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ABSTRACT 

               Determining optimal page size is one of the challenging tasks for 

designer of the operating systems. If page size is large, it creates larger 

fragmentation. On the other hand, if it is small, page table requires a huge 

memory space. The page size also affects the miss ratio. Present study analyzes 

these issues. For analysis purpose, a Multiprogramming operating system (MOS) 

is undertaken. Parameters are selected which affect the page size, and by 

varying them, performance analysis on MOS is experimentally conducted. The 

result achieved from the experiment is that memory fragmentation increases and 

storage requirement for the page table decreases in proportion to the page size. 

But the page fault does not decrease in proportion to page size. After the 

experiment, the optimal page size for the MOS system is found to be 40 bytes. 

This thesis tries to further study the existing theory on page size.  
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1 CHAPTER 1:  INTRODUCTION 

1.1 Memory Management 

 

Ideally, every programmer wants infinitely large, fast, and inexpensive 

memory. Unfortunately, technology does not provide such memories. 

Consequently, most computers have a memory hierarchy, with a small amount of 

very fast, expensive volatile cache memory, tens of megabytes of medium 

speed, medium-price volatile main memory(RAM) and tens or hundreds of 

gigabytes of slow, cheap, nonvolatile storage. It is the job of the operating system 

to coordinate how these memories are used. 

The part of the operating system that manages the memory hierarchy is 

called memory manager. Its job is to keep track of which parts of memory are in 

use and which parts are not in use, to allocate memory to processes when they 

need it and deallocate it when they are done, and to manage swapping between 

main  memory and disk when main memory is too small to hold  all the 

processes. 

In general, memory management should able to handle following things. 

Relocation 

Programs in memory must be able to reside in different parts of the 

memory at different times. This is because when the program is swapped back 
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into memory after being swapped out for a while it can not always be placed in 

the same location. Memory management in the operating system should 

therefore be able to relocate programs in memory and handle memory 

references in the code of the program so that they always point to the right 

location in memory. 

Protection 

Processes should not be able to reference the memory for another 

process without permission. 

Sharing 

Even though the memory for different processes is protected from each 

other, different processes should be able to share information and therefore 

access the same part of memory. 

Logical organization 

Programs are often organized in modules. Some of these modules could 

be shared between different programs, some are "read" only and some contain 

data that can be modified. The memory management is responsible for handling 

this logical organization that is different from the physical linear address space. 

One way to arrange this organization is segmentation. 

Physical organization 

Memory is divided into main memory and secondary memory. Memory 

management in the operating system handles moving information between these 

two levels of memory. 
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1.2 Memory Management Unit (MMU) 

Memory Management Unit is a class of computer hardware components 

responsible for handling memory accesses requested by the CPU. Among the 

functions of such devices are the translations of virtual addresses to physical, 

memory protection, cache control etc. 

Modern MMUs typically divide the virtual address space (the range of 

addresses used by the processor) into pages, whose size is 2n, usually a few 

kilobytes. The bottom m bits of the address (the offset within a page) are 

determined by the page size. The upper address bits, n-m, are the (virtual) page 

number. The MMU normally translates virtual page numbers to physical page 

numbers via an associative cache called a Translation Lookaside Buffer (TLB). 

When the TLB lacks a translation, a slower mechanism involving hardware-

specific data structures or software assistance is used. The data items found in 

such data structures are typically called page table entries (PTEs), and the data 

structure itself is typically called a page table. The physical page number is 

combined with the page offset to give the complete physical address. 

A PTE or TLB entry may also include information about whether the page 

has been written to (the dirty bit), when it was last used, what kind of processes 

(user mode, supervisor mode) may read and write it, and whether it should be 

cached. 

It is possible that a TLB entry or PTE prohibits access to a virtual page, 

perhaps because no physical memory (RAM) has been allocated to that virtual 

page. In this case the MMU will signal a page fault to the CPU. The operating 
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system will then handle the situation appropriately, perhaps by trying to find a 

spare page of RAM and set up a new PTE to map it to the requested virtual 

address. If no RAM is free it may be necessary to choose an existing page, using 

some replacement algorithm, save it to disk and then load the 

requested/referenced page in that space.  

In some cases a "page fault" may indicate a software bug. A key benefit of 

an MMU is memory protection. An operating system can use it to protect against 

errant programs, by disallowing access to memory that a particular program 

should not have access to. Typically, an operating system assigns each program 

its own virtual address space. 

1.3  Fragmentation 

Fragmentation causes wastage in computer storage. There are different 

kinds of fragmentation. Two important fragmentations are: 

1) Internal Fragmentation 

2) External Fragmentation 

1.3.1 Internal Fragmentation 

Internal fragmentation occurs when storage is allocated without ever 

intending to use it. This space is wasted. It is often accepted in return for 

increased efficiency or simplicity in allocation. The term "internal" refers to the 

fact that the unusable storage is inside the allocated region but is not being used. 

For example, in many file systems, files always start at the beginning of a 

sector, because this simplifies organization and makes it easier to grow files. Any 
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space left over between the last byte of the file and the first byte of the next 

sector is internal fragmentation. Similarly, a program which allocates a single 

byte of data is often allocated many additional bytes for metadata and alignment. 

Likewise the last page of a process almost always has some un-utilized space 

left.This extra space is also internal fragmentation. 

1.3.2 External Fragmentation 

External fragmentation is the phenomenon in which free storage becomes 

divided into many small pieces over time. It is a weakness of certain storage 

allocation algorithms, occurring when an application allocates and deallocates 

regions of storage of varying sizes, and the allocation algorithm responds by 

leaving the allocated and deallocated regions interspersed. The result is that, 

although free storage is available, it is effectively unusable because it is divided 

into pieces that are too small to satisfy the demands of the application. The term 

"external" refers to the fact that the unusable storage is outside the allocated 

regions. 

For example, in dynamic memory allocation, a block of 2000 bytes might 

be requested, but the largest contiguous block of free space,  has only 800 bytes. 

Even if there are ten blocks of 800 bytes of free space, separated by allocated 

regions, one still cannot allocate the requested block of 2000 bytes, and the 

allocation request will fail. 
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1.4 Virtual Memory 

Virtual memory is an addressing scheme that allows non-contiguous 

memory to be addressed as if it is contiguous. The technique used by all current 

implementations provides two major capabilities to the system: 

Memory can be addressed that does not currently reside in main memory 

and the hardware and operating system will load the required memory from 

auxiliary storage automatically, without any knowledge of the program 

addressing the memory, thus allowing a program to reference more (RAM) 

memory than actually exists in the computer.  

 

In multi tasking systems, total memory isolation, referred as a discrete 

address space, can be provided to every task except the lowest level operating 

system. This greatly increases reliability by isolating program problems within a 

specific task and allowing unrelated tasks to continue to process.  

 

Virtual memory has been a feature of most of the today's operating 

system. In x86 32 bit processor the maximum memory that can be addressed is 

2^32 = 4GB. This 4GB set of addressable addresses is called the address space 

and the addresses are called virtual addresses.  

 

In Linux system, this 4GB address space is divided into the 3 GB user 

space and 1GB kernel space. In the normal, default Windows OS configuration, 2 
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GB of this address space are allocated to the process's private use and the other 

2 GB are allocated to shared and operating system use.  

   

1.5 Demand Paging 

 

As there is much less physical memory than virtual memory, the operating 

system must be careful that it does not use the physical memory inefficiently. 

One way to save physical memory is to only load virtual pages that are currently 

being used by the executing program. This process is known as the demand 

paging. When a process attempts to access a virtual address that is not currently 

in memory the processor cannot find a page table entry for the virtual page 

referenced. At this point, the processor notifies the operating system that a page 

fault has occurred.  

 

Linux uses demand paging to load executable images into a processes 

virtual memory. Whenever a command is executed, the file containing it is 

opened and its contents are mapped into the processes virtual memory. This is 

done by modifying the data structures describing this processes memory map 

and is known as memory mapping. However, only the first part of the image is 

actually brought into physical memory. The rest of the image is left on disk. As 

the image executes, it generates page faults and Linux uses the processes 

memory map in order to determine the parts of the image to bring into memory 

for execution. 
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1.6 Page Table 

1.6.1 Definition 

 

A page table is the data structure used by a virtual memory system in a 

computer operating system to store the mapping between virtual addresses and 

physical addresses. Virtual addresses are those unique to the accessing 

process. Physical addresses are those unique to the CPU. 

1.6.2 Role of the page table 

 

During a virtual to physical address translation, the virtual address is 

broken up into a virtual page number and an offset. With hardware support for 

virtual memory, the address is looked up within the Translation Lookaside 

Buffer(TLB). The TLB is specifically designed to perform this lookup in parallel, 

so this process is extremely fast. If there is a match for a page within the TLB (a 

TLB hit), the physical frame number is retrieved, the offset replaced, and the 

memory access can continue. However, if there is no match (called a TLB miss), 

the second part-of-call is the page table. 

 

When the hardware is unable to find a physical frame for a virtual page, it 

will generate a processor interrupt called a page fault. Hardware architectures 

offer the chance for an interrupt handler to be installed by the operating system 

to deal with such page faults. The handler can look up the address mapping in 
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the page table, and can see whether a mapping exists in the page table. If one 

exists, it is written back to the TLB, and the faulting instruction is restarted, with 

the consequence that the hardware will look in the TLB again, find the mapping, 

and the translation will succeed. 

However, the page table lookup may not be successful for two reasons: 

o There is no translation available for that address - the memory 

access to that virtual address is thus bad or invalid, or  

o The page is not resident in physical memory.  

 In the first case, the memory access is invalid, and the operating system 

must take some action to deal with the problem. On modern operating systems, it 

will send a segmentation fault to the offending program. In the second case, the 

page is normally stored elsewhere, such as on a disk. To handle this case, the 

page needs to be taken from disk and put into physical memory. When physical 

memory is not full, this is quite simple, one simply needs to write the page into 

physical memory, modify the entry in the page table to say that it is present in 

physical memory, write the mapping into the TLB and restart the instruction. 

 

 However, when physical memory is full, and there are no free frames 

available, pages in physical memory may need to be swapped with the page that 

needs to be written to physical memory. The page table needs to be updated to 

mark that the pages that were previously in physical memory are no longer so, 

and to mark that the page that was on disk is no longer so also. Then write the 

mapping into the TLB and restart the instruction. This process however is 
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extremely slow in comparison to memory access via the TLB or even the page 

table, which lies in physical memory. Which page to swap is the subject of page 

replacement algorithms. 

 

A very simple example of how the mapping works is shown in figure 1-1. 

In this example, computer can generate 16-bit addresses, from 0 up to 64KB. 

These are the virtual addresses. This computer, however has only 32KB of 

physical memory, so although 64KB programs can be written, they cannot be 

loaded into memory in their entirety and run. A complete copy of a program's 

core image, up to 64 KB, must be present on the disk, so that pieces can be 

brought while necessary. 
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Figure 1-1 Mapping between virtual address and physical address 
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1.6.3 Page Table Data      

The simplest page table systems often maintain a frame table and a page 

table. 

 

The frame table, in the most basic system, holds information about which 

frames are mapped. In more advanced systems, the frame table can also hold 

information to which address space a page belongs, or statistics information, or 

other background information. 

 

The page table has different fields. The most important field is the page 

frame number. There is also auxiliary information about the page such as a 

present bit, protection bits, a dirty or modified bit and Referenced bit.   

 

The page frame number provides the mapping between a virtual address 

of a page and the address of a physical frame. The present/absent bit can 

indicate about pages that are currently present in physical memory. The 

protection bits tell what kind of access is permitted. 

 

The dirty bit allows us a performance optimization. It keeps track of page 
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usage. When a page is written to, the hardware automatically sets the modified 

bit. During the swapping, this page is used to determine whether a page is 

modified or not. If the page was not modified, we don't need to write this page 

back to disk since the page hasn't changed. However, if the page was modified, 

we would need to write the page back so if we reload the page, we get the 

correct information back.   

  

The Referenced bit also keeps track of page usage. This bit is set 

whenever a page is referenced, for either reading or writing. Its value is to help 

the operating system, choose a page to evict when a page faults occur.                                    

1.6.4 Multilevel page table 

Modern computers use virtual addresses of at least 32 bits. With, say, a 4-

KB page size, a 32-bit address space has 1 million pages, and a 64-bit address 

space has more than 1 million pages. With 1 million pages in the virtual address 

space, the page table must have 1 million entries. This takes large amount of 

memory. 

 

To get around this problem, many computers use a multilevel page table. 

In 32 bit virtual address system that bit is divided into 3 fields, 10-bit for PT1 field, 

10-bit for PT2 field, and a 12-bit offset field. Since offsets are 12 bits, pages are 

4KB, and there are a total of 220 of them. The secret of the multilevel page table 

is to avoid keeping all the page tables in memory all the time. In particular, those 

that are not needed should not be kept around. 
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PT1        PT2       Offset 

            Figure 1-2 A 32-bit address with two page table fields 

 

Linux uses three levels of page tables. Each Page Table accessed 

contains the page frame number of the next level of Page Table. To translate a 

virtual address into a physical one, the processor must take the contents of each 

level field, convert it into an offset into the physical page containing the Page 

Table and read the page frame number of the next level of Page Table. This is 

repeated three times until the page frame number of the physical page containing 

the virtual address is found. Now the final field in the virtual address, the byte 

offset, is used to find the data inside the page. 

 

1.6.5 Page Size 

 

 An important parameter in the design of the paged computing system is 

the page size i.e. number of bytes of information transferred from one level of 

hierarchy to another level of hierarchy. Determining best page size requires 

balance of several factors. As a result, there is no overall optimum.  
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One of the factor that is influenced by the page size is the space needed 

to store the page table. In mono-programming system, only one process runs at 

a time. In such system, virtual address corresponds to the real physical address, 

so no page table is required to map virtual address to physical one. But in 

multiprogramming system, several processes may run simultaneously. In such 

system, virtual address and physical address are not usually the same. So each 

process needs a page table, to map the virtual address into physical address. In 

addition, if we have small page size, maintaining page table for each running 

process takes large space. This reasoning argues for a large page size. 

 

A randomly chosen text, data, or stack segment will not fill an integral 

number of pages. On the average, half of the final page will be empty. The extra 

space in that page is wasted. This wastage of space is called internal 

fragmentation. This reasoning argues for a small page size  

 

Transfers to and from the disk are generally a page at a time. When a 

transfer from the disk occurs, most of the time is consumed for seek and 

rotational delay. The seek and rotational delay are independent of the page size. 

Therefore transferring a small page takes as much time as transferring a large 

page. This reason strongly favors the need of large page size. 
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1.7 Literature Survey 

 

Prof. Andrew S. Tanenbaum in his book Modern Operating Systems [1] 

discusses two major factors for determining the page size. This includes the 

fragmentation of memory and access and transfer time from secondary storage 

device. If large page size is used huge amount of the memory is wasted in the 

fragmentation. Transfer time to and from the disk is high in the use of small page 

size. 

 

Besides these two parameters, other factors are also influenced by the 

page size. One of the factor that is influenced by page size is the miss ratio. In 

Chu and Opderbeck's paper [2], they found miss ratio heavily dependent on the 

page size. Their miss ratio curves asymptotically approach a value, which is 

simply the number of initial loading misses divided by length of observed page 

reference string.  

 

But Bennet[3] examined a page reference trace from the IBM Advanced 

Administrative System, a large internal IBM data management system. Bennet 

found no concise relationship between page size and miss ratio. Rather he 

noticed, the size of main memory affects miss ratio more than page size did. The 

cache multiprogramming trace of Kalpan and Winder[4] and the program address 

traces of Lewis and Shelder[5] and of Anacker and Wang[6] gave similar results.  
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The reason behind the difference between these two experimental results 

is discussed by Fagin, R. A, [7] in his paper “The independence of miss ratio on 

page size” published in the journal of ACM. According to him, Chu and 

Opderbeck's made no distinction between initial loading miss and “long-term” or 

“transient- free” misses. On the other hand, others distinguished between these 

two misses. In case of fixed number of pages loaded in memory, the “transient-

free” or “long- term” miss means; the miss ratio is measured starting at a time 

after the  main memory has filled; in the working set case, “ transient-free”  

means that the miss ratio is measured starting at a time grater than T, where T is 

the window size.   

 

In a computer, system minimization of virtual to physical address 

translation time has a great importance. To minimize this time most of the today's 

microprocessors store their recently accessed translations in a buffer on the chip. 

This buffer is called the translation look aside buffer (TLB). If a translation is not 

found in the TLB, the processor takes a TLB miss. 

 

The number of entries in the TLB multiplied by the page size is defined as 

TLB reach. If the page size is small, then the page table is large. As the page 

table is large, TLB will have only few numbers of entries out of the large page 

table. On the other hand, if the page size is large, then the page table is small. 

As the page table is small, TLB will have most of the entries of the page table. 

Hence, the TLB reach is directly proportional to the page size. Large page size 
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has better TLB reach than smaller page size.  

 

The TLB reach is critical to the performance of an application. If the TLB 

reach is not enough to cover the working set of the process, the process may 

spend significant portion of it's time satisfying TLB misses. Hence, if a system 

has to perform well it should have good TLB reach. If we have large page size, 

then TLB reach is high and hence an application, which has large working set, 

can run smoothly. However, having large page size degrades the performance 

for the application, which has small working set because large page size creates 

fragmentation for such process.  

 

The solution of this problem has been discussed by Narayanan 

Ganapathy and C. Schimmel in their paper [8] “General purpose Operating 

System for Multiple page Sizes”. According to them, the solution of the problem 

is to have operating system that can support multiple page sizes. The 

implementation of the multiple page size is a challenging task and lots of work is 

going on this area.  

 

Thus choosing optimal page size requires taking into consideration of 

several conflicting goals, and detailed study about how the system behaves on 

various page sizes.   
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1.8 Objective and Outline 

 

The main objective of this thesis is to study the behavior of a 

Multiprogramming Operating System (MOS) on various page sizes and find out 

the optimal page size for the MOS system. 

This thesis consists of eight chapters. Chapter 1 deals with the 

introduction to the basic concept of operating system. Chapter 2 discusses about 

specification of the MOS project. Similarly, chapter 3 provides the detailed design 

of the MOS system. Experimental data used in the study has been presented in 

chapter 4. Chapter 5 contains the result found in the study and the implication of 

the result. Chapter 6 gives the conclusion and Chapter 7 states the limitation of 

the study and future work on the page size.  
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2 MOS SYSTEM SPECIFICATION  

2.1 Project Specification 

   

MOS is a multiprogramming operating system for a hypothetical computer. 

According to the specification given by Prof. Dr. Onkar P. Sharma  in his paper[9] 

“Enhancing Operating System Course Using a Comprehensive Project: Decades 

of Experience Outlined” the MOS system consists of CPU, card reader, 3 

channels, printer, magnetic drum, main memory and supervisor memory. The 

supervisor memory has unlimited storage. Secondary storage device has 100 40-

byte tracks. Similarly, the main memory has 300 words and each word is 4 byte 

long. The channel1 performs input from card reader to supervisor memory. The 

channel2 performs output from supervisor memory to printer, channel3 transfers 

information between the drum and memory, as well as supervisor memory and 

the drum.Channel3 is faster than other two channels, and channel1 and 

channel2 operate at the same rate. 

   

The machine has a simplified user view. The user view of the machine 

consists of CPU, card reader, virtual memory and printer. The virtual memory is 

100 four-byte words organized into 10 word pages. There are three CPU 

registers: a general purpose four byte register R, a two byte instruction counter 
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(IC) and a one byte toggle register C. The register C holds result of compare R 

and memory location (CR) mnemonic. The CPU can accept following seven 

instructions. 

LR:  Load a virtual memory locations contents into R, 

SR: Store contents of R into virtual memory location, 

CR: Comparer R to contents of virtual memory location, 

BT: Branch on True, 

GD: Get Data, 

PD: Put Data, 

H: Halt user program, 

 

The machine switches between slave and master mode. MOS runs in the 

master mode and User program runs in slave mode. It is assumed that the MOS 

takes no time in the master mode and each instruction takes one time unit to 

simulate in the user mode. Each instruction occupies one word of memory. The 

first two bytes of the instruction contains the mnemonic such as GD/ PD and last 

two bytes contains the virtual address. The virtual address can range from 00 to 

99. The first instruction is loaded in the memory location 00. 

 

MOS is interrupt driven. There are   four types of interrupt. These are 

Supervisor interrupt (SI), Program Interrupt (PI), Timer Interrupt (TI) and input 

output(I/O) Interrupt (IOI) .SI interrupt occurs when GD, PD or H instructions are 
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encountered in user program and behaves like system call instructions . PI 

interrupt occurs when an error condition such as memory protection exception or 

page fault occurs. Timer interrupt (TI) is generated when a user program 

exceeds its time quantum or has exceeded its total allowed run time. IOI interrupt 

is generated by a channel when its operation has completed. The CPU is not 

interruptible in master mode, however appropriate interrupt register is set when 

the interrupt causing event occur. 

 

MOS employs Input spooling to transfer job from card reader to drum 

before loading and executing the program. Channel 1 and channel 3 participate 

in this transfer. At the time of execution, real I/O occurs from and to the drum to 

shorten the I/O delay. Loading of program cards as well as I/O operations are 

handled by channel 3. The output of the job is written into the drum. When job 

terminates, channel2 and channel3 coordinate to send the output from drum to 

printer. The task of transferring information from memory to drum is called output 

spooling and the task of transferring information from drum to memory is called 

input spooling. Buffering is employed to provide synchronization. 
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3 DESIGN OF THE MOS SYSTEM 

3.1) Flow of the System 

 

 

 

 

 

 

 

 

 

 

                                  Loop Until the  
                                       

    Job Terminates or there is no interrupt 
 
 

On Interrupt                                                    

    Start         User Mode                  Master Mode     
                                         On Completion 
      
                             
                             On job Finished    
 
 
 
                   Job Finis 
                     -hed                        

Figure 3-1 Overall State Diagram of MOS Machine 

Description 

o The MOS machine loops in user mode until there is no interrupt. 

o When interrupt occurs, the machine switches into master mode. In 

master mode, it serves the interrupt and after completion of the 

operation, machine switches into the user mode. 

o Repeat step 1 and 2 until all jobs are finished. 
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3.2) Definition of the Constants 

3.2.1) Error Message Coding 

 
 

S.No. 

 

EM 

 

Error 

 

1 

 

0 

 

No Error 

 

2 

 

1 

 

Out of Data 

 

3 

 

2 

 

Line Limit Exceeded 

 

4 

 

3 

 

Time Limit Exceeded 

 

5 

 

4 

 

Operation Code Error 

 

6 

 

5 

 

Operand Code Error 

 

7 

 

6 

 

Invalid Page Fault 

Table 3-1 Error Message Coding 
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3.2.2) Interrupt Values 

 
 

S.No. 

 

Flag 

 

Value 

 

Description 

 

1 

 

SI 

 

1 

 

On GD 

 

2 

 

SI 

 

2 

 

On PD 

 

3 

 

SI 

 

3 

 

On H 

 

4 

 

TI 

 

1 

 

On Time  Slice Out 

 

5 

 

TI 

 

2 

 

On Time  Limit Exceeded 

 

6 

 

PI 

 

1 

 

Operation Error 

 

7 

 

PI 

 

2 

 

Operand Code Error 

 

8 

 

PI 

 

3 

 

Invalid Page Fault 

 

9 

 

IOI 

 

1 

 

Channel 1 done 
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S.No. 

 

Flag 

 

Value 

 

Description 

 

10 

 

IOI 

 

2 

 

Channel 2 done 

 

11 

 

IOI 

 

4 

 

Channel 3 done 

 

Table 3-2 Interrupt Values 
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3.3) Data Structure used in the MOS system 

3.3.1) PCB structure 

Process Control Block (PCB) is an array data structure, maintained for 

each process. It holds the state and all information related to a process 

which MOS needs to monitor its execution. Specifically, it should have at 

least following fields 

 PCB Structure { 

 Job id of the process 

Total Time Limit of the job 

  Total Line Limit of the job 

               Variable to hold the content of Page Table Register (PTR ). 

  Number of program card 

  Number of data card 

              Location of the Program card in disk 

  Location of the Data card in disk 

Total Time Counter of the job 

Total Line Counter of the job 

Location of the output track in the disk 

Flag for error message 
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Array to hold the content of Register 

Array to track whether page is modified or not 

Array to track whether page is Referenced or not 

 } 

3.3.2) Queues 

The MOS system uses two different types of Queues. 

1. Queues that hold the job during processing , 

2. Queues used for input and output spooling. 

First types of queues are Load Queue (LQ), Ready Queue (RQ), Swap 

Queue (SQ), Terminate Queue (TQ), I/O Queue (IOQ) and PCB Queue (PCBQ). 

They all have same structure. The major element of these queues is the PCB 

structure. 

 

The second types of queues are Empty Buffer Queue (ebq), Input full 

Buffer Queue (ifbq) and Output full Buffer queue (ofbq). All these queues have 

buffer as the major element, which is a character array of 40 bytes. These buffers 

are initially fixed to some number, all of these are declared as empty buffer and 

during the operation of the MOS, these buffers are moved into different queues. 

When the buffer is in input full queue, we call it as input full buffer. Similarly, 

when the buffer is in output full queue we call it as output full buffer. 
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3.4) Algorithm 

Function Name: kernel () 

Outline: 

 This function simulates the master mode operation of the MOS 

Algorithm 

 Check the interrupt. There are four types of interrupt: Supervisor 

Interrupts (SI), Program Interrupts (PI), Timer interrupt (TI) and I/O 

interrupt (IOI).For the various values and combination of these 

interrupts, MOS should take different action as indicated in the 

following tables. 
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TI 

 

SI 

 

Action 

1 0 

 

Time Slice exceeded, so move PCB to the end of Ready 

Queue. 

 

0 or 1 

 

1 

 

Move PCB, RQ---->IOQ(Read) 

 

0 or 1 

 

2 

 

Move PCB, RQ---->IOQ(Write) 

 

0 or 1 

 

3 

 

Move PCB, RQ---->TQ(No Error) 

 

2 

 

0 

 

Move PCB,RQ---->TQ(Time Limit Exceeded) 

 

2 

 

1 

 

Move PCB, RQ---->TQ(Time Limit Exceeded)  

 

2 

 

2 

 

Move PCB, RQ---->IOQ(Write) then TQ( Time Limit Exceeded 

) 

 

2 

 

3 

 

Move PCB, RQ---->TQ(No Error) 

  

Table 3-3 Action of MOS 
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TI 

 

PI 

 

Action 

 

0 or 1 

 

1 

 

Move PCB, RQ---->TQ(Operation Code Error) 

 

0 or 1 

 

2 

 

Move PCB, RQ---->TQ(Operand Code Error) 

0 or 1 3  

Page Fault: 

If Valid 

If Frame Available 

Allocate 

Update Page Table 

Adjust IC if necessary 

if the page fault is due to not having program card 

Move PCB, RQ---->LQ 

else 

Move PCB, RQ---->SQ 

else 

Move PCB, RQ---->TQ(Invalid Page Fault) 
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TI 

 

PI 

 

Action 

 

2 

 

1 

 

Move PCB, RQ---->TQ(Time Limit Exceeded,Operation Code Error) 

 

2 

 

2 

 

Move PCB, RQ---->TQ(Time Limit Exceeded,Operand Code Error) 

 

2 

 

3 

 

Move PCB, RQ---->TQ(No Error) 

 

Table 3-4 Action of MOS 
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IOI 

 

Action 

 

0 

 

No Action 

 

1 

 

Interrupt Service Routine1(IR1) 

 

2 

 

Interrupt Service Routine1(IR2) 

 

3 

 

IR2 ,IR1 

 

4 

 

Interrupt Service Routine3(IR3) 

 

5 

 

IR1, IR3 

 

6 

 

IR3, IR2 

 

7 

 

IR2, IR1 IR3 

 

Note: IRi is interrupt service routine for channel i for i=1,2,3. 

Table 3-5 Action of MOS 
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 Examine input full buffer(ifb) 

o if ifb is $AMJ:  

 Create and Initialize PCB. 

 Allocate frame for page table. 

 Initialize page table and Page Table Register(PTR) 

 Set F<---P(Program cards to follow) 

 Change status from ifb to Empty Buffer(eb) 

 Return buffer to ebq. 

 if ifb is $DTA: 

o Set F<---P(Data cards to follow) 

o Change Status from ifb to empty buffer(eb) 

o Return buffer to empty buffer queue(ebq). 

 if ifb is $END: 

o Place PCB on Ready queue and change status from ifb to 

eb, 

o Return buffer to ebq. 

 Otherwise 

o Place ifb to ifbq, save F information. 

 Assigning new task in priority queue 
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o if a PCB on TQ(output spool first)  

 if last line count in PCB 

• Get two empty buffer and fill it with blanks, 

change status from eb to Output Full 

Buffer(ofb) and place the buffer into Output Full 

Buffer Queue(ofbq). 

• Prepare two lines of messages, move them 

into ebq(if available),change status from eb to 

ofb,and place these buffer  into ofbq.  

• Release PCB, all remaining drum tracks and all 

memory blocks. 

 Else if ebq not empty and channel3 is not busy  

• Get Next buffer from ebq    

• Find track number of next output line 

• Task <---- Output Spooling (OS) 

• Start Channel3 

o if ifbq not empty and channel3 is not busy  

 Get Next buffer from ifbq   

 Get a drum track. 

 Task <---- Input Spooling(IS) 

 Start Channel3 
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o if a PCB on LQ(Load Next)  and Channel3 is not busy 

 Find the track number of next program card 

 Allocate a frame 

 Update page table 

 Task <---- Load (LD) 

 Start Channel3 

o if a PCB on IOQ(Now I/O)  and Channel3 is not busy 

 If Read(GD) 

• if no more data card  

o Move PCB,IOQ---->TQ(Terminate[3]) 

• Else 

o Find track number of next data card 

o Get memory Real Address(RA) 

o Task <---- GD 

o Start Channel3 

 else if Write(PD) 

• if Total Line Counter(TLC)> Total Line 

Limit(TLL) 

o Move PCB,IOQ---->TQ(Terminate[2])  

• Else 
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o Get a drum track, if available 

o Update PCB 

o Find memory RA 

o Task <---- PD 

o Start Channel3 

o if a PCB on SQ and Channel3 is not busy 

 if memory frame now available 

• Allocate 

• Update page Table 

• Adjust IC, if necessary 

• Move PCB, SQ---->RQ with Time Slice 

Counter(TSC) <--- 0 

 Else 

• Run page Replacement Algorithm 

• Find a victim frame 

• Allocate and Reallocate this frame by updating 

both page tables 

• if victim frame not written into, 

o locate drum track for faulted page  

o Task <---- Swap Queue Read(SQR) 
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o Start Channel3 

• Else 

o Task <----- Swap Queue Write (SQW) 

o Start Channel3 

 End of Assigning Task 

 Set mode flag equals to zero 

 Switch into the Slave mode 

 End of Function Kernel 

 

Function Name: Create_Pcb(input full buffer) 

Outline: 

    This function creates the PCB  

Algorithm 

 Allocate space for PCB node 

 Extract job id, Total Time Limit, Total Line Limit and place it into the 

PCB. 

 Insert newly created PCB into PCB queue. 

 

Function Name: 

Start_Channeli(); 
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Outline 

This function starts the Channeli(i=1,2,3) 

Algorithm: 

 Adjust IOI(Subtract 1,2,4). 

 Reset Channel timer to zero. 

 Set Channel flag to busy. 

 

Function Name 

 IR1(); 

Outline 

This function clears the channel1 and start it again. 

Algorithm: 

 Read next card in given eb, change status to ifb,place on ifbq. 

 if not e-o-f and ebq not empty 

o Get next eb. 

o Start Channel1() 

        

   Function Name: 

      IR2(); 

      Outline 
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  This function clears the channel2 and starts it again. 

 Algorithm: 

 Print given ofb, change status from ofb to eb. 

 Return buffer to ebq 

 if ofbq not empty 

o Get next ofb. 

o Start Channel2().  

 

Function Name: 

 IR3(); 

Outline 

This function simulates the behavior of Channel3. 

       Algorithm: 

 if Task is IS 

o Write given ifb on given track 

o Place track number in P or D part of PCB 

o Change status from ifb to eb. 

o Return buffers to ebq. 

 if Task is OS 

o Read information from given track into given eb 
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o Change status from eb to ofb 

o Release track 

o Decrement line count in PCB 

 if Task is LD 

o Load program card from given track into indicated memory 

block. 

o Decrement count in PCB 

o If zero, place PCB on RQ after all the initializations. 

 if Task is GD 

o Read data card from given track into indicated memory 

block. 

o Decrement count in PCB 

o Move PCB to RQ after setting TSC<---0 

 if Task is PD 

o Write information from the indicated memory block to the 

given track. 

o Increment Total Line Count(TLC) in PCB 

o if(TI=2 or 3), 

 Move PCB on TQ 

o else  
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 Move PCB to RQ after setting TSC<---0 

 if Task is SQW 

o Write the information from the victim frame to the given 

track. 

o Locate drum track with faulted page 

o Task<---SQR 

o Start Channel3 

 if Task is SQR 

o Read drum track with faulted page in newly allocated frame. 

o Move PCB, SQ--->RQ after setting TSC<---0. 

 

 

Function Name: 

EXECUTEUSERPROGRAM (); 

Outline: 

This procedure simulates the user mode operation of the MOS system. 

Algorithm: 

LOOP 

• if(there is job in ready queue) 

o MAP IC to RA 
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 if PI != 0 

 { 

• Page Fault: It may be due to no program card is 

not loaded or illegal virtual address. 

• END LOOP 

 } 

 Instruction Register(IR) <--- memory[RA] 

 IC <--- IC+1 

 Map the IR[3,4] to RA 

 if PI != 0 

 { 

• Page Fault: It may be due to illegal user address 

or virtual page is not mapped to physical frame. 

• END LOOP 

 } 

 Examine IR[1,2] 

• LR: R <--- memory[RA] 

• SR: R ----> memory[RA] 

• CR: Compare R and memory[RA] 

o if equal C<---True 
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o else 

 C<---False 

• BT: if C = T then IC<--- IR[3,4] 

• GD: SI=1(Input Request) 

• PD: SI=2(Output Request) 

• H:  SI=3(Terminate Request) 

• Otherwise PI<---1(Operand Error) 

 End-Examine 

o Call the SIMULATION procedure, which simulates the 

behavior of timer hardware. 

o If SI,PI,TI or IOI not equal to zero then  

 Exit from Loop  

 Switch into Master Mode 

o else 

 Loop in Slave Mode 

End-Loop 

Function Name: 

    SIMULATION (); 

Outline: 

This procedure simulates the behavior of the Timer Hardware. 
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Algorithm: 

 Increment Total Time Counter (TTC) 

 if TTC= Total Time Limit(TTL) then TI<--2 

 Increment TSC 

 if TSC = Time Slice(TS),then TI<--1 

 For all Channeli,i=1,2,3 

o if(Channeli flag is busy) 

 Increment Channeli timer 

 if(Channeli Timer = Channeli Total time) 

• Increment IOI accordingly 

• Set Channel Completion Interrupt 

 End-For    

Function Name: 

       ADDRESS_MAP( Virtual Address(VA)); 

Outline: 

This procedure map virtual address to physical address. 

Algorithm: 

 Let four bytes of PTR is denoted by: a0,a1,a2,a3 

 Let Virtual Address is denoted by x1(Most Significant Bit),x2(Least 

Significant Bit). 

  47
 



 If(x1>a1) 

o PI=3 

o return  

 Map the virtual address to physical address by using the formula 

10*[10*(10a2+a3)+x1]+x2, where 10a2+a3, gives the number of the 

user storage block in which the page table resides. Multiplication of 

this number by 10 gives the base address of memory. Address of 

the page is obtained by adding x1 to it. Its content gives the 

memory block of the required information. Address of the actual 

memory location can be obtained by multiplying this number by 10 

and adding offset to it. 

 If page is not mapped to memory frame then  

o Set PI=3  

o return  

 else 

 Return Real address. 
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4 ANALYSIS 

4.1 Modification on the MOS 

 

One hundred and ninety-two different jobs are used to study the behavior 

of the MOS system on different page sizes. In addition, following changes are 

made on the original specification of the MOS. 

4.1.1 Page Size 

 

In original specification of a MOS system, only one page size was used, 

and its size was 40 bytes. In the present study, different page sizes are used. 

The smallest page size used for the study is 40 bytes and successive page sizes 

are calculated by using following formula: 

 PAGE_SIZE = 40*2i for i=0,1, 2, 3…, n-1, 

where n is total number of the different pages in the study. In this study, 

the value of n is fixed to be 18 because of the capacity of the physical memory of 

the experimental computer. 

For example, the lowest page size used in the experiment is 40 *2^0 = 40 

bytes. Similarly other page sizes are 80 bytes, 160 bytes,320 bytes, 640 bytes 

etc. 
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4.1.2 Virtual Memory  

 

MOS in original specification had 400 bytes virtual memory and this 

memory was divided into ten ten-word blocks for paging purposes. The virtual 

memory is the LCM of all the page sizes for present study. The reason behind 

taking LCM is that virtual memory must be divisible by the page size to form the 

blocks and the lowest number divisible by all the page sizes is obviously the LCM 

of all these sizes. The number of the blocks in the virtual memory equals the size 

of the virtual memory divided by page size. 

For example, the LCM of all the page sizes used in this experiment is 

found to be 5242880. So the virtual memory is 5242880 bytes for present study. 

Suppose we are studying MOS system with page size 80, then number of the 

blocks in the virtual memory equals 5242880/80 = 65536. Similar calculation can 

be applied for other page sizes too. 

4.1.3 Disk Size 

 

The disk in original specification of the MOS system contained 100 tracks, 

with 10 four-byte words per track. But this disk size is too small for the present 

study. So a large value is chosen as the disk size. To compute the disk size, we 

first evaluate the LCM of all the page sizes used in the study and this LCM is 

multiplied by 100 to get the number of tracks in the disk. The size of each track is 

equal to the page size. 
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For example, the disk size for current study is 524288000 bytes which is 

calculated by multiplying LCM of all the page sizes with 100. Let us consider we 

are analyzing the MOS system with page size of 40 bytes, then the numbers of 

the tracks in the disk are 13107200 and size of each track equals 40 bytes. 

Similarly, if the page size is 80 bytes, then the numbers of tracks in the disk are 

6553600 and size of each track equals 80 bytes. In each case the total disk size 

remains constant. 

4.1.4 Memory Size 

 

In original specification of the MOS system, user storage had 300 four-

byte words. It was divided into 30 ten-word blocks for paging purposes. The user 

storage is obtained by multiplying LCM of the page size by 30 for this study. The 

number of blocks in memory is obtained by dividing the memory size by page 

size. Thus now the user storage contains (LCM*30)/PAGE_SIZE 

PAGE_SIZE/WORD_SIZE  blocks. 

For example, multiplication of LCM of all the page sizes with 30 gives the 

user storage and its value equals 157286400 bytes for current system. If we are 

going to study the MOS system with page size 40, then this user storage is 

divided into 3932160(157286400/40) ten (40/4) - word blocks. Similarly, when we 

study MOS system with page size 640, the user storage is divided into 

245760(157286400/640) 160(640/4) - word blocks. In each case, total user 

storage remains constant. 

  51
 



4.1.5 Virtual to Physical mapping 

 

Previously in  original specification of MOS system, a two digit operand 

address, x1x2 in virtual space  was mapped by the relocation hardware  into the 

real user storage address by using the mapping 10[10(10a2+a3)+x1]+x2, where 

10a2+a3 is the number of the user storage block in which page table resides and 

[x] refers to the content at the memory location x. Now the mapping is modified 

as Block_Size *[Block_Size (10a2+a3) +x1] +x2,where, Block_Size = 

PAGE_SIZE/WORD_SIZE. Other symbols have their usual meaning. 

For example, consider a two digit virtual address 80 is going to map into 

the real address. If the page size under study is 40 bytes, and page table of the 

job resides at 5th block of memory, then value of 10a2+a3 equals five. Further 

assume that the word size for the MOS machine is fixed to be 4. Under these 

assumptions, we will have 

 x1 = 8 and x2 = 0  

Block_Size = 40/4 = 10 

Real Address = 10 *[10*5+8] + 0 

                      = 10 * [58] + 0 

Now suppose content at the memory location 58 is 9, then  

 Real Address = 10 *9+0 = 90. 

If we take the PAGE_SIZE = 80, then mapping of virtual address 80 

proceeds as follows: 
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Block_Size = 80/4 = 20 

              Real Address = 20 *[20*5+8] + 0 

                                   = 20 * [108] + 0 

Suppose content at the memory location 108 is 9, then 

 

              Real Address = 20 *9 + 0 

    = 180 
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4.2 Parameters under Study 

 

Following are the different parameters under study: 

 Page Fault, 

 Memory Fragmentation, 

 Storage requirement for the page table, 

 

4.2.1 Page Fault 

 

One global variable is used to calculate the total number of page fault. Its 

value is initially set to zero and when the valid page fault occurs, the value is 

incremented by one. When program terminates, the value of this variable gives 

total number of page fault. 

4.2.2 Memory Fragmentation 

 

Memory fragmentation is calculated by finding the empty space in the final 

page. Therefore, to calculate fragmentation for a job, at the time of releasing the 

memory, we subtract the total space occupied by the content in the final page 

from the page size. The memory fragmentation calculated, by this way, for each 

job, is summed together, and stored in a variable. After completion of all jobs, the 
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content of the variable gives the total memory fragmentation for a run.   

For example, suppose page size under study is 40 bytes. Assume content 

at the final page is 25 bytes. The fragmentation therefore equals to 40 – 25 = 15 

bytes. This procedure of calculating fragmentation is repeated for all the jobs, 

and the fragmentation for each job is summed together. After completion of all 

jobs, we get the total memory fragmentation for a run.     

4.2.3 Storage requirement for the page table 

 

If we know the number of entries in the page table and each entry in page 

table takes 4 bytes, then the following formula can be used for calculating the 

storage requirement: 

 

Storage Requirement for page table = memory occupied by each page table 

entry (4 bytes) * Total number of entries                                                                                
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4.3 Experimental Data 

 

 

S.No Page Size Virtual Memory 

Size(in byte) 

Disk Size     

(in byte ) 

Memory Size 

(in byte) 

Word 

Size(

byte) 

1 40 5242880 524288000 157286400 
 

4 

2 80 5242880 524288000 157286400 
 

4 

3 160 5242880 524288000 157286400 
 

4 

4 320 5242880 524288000 157286400 
 

4 

5 640 5242880 524288000 157286400 
 

4 

6 1280 5242880 524288000 157286400 
 

4 

  56
 



S.No Page Size Virtual Memory 

Size(in byte) 

Disk Size     

(in byte ) 

Memory Size 

(in byte) 

Word 

Size(

byte) 

7 2560 5242880 524288000 157286400 
 

4 

8 5120 5242880 524288000 157286400 
 

4 

9 10240 5242880 524288000 157286400 
 

4 

10 20480 5242880 524288000 157286400 
 

4 

11 40960 5242880 524288000 157286400 
 

4 

12 81920 5242880 524288000 157286400 
 

4 

13 163840 5242880 524288000 157286400 
 

4 
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S.No Page Size Virtual Memory 

Size(in byte) 

Disk Size     

(in byte ) 

Memory Size 

(in byte) 

Word 

Size(

byte) 

14 327680 5242880 524288000 157286400 
 

4 

15 655360 5242880 524288000 157286400 
 

4 

16 1310720 5242880 524288000 157286400 
 

4 

17 2621440 5242880 524288000 157286400 
 

4 

18 5242880 5242880 524288000 157286400 
 

4 

 Table 4-1 Experimental Data 
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5 RESULTS AND DISCUSSION 

5.1 Presentation of the finding 

S.No Page 

Size 

Page Fault Memory 

Fragmentation 

(in byte) 

Storage 

Requirement for the 

page table  

( in byte) 

1 40 1416 3888 
 

524288 

2 80 804 7855 
 

262144 

3 160 492 15042 
 

131072 

4 320 300 30964 
 

65536 

5 640 192 62923 
 

32768 
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S.No Page 

Size 

Page Fault Memory 

Fragmentation 

(in byte) 

Storage 

Requirement for the 

page table  

( in byte) 

6 1280 192 126486 
 

16384 

7 2560 192 256533 
 

8192 

8 5120 192 514592 
 

4096 

9 10240 192 1030692 
 

2048 

10 20480 192 2062887 
 

1024 

11 40960 192 4027272 
 

512 

12 81920 192 7959680 
 

256 
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S.No Page 

Size 

Page Fault Memory 

Fragmentation 

(in byte) 

Storage 

Requirement for the 

page table  

( in byte) 

13 163840 192 16413577 
 

128 

14 327680 192 32028649 
 

64 

15 655360 192 65058793 
 

32 

16 1310720 192 132119082 
 

16 

17 2621440 192 264239658 
 

8 

18 5242880 192 518480810 
 

4 

Table 5-1 Experimental Result 

 

   

  61
 



5.2 Discussion of the finding 

5.2.1 Relationship between Page Size and Memory Fragmentation 

Relationship between Page Size and Memory Fragmentation
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Figure 5-1 Relationship between Page Size and Memory Fragmentation 

 

Figure  5-1 shows the relationship between the page size and memory 

fragmentation. Initially the page size is small, the memory fragmentation is also 

small, as the page size increases the fragmentation also increases. The reason 

behind increasing the memory fragmentation with page size is that a randomly 

chosen data or an instruction segment of a user job may not fill an integral 

number of pages. The portion of the page, in which no data or instruction is 

placed is wasted as the internal fragmentation. This wastage in the page 
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increases with the increase in the page size. Hence, the memory fragmentation 

increases with the page size. 

 The result found from this experiment is in accordance with the Prof. 

Andrew S. Tanenbaum argument about relationship between page size and 

memory fragmentation. According to Tanenbaum, with n segments in memory 

and a page size of p bytes, np/2 bytes will be wasted on internal fragmentation. 

Table 5-2 shows a difference between the calculated values of memory 

fragmentation using Tanenbaum formula and memory fragmentation found 

during experiment. The experimental value of the memory fragmentation is 

obtained from the table 5-1. 
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S.No 
Page 

Size 

Memory 

Fragmentation 

obtained using 

Tanenbaum formula 

for each job(A) 

Memory fragmentation 

obtained through 

experiment (B) 

Percentage of 

difference between 

two values = 

X= ( |A-B|)*100/A 

 

1 40 192*40/2 = 3840 3888 1.234568 

2 80 192*80/2 = 7680 7855 2.22788 

3 160 192*160/2 = 15360 15042 2.114081 

4 320 192*320/2=30720 30964 0.788012 

5 640 192*640/2=61440 62923 2.356849 

6 1280 192*1280/2 = 122880 126486 2.850908 

7 2560 192* 2560/2 = 245760 256533 4.19946 

8 5120 192* 5120/2 = 491520 514592 4.483552 

9 10240 192* 10240/2 = 983040 1030692 4.623302 

10 20480 
192* 20480/2 = 

1966080 
2062887 4.692792 
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11 40960 
192* 40960/2 = 

3932160 
4027272 2.361698 

12 

 

81920 

 

192* 81920/2 = 

7864320 
7959680 1.198038 

13 163840 
192 * 163840/2 = 

15728640 
16413577 4.17299 

14 327680 
192 * 327680/2 = 

31457280 
32028649 1.783931 

15 655360 
192 * 655360/2 = 

62914560 
65058793 3.295839 

16 1310720 
192 * 1310720/2 = 

125829120 
132119082 4.760828 

17 2621440 
192 * 2621440/2 = 

251658240 
264239658 4.761366 

18 5242880 
192 * 5242880/2 = 

503316480 
518480810 2.924762 

Table 5-2 Difference Between Experimental and Theoritical Values of 

Memory Fragmentation 
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Sum of Percentage of difference between two values (∑X) = 54.83086 

Arithmetic Mean = ∑X / N = 54.83086/18 = 3% 

 From the above statistical calculation it is clear that, on average, 

difference between the theoretical value of the memory fragmentation and 

experimentally found value is very low i.e. 3%. This difference in value can be 

justified from the fact that formula used to calculate the theoretical value of 

memory fragmentation is not exact but it is an average. Hence, this study 

strongly favors the Tanenbaum argument on the memory fragmentation.
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5.2.2 Relationship between Page Size and Page Fault 

 

Relationship between Page Size and Page Fault

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600 700

Page Size

Pa
ge

 F
au

lt

 

Figure 5-2 Relationship between Page Size and Page Fault 

 

Figure  5-2 shows the relationship between the page size and page fault. 

The page fault decreases as the page size increases. This happens because 

increase in page size decreases the number of entries in the page table. As a 

result, more addresses map to the same page table. If the page is not evicted by 

swapping, there will be page fault for the first time for an access to that page 
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table entry. For the subsequent access to the same page table entry, there is no 

page fault, since that page table entry has already been mapped to the physical 

memory block. Because of this reason, the page fault decreases with the 

increase in page size. 

 

 

Chu and Opderbeck's [2], and Bennet[3] found different result on the 

relationship between page size and page fault. In Chu and Opderbeck's [2] study, 

they found that page fault is heavily dependent on the page size. But Bennet 

found no concise relationship between these two. Later on Fagin, R. A[7]  

explained the factor behind this difference . 

 

According to Fagin, R. A. [7], this difference was caused by taking 

consideration of the initial loading miss. According to him, if we take the 

consideration of initial loading miss, then page fault heavily depends on page 

size. On the other hand, if we do not take consideration of initial loading miss, 

then effect of page size on page fault is minimum. Chu and Opderbeck's [2] took 

consideration of initial loading miss while Bennet didn't.  

 

         Table 5-3 shows the page fault for first few jobs. Dividing the page fault of a 

run (Given in Table 5-1) by total number of job gives the page fault for each job.

  68
 



S.No Page Size 

 

Page Fault for each Job 

(X) 

1 40 

 

1416/192 = 

7.375 

2 80 

 

804/192 = 

4.1875 

3 160 

 

492/192 = 

2.5625 

4 320 

 

300/192 = 

1.5625 

5 640 
 

192/192 = 1 

6 1280 
 

192/192 = 1 

 

Table 5-3 Page fault for first few job 
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The input program used for this study references virtual memory location 

20 to 90 more, than other memory location. This implies that about seven pages 

of the page table are referenced heavily by a job. Therefore, on average when 

half of pages get loaded, the program can work smoothly. Thus, the initial loading 

miss approximately equals 3 for this study. 

Total number of page fault ∑X= 17.6875 

Average number of page fault = ∑X/N = 17.6875/6 = 2.947917 =  

3(Approximate) 

 

From the above statistical calculation, it is clear to us that the total number 

of the page fault found from experiment is nearly equal to the initial loading 

misses. Therefore, from the experiment we can conclude that the page size 

affects page fault more when we take consideration into initial loading misses, 

and if we do not, the effect of the page size on page fault is minimum. This is 

exactly the conclusion drawn by Fagin, R. A[7]. 

 

Hence, this study supports   the argument given by Fagin, R. A. to explain 

the difference of the study made by Chu and Opderbeck's [2] and Bennet[3].
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5.2.3 Relationship between Page Size and Storage Requirement for 

page table 

Relationship between Page size and Storage Requirement for the  Page Table
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Figure 5-3 Relationship between Page size and Storage Requirement 

for the Page Table 
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Relationship between Page size and Storage Requirement  for the  Page Table
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Figure 5-4 Relationship between Page size and Storage Requirement for 

the  Page Table 
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Relationship between Page size and Storage Requirement  for the  Page Table
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Figure 5-5 Relationship between Page size and Storage Requirement 

for the  Page Table 

Figure 5-3, Figure 5-4 and Figure 5-5 show the relationship between the 

page size and storage requirement for the page table. The observation from 

these figures indicates that  as the page size increases, storage requirement for 

the page table decreases. This behaviour is due to the fact that as the page size 

is  large, there will be fewer number of entries in the page table.The storage 

requirement for the page table is diretly proportional to the number of entries in 

the page table.So fewer the number of page table entries, lesser the storage 

required for the page table. On  the other hand, as the page size decreases, the 

storage requirement for the page table increases.The reasoning behind this is 
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similar to the above argument. Decrease in the page size increases the page 

table entries and when the number of page table entry increases; the storage 

requirement for the page table also increases.  

Prof. Andrew S. Tanenbaum[1] in his book Modern operating systems 

analyzes the relationship between page size and storage requirement of the 

page table mathematically. His analysis shows that if process size is s byte, and 

the page size is p bytes, and each page entry requires e bytes, then the 

approximate number of pages needed per process is s/p bytes occupying se/p 

bytes. 

Size of the process is dependent on the underlying machine architecture. 

For example in 32 bit machine architecture, the size of user program could be 

2^32 = 4GB.Further, the storage requirement for each page table entry is equal 

to the lowest addressable unit of the underlying machine. The process size and 

the storage requirement of each page table entry equals the size of the virtual 

memory and the word size of the MOS machine for this study. The values of 

these parameters are 5242880 bytes and 4 bytes, respectively, for the present 

study. Thus for a particular machine architecture, the process size and the 

storage requirement for each page table entry are constant. Hence, storage 

requirement for the page table is inversely proportional to the page size. 

Mathematically we can write, 

 Storage Requirement for the page table       1/Page_SIZE 

 

 The experimental result further shed light on the above statement of 
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relationship between storage requirement for the page table and page size. The 

experiment shows that storage requirement for the page table decreases with the 

increase in the page size increases with decrease in page size. Therefore, 

storage requirement of the page table is inversely proportional to the page size.  

Thus, present study experimentally verifies Tanenbaum mathematical argument 

of the relationship between storage requirement of the page table and page size. 

  75
 



5.3 Optimal Page Size 

 

 

This study shows that the memory fragmentation increases and storage 

requirement decreases in proportion to the page size. However, the page fault 

does not decrease in proportion to the page size. If we do not take the 

consideration of the initial loading misses, then page size has minimum effect on 

the page fault.  

 

The storage requirement for the page table can be lowered sufficiently by 

using the multilevel paging. Only one memory block is sufficient to store the page 

table when we use the multilevel paging technique. The only demerit of the 

multilevel page table is that mapping of virtual address to physical one takes 

longer time than with single level page table. If we have only 2 or 3 level of page 

table then storage requirement for the page table outage the time needed to map 

an address. Therefore, modern operating system such as Linux [10] uses the 

multilevel page table. 

 

For the MOS system, the page size has minimum effect on the page fault 

after the working set of a process has been loaded into the memory. Further, the 

storage requirement for the page table can be minimized using multilevel paging 

technique. Therefore, the important criterion for choosing the page for MOS 

system is the fragmentation of memory. 
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Since the memory fragmentation is lowest for the page size 40 bytes, the 

optimal page size for the MOS system is 40 bytes. 

The page size in the original MOS system was specified to be 40 bytes by 

the author Prof. Dr. Onkar P. Sharma [9]. He must have taken the consideration 

of optimal page size while specifying the MOS machine. This experiment 

supports his decision of choosing page size of 40 bytes for MOS machine. 
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6 CONCLUSION  

While studying the behavior of MOS system on different page sizes, the 

influence of the page size on following parameters are studied: 

o Memory Fragmentation 

o Page Fault 

o Storage requirement for the page table 

From this study, following four conclusions are drawn: 

I) The memory fragmentation and page size are directly 

proportional to each other. The experimentally found result 

supports the Tannebaum [1] view of memory fragmentation 

i.e. on the average; half of the final page will be empty. 

II) The page fault depends on page size heavily if we take into 

consideration the initial loading miss. The effect of the page 

size on page fault is minimum after the working set of a 

process gets loaded. This result supports the conclusion 

drawn by Fagin, R. A. [7], who explained the reason behind 

two contradictory results found by Chu and Opderbeck's [2] 

and Bennet[3] study. 

III) The storage requirement for the page table and page size is 
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inversely proportional to each other. This result from the 

experiment verify the mathematical relationship given by the 

Tanenbaum[1] between storage requirement for the page 

table and page size. 

IV) Finally, the optimal page size for the MOS system is found to 

be 40 bytes. The experimentally found optimal value of the 

page size is in accordance with the original specification of 

the MOS system given by Prof. Dr. Onkar P. Sharma[9].The 

author must have chosen the page size by taking 

consideration of the optimal value. Present study   favors the 

decision made by the author for choosing page size. 
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7 LIMITATION AND FUTURE WORK 

The effect of page size on the transfer time from the disk has not been 

touched in present study. The transfer time from the disk is one of the critical 

parameter for not choosing small page sizes. 

In future, the effect of page size on transfer time from the disk will be 

studied. The MOS will be modified to support multiple page sizes simultaneously, 

and the behavior of the MOS system will be studied. 
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APPENDIX A SAMPLE INPUT PROGRAM 

$AMJ001110001000 

GD20GD30GD40GD50PD20PD30PD40LR50SR31PD30 

GD60PD60H 

$DTA 

This is 

uhhhhhhh 

ADS 

mmmm 

Advanced Data Structures 

$END0011 

$AMJ001210001000 

GD50PD50GD60PD60GD70LR70SR50PD50PD60LR71 

SR50PD50PD60LR72SR50PD50PD60LR73SR50PD50 

PD60LR74SR50PD50PD60LR75SR50PD50PD60LR76 

SR50PD50PD60LR77SR50PD50PD60LR78SR50GD80 

PD80PD90H 

$DTA 

9   Bottles of Beer on the wall 

Take one down,pass it around 

8   7   6   5   4   3   2   1   0    

  85
 



NO BOTTLES OF BEER ON THE WALL!! 

$END0012 

$AMJ002100221000 

GD50PD50GD60PD60GD70PD70GD80LR80SR50PD50 

PD50SR60PD60PD70GD80LR80SR50PD50PD50SR60 

PD60PD70GD80LR80SR50PD50PD50SR60PD60PD70 

GD80LR80SR50PD50PD50SR60PD60PD70GD80LR80 

SR50PD50H 

$DTA 

5 bottles of beer on the wall 

5 bottles of beer, 

Take 1 down, pass it around 

4 bo 

3 bo 

2 bo 

1 bo 

0 bo 

$END0021 

$AMJ002200140014 

GD20PD20GD30PD30GD40PD40GD50PD50PD20GD20 

PD20PD30H 

$DTA 

KNOCK KNOCK! 

WHO IS THERE? 
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HAHA 

WHO 

HEHE 

$END0022 

$AMJ003110001000 

GD40PD40GD50PD50GD60LR60SR40PD40PD50GD60 

LR60SR40PD40PD50GD60LR60SR40PD40PD50GD60 

LR60SR40PD40GD70PD70GD80PD80GD60LR60SR40 

PD40PD50GD60LR60SR40PD40PD50GD90PD90H 

$DTA 

6   Seconds till the world is over 

We're all gonna die! 

5    

4    

3    

1    

1,  what happened to 2?? 

Just kidding 

2    

1    

KABOOOOOOOOOOMMMMM!!!!!! 

$END0031 

$AMJ003210001000 

GD30GD40LR40SR33GD50LR50SR34GD60LR60SR35 
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GD70LR70SR36PD30GD80PD80GD90PD90GD90PD90 

GD90PD90GD90PD90GD90PD90H 

$DTA 

Operating    

Syst 

ems  

 is  

 fun 

I really love this class!! 

There is nothing else like it 

The final project is so fun!! 

I can't wait to take the final exam. 

$END0032 

$AMJ004110001000 

GD20PD20GD30LR30SR20PD20GD40LR40SR20PD20 

GD50LR50SR20PD20GD60PD60H 

$DTA 

One  fish 

Two  

Red  

Blue  

By Dr. Seuss 

$END0041 

$AMJ004200061000 
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GD30PD30GD40PD90GD50PD50GD60PD60GD70LR70 

SR30PD30PD40PD50PD60GD80LR80SR30PD30PD40 

PD50GD90PD90H 

$DTA 

3 os students jumping on the bed 

One fell off and bumped her head 

Mama called Dr.Sharma & Dr. Sharma said  

No more os students jumping on the bed 

2 os 

1 os 

"Send those os students back to class!" 

$END0042 

$AMJ005100280004 

GD40PD40LR40SR64LR41SR63LR42SR62LR43SR61 

LR44SR60PD60LR40CR40BT12SR80PD80LR41SR80 

PD80LR42SR80PD80LR43SR80PD80LR44SR80H 

$DTA 

P   I   Z   Z   A    

$END0051 

$AMJ005200800020 

GD40LR41SR50SR51LR40SR60SR61SR62LR42SR70 

LR44SR71LR45SR72LR42SR80LR42SR81LR45SR82 

LR44SR90LR42SR91LR43SR92PD50PD70PD50PD60 

PD50PD80PD50PD60PD50PD90PD50H 
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$DTA 

----   | X | X   O | O  

$END0052 

$AMJ006109000900 

GD40PD40GD50LR50SR40PD40GD50LR50SR40PD40 

GD50LR50SR40PD40GD50LR50SR40PD40GD50LR50 

SR40LR51SR42LR52SR43LX53SR44LR54SR45PD40 

H      

$DTA 

0 SECONDS 

1 SE 

2 SE 

3 SE 

4 SE 

5 SES INTO THE NEW YEAR 

$END0061 

$AMJ006209000900 

GD40PD40GD50LR50SR40PD40GD50LR50SR40PD40 

GD50LR50SR40PD40GD50LR50SR40PD40GD50LR50 

SR40LR51SR42LR52SR43LR53SR44LR54SR45PD40 

H      

$DTA 

5 SECONDS 

4 SE 
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3 SE 

2 SE 

1 SE 

0 SES HAPPY NEW YEAR 

$END0062 

$AMJ007110001000 

GD40GD50LR50SR45LR51SR46PD40GD60PD60LR52 

SR45LR53SR46PD40GD70PD70LR54SR45LR55SR46 

PD40GD80PD80GD90PD90LR50SR45LR51SR46PD40 

H 

$DTA 

Oompa Loompa doompad 

ee doo  ah dee  ee dah 

I've got another puzzle for you 

If you are wise you'll listen to me 

If you're not greedy you will go far 

You will live in happiness too 

$END0071 

$AMJ007210001000 

GD30PD30GD40PD40GD50PD50GD60PD60GD70LRX0 

SR60PD60LR71SR60PD60LR72SR60PD60LR73SR60 

PD60LR74SR60PD60GD80PD80H 

$DTA 

WELCOME TO SHARMA'S SODA MACHINE 
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PLEASE INSERT 1.25 FOR A SODA. 

OUR MACHINE ONLY ACCEPTS QUARTERS 

0.00 HAS BEEN INSERTED. 

0.250.500.751.001.25 

PLEASE TAKE YOUR SODA! 

$END0072 

$AMJ008100400009 

GD50LR50SR90PD90GD60LR60SR91PD90GD70LR70 

SR92PD90GD80LR80SR93PD90GD40LR40SR94PD90 

GD40LR40SR94PD90LR40SR93PD90LR40SR92PD90 

LR40SR91PD90H 

$DTA 

1    

2    

3    

4    

5    

     

$END0081 

$AMJ008200530020 

GD50PD50GD60LR60SR50PD50GD60LR60SR50GD70 

LR70SR51PD50GD60LR60SR50GD70LR70SR51PD50 

GD60LR60SR50PD50GD60LR60SR50GD70LR70SR51 

PD80H 
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$DTA 

One     sheep 

Two  

Thre 

e    

Red  

     

Blue    sheep 

gree 

n    

$END0082 
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APPENDIX B SAMPLE OUTPUT 

This is 
uhhhhhhh 
ADS 
uhhhmmmm 
Advanced Data Structures 
 
 
Job Id:0011 
No Error 
 
 
9   Bottles of Beer on the wall 
Take one down,pass it around 
8   Bottles of Beer on the wall 
Take one down,pass it around 
7   Bottles of Beer on the wall 
Take one down,pass it around 
6   Bottles of Beer on the wall 
Take one down,pass it around 
5   Bottles of Beer on the wall 
Take one down,pass it around 
4   Bottles of Beer on the wall 
Take one down,pass it around 
3   Bottles of Beer on the wall 
Take one down,pass it around 
2   Bottles of Beer on the wall 
Take one down,pass it around 
1   Bottles of Beer on the wall 
Take one down,pass it around 
NO BOTTLES OF BEER ON THE WALL!! 
 
 
Job Id:0012 
Invalid Page Fault 
 
 
5 bottles of beer on the wall 
5 bottles of beer, 
Take 1 down, pass it around 
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4 bottles of beer on the wall 
4 bottles of beer on the wall 
4 bottles of beer, 
Take 1 down, pass it around 
3 bottles of beer on the wall 
3 bottles of beer on the wall 
3 bottles of beer, 
 
 
Job Id:0021 
Time Limit Exceeded 
 
 
KNOCK KNOCK! 
WHO IS THERE? 
HAHA 
WHO 
KNOCK KNOCK! 
HEHE 
WHO IS THERE? 
 
 
Job Id:0022 
No Error 
 
 
6   Seconds till the world is over 
We're all gonna die! 
5   Seconds till the world is over 
We're all gonna die! 
4   Seconds till the world is over 
We're all gonna die! 
3   Seconds till the world is over 
We're all gonna die! 
1   Seconds till the world is over 
1,  what happened to 2?? 
Just kidding 
2   Seconds till the world is over 
We're all gonna die! 
1   Seconds till the world is over 
We're all gonna die! 
KABOOOOOOOOOOMMMMM!!!!!! 
 
 
Job Id:0031 
No Error 
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Operating   Systems  is  fun 
I really love this class!! 
There is nothing else like it 
The final project is so fun!! 
I can't wait to take the final exam. 
 
 
Job Id:0032 
Out Of Data 
 
 
One  fish 
Two  fish 
Red  fish 
Blue fish 
By Dr. Seuss 
 
 
Job Id:0041 
No Error 
 
 
3 os students jumping on the bed 
 
 
Job Id:0042 
Invalid Page Fault 
 
 
P   I   Z   Z   A    
A   Z   Z   I   P    
A   Z   Z   I   P    
A   Z   Z   I   P    
 
 
Job Id:0051 
Line Limit Exceeded 
 
 
    |     | 
 X | O | O  
    |     | 
------------ 
    |     | 
 X| X | O  
    |     | 
------------ 
    |     | 
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 O| X  | X   
    |     | 
 
 
Job Id:0052 
No Error 
 
 
0 SECONDS 
1 SECONDS 
2 SECONDS 
3 SECONDS 
4 SECONDS 
 
 
Job Id:0061 
Operation Code Error 
 
 
5 SECONDS 
4 SECONDS 
3 SECONDS 
2 SECONDS 
1 SECONDS 
0 SECONDS HAPPY NEW YEAR 
 
 
Job Id:0062 
No Error 
 
 
Oompa Loompa doompadee doo   
I've got another puzzle for you 
Oompa Loompa doompadah dee   
If you are wise you'll listen to me 
Oompa Loompa doompadee dah 
If you're not greedy you will go far 
You will live in happiness too 
Oompa Loompa doompadee doo   
 
 
Job Id:0071 
No Error 
 
 
WELCOME TO SHARMA'S SODA MACHINE 
PLEASE INSERT 1.25 FOR A SODA. 
OUR MACHINE ONLY ACCEPTS QUARTERS 
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0.00 HAS BEEN INSERTED. 
 
 
Job Id:0072 
Operand  Error 
 
 
1    
1   2    
1   2   3    
1   2   3   4    
1   2   3   4   5    
1   2   3   4        
1   2   3            
1   2                
1                    
 
 
Job Id:0081 
No Error 
 
 
One     sheep 
Two     sheep 
Three   sheep 
Red     sheep 
Blue    sheep 
 
 
Job Id:0082 
Invalid Page Fault 
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