

An Analysis of Legacy Database Updating through Database Wrapping Technologies-A Programming Technique

Thesis

Submitted to

Central Department of Computer Science and Information Technology Institute of Science and Technology

Tribhuvan University

In Partial Fulfillment of the Requirements for the Degree of

Masters of Science

in

Computer Science and Information Technology

By Hem Raj Aryal

July 06, 2008 Kathmandu, Nepal

Tribhuvan University

Institute of Science and Technology Central Department of Computer Science and Information Technology

Date:

LETTER OF RECOMMENDATION

Mr. *Hem Raj Aryal* has carried out this thesis work entitle "An Analysis of Legacy Database Updating through Database Wrapping Technologies-A Programming Technique" under my supervision and guidance. In my best knowledge this thesis successfully completed which fulfills the requirements for the award of the Degree of Master's in Computer Science and Information Technology, therefore I recommended for further evaluation.

Prof .Dr. Shashidhar Ram Joshi Department of Electronics and Computer Engineering Pulchowk Campus, Pulchowk (Supervisor)

Institute of Science and Technology

Central Department of Computer Science and Information Technology

We certify that we have read this dissertation work and in our opinion it is satisfactory in the scope and quality as a dissertation as the partial fulfillment of the requirement of Masters of Computer Science and Information Technology from Tribhuvan University, Nepal.

Evaluation Committee

Mr. Min Bahadur Khati Act. Head, Central Department of Computer Science and Information Technology Tribhuvan University, Kirtipur Prof .Dr. Shashidhar Ram Joshi Department of Electronics and Computer Engineering Pulchowk Campus, Pulchowk (Supervisor)

(External Examiner)

(Internal Examiner)

Date:

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

Abstract

This study examines Legacy Database Updating through Database Wrapping Technologies – A Programming Technique. Legacy database updating through code level programming is directly updating of legacy database doesn't consider the problem of guaranteeing data consistency by rejecting updates that violates constraints implicitly or explicitly. By using XML as data exchange format of the wrapper. Wrapper architecture based on the conversion and management of the views as the bridge from global schema to local schema of various data sources. Our wrapper has two main sub systems, data extract subsystem and query executor subsystem. The former is for loading data for the cache in mediator when changes more than threshold are detected and the latter is for answering the query from the mediator. The architecture adapts to the data and schema change of the data source and could answer the query of mediator effectively. Considering the wrapper may run in the environment without control, the process in wrapper should be simple enough. The storage in wrapper itself should be as small as possible and the storage of data source could be used. While directly updating of legacy database doesn't consider the problem of guaranteeing data consistency by rejecting updates that violates constraints implicitly or explicitly.

The central approach in my thesis is to address the problem of providing users and programmers with a wrapper able to emulate implicit structure and constrains in new application through Data Access Layer (Database Wrapper Schema) rather than through application code.

Acknowledgements

First of all, I extend my profound indebtedness to my supervisor, Professor Dr. Shashidhar Ram Joshi (Department of Electronics and Computer Engineering, Pulchowk Campus, Pulchowk) for his constant support, academic guidance and inspired many of the ideas presented here. I was very fortunate in having the chance to work with him as my research advisor. I have learned many principles on performing good research from him. I am thankful to Dr. Tanka Nath Dhamala (Head, CDCSIT-TU) and Mr. Min Bahadur Khati (Act.Head, CDCSIT-TU) for their inspiration and encouragement throughout the work as well as their continuous support throughout the academic years of Master degree.

I extend my sincere gratitude to Professor Dr. Devi Dutta Paudyal, Asso. Prof. Dr. Subarna Shakya(Department of Electronics and Computer Engineering, Pulchowk Campus, Pulchowk),Laxmi Nath Gyawali(Navada, USA), Dr. Srinath Srinivasa (International Institute of Information Technology,India),Dr. Onkar P. Sharma (Marist College, USA), Asst. Prof. Manish Pokharel(Kathmandu University,Dhulikhel),Mr. Arun Timalsina, Mr. Sudarshan Karanjit and others for the knowledge and inspirations they gave to me in the time period of two years.

I would also like to special thank to Employee Provident Fund, Nepal where I am working as a senior programmer (officer level) for giving me support over the years and providing me with a testbed to my ideas. I express deep gratitude to all the staff and colleagues of Central Department of Computer Science and Information Technology.

At last but not the least, I wish to express my gratitude to my parents and all my family members for their effort to provide me with the best possible education.

Hem Raj Aryal

ABBREVIATIONS

CASE	Computer-Aided Software Engineering
COBOL	Common Business-Oriented Language
CODASYL	Conference on Data Systems Languages
CS	Conceptual Schema
DBMS	Database Management System
DBRE	Database Reverses Engineering
DDL	Data Definition Language
DML	Data Manipulation Language
DTD	Document Type Declaration
ETL	Extract, Transform and Load
FD	Functional Dependency
GER	Generic Entity-Relationship model
I/O	Input Output
KSK	Karmachari Sanchaya Kosh, Nepal
LS	Legacy System
RPG	Reuse Planning Group
SQL	Structural Query Language
UI	User Interface
WS	Wrapper Schema
XML	eXtensible Markup Language
XSLT	Extensible Stylesheet Language Transformations

CONTENTS

ABSTRACT	V
ACKNOWLEDGEMENT	VI
ABBREVIATONS	VII
CONTENTS	VIII-X
LIST OF FIGURES	XI
1 Introduction	1-8
1.1 Introduction	1-3
1.2 Updating legacy data through Wrapper	3-4
1.3 Current Approaches	5
1.4 Objective of Study	6
1.5 Significance and Limitations of the Study	6
1.4 Thesis Structure	6-7
1.5. Problem definition	8
1.6 Literature Survey	8
2 Schema Reengineering	9-13
2.1 Introduction	9
2.2 Methodology	9
2.3 Tool Support	10
2.4 Mapping Method	10
2.5 Schema Transformation	10-11
2.6 Compound Transformation	11
2.7 Source and Target Logical Mapping	12
2.8 Support	12
2.9 Data Conversion	12
2.9.1 Methodology	13
2.9.2 Tool Support	13
3 Wrapper Schemas	14-24
3.1 Wrapper Schema Definition	14-15
3.2 Mapping Definition	16-17
3.3 Generic Transformational Framework	17

3.3.1 Inverse Transformation	18
3.3.2 Structural Analysis of Schema Transformations	18
3.3.3 Transformation Sequences	19
3.4 Transformational Approach of Query Mapping	19-21
3.5 Generic Entity – Relationship Model	21-22
3.6 Schema and Query Mapping	22
3.7 Model and Query Language	22-23
3.8 Schema Transformation and Query Substitution	23
3.9 Wrapper Schema Derivation	24
4 Wrapper Architecture	25-29
4.1 Motivation	25-27
4.2 Wrapper Query/Update Analysis	27
4.3 Error Reporting	27
4.4 Query/Update and Data Translation	28
4.5 Implicit Constraint Control	28-29
5 Wrapper Technologies in Microsoft.Net	30-34
5.1 Introduction	30
5.2 Presentation Layer	31
5.3 Business Logic Layer	32-33
5.4 Data Access Layer	33-34
6 Wrapper Development Algorithms	35-37
6.1 Introduction	35
6.2 Algorithms-Updating Legacy database Through Wrapper	35-37
7 Implementation and Testing	38-46
7.1 Implementation	38-40
7.2 Wrapper Schema Interface for N-tire Database Programming Technique	41
7.3 Wrapper Schema of Legacy Database	42
7.4 Testing	42
7.4.1 Main Screen	43
7.4.2 Programming Technique to Update Legacy Database through Wrapping	43-46
7.4.2.1 BLL	43-44

7.4.2.2 DAL (Wrapper Schema)	45
7.4.2.3 Presentation Layer	45-46
8 Conclusions and Further Recommendations	47-48
8.1 Conclusions	47
8.2 Further Recommendations	48
References	49-51

LIST OF FIGURES

FIGURE	TITLE	PAGE NO.
Figure 1.1	System Conversion	3
Figure 1.2	Coexistence of legacy and new applications	4
Figure 2.1	Representation of the structural mapping	11
Figure 3.1	The Physical database, logical and wrapper schemas	15
Figure 3.2	Example of update translation and implicit Constrain	nt 17
Figure 3.3	Language and Schema Mapping of a wrapper query	20
Figure 3.4	Sequence of Schema Transformations	23
Figure 4.1	A wrapper allows the new database to be accessed	25
Figure 4.2	Wrapper Architecture	26
Figure 7.1	Main Form of Payroll in KSK	38
Figure 7.2	Payroll System	39
Figure 7.3	Program Structure in Current Scenario	39
Figure 7.4	Legacy Database of KSK	40
Figure 7.5	N-tire Programming Technique	41
Figure 7.6	Wrapper schema of legacy system	42
Figure 7.7	Main Screen of Toolkit	43
Figure 7.8	Data Access Layer of N-tire Programming Techniqu	e 45