brief introduction to the compiler. Translation Process is described in section 1.3.

Section 1.4 describes about IR. Section 1.5 provides the analysis model. And finally,

section 1.6 gives the outline of this dissertation.

1.1 Motivation

Today, there are many IRs that can be used in our compiler project. Selecting the right IR

for compiler project requires an understanding of the source language, the target machine,

properties of the source programs and strength and weakness of the programming

language that the compiler will be implemented.

Each IR has its own advantages and disadvantages. Different IR has different style of

representation. Source language influences the selection of IR. For example, if C is used

as a source language then IR should be capable of resolving the pointers. Likewise, if

C++ or Java is used as one of IR then IR should be capable of representing programs in

object-oriented semantics. But putting the extra information in the IR may require extra

cost. If the source language doesn't need pointers then additional information about the

2

pointers is not necessary. So the selection of IR requires consideration of the properties

that must be performed on the IR and their costs and the range of constructs that must be

expressed in the IR.

Some of the popular IRs are three-address code, abstract syntax tree (AST), control flow

graph (CFG) [1], Static Single Assignment (SSA) [3], Program Dependence Graph

(PDG) [6]. Recently other IRs like Static Single Information (SSI) [22], Value

Dependence Graph (VDG) [24], Dependence Flow Graph (DFG) [25], Program

Dependence Web (PDW) [26] are getting much attention in the research.

In the past, simple IRs like three-address code, AST, CFG were sufficient for source

languages. As the new programming language and optimizations concept develop, and

the machine become much faster, the need of appropriate IR becomes necessary.

Selecting the right IR can simplify the translation from source program to intermediate

form and help in further phases. So if there is some kind of comparative study that helps

us to use suitable representation then it will reduce compiler design time as well as

overall running cost.

1.2 Compiler

Compiler is a program that translates one form of language, the source language, into

another, the target language [1]. If there are any errors in the source language the

compiler gives the error messages to the user, see fig. 1.1. The output of the compiler is

normally called the object language also which is close to the machine language of an

actual computer. That object language could be either an assembly language of some

variety of the machine language.

Source Language Target Language

Error Messages

Figure. 1.1. A Compiler.

Compiler

3

1.3 Translation Process

The translation process includes many phases. The translation may be very simple but the

efficiency of the translated program may be not good. So some might use simple

translation if they ignore efficient program. But today efficiency of program is such a big

issue that the translation process is very complex. But broadly, they can be divided into

two phases, shown in fig. 1.2. They are Analysis phase (front-end) and Synthesis phase

(back-end).

Source Program

Analysis Tokens

Phase

Parse tree

Intermediate code

Synthesis

Phase Optimized intermediate code

Object code

Figure 1.2. Phases of a Compiler.

Analysis phase includes lexical, syntax and semantic analyses. Synthesis phase includes

optimization and code generation. Intermediate Representation (IR) of the source

program is produced at the end of the analysis phase. IR is the representation of the

source program and contains the necessary information so that it helps in further phases.

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Optimization

Code generation

Symbol
table

Other
tables

4

The IR can be divided into many levels: high-level, medium-level and low-level [2].

Intermediate representation serves as bridge between the analysis and synthesis phase.

Various optimization algorithms can be applied in the IR. After that object code is

generated in the code generation phase. And that object code is executed in the machine

after linking (if needed) with other object codes. Intermediate representation of the

program directly influences the synthesis phase and execution of the program.

Also the compiler can be grouped in the number of times it passes over the source

program. A one-pass compiler, the source program is analyzed only once and translated

directly to the object code. In this type, the compilation is fast but has slow execution

speed. A two-pass compiler analyses the source program twice. The first pass extracts the

informations, like variable name, from the source program. Then the second pass

produces the object code from the extracted information.

1.3.1 Analysis Phase

At first, the source program is just a sequence of characters. So to move forward the

compiler needs some analysis of the source program. The analysis includes Lexical

analysis (scanning), syntactic analysis (parsing) and semantic analysis.

Lexical analyzer scans each character from the source program to group the sequence of

characters to form the elementary constituents like: identifiers, keywords, operators,

comments, blanks, and so on. The lexical analyzer analyses the source program to built

basic program unit, called tokens (lexical items). These tokens are then the input for next

stages.

The next stage is the syntactic analysis or parsing. In this stage, the tokens that are

produced by the lexical analyzer are grouped together to form the larger program

structures like: expressions, statements, subprogram call or declaration. It uses the formal

grammar to construct the larger program structures.

5

The last stage in the analysis phase is the semantic analysis stage. Here the semantics of

the program structures are analyzed. The semantic analyzer is important stage in the

translation process. Its work includes symbol table maintenance, error detection etc. It

produces the program in some kind of internal form i.e. intermediate representation. And

that IR is used in next phase.

1.3.2 Synthesis Phase

After representing the source program in intermediate form, the translation process enters

into the synthesis phase. This phase includes optimization and code generation.

The semantic analyzer produces the intermediate code for the code generation. But that

code may be very inefficient. So some optimizations are applied before the code

generation.

The final code is generated in the code generation stage. The final code may be machine

language, assembly code or object code. This stage produces the output of the translation

process.

If the source program is translated in many subprograms then the output of these

subprograms need to link with each other to form a single output object code. This stage

includes work like data references, internal procedure calls etc.

1.4 Intermediate Representation (IR)

IRs are very important in the compiler technology. There are many IRs today. Different

IRs has different styles and advantages although there are some common advantages.

They are as below:

1) Portability of program: retargeting at different machine architectures

2) Optimizations: doing optimizations in the IR so that the programs could

run faster than normal programs.

Fig. 1.3 gives the possible place of the IR in the translation process.

6

Source program Target program

Compiler

Figure 1.3. Position of IR in Compiler.

This thesis is all about learning various IRs and selecting the appropriate IR for compiler.

1.5 Comparative Analysis

After studying many IRs, this study has presented comparative analysis for selecting the

right IR for the compiler that is efficient in terms of construction time, space and

execution speed.

1.6 Outline of the Thesis

The rest of this dissertation is organized as follows. Chapter 2 presents the brief

discussion of the background and literature review of the various IRs and their taxonomy.

This chapter also gives the brief introduction to the tools used in this thesis and the

motivation of this thesis work. Chapter 3 describes the selected IRs for our

implementation and tools used in implementation in greater detail. In particular, this

study has selected Static Single Assignment (SSA) and Program Dependence Graph

(PDG). SUIF and Machine SUIF compiler infrastructures are used for implementation.

Chapter 5 describes the implementation detail of this study. Chapter 4 consists the testing

of results that are obtained in this study. Finally, Chapter 5 concludes the dissertation

and summarizes the main insights gained through this work.

IRFront end Back end

7

CHAPTER 2

2 BACKGROUND

This chapter presents the brief discussion about the various IRs that are developed and

used over the last 50 years in the compiler technology. Those IRs are divided and

discussed briefly so that the understanding of the IR would be better. Section 2.1 gives

the literature review of various IRs and their taxonomy. Finally, section 2.2 contains the

tools available and used in this thesis.

2.1 Literature Review

Since there are many IRs that are developed and used in compiler in history, this study

will consider only those IRs that are relevant to this thesis. Overall the IRs can be divided

into three groups:

1) Sequential IR,

2) Tree-based IR, &

3) Graph-based IR.

2.1.1 Sequential IR

This type of IR is similar to assembly language. The three address code [1] is a good

example of sequential IR. It is a sequence of statements of the general form: x = y op z,

where, x, y, & z are names, constants or compiler generated temporaries; op is any

operator or a logical operator on Boolean valued data. It is a linearized representation of a

syntax tree of DAG [1, 2] in which explicit names correspond to the interior nodes of the

graph. The three-address code can be implemented as many form: Quadruples, Triples

and Indirect Triples [1]. Muchnick’s MIR [2] is similar to three address code.

8

2.1.2 Tree-based IR

The most common IR is the Abstract Syntax Tree (AST). It makes the structure of a

program. A major use of AST is in language-sensitive or syntax-directed editors for

programming languages, in which they usually are the standard internal representation for

programs [2]. For example consider the assignment statement: x = y + z * y + z;. The

AST would be as fig. 2.1:

=

x *

+ +

y z y z

Figure 2.1. Abstract Syntax Tree.

2.1.3 Graph-based IR

a) Directed Acyclic Graph (DAG): DAG can be used as the IR in which each node

represents the basic block. The DAG representation of a basic block is as the

compressing the minimal sequence of trees that represents it still further. The leaves

represent the values of the variables and constants available on entry to the block that are

used within it. The other nodes of the DAG all represent operations and may also be

annotated with variable names, indicating values computed in the basic block. The main

advantage of the DAG is that it reuses values, and so is generally a more compact

representation than trees or the linear notations [2]. For example consider the previous

assignment x = y +z * y+ z; , then the DAG would appear as fig. 2.2.

9

=

x *

+

y z

Figure 2.2. Directed Acyclic Graph.

b) Control Flow Graph (CFG): CFG is the most important IR that is used in the

compiler. The information found in the CFG is used by various other IRs like: Static

Single Assignment (SSA), Static Single Information (SSI), Program Dependence Graph

(PDG) and so on. In CFG, each node is a basic block. Each basic block contains one or

more sequence of instructions. Those instructions may be three-address code or assembly

code. Directed edges are used to represent the flow of control. The flow of control may

be fall through, conditional jumps, unconditional jumps, and so on.

T

F

Figure 2.3. Control Flow Graph

There are, in most representations, two specially designated blocks: the entry block,

through which control enters into the flow graph and the exit block, through which all

control flow leaves. When these two special blocks are added to the normal CFG, it is

Entry

x = 0

while x < 10

x = x + 1

print x

Exit

10

called augmented CFG, fig. 2.3. CFG is essential to many optimizations and static tools.

It is used in detecting reachability of the code and other optimizations like constant

propagation [17], constant folding. More details about the CFG can be found in Aho et al.

[1], Muchnick [2].

c) Data dependence graph (DDG): DDG is an important IR. It is also called Data flow

graph. It is different from the CFG because the main theme of the DDG is data flow

oriented [1]. Nodes in the DDG are similar to the nodes of the CFG. But the meanings of

directed edges are totally different to the meaning of those found in the CFG. Each edge

from one node to another represents the dependence of the information or data between

the two nodes. For example if (I ,J) is any edge in the DDG, then the information found

in the node I is needed in the node J. Node J can not be executed before node I. Fig. 2.4

gives the clear idea about the DDG.

Figure 2.4. Data Dependence Graph.

e) Static Single Assignment (SSA): Cytron et al. present SSA form [3, 4]. It also shows

how to compute the SSA efficiently. It introduces a new structure called dominance

frontiers. It shows how to compute SSA and the control dependence graph efficiently

using dominance frontiers. The method presented behaves linearly with respect to

program size for programs restricted to certain control structures. [2,3] use the SSA form.

SSA form is the extended form of the CFG. In SSA, a variable is assigned only once. The

SSA form has two properties: Each programmer-specified use of a variable is reached by

x = 0

while x < 10

x = x + 1

print x

11

exactly one assignment to that variable. The program contains phi-functions that

distinguish values of variables transmitted on distinct incoming control flow edges. [15]

used SSA for efficiently determining the determining the equality of variables in

programs. [16] used SSA for redundant computation using Global value numbering. SSA

can be used to find Constant propagation [17].

Briggs et al. [5] present efficient way of constructing and destruction of the SSA form.

This paper addresses three problems that arise in the use of the SSA form. The two

solutions are the improvements to the construction of the SSA form from Cytron et al.

[3]. It builds minimal, pruned and semi-pruned SSA form. And the last problem that this

paper addresses is the process of converting SSA form back into executable code.

Cliff click et al. describes a simple graph-based intermediate representation [23]. Here the

IR is basically the SSA but it implements the phi-functions for control dependences. Data

dependences are represented using use-def edges and control dependences become edges

to REGION nodes [23]. SSA will be described in detail in chapter 3.

f) Static Single Information (SSI): Ananian [22] presents SSI that can be used as IR for

the compiler. SSI extends SSA form. SSI is similar to the SSA but it introduces more

definitions. SSI form recognizes that information about variables is generated at branches

and generates new names at these points. This provides us with a one-to-one mapping

between variable names and information about the variables at each point in the program.

Analyses can then associate information with variable names and propagate this

information [22].

Formal Definition of SSI [22]: Pseudo-assignments are added for a variable V:

() at a control-flow merge when disjoint paths from a conditional branch come together

and at least one of the paths contains a definition of Vi and

() at locations where control-flow splits and at least one of the disjoint paths from the

split uses the value of V.

12

Details about SSI can be found in [18,22].

g) Program Dependence Graph (PDG): Ferrante et al. [6] present the PDG. The PDG

consists Control-dependence graph (CDG) and Data-dependence graph (DDG). The

nodes are statements and predicate expressions (or operators and operands) and the edges

incident to a node represent both the data values on which the node’s operations depend

and the control conditions on which the execution of the operations depends [6]. That is

there are two types of edge found in the PDG. One is control dependence edge and other

is data dependence edge. The PDG can be used not only for the optimizing compilers but

it can be used in parallel machine. The paper describes how the PDG can be used for

vectorization, node splitting, code motion, and loop fusion [6]. PDG will be discussed in

more detail in chapter 3.

h) Value Dependence Graph (VDG): Weise et al. [24] present Value Dependence

Graph. VDG is a functional IR that expresses computation solely as value flow. CFG-

based IRs are statement based and name all values. PDG do the same. In contrast, a VDG

program only specifies the flow of values through a computation. There is no superfluous

information concerning names, or the order in which values are computed. (In effect,

VDG edges correspond to uses of CFG virtual register names.) VDG has a demand-based

semantics, so a value is only computed if it is needed by another computation [24].

i) Dependence Flow Graph (DFG): DFG is presented in Pingali et al. [25]. DFG is an

improved version of def-use chaining. DFG has explicit control flow edges, and explicit

def-use edges, but def-use edges are factored at control flow split and merge points,

which reduces the expense of def-use chaining.

j) Program Dependence Web (PDW): PDW is a program representation that is suitable

for control-driven, data-driven, or demand-driven interpretation [26]. Program

Dependence Webs are an extension of PDG [26] and SSA form [3,4]. PDW provides a

basis for program optimizations and Robert et al. present and efficient methos for

translating an imperative program into a PDW [26].

13

2.2 Tools

2.2.1 Stanford University Intermediate Format (SUIF)

The SUIF system is a compiler infrastructure. It supports collaborative research and

development of compilation techniques, based upon a program representation [31]. SUIF

provides useful abstractions and frameworks for developing new compiler passes. Two

versions of SUIF systems are found. One is SUIF1 and another is SUIF2. The design and

implementation of SUIF1 is totally different from the SUIF2 system [31]. In this

dissertation SUIF2 compiler infrastructure is used for our implementation. The key

features of SUIF2 are:

1 It works in modular subsystem. User can add their own components,

program representations and program analyses, easily.

2 An extensible program representation that allows users to create new

instructions to capture new program construct semantics or new program

analysis concepts.

More information can be found in SUIF home page1

2.2.2 Machine SUIF

Machine SUIF [32] is a research compiler infrastructure, developed at Harvard

University, that is flexible, extensible, and easily-understood for constructing compiler

back ends. In Machine SUIF, the optimization and analysis passes are coded in such a

way that makes them as independent of the compiler environment and compilation targets

as possible . And that is their main philosophy.

The Machine SUIF works under the SUIF [31] compiler infrastructure (version 2.1). The

Machine SUIF provides an interface called, Optimization Programming Interface (OPI).

1 See URL, http://suif.stanford.edu/

14

Machine SUIF is used for implementation and described in detail in chapter 4. To see

more about Machine SUIF go to the home page.2

2.2.3 LCC

LCC is an easily retargetable ANSI C compiler written by Christopher Fraser and David

Hanson. The front end eas adapted for use in the SUIF system. The compiler contains no

optimizer, but its intermediate code is suitable for most of the optimizations.

2.2.4 Visualization for Compiler Graphs (VCG)

The VCG [33] is a tool that is used for the visualization for compiler graphs. It is

developed by George Sander and Iris Lemke at the University of Saarland, Germany. The

VCG tool reads a VCG specification and visualizes the graph. This work has used VCG

1.30 although there are few versions of the VCG available. The Machine SUIF provides

interface for VCG and with that specific specification we can see the graph in X11. Detail

description about VCG can be found in this page3.

2 See URL, http://www.eecs.harvard.edu/machsuif

3 See URL, http://rw4.cs.uni-sb.de/~sander/html/gsvcg1.html

15

CHAPTER 3

3 TOOLS AND

INTERMEDIATE REPRESENTATIONS’ ANALYSIS

In the last chapter, various IRs and some tools that are relevant to this dissertation are

presented in briefly. This chapter describes the selected IRs and the tools used to

implement those IRs in greater detail. Section 3.1 gives the description of SUIF [31]

system. Section 3.2 describes about the Machine SUIF [32] and its main applications in

this thesis. Section 3.3 provides an overview of Static Single Assignment (SSA) [3, 4], its

variants and construction methods for those variants of SSA. Finally, section 3.4 provides

overview of Program Dependence Graph (PDG) [6] and its properties.

3.1 Stanford University Intermediate Format (SUIF)

The SUIF system is a compiler infrastructure designed to support collaborative research

and development of compilation techniques, based upon a program representation [31].

Users are provided useful abstractions and frameworks for developing new compiler

passes and by providing an environment that allows compiler passes to easily inter-

operate so that maximum code could be reused. There are two versions of SUIF, SUIF1

and SUIF2 but this work has used SUIF2. The SUIF2 system was is built as part of the

National Compiler Infrastructure (NCI) project The SUIF2 system is new design and

implementation, and is completely different from the SUIF1 system.

The SUIF1 system was originally designed to support high-level program analysis of C

and FORTRAN programs. But SUIF2 was designed to support the planned components

such as object-oriented programming languages and better machine-level optimizations.

SUIF2 supports new research topics that have yet to be defined as much as possible.

SUIF1 system is a series of standalone program passes, that makes it inefficient when

each time the program is read and write to disk for each passes. SUIF2 was developed

with modular system that enables components to interoperate in a flexible manner.

16

3.1.1 Key Features of SUIF System

SUIF2 was designed to meet the goals of a research compiler infrastructure with the

following key features:

1 different components like program representations and program analyses can be

combined easily. That is, it works in a modular subsystem. Programmers can combine

many modules with a driver to produce a standalone program. A compiler may be

either a series of standalone programs that read and write SUIF file or a program that

dynamically imports and applies a series of different modules to the program in

memory.

2 users can extend the exiting program representation so that the new semantics of the

program or new analysis concepts could be developed. Users can extend the object

hierarchy that capture the program semantics to their needs but the SUIF program will

always contain the same basic information but may contain different subsets of nodes

representing with refined program semantics.

3.1.2 The SUIF Architecture

The SUIF system has a simple and modular architecture [31]. It contains three

components: kernel, modules and driver. The kernel implements a set of basic functions

found to be useful across all compilation passes. A number of modules loaded

dynamically under user control. And driver controls the system operation. Figure 3.1

shows the SUIF architecture.

a) The Kernel

The kernel contains two layers. One is the IO kernel and other is the SUIF kernel. The IO

kernel implements a persistent object system that is independent of the applications of

writing compilers. The SUIF kernel defines and implements the Suif compiler

environment (SuifEnv) that is all the user needs to know when writing a SUIF program.

The SuifEnv is the only environment that holds the entire state and components of the

compiler system, there are no other global variables and states in the system. To start a

SUIF program, the instance of SuifEnv object must be created.

17

Figure 3.1. The SUIF system architecture.

The SuifObject is made up of the following components:

1. the program representation, which is the SUIF IR of the program currently stored in

the SUIF environment.

2. the object factory, which is used by the system internally to create all persistent

objects in the environment.

3. the subsystems, which have distinct duties like printing node information, printing

error information, cloning of trees, dynamically loading SUIF programs, and the

initialization and registration of modules.

b) Modules

The bulk of the SUIF compiler system is structured as modules, each of which is a C++

class identified by a unique module name. The system comes with a number of basic

modules, as well as some tools to help user construct their own modules. Modules can be

one of two kinds:

1 Intermediate Representation, which contains a set of nodes. The set of nodes contains

suifnodes and basicnodes. The suifnodes captures standard programming constructs

in standard languages such as C and FORTRAN. The basicnodes contains a number

MODULES:

suifdriver

analyses
optimizations

suifnodes
basicnodes

suifkernel
iokernel

Executable

Passes IR

Kernel

18

of basic programming constructs.

2 Passes, which could be analyses or optimizations. The SUIF infrastructure contains

many basic modules such as loading and printing a SUIF program that can be derived

by users to define their own passes.

c) Drivers

The user needs to supply a “main” program that creates the SuifEnv, imports the relevant

modules, loads a SUIF program and applies a series of transformations on the program

and eventually writes out the information to create a compiler or a standalone pass in

SUIF system. Suifdriver is one such driver that allows the user to dynamically specify the

components and passes applied.

3.2 Machine SUIF

Machine SUIF is a flexible, extensible, and easily-understood infrastructure for

constructing compiler back ends that is developed at Harvard University [32]. The main

theme of Machine SUIF is to code analysis and optimization passes in such a way that

they are as independent of the compiler environment and compilation targets as possible.

The Machine SUIF contains the Stanford SUIF [31] compiler infrastructure (version 2.1)

for the compiler environment. But the Machine SUIF can use other compilers for the

compiler environment. The SUIF compiler is capable of compiling C and FORTRAN

code and produce optimized code for machine based on the Alpha or x86 architectures.

The analyses and optimizations distributed in Machine SUIF do not directly reference

any SUIF constructs or embed constants from any target machine. Instead, each is written

using a standardized view of the underlying compiler environment, an interface layer

called Optimization Programming Interface (OPI).

3.2.1 Goals of Machine SUIF

There are three primary goals of Machine SUIF. They are: ease of use, quality of

19

optimized code, and reuse of optimized code.

a) Ease of use

This is the first and foremost goal of Machine SUIF. The Machine SUIF had to be easy,

especially if user want to do something simple, and straightforward to retarget so that the

user could use it in architecture investigations. Most of the users want to add or change

the system in some way. Machine SUIF provides many libraries that can be easily used in

user’s pass for new analysis and optimization passes. It also supports parameterized

passes. Target specific or environment specifics could be given to user’s algorithm for

analyses and optimizations. The OPI also hides the implementation of IR, many details of

which are uninteresting to someone simply wanting to code a new optimization

algorithm.

b) Quality of optimized code

Machine SUIF is a powerful system for producing optimized code. It is modular, making

it easy to add, remove, and rearrange passes. User typically develops optimization passes

that focus on a single action, such as dead code elimination. Nearly all such passes can be

inserted at any point in the back-end flow. Thus, the writer of copy-propagation pass can

focus on data flow and operand rewriting and assume that a subsequent run of the dead

code elimination pass will remove any dead code produced during copy propagation.

c) Reuse of optimized code

Finally, Machine SUIF has to build in a manner that permitted reuse of existing

optimizations directly in an optimization environment with significantly different

constraints.

20

3.3 Static Single Assignment (SSA)

SSA form is an intermediate representation that can be used in compilers for various

program analyses and optimizations which is developed Cytron at el. [3, 4]. Since the

introduction of SSA form in 1989 [4], there are many analyses and optimizations that are

based on the SSA form [15,16,17]. It has become a popular representation for use in data-

flow analysis and optimization. In compilers, programs are translated into SSA form,

perform analyses and optimized in many ways and then translated back out of SSA form.

Figure 3.2 shows this process.

Figure 3.2. Role of SSA form in compilers.

3.3.1 Definition of SSA

In SSA form each variable is assigned only once statically. A single program is defined to

be in SSA form if each variable is a target of exactly one assignment statement in the

program text [3]. SSA form can be viewed as a sparse representation of the use-def or

def-use chains.

A program is translated into SSA form in two-step. In the first step, some trivial -

functions are inserted at the some of the join nodes in the program’s control flow graph.

The -function has the form x (x, x, …). In the next step, new variables are generated

for each variable in the original program. Generally, new variables are the subscripted

version of the variable that is found in the original program. In a -function, there may be

Original program
in non-SSA form

SSA form Analyses and Optimizations

Optimized non-
SSA form

21

many arguments. These arguments are the variables. The number of operands is the

number of control flow predecessors of the node that contains the -function. The jth

operand of -function is associated with the jth predecessor of that node. When the

control is reached to node N through its jth predecessor, then the -function contain in N

will take jth operand from the operands. Translation to SSA form replaces the original

program by a new program with the same control flow graph.

Figure 3.3 shows a simple control flow graph and its SSA form.

(a) (b)

Figure 3.3. a simple control flow graph (a) and its SSA form (b).

Formally, a program is in SSA form if it follows following three conditions [3] :

1 If two nonnull paths XZ and YZ converge at a node Z, and nodes X and Y

contain assignments to V (in the original program), then a trivial -function

V(V,…,V) has been inserted at Z (in the new program).

2 Each mention of V in the original program or in an inserted -function has been

replaced by a mention of a new variable Vi, leaving the new program in SSA form.

3 Along any control flow path, consider any use of a variable V (in the original

program) and the corresponding use of Vi, (in the new program). Then V and Vi have

the same value.

x = … x = …

… = x

x0 = … x1 = …

x2 = (x0,x1)
… = x2

22

There are three flavors found in the SSA form. The SSA form that is constructed by these

algorithms differs in the cost of construction, number of -functions that is inserted and

the size of the name space. The three flavors are:

1) Minimal SSA,

2) Pruned SSA, and

3) Semi-pruned.

The simplest algorithm for translating the program into the SSA form is the minimal SSA

form. This algorithm would insert -function at each join nodes in the control flow graph.

Then the renaming process takes place. Even though the minimal SSA form inset few

extra -functions the resulting SSA form is still valid. However, theses extra -functions

causes overhead in analyses and optimizations. The other two variants of SSA form are

similar to the minimal SSA form. In pruned SSA form, -function is inserted at join node

N only if the variable defined is live in node Z or after the node Z. That is, live analysis is

needed to translate into the pruned SSA form. There are fewer -nodes found in the

pruned SSA form but the translation cost is much higher that the minimal SSA form. The

third and last variant of SSA form is semi-pruned SSA form. The semi-pruned SSA form

is developed by Briggs el at. [5]. There are fewer -nodes than the minimal form without

the expense of solving data-flow equations to determine which values are “live”. The

three variants of SSA form will be described in detail in the subsequent sections. But

before that some important definitions are needed that are used in the construction of

SSA form.

3.3.2 Dominance

Dominance relation between nodes in the control flow graph is important for the

construction of SSA form.

23

3.3.3 Dominator Trees

In a control flow graph CFG, if node X appears on every path from the start node to node

Y, then X dominates Y. Dominance is denoted by » . If X dominates Y and X Y, then

X strictly dominates Y. Strict dominance is denoted by ». If X does not strict dominate Y,

we write » . The immediate dominator of Y (idom(Y)) is the closest strict dominator of Y

[3]. In dominator tree, the parent of each node is its immediate dominator. All the nodes

that dominate the node X are the ancestors in the dominator tree. Lengauer and Tarjan

give an efficient algorithm for building the dominator tree in O(ElogN) time, where E is

the number of edges and N is the number of blocks in the CFG [12].

3.3.4 Dominance Frontiers

The dominance frontiers of a CFG node X is the set of nodes Y such that X dominates a

predecessor of Y, but X does not strictly dominate Y [3]. It is denoted by DF(X):

DF(X) = { Y | (P Pred(Y))(X » P and X » Y) }

The computation of dominance frontier from the definition would be very inefficient. So

Cytron et al. define two intermediate sets DFlocal and DFup for each node such that the

following equation holds [3]:

DF(X) = DFlocal(X) DFup(Z)

ZChildren(X)

The DFlocal (X) is defined by [3]:

def

DFlocal (X) = { Y Succ(Z) | X » Y}

Given any node Z that is not the root of the dominator tree, some of the nodes in DF(Z)

may contribute to DF(idom(Z)). The contribution DFup(Z) that Z passes up to idom(Z)

is defines by [3]:

24

def

DFup (X) = { Y DF(Z) | idom(Z) » Y}

An algorithm for finding dominance frontiers which runs in O(E + N2) time is

developed by Cytron et al. [3]. Cytron et al. show that the algorithm is correct. This

algorithm will be used in the implementation for finding SSA form and will be described

in chapter 4 in more detail.

3.3.5 Relation between Dominance Frontiers and Joins

Cytron et al. extend the concept of dominance frontier and show how to place -functions

in the nodes of CFG [3]. If S is a set of CFG nodes, then the set join nodes, denoted by J(

S), is defined to be the set of all nodes Z such that there are two nonnull CFG paths that

start at two distinct nodes in S and converge at Z. The iterated join J+(S) is the limit of

the increasing sequence of sets of nodes

J1 = J(S)

Ji+1 = J(S Ji)

In particular, if S happens to be the set of assignment nodes for a variable V, then J+(S)

is the set of -function nodes for V.

The dominance frontier of a set of nodes is defined to be the set of nodes in the

dominance frontier of any member of the set:

DF(S) = DF(X)

XS

The iterated dominance frontier DF+ (S) is the limit of the increasing sequence of sets of

nodes

DF1 = DF(S)

Dfi+1 = DF(S DFi)

If the set S is the set of assignment nodes for a variable V, then Cytron et al. show that

the iterated join node J+(S) is equal to iterated dominance frontier DF+(S). That is:

J+(S) = DF+(S)

25

This means that -nodes for variable V are required only in blocks in DF+(S). The

insertion of -node can be efficiently done by other schemes [5,8,9].

3.3.6 Minimal SSA form

The algorithm for constructing minimal SSA form from program in CFG form requires

two steps [3]. Figure 3.4 shows the algorithm for constructing minimal SSA form.

/* STEP 1: Insertion of -nodes */

Calculate the dominator tree and dominance frontier

For each variable V

Calculate set of CFG nodes S which contain assignment to V

Insert -node for V in the iterated dominance frontier of DF+(S)

/* STEP 2: Renaming each variable */

Rename each variable by preorder walk over the dominator tree

Figure 3.4. Algorithm for building minimal SSA form.

The first step includes insertion of -nodes for each variable V in the iterated dominance

frontier of DF+(S), where S is the set of CFG nodes that contains assignment to variable

V. In the second step, renaming of variables take place. Detail implementation of this

algorithm will be presented in chapter 4.

3.3.7 Pruned SSA form

In minimal SSA form, insertion of -node takes place according to the calculation of

dominance frontier that correctly captures the potential flow of values. But because of the

ignorance of the data-flow information, the minimal SSA form construction will insert a

-node for variable V at a join point where V is not live.

26

Cytron et al. provide another variation of SSA form that they called pruned SSA form

[3]. The construction of pruned SSA form needs “live analysis” first. A variable is live at

a particular point in a program if there is a path to the exit along which its value may be

used before it is redefined. It is dead if there is no such path. That is, for each block, a set

of values that are live on entry to the block and can be referenced along some path

leading to the block [1, 2].

Constructing pruned SSA form needs some changes to the algorithm given in fig. 3.3. In

fig. 3.3, -node is inserted in join nodes but in pruned SSA form, liveness analysis is

performed first. So the first step in the construction of pruned SSA form is the insertion

of -node for V is inserted in every node n DF+(S), where V Liveness(n) and S is

set of CFG nodes that contain assignment to V. Pruned SSA from contains much less -

nodes than minimal SSA form. The renaming process in pruned SSA form is same as in

minimal SSA from.

The construction cost of pruned SSA form is much higher than minimal SSA form

because the pruned SSA form must do liveness analysis before insertion of -node.

Although linear-time or near-linear time algorithm exist for insertion of -nodes larger

memory requirements can directly degrade performance.

3.3.8 Semi-Pruned SSA form

As described in previous sections, the SSA variants developed by Cytron et al. vary in the

number of insertion of -nodes. Minimal SSA form inserts -function according to the

calculation of dominance frontier without liveness analysis. Pruned SSA form inserts -

nodes after calculation of liveness analysis and dominance frontier. Even though pruned

SSA form inserts less -nodes than minimal SSA form, the construction cost of pruned

SSA form is very high.

Briggs et al. developed a third variant of SSA that they called semi-pruned SSA form [5].

The main theme of semi-pruned SSA form is the speed and space advantage over the

27

x = … x = …

… = x … = x

y = … y = …

z = … z = …

… = y … = y

… = z

Original Code

x1 = … x2 = … x1 = … x2 = … x1 = x2 = …

… = x1 … = x2 … = x1 … = x2 … = x1 … = x2

y1 = … y2 = … y1 = … y2 = … y1 = … y2 = …

z1 = … z2 = … z1 = … z2 = …

… = y1 … = y2 … = y1 … = y2 … = y1 … = y2

x3 = (x1,x2) y3 = (y1,y2) z3 = (z1,z2)

y3 = (y1,y2) z3 = (z1,z2) … = z3

z3 = (z1,z2) … = z3

Minimal SSA Semi-pruned SSA Pruned SSA

Figure 3.5. Three flavors of SSA form.

other two relies on the observation that many names in a routine are defined and used

wholly within a single basic block [5]. In general, the compiler generates the temporary

names for their intermediate results. Briggs et al. capitalized this fact in semi-pruned SSA

form by computing set of names that are live on entry to some basic block in the

28

program. They called it “non-local” names. Then in the construction of semi-pruned SSA

form, -node is inserted only in iterated dominance frontier for set S that contains only

non-local names. Briggs et al. shows that the number of -nodes in semi-pruned SSA

form lie between minimal SSA form and pruned SSA form. The computation of non-

local names is cheaper than the liveness analysis. So, semi-pruned form represents a

compromise between the time required to perform liveness analysis and the reduction in

the number of -nodes that it allows.

Briggs et al. provides the algorithm for constructing non-local names [5]. That algorithm

us used for construction of semi-pruned SSA form in chapter 4.

The renaming process can be improved by efficiently manipulating the stacks of names

[5]. The stacks indicate the SSA name of each variable that reach a particular point in the

program. The improvement reduces the number of pushes performed in addition to more

efficiently locating the stacks that should be popped.

Figure 3.5 shows the three flavors of SSA form that is taken from Briggs et al [5, figure

5]. In minimal SSA form, -nodes are necessary for all three variables x, y and z. In

pruned SSA form, only variable z needs -node. There is no need of -nodes for x and y

because they are not live. In semi-pruned SSA form, -nodes for y and z are inserted. -

node for y is still needed because y is live across some block boundary, and that is the

limit of the analysis used.

3.3.9 Destruction of SSA form

After translating the program into SSA form and doing optimizations, the compiler must

translate SSA form back into an executable form. The compiler must translate the

semantics of the -function into commonly implemented instructions. One simple rule to

replace -node is block b is to insert copy operation into each b’s predecessors. The

insertion of copy operation works because -node maps the incoming values from the

predecessors. The copy operation does the same after inserting copy operation at the end

29

of each b’s predecessors. For example consider figure 3.6. Figure 3.6(a) shows the SSA

form and figure 3.6(b) shows the code after inserting copy operations.

Cytron et al. describe how to translate out of SSA form by replacing each -node with

some ordinary assignments [3, 4]. Instead of using naïve translation that could yield

inefficient object code, they applied two useful optimizations: dead code elimination and

storage allocation by coloring to produce efficient object code.

(a) (b)

Figure 3.6. (a)SSA form and (b) after insertion of copy operation.

Briggs et al. show how the naïve algorithm that appears to be prior practice can produce

incorrect code in cases that involve either “copy folding” or “critical edges”. They

present an algorithm for replacing -nodes with copy instructions that generates correct

code in the presence of both copy folding and critical edges [5].

3.4 Program Dependence Graph (PDG)

Program Dependence Graph, PDG, is an intermediate representation that contains

explicitly both control relationships and data relationships of a program [6]. The PDG for

a program consists of a control dependence graph (CDG) and a data dependence graph

(DDG). Nodes in a PDG may be basic blocks, statements, individual operators, or

constructs at some in-between level. The set of all dependencies for a program may be

viewed as inducing a partial ordering on the statements and predicates in the program that

x0 = …. x1 = …

x2 = (x0,x1)

x0 = …
x2 = x0

x1 = …
x2 = x1

x2 = …

30

must be followed to preserve the semantics of the original program [6].

= +

Figure 3.7. Structure of PDG.

Figure 3.7 gives the structure of PDG.

S1 a = b + c

S2 if a < 10

S3 d = a * e

S4 print d

Figure 3.8. Example of control and data dependencies.

To understand more about dependencies consider the code fragment of fig. 3.8. If S3

execute before S1, then the value computed by S3 would be incorrect because S3 needs

value of a that is computed in S1. That is, dependence exists between two statements

whenever a variable appearing in one statement may have an incorrect value if the two

statements are reversed. This type of dependency is called data dependences. Now

consider S2 and S3. Execution of statement S3 depends on the statement S2. This type of

dependency is called control dependences.

The following two subsections will describe about the construction of CDG and DDG.

3.4.1 Control Dependence Graph (CDG)

In this subsection, first few important definitions are presented that are needed for the

construction of CDG.

A control flow graph is a directed graph G augmented with a unique entry node ENTRY

and a unique exit node EXIT such that each node in the graph has at most two successors.

Program
Dependence
Graph

Control
Dependence
Graph

Data

Dependence

Graph

31

Assume that nodes with two successors have attributes “T” (true) and “F” (false)

associated with the outgoing edges in the usual way. Further assume that for any node N

in G there exists a path from ENTRY to N a path from N to EXIT [3, 6].

A node M is post-dominated by a node N in G if every directed path from M to EXIT

(not including M) contains N [6].

Let M and N are the nodes of a control flow graph G. Then node N is control-dependent

on node M if and only if

1) there exists a directed path P from M to N with any Q in P (excluding M

and N) post-dominated by N and

2) M is not post-dominated by N [6].

The construction of CDG consists two steps. In first step, we construct the basic CDG

and in the second step so-called region nodes are added to it. To construct the basic CDG,

special predicate node START is added to the control flow graph with its “T” edge

running to the ENTRY node and its “F” edge to EXIT. This resulting graph is G+. Next

step is to construct the post-dominance relation on G+, which can be displayed as a tree.

Computing post-dominators in the control flow graph is equivalent to computing

dominators in the reverse control flow graph [3]. The computation of control

dependences from the dominators in the reverse control flow graph will be discussed

soon. After obtaining the dominator tree, control dependencies are determined by

examining certain control flow graph edges and annotating nodes on corresponding tree

paths. Let S be the set of edges (M, N) in G+ such that N does not post-dominate M. Now

the control dependence determination algorithm proceeds by examining each edge (M, N)

in S. Let L be the least common ancestor of M and N in the post-dominator tree. Ferrante

et al. show that either L is M of L is the parent of M in the post-dominator tree [6]. So

consider the two cases for L. In the case where L is parent of M, all nodes in the post-

dominator tree on the path from L to N, including N but not L, should be made control

dependent of M. In the case where L is equal to M, all nodes in the post-dominator tree

on the path from M to N, including M and N, should be made control dependent on M.

To achieve this, traverse backwards from N in the post-dominator tree until M’s parent (if

32

it exists) is reached, marking all nodes visited before M’s parent as control dependent on

M. Ferrante et al. provide the correctness of this construction [6].

Consider an augmented control flow graph in fig. 3.9 (a). Its corresponding post-

dominator tree is figure 3.9 (b). The basic CDG is shown in fig. 3.10 (a) after obtaining

set S, which contains (START, ENTRY), (1, 2), (1, 3) and (4, 6).

T

F

T F

F T

(b)

(a)

Figure 3.9. (a) Augmented control flow graph and (b) its post-dominator tree.

The final step of the CDG construction is the addition of region nodes to summarize the

set of control conditions for a node and group all nodes with the same set of control

conditions together. See fig. 3.10 (b). Region nodes are also inserted so that predicate

nodes will have only two successors, as in the control flow graph. Ferrante et al. show

how region nodes can be inserted in CFG by extending the concept that any nodes having

a proper containment of their sets of control dependences must be adjacent to one another

on some path in the post-dominator tree [6].

START

ENTRY

1

2 3

4

65

EXIT

EXIT

START 2 5 1

4 ENTR
Y

3 6

33

CDG can be efficiently constructed efficiently using the method provided by Cytron et al.

[3]. The reverse control flow graph RCFG has the same nodes as the control flow graph

CFG, but has an edge YX for each edge XY in CFG. The roles of ENTRY and EXIT

are also reversed. Cytron el at. gave the proof that the post-dominator relation on CFG is

the dominator relation on RCFG. They provide an algorithm for computing control

dependences in O(E + size(RDF)), where RDF is the dominance frontier in RCFG [3].

T T

F F F T T F

T

(a) T

(b)

Figure 3.10. (a) basic control dependence graph and (b) CDG with region nodes.

3.4.2 Data Dependence Graph (DDG)

The Data Dependence Graph, DDG, represents the data dependence edges in the PDG. If

there is a data dependence edge between two basic blocks (A, B), then there is definition

in basic block A and that definition is used in basic block B. That is, explicit def-use

chains [1].

Other edges are also necessary for certain transformations. Ferrante el at. described

START

3

1

4 2

6

5

START

1

R1

R3

43 5

R2

2

6

34

incremental data dependence update algorithm that requires output dependence edges [6].

Let S1 and S2 are two statements in the program and S1 comes before S2. If both

statements set the value of some variable, then it is called an output dependence. If S1

uses some variable’s value, and S2 sets it, then it is called an antidependence between

them. If both statements read the value of some variable, there is an input dependence

between them. And finally, if S1 sets a value that the latter uses, then there is true

dependence or flow dependence [2].

S1 i = 0

S2 sum = 0

S3 while i != 100

S4 sum = sum + 1

S5 i = i + 1

S6 print I

Figure 3.11. Example of data dependences.

Consider a fragment of code in fig. 3.11. There is true dependence between S1 and S3, S1

and S5, since S1 sets value of i that are used in S3 and S5. An antidependence can be

found in S3 and S5 because S3 uses the value of i and S5 sets the value of i. S1 and S5

have output dependence, since both set the value of i. Similarly, S2 and S4 also have

output dependence because both define the value of sum. Statements S3 and S6 have

input dependence because both read value of i. And finally, S3 and S5 also have input

dependence because both read value of sum.

The main property of PDG is the exposing of potential parallelism. That property can not

be found in the control flow graph because CFG contains unnecessary sequencing

between operations. Since dependences in the PDG connect computationally relevant

parts of the program, many code improving transformations, like vectorization and code

motion [6], require less time to perform than with other program representations. Ferrante

el at. show how PDG can be applied in applications like: detection of parallelism, node

splitting, code motion, loop fusion and software development environment [6].

35

CHAPTER 4

4 IMPLEMENTATION

In this chapter, steps for the implementation have been provided for the selected

intermediate representations, Static Single Assignment (SSA) [3] and Program

Dependence Graph (PDG) [6]. SUIF2 [31] and Machine SUIF [32] systems are used for

the implementation SSA and PDG.

c2suif

Figure 4.1. Implementation Structure.

SUIF2 c2suif

lower

source program (.c)

SUIF2 output file (.suif)

Machine SUIF
s2m

gen

il2cfg

Machine SUIF IR file
that targets suifvm

machine specific code

CFG form

PDG or SSA form

vcg file

suif file (.suif)

36

Section 4.1 presents the actual algorithm for implementation of three flavors SSA form.

Section 4.2 presents algorithm for implementing PDG. Section 4.3 shows how the passes

are used in Machine SUIF.

Figure 4.1 shows the broad view of our implementation steps. Appropriate benchmark

programs have been taken for this dissertation. These input programs are converted into

suif file using pass c2suif. Next, SUIF transformations are applied that make IR file

acceptable for lowering into Machine SUIF using lower pass. Complex operations in the

SUIF2 IR are decomposed into simpler operations; for example, if statements and for

loops are dismantled into branch and jump operations. After that s2m pass is used to

convert IR into SUIFvm, the architecture independent assembly language of Machine

SUIF (do_s2m in the shell). The gen pass does most of the machine-specific code

generation. This pass takes parameter for specific target machine, –target_lib x86 for x86

architecture. The il2cfg pass transforms the IR from simple instruction-list form to CFG

form. Finally, the developed passes are applied which convert CFG form into SSA form

or PDG form according to the pass. The implemented IR can be viewed in X11 using

VCG [33] tool after writing IR in VCG format that Machine SUIF provide.

4.1 Implementing Static Single Assignment (SSA)

SSA is already implemented in Machine SUIF. But in this section algorithms are

presented that are used by Machine SUIF to implement SSA in detail. The Machine SUIF

static single-assignment library translates an optimization unit into or out of SSA form

[3]. Three variants of SSA form can be implemented very easily. The implementation

follows the design described by Briggs et al. at Rice University [5]. The following

subsections show three flavors of SSA form have been implemented in Machine SUIF.

4.1.1 Implementing minimal SSA form

The Machine SUIF SSA Library implements the algorithm for constructing minimal SSA

form by algorithm shown in fig.4.2. As stated in section 3.3 of chapter 3, there consists of

37

two steps. The first step is determining locations for -nodes and second step is the

renaming of variables.

/* STEP 1: Determine locations for -nodes */

Calculate the dominator tree and dominance frontiers

For each variable, V

S { blocks containing an assignment to V }

Place a -node for V in the iterated dominance frontier of S.

/* STEP 2: Rename each variable, replace V, with the appropriate Vi */

For each variable, V

Counters[V] 0

Stacks[V] emptystack()

SEARCH(start)

/* Recursively walk the dominator tree, renaming variables */

SEARCH(block)

For each -node, V (…), in block

i Counters[V]

Replace V by Vi

Push(i, Stacks[V])

Counters[V] i +1

For each instruction, V x op y, in block

Replace x with xi , where i top(Stacks[x])

Replace y with yi , where i = top(Stacks[y])

i Counters[V]

Replace V by Vi

Push i onto Stacks[V]

Counters[V] i + 1

For each successor, s, of block

j whichPred(s, block)

38

continue…

For each -node, p, in s

V jth operand of p

Replace V with Vi, where itop(Stacks[V])

For each child, c, of block in the dominator tree

SEARCH(c)

For each instruction, V x op y, or -node, V (…), in block

Pop(Stacks[V])

Figure 4.2. Algorithm for building minimal SSA form.

The first step of placing the -node is the calculation of the dominator tree for the CFG

and calculation of dominance frontiers for the nodes in the CFG. More about the

dominator tree can be found in section 3.3.3 of chapter 3. Finding the dominance

frontiers, DF, for the nodes using the definition is not efficient, so Cytron et al. provides

an efficient way of finding dominance frontiers of the nodes by calculating DFlocal and

DFup [3].

DF(X) = DFlocal (X) DFup(Z)

ZChildren(X)

More about DFlocal and DFup can be found in section 3.3.4. Cytron et al. give an algorithm

for finding dominance frontiers which runs in O(E + N2). Figure 4.3 presents that

algorithm. At first, DFlocal is calculated node X and then DFup is calculated for each

children of X as shown in fig. 4.3.

Now, after the calculation of dominance frontiers of each CFG nodes, iterated dominance

frontier are calculated for each CFG nodes, denoted by DF+(X). Cytron et al. show that -

nodes for V are required only in blocks in DF+(S), where S contains the set of nodes of

CFG that has assignments for variable V [3]. Other efficient algorithms for placing -

39

nodes are also available [8,9], but team at Harvard University used algorithm provided by

Cytron et al. [3] for Machine SUIF.

For each X in a bottom-up traversal of the dominator tree

DF(X) =

For each successor, Y, of X in the CFG

/* local */

if idom(Y) X then

DF(X) = DF(X) {Y}

For each child, Z, of X in the dominator tree

For each Y DF(Z)

/* up */

If idom(Y) X then

DF(X) = DF(X) {Y}

Figure 4.3. Algorithm for calculating DF(X) for each CFG node X.

Figure 4.4 shows the algorithm for placing -nodes in the minimal SSA form [3]. The

main outer loop of this algorithm is performed once for each variable V. Cytron el at.

called this algorithm worklist algorithm because it uses worklist, W, data structure for

representing iterated dominance frontier [3]. There are few data structures used in this

algorithm. W is the worklist of CFG nodes being processed. In each iteration of this

algorithm, W is initialized to the set of nodes S that contain assignments to V. Each node

X in the worklist ensures that each node Y in DF(X) receives a -node. And each

iteration terminates when the worklist becomes empty. Work(*) is an array of flags, one

for each node. Work(X) indicates whether X has ever been added to W during the current

iteration of the outer loop. HasAlready(*) is an array of flags, one flag for each node,

where HasAlready(X) indicates whether a -node for V has already been inserted at X.

The flags Work(X) and HasAlready(X) are independent. These two flags are necessary

because the property of assigning to V is independent of the property of needing a -node

for V.

40

IterCount 0

For each node X

HasAlready(X) 0

Work(X) 0

W

For each variable V

IterCount IterCount + 1

For each X S

Work(X) IterCount

WW {X}

While W

Take X from W

For each Y DF(X)

If HasAlready(Y) < IterCount then

Place V (V,…,V) at Y

HasAlready(Y) IterCount

If Work(Y) < IterCount then

Work(Y) IterCount

W = W {Y}

Figure 4.4 Algorithm for placing -node.

The last step of constructing minimal SSA form is to rename variables to create the single

assignment property. This is accomplished in a single recursive walk of the dominator

tree, shown in the procedure SEARCH in fig. 4.2. The procedure SEARCH maintains

two data structures for each name in the original code. The first one is Counters[V] which

contains the subscript that will be assigned to the next definition of V. And the second

one, Stacks[V], holds the current subscript for V. For each new definition of V, SEARCH

renames V with the subscript from Counters[V], pushes that value onto Stacks[V], and

41

increments Counters[V]. Now in the first step of renaming, it rewrites variable names,

incrementing the various counters and pushing new names onto the appropriate stacks.

And in the next step of renaming, it rewrites -node parameters in any successor blocks

in the CFG so that the name inherited from the current block has the current subscript. To

rename the parameters of -node, it uses the whichPred function to determine which -

node parameter in the successor corresponds to the current block. To continue the search,

it recurses on each child in the dominator tree. After the recursion is complete, it

processes the current block again, to pop from each stack any subscripts added while

processing the block.

4.1.2 Implementing pruned SSA form

To construct pruned SSA form, liveness analysis is needed first to insert -nodes. The

liveness analysis analyses the variables in that are live on entry to the block [1, 2].

Liveness analysis is a backward data flow problem. Section 3.4 of chapter 3 describes

more about pruned SSA form. Machine SUIF contains liveness analyzer. The Machine

SUIF Bit-Vector Data-Flow-Analysis (BVD) Library provides liveness analyzer [32].

The algorithm for constructing pruned SSA form is similar to the construction of minimal

SSA form. In figure 4.2, live information has to compute and modify the first step where

-nodes are inserted. The pruned SSA form construction inserts -node for V in every

node N DF+(S), where V Liveness(N) whearas algorithm presented in fig. 4.2 inserts

-node for V in every node N DF+(S). The renaming process is same as the minimal

SSA form.

4.1.3 Implementing semi-pruned SSA form

The construction of semi-pruned SSA form is based on the fact that many of the names in

a program being converted to SSA form are local to a single basic block [5]. They are

compiler-generated temporaries that are never live across a control flow edge. Therefore,

42

the set of names that are live on entry to some basic block in the program, called “non-

local” names, are computed. The construction only computes for the set S that contains

assignments of non-local names. Section 3.5 of chapter 3 provides more about semi-

pruned SSA form.

In construction of semi-pruned SSA form, non-local names should be discovered. Briggs

el at. provide an algorithm, shown in fig. 4.5, to discover the non-local names [5].

Machine SUIF used that algorithm. This algorithm requires only two sets, non-locals and

killed. The algorithm makes a simple forward pass over each basic block. If an operand

that has not already been defined within the block, i.e. not in the killed set, then that

operand must be non-local names. This algorithm is very simple than the algorithm for

pruned SSA form. Now after finding the non-local names, -node is inserted for every

non-local name, V, by computing iterated dominance frontier of set S, where the set S

contains assignments to V. Finally, renaming of each variable in semi-pruned SSA form

is same as renaming of each variable in minimal SSA form. The renaming process can be

found in second part of the algorithm presented in fig. 4.2.

non-locals

For each block B

killed

For each instruction i x op y in B

If x killed then

non-locals non-locals { x }

If y killed then

non-locals non-locals { y }

killed killed { i }

Figure 4.5. Algorithm for finding non-local names.

43

4.2 Implementing Program Dependence Graph (PDG)

The construction of Program Dependence Graph (PDG) can be done in two parts. In the

first part, Control Dependence Graph (CDG) is constructed. And in the second part, Data

Dependence Graph (DDG) is constructed.

4.2.1 Implementing Control Dependence Graph (CDG)

Control dependence information can be calculated using the algorithm provided by either

Ferrante el at. [6] or Cytron el at. [3]. This dissertation has used the algorithm that is

provided by Cytron el at., shown in fig. 4.6. The first step of this algorithm is to build

reverse control flow graph RCFG and dominator tree for RCFG. Next dominance frontier

RDF for RCFG is calculated using the algorithm presented in fig. 4.3. Luckily Machine

SUIF contains the calculation of RDF in the Machine SUIF Control Flow Analysis

(CFA) Library [21]. The DominanceInfo class computes dominator sets, the dominator

tree, and dominance frontiers in either the forward or reverse graphs. This study has used

the method find_reverse_dom_frontier() to calculate RDF for RCFG. After calculating

dominance frontier for each node in RCFG, control dependence set CD is initialized for

each node with null. Now finally, CD is computed for each node shown in fig. 4.6.

Build RCFG

Build dominator tree for RCFG

Apply the algorithm for finding dominance frontier RDF for RCFG

For each node X do CD(X)

For each node Y

For each X RDF(Y)

CD(X) CD(X) { Y }

Figure 4.6. Algorithm for computing the set CD(X) nodes that are control dependent on

X.

44

After computing the set CD for each node, CDG was built according to the information

found in the set CD. CDG is built in Machine SUIF using appropriate interfaces that are

present in the Machine SUIF Control Flow Graph Library [20]. Region nodes are not

inserted in the CDG for simplicity. The purpose of region nodes is to group together all

the nodes that have the same control dependence on a particular predicate node, giving

each predicate node at most two successors.

4.2.2 Implementing Data Dependence Graph (DDG)

In this work, Data Dependence Graph (DDG) is constructed using the def-use chains [1,

2]. The Machine SUIF Bit-Vector Data-Flow-Analysis (BVD) Library provides the def-

use analyzer for each instruction in basic block [14]. The DefUseAnalyzer class of this

library is used. Definition set and use set are taken from this class using methods

defs_set() and uses_set() respectively. Each time two nodes X and Y of CFG are taken

and investigated if there is any data dependence edge. Data dependence is investigated

between X and Y in two steps. Firstly, if there is data dependence from X to Y, data

dependence edge (X,Y) is inserted. That is, if Y use the operand that is defined at X and

there is no redefinition between X and Y of that operand then data dependence edge

(X,Y) is inserted. Secondly, if there is data dependence from Y to X, data dependence

edge (Y,X) is inserted in PDG.

4.3 Inputs and Outputs

In this section, tools that are used, input programs, and outputs are presented. A sample

input C program is presented in fig. 4.7. Following passes of Machine SUIF are used to

convert C program into its corresponding CFG form:

c2suif sample.c

do_lower sample.suif sample.lsf

do_s2m sample.lsf sample.svm

do_gen –target_lib x86 sample.svm sample.xil

do_il2cfg sample.xil sample.cfg

45

/* sample.c */

int main ()

{

int i, sum = 0;

i = 1;

while (i < 100)

{

sum += i;

i++;

}

printf(“The sum of first 100 natural numbers is %d\n”, sum);

return 0;

}/* end of main */

Figure 4.7. Sample input C program sample.c.

do_fg2ssa pass is used to convert cfg formed input program into SSA form. This pass

writes the SSA into VCG format, ssa.vcg. Figure 4.8 shows the SSA graph of our sample

program sample.c.

After that, do_cfg2pdg pass is used to convert cfg formed input program into PDG. This

pass also writes the PDG into VCG format called pdg.vcg so that the actual PDG can be

seen in X11. Figure 4.9 presents PDG of our sample program in X11.

46

Figure 4.8 Visualization of SSA form in X11.

Figure 4.9 Visualization of PDG in X11.

47

CHAPTER 5

5 TESTING AND ANALYSIS

In this chapter,the various results that are obtained in experiments are presented. Selected

IRs, Program Dependence Graph (PDG) [6] and Static Single Assignment (SSA) [3],

have been tested in GNU/Linux platform in 3.00 GHz. Intel Pentium 4 with 1 GB RAM.

Section 5.1 presents the empirical comparison and analysis between selected IRs.

5.1 Empirical Comparison

Selected IRs, PDG and SSA, are implemented in C++ using Machine SUIF [32]. In

particular, this dissertation hasn’t implemented SSA, Machine SUIF provides simple

interface to create SSA using the Machine SUIF Static Single Assignment Library [13],

as described in chapter 4. Both PDG and SSA operate on CFG.

The time taken to construct PDG and three flavors of SSA form are measured, shown in

table 5.1. The construction time presented in table 5.1 is the mean of twenty tests. Also,

number of -nodes are compared in three flavors of SSA form. Various benchmark input

programs (C) are taken. Input programs are taken carefully to cover as many areas as

possible. For example, data-structure, sorting etc. Three graphs from table 5.1 are

presented in section 5.2 for analysis to give the clear view. In first graph, the comparison

between construction time of PDG and three flavors of SSA form is shown, fig. 5.1. In

second graph, comparison of number of edges between PDG and three flavors of SSA

form is presented, shown in fig. 5.2. In the last graph, comparison of number of -nodes

between three flavors of SSA form is presented, shown in fig. 5.3.

48

Program
Program

Dependence

Graph

(PDG)

Static Single Assignment (SSA) form

Edge

Minimal

SSA

Pruned

SSA

Semi-pruned

SSA

Time
(m.s.)

Edge Time
(m.s.)

-
nodes

Time
(m.s.)

-
nodes

Time
(m.s.)

-
nodes

guessinggames 311.5 149 31 6.5 110 5.5 0 4.0 1

linklist 302.0 189 30 8.5 153 8.0 9 6.5 12

bubblesort 264.0 192 33 9.5 199 6.5 5 5.0 6

matrix 203.5 92 22 10.0 282 6.0 5 7.0 9

shellsort 169.0 174 38 10.0 194 6.5 8 4.5 15

primefactorSOE 135.0 145 32 9.0 192 5.5 7 4.5 9

insertionsort 122.5 108 27 10.0 135 6.5 6 6.0 9

selectionsort 101.5 85 21 6.5 97 5.5 6 4.0 8

euclid 32.0 15 6 4.0 18 5.0 8 3.5 8

Table 5.1. Comparing construction time, edges between PDG and SSA, and number of -

nodes between three flavors of SSA form.

49

5.2 Analysis

Comparison of construction time between PDG and three flavors of SSA form

0

50

100

150

200

250

300

350

gu
es

sin
gg

am
es

lin
kli

st

bu
bb

les
or

t

matr
ix

sh
ell

so
rt

pr
im

efa
cto

rS
OE

ins
er

tio
ns

or
t

se
lec

tio
ns

or
t

eu
cli

d

Benchmarks

Ti
m

e
(m

.s
.)

PDG Minimal SSA Pruned SSA Semi-pruned SSA

Figure 5.1. Comparison of construction time between PDG and three flavors of SSA

form.

From graph in fig. 5.1, x-axis represents benchmark programs and y-axis represents

construction time in milliseconds. The construction time of PDG is expensive than any of

the SSA forms. In average, SSA form took 96% less time to construct than PDG. This is

because PDG contains two sub-graphs explicitly, one is Control Dependence Graph

(CDG) and another is Data Dependence Graph (DDG). SSA contains single graph and its

control structure is same as CFG. So constructing PDG takes much time than SSA.

50

Comparison of number of edges between PDG and SSA

0

50

100

150

200

250

gu
es

sin
gg

am
es

lin
kli

st

bu
bb

les
or

t

matr
ix

sh
ell

so
rt

pr
im

efa
cto

rS
OE

ins
er

tio
ns

or
t

se
lec

tio
ns

or
t

eu
cli

d

Benchmarks

E
dg

es

PDG SSA

Figure 5.2. Comparison of number of edges between PDG and three flavors of SSA form.

The work found that the number of edges in PDG is higher than SSA form, shown in fig.

5.2, where x-axis represents benchmarks and y-axis represents number of edges. In

average, SSA form contained 79% less edges than PDG. PDG contains two sub-graphs,

CDG and DDG. And SSA contains edges exactly from CFG. So PDG contains control

dependence edges and data dependence edges compare to only control dependence edges

of SSA form.

51

Comparison of phi-nodes between three flavors of SSA form

0

50

100

150

200

250

300

gue
ss

ingga
mes

lin
kli

st

bub
ble

so
rt

matr
ix

sh
ell

so
rt

prim
efa

cto
rS

OE

ins
er

tio
ns

ort

se
lec

tio
nso

rt

eu
cli

d

Benchmarks

P
hi

-n
od

es

Minimal SSA Pruned SSA Semi-pruned SSA

Figure 5.3. Comparison of number of -nodes between three flavors of SSA form.

Finally, this study found that the number of -nodes in minimal SSA form is higher than

in pruned SSA form and semi-pruned SSA form, shown in fig. 5.3. In this figure x-axis

represents benchmark programs and y-axis represents number of -nodes. Semi-pruned

SSA form contains much less -nodes than minimal SSA form but slightly more -nodes

than pruned SSA form. In our observations, pruned SSA form contained 96% less -

nodes than minimal SSA form and only 30% less -nodes than semi-pruned SSA form.

Semi-pruned SSA form contained 94% less -nodes than minimal SSA form. But more

importantly semi-pruned SSA form took 18% less time to construct than pruned SSA

form and 39% less time to construct than minimal SSA form. Pruned SSA form took 26%

less time to construct than minimal SSA form. This is because minimal SSA form inserts

-nodes without doing any analyses. But pruned SSA form inserts -nodes after liveness

analysis and doesn’t contain dead -nodes. Semi-pruned SSA form inserts -nodes only

52

if variable is live on some basic block entry. Semi-pruned looks promising because its

construction time is low and -nodes are lesser than other two forms.

Even though PDG have more edges and expensive to construct, PDG have few major

advantages over other IRs. For example, PDG can exploit potential parallelism and very

useful in multiprocessor system where parallel execution of instruction could take place.

PDG could be very useful in optimizations like program slicing, node splitting, code

motion, and loop fusion [6].

53

CHAPTER 6

6 CONCLUSIONS

6.1 Summary

This dissertation has worked on the problem of selecting right intermediate representation

(IR) for the compiler and provided comparative analyses of various IRs.

In the past, simple IR for compiler is sufficient for analyses and optimizations. But as the

development of complier technology occurred and new analyses and optimizations are

needed, many IRs were proposed. Compiler writer found very difficulty in selecting right

IR for their compiler. This study has provided comparative analyses of different IRs in

terms of construction time, number of edges etc. and gave efficient IR with reasons.

In the earlier part of this dissertation, many important IRs and their taxonomies are

presented. Motivation, tools needed and used for this dissertation are also presented.

Later, two important IRs, SSA and PDG, are selected and analyzed in greater detail. This

dissertation has preseted how dominance information of CFG could be used for

constructing three flavors of SSA form according to Cytron el at. [3]. CDG is constructed

that is presented by Cytron el at. [3] for PDG. DDG is constructed using def-use

information.

Finally, implementation steps of selected IRs using tools are presented. After testing with

various benchmark programs, this study has found that PDG is expensive in terms of

construction time and number of edges with any of the three flavors of SSA form. In

particular, SSA form took 96% less time to construct and contained 79% less edges than

PDG. The study found that pruned SSA contained 96% less -nodes than minimal and

30% less -nodes than semi-pruned. Semi-pruned contained 94% less -nodes than

minimal. To construct semi-pruned it took 18% less time than pruned and 39% less than

minimal. Pruned took 26% less time to construct than minimal. But this work has also

54

focused on the fact that PDG is important if multiprocessor system is used and useful for

optimizations like program slicing, node splitting, code motion, and loop fusion. The

comparative study presented in this work is useful for compiler designer.

6.2 Future work

This dissertation has provided comparative analyses for selecting appropriate IR for

compiler that gave compiler writer a huge benefit of selecting IR and could save much of

the time in design and implementation of compiler.

This study has selected PDG and SSA for comparison. In the implementation of PDG,

insertion of region nodes was avoided for simplicity. In the future, insertion of region

nodes are needed. Efficient construction of DDG in the PDG and compare number of

nodes between PDG and any other graph IRs will be acounted. Other important IRs are

needed for comparison in the future. Moreover, new optimization passes have to be

developed and empirical comparison according to those optimizations need to be

presented. This dissertation has used x86 as target architecture, other important

architectures will be used as target architecture in the next work.

55

References

[1] Aho, A. V., Sethi, R., and Ullman, J. D. Compilers: Principles, Techniques, and

Tools.Addison-Wesley, 1986.

[2] Muchnick, S. S. Advanced Compiler Design and Implementation. Morgan

Kauffman, 1997.

[3] Cytron, R., Ferrante, J., Barry K. Rosen, Wegman, M. N. and Zadeck, F., K.

Efficiently computing static single assignment form and the control dependence

graph. ACM Transactions on Programming Languages and Systems, 13(4):451–

490, Oct 1991.

[4] Cytron, R., Ferrante, J., Barry K. Rosen, Wegman, M. N. and Zadeck, F., K. An

Efficiently Computing Static Single Assignment Form. In Conference Record of

the Sixteenth Annual ACM Symposium on Principles of Programming

Languages, pages 25-35, Austin, Texas, January 1989.

[5] Briggs, P., Harvey, T., and Simpson, L. Practical Improvements to the

Construction and Destruction of Static Single Assignment Form. Software

Practice and Experience, 28(8), pp.859-881, July 1998.

[6] Ferrante, J., Ottenstein, K., and Warren, J. The Program Dependence Graph and

its Use in Optimization. ACM Transactions on Programming Languages and

Systems, 9(3):319-349, July 1997.

[7] Briggs, P., Harvey, T., and Simpson, L. Static Single Assignment Construction.

Implementation document, 1996.

[8] Cytron, R. and Ferrante, J. Efficiently computing -nodes on-the-fly. ACM

Transactions on Programming Languages and Systems, 17(3):487-506, May

1995.

56

[9] Sreedhar, V. C., and Gao, G. T. A linear time algorithm for placing -nodes. In

Conference Record of POPL ’95: 22jn ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 62-73, San Francisco, California,

January 1995.

[10] Briggs, P., and Cooper, K. D., and Torczon, L. Improvements to graph coloring

register allocation. ACM Transactions on Programming Languages and Systems,

16(3):428-455, May 1994.

[11] Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke, J., Hopkins, M. E., and

Markstein, P. W. Register allocation via coloring. Computer Languages, 6:47-57,

January 1981.

[12] Lengauer, T., and Tarjan, R. E. A fast algorithm for finding dominators in a

flowgraph. ACM Transactions on Programming Languages and Systems,

1(1):121-141, July 1979.

[13] Holloway, G. The Machine-SUIF Static Single Assignment Library. Harvard

University, July 15 2002.

[14] Holloway, G., and Smith, M. D. The Machine-SUIF Bit-Vector Data-Flow

Library. The Machine-SUIF documentation set, Harvard University, July 15

2002.

[15] Alpern, B., Wegman, M., and Zadek, F. Detecting Equality of Variables in

Programs.InConference Record of the Fifteenth ACM Symposium on the

Principles of Programming Languages, 1988.

[16] Rosen, B. K., Wegman, M. N., and Zadek, F. K. Global Value Numbers and

57

Redundant Computations. Conf. Rec. Fifteenth ACM Symp. On Principles of

Programming Languages, January 1988.

[17] Wegman, M. and Zadek, F. Constant propagation with conditional branches.

ACM Transactions on Programming Languages and Systems, 13920: 181-210,

April 1991.

[18] Singer, J. Static Program Analysis based on Virtual Register Renaming. Ph.D.

thesis, Chirst’s College, March 2005.

[19] Allen, F. E. Control Flow Analysis. Sigplan Notices, July 1970.

[20] Holloway, G., and Smith, M. D. The Machine-SUIF Control Flow Graph Library.

The Machine-SUIF documentation set, Harvard University, July 15 2002.

[21] Holloway, G., and Smith, M. D. The Machine-SUIF Control Flow Analysis

Library. The Machine-SUIF documentation set, Harvard University, July 15

2002.

[22] Ananian, C. S. The Static Single Information Form. Ph.D. thesis Princeton

University, 1997.

[23] Click, C., Paleczny, M. A Simple Graph-based Intermediate Representation. In

Papers from the 1995 ACM SIGPLAN Workshop on Intermediate

Representations, pages 35–49, 1995.

[24] Weise, D., Crew, R., Ernst, M., and Steensgaard, B. Value Dependence Graphs:

Representation without Taxation. In Conference Record of the Twenty-first ACM

Symposium on the Principles of Programming Languages, 1994.

58

[25] Pingali, R., Beck, M., Johnson, R., Moudgill, M., and Stodghill, P. Dependence

Flow Graphs: An Algebraic Approach to Program Deendences. In Proceedings of

the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 67–78, 1991.

[26] Balance, R. A., Maccabe, A. B., Ottenstein, K. J. Program Dependence Web: A

Representation Supporting Control-, Data-, and Demand-Driven Interpretation of

Imperative Languages. In Proceedings of the SIGPLAN 90 Symposium on

Compiler Construction. SIGPLAN Not. (ACM) 25, 6 (June 1990), 257-271.

[27] Holloway, G., and Smith, M. D. An Extender's Guide to the Optimization

Programming Interface and Target Descriptions. The Machine-SUIF

documentation set, Harvard University, July 15 2002.

[28] Holloway, G., and Smith, M. D. The Machine-SUIF Cookbook. The Machine-

SUIF documentation set, Harvard University, July 15 2002.

[29] Holloway, G., and Smith, M. D. The Machine-SUIF Machine Library. The

Machine-SUIF documentation set, Harvard University, July 15 2002.

[30] Holloway, G., and Smith, M. D. A User's Guide to the Optimization

Programming Interface. The Machine-SUIF documentation set, Harvard

University, July 16 2002.

[31] SUIF. Stanford University Intermediate Format.

hhttp://www.suif.stanford.edu

59

[32] Machine SUIF. Harvard University, USA.
http://www.eecs.harvard.edu/machsuif

[33] VCG. Visualization for Compiler Graphs. University of Saarland, Germany

http://rw4.cs.uni-sb.de/~sander/html/gsvcg1.html

[34] NCI. National Compiler Infrastructure.

http://www.cs.virginia.edu/nci
http://nci.pgroup.com

[35] Holub, A. I., Compiler Design in C, Prentice-Hall of India, 2003

[36] Grune D., Bal, H. E., Jacobs, C. J. H., Langendoen, K. G., Modern Compiler

Design, Wiley®-dreamtech publications India, 2003

[37] Pratt, T. W., Zelkowitz, M. V., Programming Languages Design and

Implementation, 4th Edition, Prentice-Hall of India, 2005

[38] Beck, L. L., System Software: An Introduction to Systems Programming, 3rd

Edition, Pearson Education, 2003

[39] Kernighan, B. W., Ritchie, D. M. The C Programming Language, 2th Edition,

Pearson Education.

[40] Kelley, A., Pohl, I., A Book On C, 4th Edition, Pearson Education, 2001

