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Abstract 
This study examines three replica concurrency control algorithms namely Distributed 

2PL, Distributed OCC, and Distributed O2PL for distributed database systems. Four 

Different algorithms are performed are performed to evaluate the performance of above 

algorithms when they are incorporated with real-time data conflict resolution techniques 

namely PA, PB, PI, PA_PB. Among the four experiments, first experiment evaluates the 

performance of the various conflict resolution mechanisms (PA, PB, PI and PA_PB) 

when integrated with the 2PL and O2PL concurrency control protocols. Experiment 2 

evaluates the performance of CC protocols based on the three different techniques: 2PL, 

O2PL and OCC. Experiment 3 is performed to evaluate the performance of these 

algorithms under different update frequencies. Experiment 4 is performed to evaluate the 

performance of these algorithms while varying number of replicas. Results of these 

experiments are analyzed and presented. 

 

 The performance metric employed for all experiments is MissPercent, the percentage of 

transactions that miss their deadlines. MissPercent values in the range of 0 to 30 percent 

are taken to represent system performance under “normal” loads, while MissPercent 

values in the range of 30 to 100 percent represent system performance under “heavy” 

loads. Several additional statistics are used to aid in the analysis of the experimental 

results, including the abort ratio, the message ratio, priority inversion ratio (PIR), and 

the wait ratio, which is the average number of waits per transaction. Further, the useful 

resource utilization is also measured as the resource utilization made by those 

transactions that are successfully completed before their deadlines.  

 

All the missed deadline percentage for all experiments in this study is shown by graphs 

which only consider mean values that have relative half widths about the mean of less 

than 10% at the 90% confidence interval, with each experiment having been run until at 

least 10000 transactions are processed by the system. 
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Chapter 1: Introduction                                                                            

Many time-critical database applications are inherently distributed in nature. Recent 

applications include the multitude of directory, data-feed and electronic commerce 

services that have become available on the World Wide Web. The performance, 

reliability, and availability of such applications can be significantly enhanced through the 

replication of data on multiple sites of the distributed network. A pre-requisite for 

realizing the benefits of replication, however, is the development of efficient replica 

management mechanisms. In this field, many researchers contribute their knowledge and 

developed many concurrency control algorithms. Most of these algorithms are based on 

three basic approaches: locking, timestamps and optimistic concurrency control. Many 

researchers evaluate the performance of these concurrency control algorithms. Uluosy, O. 

studied the performances of classical 2PL protocol when augmented with priority abort 

(PA) and priority inheritance (PI) conflict resolution techniques [1]. However differing 

with prior performance studies, this study concentrates their efficiency in replicated 

environment in distributed processing especially of OCC, 2PL, and O2PL. This study 

evaluates the performances of 2PL and O2PL while these algorithms are incorporated 

with several data conflict resolution techniques such as PA, PB, PI and state-conscious 

priority blocking (PA_PB). 

 

This study examines different replica concurrency control algorithms such as standard 

Distributed 2PL, Distributed OCC, and Distributed O2PL. 

 

The performances of these algorithms are evaluated with different class of transaction 

and performance is indicated by number of performance parameters: Load, Message 

Cost, Data Access Ratio, and Update Frequency. 

 
Beside the performance study of replica concurrency control algorithms for distributed 

databases, different theoretical study of concurrency control algorithms are studied and 

analyzed. 

This study is divided into 7 chapters. Chapter 2 is a foundation for the study of 

concurrency control in database system. It describes database system components 
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including transaction manager and scheduler. Moreover, it briefly describes transaction 

and transaction processing in database system. 

 

Chapter 3 describes the major concurrency control problems: dirty read problem, fuzzy 

read problem, lost update problem and phantom problem. These problems are generally 

arises in database management system due to concurrent access in database system. 

Concurrency control algorithms (i. e. replica concurrency control algorithms in this 

study) must deal with these problems to ensure database consistency. Moreover, this 

chapter describes non-recoverability and cascading abort as concurrency control 

problems. 

 

Chapter 4 describes various replica concurrency control algorithms in detail. Moreover, 

this chapter describes various Data Conflict Resolution Mechanisms such as Priority 

Blocking (PB), Priority Abort (PA), Priority Inheritance (PI), OPT-WAIT (for OCC 

protocol), and State-Conscious Priority Blocking (PA_PB) to deal with data conflict that 

arises in concurrent execution of transaction. 

 

Chapter 5 describes different performance parameters and experiment strategies to 

evaluate the performance of replica concurrency control algorithms. This chapter also 

describes the program model for various experiments. 

 

Chapter 6 presents four different experiments to evaluate the performance of replica 

concurrency control algorithms. Each experiment evaluates the performance parameters 

and performance results are summarized. 

 

Chapter 7 summarizes the results of each experiment as conclusions of the study. This 

chapter clearly expresses the performance of replica concurrency control algorithms in 

different environments. Moreover this chapter also describes the limitations of this study 

and explores the direction for further study in the area of replica concurrency control 

algorithms. 
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Chapter 2: Foundations for the Study of Concurrency Control 
 
2.1 Introduction 
 
The database system components and transaction processing ([2], [3]) are the foundation 

for the study of concurrency control ([4], [5], [6]) in database management system. This 

chapter briefly describes database system components and transaction processing 

providing the foundation for the study of currency control in database management 

system. 

 

2.2 Database System Components 
 

 
 
 

Figure 2.1 Database System Components 
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In general, database system consists of four components: Transaction Manager(TM), 

Scheduler, Recovery Manager (RM) and Cache Manager (CM). Transaction Manager is 

responsible to perform any required preprocessing for database and transaction operations 

that receives from transaction. Scheduler is major component for concurrency control. It 

is responsible to control the relative order of database and transaction operations to 

execute. Recovery Manager (RM) is major component for recovery from failures ([5], 

[6]). It is responsible to commit and abort the transaction. And finally, Cache Manager 

(CM) is responsible to actually perform database and transaction operations. 

 
2.2.1 Transaction manager 

The major function of transaction manager is to establish the communications between 

user transaction and database. That is, transaction interacts with the database through a 

transaction manager (TM). The TM receives database and transaction operations issued 

by transactions and forwards them to the scheduler. If transaction is aborted, TM is 

responsible to resubmit the transaction to scheduler. In distributed database system 

environment [5] TM is more responsible, it has to decide in which site transaction 

operation has to send for scheduler. 

 
2.2.2 The Scheduler 
 
The scheduler is a primary database system component for concurrency control. 

Scheduler is responsible to relatively order the execution of database and transaction 

operations such that resulting execution is serializable [7]. It may also ensure that 

execution avoids cascading aborts and strict execution [6]. That all depends upon the 

concurrency control algorithm in which schedule/scheduler is based. In fact, schedule is a 

program, based on concurrency control algorithms for serializable execution of database 

and transaction operations. 

 

There are three basic actions scheduler performs once scheduler receives database and 

transaction's operations from transaction. 
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(a) Execute: Scheduler pass transaction's operation to Data Manager (DM) to execute. 

When DM finishes execution of passed operation it informs scheduler. Moreover, if 

operation is read, it reads a data value from database and it relays back to transaction. 

 

(b) Reject: Scheduler may refuse to process the operation which causes transaction to be 

aborted. Abort can he issued by transaction or TM. 

 

(c) Delay: Scheduler may delays operation placing it in queue. Later scheduler can either 

execute or reject it. 

 

These three actions of scheduler are preliminary to control the order of execution of 

database and transaction's operations. When it receives an operation from the transaction, 

usually tries to pass it to the DM. If it is unable to execute without producing non-

serializable execution, either it delays or reject it. If scheduler finds operation which 

cannot be correctly processed in further it directly rejects the operation. If scheduler finds 

possibility to correctly process operation in future it simply delays the operation. 

 

 

Example 2.2.2.1 

Let us consider two transactions 

Transaction T1 Transaction T2 

Procedure DepositA Procedure DepositB 

Begin Begin 

Read1(Accounts[A]); Read2(Accounts[A]); 

Write1(Accounts[A],$100); Write2(Accounts[A],$500); 

Commit1; Commit2; 

End; End; 

 

 

Consider a possible concurrent schedule produced by T1 and T2 as below 
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Table 2.1 Non-serializable execution 
 

The above execution is non-serializable. To avoid non- serializable execution, the 

scheduler might reject Write2, causing transaction T2 to abort. Transaction manager need 

to resubmit T2 during which T1 may already committed before T2 commit. This 

maintains serializable execution. Alternatively, the scheduler could delay Read1, until T2 

commits its write. Such scheduling decision can be made using appropriate scheduling 

algorithms [4].  

 

2.2.3 Recovery Manager 
 

Recovery manager is responsible for restoring the database from most recent consistent 

state. Recovery manager keeps track of the following operationsin the system log: 

 begin_transaction: This marks the beginning of transaction execution. 

 read or write: These specify read or write operations on the database items that 

are executed as part of a transaction. 

 end_transaction: This specifies that read and write transaction operations have 

ended and marks the end limit of transaction execution. At this point it may be 

necessary to check whether the changes introduced by the transaction can be 

permanently applied to the database or whether the transaction has to be aborted 

because it violates concurrency control or for some other reason. 

  

                   T1                    T2 

Read1(Accounts[A]);  

 Read2(Accounts[A]); 

 Write2(Accounts[A],$500); 

 Commit2; 

Write1(Accounts[A],$100);  

Commit1;  
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 commit_transaction: This signals a successful end of the transaction so that any 
changes (updates) executed by the transaction can be safely committed to the 
database and will not be undone. 

 rollback (or abort): This signals that the transaction has ended unsuccessfully, 
so that any changes or effects that the transaction may have applied to the 
database must be undone.  

 
2.2.4 Cache Manager 
 

Cache manager coordinates buffers of data that store data before writing to the database 

with database and transactions. Transaction; that performs read operation first seeks the 

data item in buffers. If not in buffers, then transaction make a trip to database after then it 

accesses the data item through buffers.  

 
2.3 Centralized and Distributed Database System  
 
2.3.1 Centralized Database System 
 

Centralized database system [5] consist a single database unit and it is placed in a single 

computer system. It basically adopts client server environment. In client server 

environment, database is place in server and number of clients may connect to central 

database stored in server via communication network. 

 

For a centralized database system, centralized computer system could be the underlying 

computer system on which it runs. In general, centralized database system consists of a 

central processor, some main memory, secondary storage devices, and I/O devices. It 

may also come with multiprocessors in which each processor has direct access to all of 

main memory and to all I/O devices. 

 

2.3.2 Distributed Database System 
 

Distributed database system is a collection of sites connected by communication network. 

Each site in distributed database is centralized database system which stores a copy of the 

entire database. So the components of distributed database are same as for centralized 
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database system: Transaction Manager (TM), Scheduler, Recovery Manager (RM), and 

Cache manager (CM).  

Since database is distributed over several sites, each transaction may consist of one or 

more processes that need to execute at one or more sites. TM needs to forward each 

operation to appropriate scheduler in which site where data arc available to process the 

operation. TM can communicate with all scheduler exist in all sites via communication 

network. 

                   
 

Figure 2.2 Distributed Database Systems [8] 
 
 
2.4 Transaction Processing 

2.4.1 Motivation 

Concurrency is a mandatory property of a database system it must allow by the database 

system. In concurrent environment, read and write operations of one database user may 

interfere with other. Due to interference only some read/write operations of database user 

may execute rest of read /write operations could not be executed since database system 

assumes each read/write operation as individual and independent task. If all read and 

write operations issued by database user are really independent in nature, partial 

execution of read/write operations does not create big problem. But in reality, each 

database read or write operation rarely represent a complete task of database user. In such 
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situation, it may lead inconsistency problem [9]. This really demands encapsulation of set 

of database operations which can perform a complete task. In fact, transaction is initiated 

with this concept. It isolates set of database operations providing set of operations as a 

single unit. If any one of the operations that exist in set of database operation could not 

execute either because of concurrent transaction interfere or because of failure, database 

system ignores set of all operations that exist. This helps to ensure consistency of 

database in concurrent environment. That is the major motivation of transaction is to 

ensure consistency allowing concurrent execution. 

2.4.2 Definition of Transaction 

A transaction is a unit of program consisting set of database operations whose execution 

may change the database state. If database is initially in consistent state before executing 

transaction, database should remain in consistent state at the end of transaction. To ensure 

consistency of database before and after execution of transaction, it needs to be atomic 

[10]. Read, Write, Commit, and Abort are major database operations that exist in 

transaction. 

 

Transaction can also be defined as a collection of actions that make consistent 

transformations preserving database consistency. 

 

Example 2.4.2.1: Fund transfer from account A to account B 

Procedure FundTransfer 
Begin 

Input(A,B ); 
temp = Read(Accounts[A]);  
temp1 = temp1-$100 
write( Accounts [A],temp1);  
temp2 = Read(Accounts[B]);  
temp2 = temp2 +$100 
write( Accounts[B],temp2);  
commit; 
 

End; 
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This can be expressed as 

 

 
 

 

 

 

 

Figure 2.3 Transaction execution instance 

2.4.3 Transaction Properties 

The definition of transaction tells states of transaction and its actions are not visible to 

other transactions or database users until transaction terminates. That is, partial changes 

made by transaction are not visible outside this transaction. Only when transaction 

terminates, database users notified its success or failure and changes made by transaction 

are made visible. We already discussed that these characteristics are foundation for, 

currency control. To achieve these characteristics, transaction should have atomicity, 

consistency, isolation and durability properties, called ACID properties ([2], [10]) of 

transaction. 

 

The atomicity property of transaction tells transaction is an individual unit. It needs to 

execute set of all operations that belong to this transaction then only system can reflects 

changes made by this transaction. This is helpful to modify/update database in consistent 

manner. Let us consider task, which is responsible to transfer funds from account A to B. 

Assume that, failure occurs power failure or hardware failure or software error) 

immediately after account A is updated but before update perform in account B. 

Definitely, such incomplete transaction leads database in inconsistent state [9]; such 

incomplete execution of transaction's effect should wipe out. Transaction's atomicity 

property does not allow violating such integrity [9]. Transaction manager (TM) is 

responsible for ensuring atomicity property of transaction. 

 

 Account A   $500 
 Account B   $500 

 Account A   $400 
 Account B   $600 

 Beginning of transaction  End of transaction 
 Transfer $100 from A to B

During the execution of transaction database may go
temporarily in inconsistent state but it is not visible to
other transactions  
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The consistency property of transaction ensures transaction should preserve consistency 

of database during its execution. That is, if database was initially in consistent state 

before start of transaction execution, then database should again in consistent state once 

transaction terminates. Database user itself is responsible to ensure consistency property 

of transaction. In fund transfer transaction, we could enforce consistency criteria as sum 

of amount of all account must not be changed by fund transfer transaction. 

 

The isolation property of transaction tells actions performed by transaction should be 

isolated or hidden from outside the transaction until transaction is not terminated. That is, 

even though transactions are running concurrently, any changes made by transaction is 

not visible to other transitions or database user until transaction is not terminated. For 

example transaction T1 is executing fund transfer transaction form account A to B and 

another transaction T2 try to read sum of the amount from account A and B. In such case, 

isolation property of transaction does not allow to read changes made by transaction T1 to 

T2 until and unless T1 is not terminated. The database system component scheduler is 

responsible for ensuring isolation property of transaction. 

 

The durability property of transaction ensures committed actions of transaction must 

reflect in database. Any failure, after transaction commit will not cause loss of updates 

made by this transaction. The recovery manager is responsible for ensuring durability 

property of transaction. A simple idea for ensuring durability property of transaction is to 

keep the log of all changes carried out before writing the effect of updated transaction to 

disk. The content of log can be used by TM to restore the database state during the 

system failure or system restart. 

2.4.4 State of Transaction 

Transaction model consists of the following state of transactions: 

Active: Initial state, transaction stay in this state while it is executing. 

Partially-Committed: Transaction stay in this state just after it executes final statement 

of the transaction. It indicates that it is at the end of transaction. At this point, the 
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transaction completed its execution but still it may abort because up to this state actual 

output of transaction may still temporarily residing in main memory; hardware failure 

may cause impossible to reflect changes made by transaction from main memory to 

database. 

Failed: A transaction is said to be in failed sate once normal execution of transaction can 

no longer proceed. It could be because of hardware and logical error. Failed transaction 

must be rollback. That is, all changes made by transaction to database must be undone.  

Committed: Signals successful end of transaction. Any changes made by transaction can 

be safely committed to database which cannot undo in future. 

 

 
 

Figure 2.4 Transaction execution states 
 

Once a transaction successfully commits then the database system must guarantee that its 

updates permanently store in the database, even system crash occurs in the very next 

moment. It is possible that system may crash just after we issued a COMMIT but before 

issuing updates to physically write changes in database [11]. It might still be waiting a 

main memory buffer. The system's restart procedure may store those updates in the 

database. The general technique to recover from such system crash is to maintain log of 

each transaction actions, known as log-based recovery [12]. Write-ahead log rule tells, 

log must be physically written before COMMIT processing completes. Database system 

should have capabilities to recover from failure. 

 



 
 

13

Chapter 3: Concurrency Control Problems 
 
3.1 Introduction 
 
Generally, database system allows multiple transactions to run concurrently. Concurrent 

execution of transaction in database system improves database system performance [13], 

reducing transaction waiting time to proceed. It improves resource utilization. But it may 

lead the database in inconsistent state due to interference among actions of concurrent 

transactions. Concurrent execution of transaction in database system leads several 

concurrency control problems [9]. Major concurrency control problems that may 

generally arise in concurrent execution will discuss in this chapter. 

 
3.2 Concurrency Control Problems 
 
The main reason of concurrency control problem is interference [9]. In concurrent 

execution, transaction need to execute in interleave fashion and when number of 

concurrent transactions executes in interleave fashion there is possibility of interference 

which may lead different concurrency control problems. 

 
3.2.1 Dirty Read Problem 
 

Suppose transaction T1 modifies a data item x and another transaction T2 then reads that 

data item x before T1 perform commit or abort. Now, if T1 perform abort then data item x 

read by T2 can never committed. In such case, data item x read by T2 is known as dirty 

read. Let us examine a concurrent schedule that demonstrates a possible dirty read 

problem. 

T1 T2 

Write1(x)  

 Read2(x) 

 Write2(y) 

Abort1  

 
Table 3.1 Schedule illustrating dirty read problem 
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Since T2 read x (dirty read) that was already written by T1 but not committed yet T1 

aborts also cause T2 to be abort, changes made by T2 is never committed. Dirty read 

problem in concurrent execution occur if transaction T reads uncommitted transaction 

and subsequently aborts before T's commit [11]. Similar case is shown in above schedule. 

 

3.2.2 Non - Repeatable (Fuzzy) Read Problem 
 
Suppose transaction T1 reads x and then another transaction T2 modifies it. But still T1 

assumes data value of x is unchanged and proceeds further without reading updated 

values of x. If transaction T1 need to perform further actions based on x that is updated 

after T1's read then it could lead problem in there execution. The same scenario is 

demonstrated by the following concurrent schedule. 

 

T1 T2 

Read1(x)  

 Write2(x) 
 Commit2 

Read1(y)  

Write1(x +y→z)   
Commit1  

 

Table 3.2 Schedule illustrating fuzzy read problem 

Here job of transactions T1 is to read current values of x and y then stores their sum in z. 

Before T1’s write, data value x read by T1 is already updated by T2. But T1 still assumes 

old value of x as a current value that T1 reads before T2 update it. Therefore, when T1 

commits it cannot write appropriate sum of x and y to z. Here problem occurs due to 

fuzzy read of T1 [11]. 

 

3.2.3 Lost update Problem 
 
If two or more transaction modifies data item x at a time then lost update problem occurs, 

update made by one transaction may overwrite by other transaction update. If T1 updates 
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x but not committed yet, before T1 commit, if another transaction T2, update x and 

eventually T2 commits before T1 then update made by T1 is lost. Let us consider a 

schedule which demonstrates lost update problem. 

 

T1 T2 

Read1(x)  

 Read2(x) 

Write1(x)  

 Write2(x) 

 Commit2 

 

Table 3.3 Schedule illustrating lost update problem 

 

Initially T1 and T2 read same data value of x. when T2 commits, T1’s write to x is 

overwritten by T2’s write to x. 

 

3.2.4 Phantom Problem  
 
Most of the databases are dynamic; meaning is that there are no fixed numbers of records 

in which we always perform query to update and to retrieve required data. In normal, we 

need to add, remove or moved data within database. Such database is called dynamic 

database [5]. In dynamic database phantom problem may arise. 

 

Suppose transaction T1 reads a set of data item satisfying some search condition and then 

another transaction T2 say creates new data items satisfying the same search condition of 

T1 then if T1 repeats its reads with the same search condition, it will get a set of data 

items differ from the first read. This problem is known as phantom problem. 

 

Let us consider a concurrent schedule that demonstrate phantom problem in dynamic 

database. Suppose T1 is responsible to read data values of x and y then need to store their 

sum in z and T2 is responsible to delete the data item x. Assume possible concurrent 

schedule with T1 and T2 as below. 
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T1 T2 

Read1(x)  

 Delete2(x) 

 Commit2 

Read1(y)  

Write1(x +y→z)  

Commit1  

 

Table 3.4 Schedule illustrating phantom problem 

 

Initially T1 reads data value of x and keep it to add with data value of y but immediately 

T2 deletes data item x before T1 store sum of x and y to z. When T1 commits T1 stores 

sum of x and y even data item x is no longer exist in database. 

 

3.3 Non Recoverability and Cascading Aborts as a Concurrency Control 

Problem 

 

When transaction T aborts, database system must undo its effects for each data item 

updated by T. That is, database system need to rollback T's effect from database during 

abort of T. There are two possible effects of transaction T. T may effect on data value 

written in the database or it may also affect on other transactions. In both case, aborted 

transaction’s effects should undo from database. If aborted transaction may trigger further 

abortion, it is known as cascading abort. 

 

Let us consider a schedule which illustrates cascading abort. Assume x and y are data 

items having initial data value 1 for both x and y. 
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T1 T2 

Write1(x,2)  

 Read2(x) 

 Write2(y,3) 

Abort1  

 

Table 3.5 Schedule illustrate cascading abort 
 

In the above schedule, when transaction T1 aborts database system must restore update 

made by T1. That is, database system must undo Write1 (x, 2) restoring x=1. Restoring 

the update made by T1 is not sufficient since T2 reads value of x written by T1, T2 also 

need to abort. That is, database system need to undo Write2(y, 3) restoring y=1. Even 

cascading abort maintain consistency of database by aborting series of transactions, it is 

in fact a concurrency problem. Cascading abort is really unpleasant. This is considered as 

a concurrency problem because it requires significant bookkeeping to track which 

transactions reads from which others, single transaction abortion force to abort one or 

more other transactions; which is very expensive. 

 

Cascading abort is not always possible. Durability property of transaction tells once a 

transaction is committed, the database system must guarantee it could not be abort. There 

would be a situation that where cascading abort required but not possible. This usually 

happens if transaction Tj reads changes made by other Transaction Ti and Ti aborts after 

Tj’s commit. Let's examine such situation by the following schedule. 

 

T1 T2 

Write1(x, 2)  
 Read2(x) 
 Write2(y, 3) 
Read1(y) Commit2 
Abort1  

 
Table 3.6 Schedule illustrate non recoverable schedule 

 
Here, once transaction T1 aborts, T2 need be aborted but it violates durability property of 
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transaction. T2 is already committed before T1 aborted. So here, cascading abort is not 

possible. Here schedule demands cascading abort but it is not possible, such schedule 

called non-recoverable schedule. Non-recoverability is in fact concurrency problem and 

recoverability is required properly for concurrency control. Non-recoverable execution is 

more danger than cascading abort [9]. Cascading abort is expensive but it does not violate 

transaction property (durability property of transaction). 

 

Formally, recoverable schedule is defined as follows.  

Suppose transaction Tj reads x that was written by transaction Ti in the execution then 

schedule S is called recoverable if it follows following conditions 

• Tj reads x after Ti has written into it. 

• Ti does not abort before Tj reads x and 

• Every transaction (if any) that write x between Ti writes x and Tj reads x, aborts 

before Tj read x. 

It indicates that, for recoverable execution if Tj reads from Ti then Tj must follow Ti's 

commit. An execution is recoverable if database system always able to reverse the effects 

of aborted transaction on other transactions [6]. Recoverability is required to ensure 

aborting transaction does not change the semantics of committed transaction's operations. 

 

3.4 Avoiding Cascading Aborts and Ensuring Recoverability 
 
It has been already stated that cascading abort and non-recoverable execution are 

concurrency problems [6], it should avoid during concurrent execution.   

 

Cascading aborts can avoid if database ensures that every transaction read only those data 

values that were written by committed transactions. To achieve cascadelessness, database 

system need to delay each Read(x) until transaction that has previously issued a Write (x, 

val) have either aborted or committed. Avoiding cascading abort also ensures 

recoverability but enforcing recoverability does not remove the possibility of cascading 

aborts. Let us reexamine the schedule defined in the table below. 
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Table 3.7 Schedule illustrate cascading aborts schedule 

 
Here, this schedule is not cascadelessness and not recoverable. To achieve 

cascadelessness Read2(x) must wait till T1's abort. And definitely it ensures recoverability 

as well as cascadelessness. In the above schedule if T1 aborts just before T2’s commits, 

then schedule becomes recoverable but it does not avoid cascading aborts, abortion of T1 

lead T2 to abort. 

 

3.5 Strict Execution 
 

From the practical point of view, avoiding cascading aborts is not always enough [5]. A 

further restriction on execution is often desirable. The cascadelessness schedule only 

enforces transaction could not read data item x that was already written by uncommitted 

transaction. But it does not enforce transaction could not write x that was already written 

by uncommitted transaction. Let us examine the cascadelessness schedule it can lead 

problem in concurrent execution. 

 

T1 T2 

Write1(x, 2)  

 Write2(x, 3) 

Abort1  

 
Table 3.8 Cascadelessness schedule 

 

Here, T2 didn't read x that already written by T1 so schedule is cascadelessness. 

T1 T2 

Write1(x, 2)  

 Read2(x) 

 Write2(y, 3) 

 Commit2 

Abort1  
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According to the definition of cascadelessness schedule, it does not need to enforce T2 to 

abort but T2's write may dependent to T1's write. If so such cascadelessness schedule may 

cause problem. Let's look the scenario more preciously, assume that initial value of x is 

50. Transaction T1 is responsible to add 20 in x and transaction T2 is responsible to add 

say 5% of current value of x then T2's write becomes logically invalid when T1 aborts but 

T1 does not need to enforce T2 to abort. 

 

The strict execution is serious about such problem. Strict execution delays T2's write to x 

until T1 abort or commit. That is, strict execution restricts both reads and writes to x if x 

is already written by T1 until T1 is either committed or aborted. Strict execution ensures 

both cascadelessness and recoverability [6]. 
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Chapter 4: Replica Concurrency Control Protocols 
 
4.1 Introduction 

Distributed database systems are multi-user systems, which allow the number of 

transactions from the different sites to access the same database simultaneously. 

Concurrent access to shared database may lead database in inconsistent state. To preserve 

the consistency of database, the database system must adopt some concurrency control 

mechanisms to ensure that the modifications made by transactions are not lost.  

 

4.2 Replica Concurrency Control Algorithms  

To preserve the consistency of database, the database system must adopt some 

concurrency control mechanisms to ensure that the modifications made by transactions 

are not lost. For this purpose, here, this study mainly focuses three classical families of 

distributed Concurrency Control (CC) protocols, Two Phase Locking (2PL), Optimistic 

Concurrency Control (OCC), and Optimistic Two-Phase Locking (O2PL). All three 

protocol classes belong to the ROWA (“read one copy, write all copies”) category with 

respect to their treatment of replicated data.  

 

4.2.1 Distributed Two-Phase Locking (2PL) 

In the distributed two-phase locking algorithm [15], a transaction that intends to read a 

data item has to only set a read lock on any copy of the item; to update an item, however, 

write locks are required on all copies. Write locks are obtained as the transaction 

executes, with the transaction blocking on a write request until all of the copies of the 

item to be updated have been successfully locked by a local cohort and its remote 

updaters. Only the data locked by a cohort is updated in the data processing phase of a 

transaction. Remote copies locked by updaters are updated after those updaters have 

received copies of the relevant updates with the PREPARE message during the first phase 

of the commit protocol. Read locks are held until the transaction has entered the prepared 
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state while write locks are held until they are committed or aborted. 

 

4.2.2 Distributed Optimistic Concurrency Control (OCC) 

Distributed optimistic concurrency control algorithm, OCC [16], extends the 

implementation strategy for centralized OCC algorithms proposed in to handle data 

distribution and replication.  

In OCC, transactions execute in three phases: read, validation, and write. In the read 

phase, cohorts only access data items in their local sites and all updating of replicas is 

deferred to the end of transaction, that is, to the commit processing phase. More 

specifically, the two-phase commit (2PC) protocol is “overloaded” to perform validation 

in its first phase, and then installation of the private updates of successfully validated 

transactions in its second phase. 

The validation process works as follows: After receiving a PREPARE message from its 

master, a cohort initiates local validation. If a cohort fails during validation, it sends an 

ABORT message to its master. Otherwise, it sends PREPARE messages as well as copies 

of the relevant updates to all the sites that store copies of its updated data items. Each site 

which receives a PREPARE message from the cohort initiates an updater to update the 

data in its local work area used by OCC. When the updates are done, the updater 

performs local validation and sends a PREPARED message to its cohort. After the cohort 

collects PREPARED messages from all its updaters, it sends a PREPARED message to 

the master. If the master receives PREPARED messages from all its cohorts, the 

transaction is successfully globally validated and the master then issues COMMIT 

messages to all the cohorts.  

A cohort that receives a COMMIT message enters the write phase (the third phase) of the 

OCC algorithm. After it finishes the write phase, it sends a COMMIT message to all its 

updaters which then complete their write phase in the same manner as the cohort.  

For the implementation of the validation test itself, an efficient strategy called Lock-

based Distributed Validation is employed.  
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An important point to note here is that in contrast to centralized databases where 

transactions that validate successfully always commit, a distributed transaction that gets 

locally validated might be aborted later because it fails during global validation. This can 

lead to wasteful aborts of transactions – other transactions could be aborted when a 

transaction gets locally validated, but the locally validated transaction itself is aborted 

later. This is a potential performance drawback for OCC in distributed systems. 

 

4.2.3 Distributed Optimistic Two-Phase Locking (O2PL) 

The O2PL algorithm[16] can be thought of as a hybrid occupying the middle ground 

between 2PL and OCC. Specifically, O2PL handles read requests in the same way that 

2PL does; in fact, 2PL and O2PL are identical in the absence of replication. However, 

O2PL handles replicated data optimistically. When a cohort updates a replicated data 

item, it requests a write lock immediately on the local copy of the item. But it defers 

requesting write locks on any of the remote copies until the beginning of the commit 

phase is reached. As in the OCC algorithm, replica updaters are initiated by cohorts in the 

commit phase. Thus, communication with the remote copy site is accomplished by 

simply passing update information in the PREPARE message of the commit protocol. In 

particular, the PREPARE message sent by a cohort to its remote updaters includes a list 

of items to be updated, and each remote updater must obtain write locks on these copies 

before it can act on the PREPARE request. Since O2PL waits until the end of a 

transaction to obtain write locks on copies, both blocking and abort are possible rather 

late in the execution of a transaction. In particular, if two transactions at different sites 

have updated different copies of a common data item, one of the transactions has to be 

aborted eventually after the conflict is detected. In this case, the lower priority transaction 

is usually chosen for abort in RTDBS. 

 

4.2.4 Time of Updates to Replicas 

It is important to note that the time at which the remote update processes are invoked is a 

function of the choice of CC protocol. In 2PL, a cohort invokes its remote replica update 

processes to obtain locks before the cohort updates a local data item in the transaction 
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execution phase. Replicas are updated during the commitment of the transaction. 

However, in the O2PL and OCC protocols, a cohort invokes the remote replica update 

processes only in the first phase of the two-phase commit protocol. 

 

4.3 Data Conflict Resolution Mechanisms 
 
Here, the integration of real time cognizant data conflict resolution mechanism into the 

replica concurrency control protocols is discussed. There are three different ways to 

introduce real-time associated priorities into locking protocols: 
 

4.3.1 Priority Blocking (PB) 

This mechanism is similar to the conventional locking protocol in that a transaction is 

always blocked when it encounters a lock conflict and can only get the lock after the lock 

is released. The lock request queue, however, is ordered by transaction priority. 
 

4.3.2 Priority Abort (PA) 

This scheme attempts to resolve all data conflicts in favor of high-priority transactions. 

Specifically, at the time of a data lock conflict, if the lock holding cohort (updater) has 

higher priority than the priority of the cohort (updater) that is requesting the lock, the 

requester is blocked. Otherwise, the lock holding cohort (updater) is aborted and the lock 

is granted to the requester. Upon the abort of a cohort (updater), a message is sent to the 

master (cohort) of the cohort (updater) to abort and then restart the whole transaction (if 

its deadline has not expired by this time). 

 

The only exception to the above policy is when the low priority cohort (updater) has 

already reached the PREPARED state at the time of the data conflict. In this case, it 

cannot be aborted unilaterally since its destiny can only be decided by its master and 

therefore the high priority transaction is forced to wait for the commit processing to be 

completed.  
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4.3.3 Priority Inheritance (PI) 

In this scheme, whenever data conflict occurs the requester is inserted into the lock 

request queue which is ordered by priority. If the requester’s priority is higher than that of 

any of the current lock holders, then these low priority cohort(s) holding the lock 

subsequently execute at the priority of the requester, that is, they “inherit” this priority. 

This means that lock holders always execute either at their own priority or at the priority 

of the highest priority cohort waiting for the lock, whichever is greater. 

 

The implementation of priority inheritance in distributed databases is not trivial. For 

example, whenever a cohort inherits a priority, it has to notify its master about the 

inherited priority. The master propagates this information to all the sibling cohorts of the 

transaction. This means that the dissemination of inheritance information to cohorts takes 

time and effort and significantly adds to the complexity of the system implementation. 

 

For the optimistic protocol, OCC, the OPT-WAIT [18] conflict resolution mechanism is 

used, described below: 
 

4.3.4 OPT-WAIT 

In this mechanism, a transaction that reaches validation and finds higher priority 

transactions in its conflict set is “put on the shelf”, that is, it is made to wait and not 

allowed to commit immediately. This gives the higher priority transactions a chance to 

make their deadlines first. After all conflicting higher priority transactions leave the 

conflict set, either due to committing or due to aborting, the on-the-shelf waiter is 

allowed to commit. Note that a waiting transaction might be restarted due to the commit 

of one of the conflicting higher priority transactions. 

 

4.3.5 State-Conscious Priority Blocking (PA_PB) 

To resolve a conflict in O2PL, the CC manager uses Priority Abort (PA) mechanism if 

the lock holder has not passed a point called the demarcation point; otherwise it uses PB 

(Priority Blocking) mechanism. 
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The demarcation points of a cohort/updater Ti  is assigned as follows: 

• Ti is a cohort:   

when Ti receives a PREPARE message from its master. 

• Ti is a replica updater: 

when  Ti  has acquired all the local write locks 

 
Essentially, this study sets the demarcation point in such a way that, beyond that point, 

the cohort or the updater does not incur any locally induced waits. So, in the case of 

O2PL, a cohort reaches its demarcation point when it receives a PREPARE message from 

its master. This happens before the cohort sends PREPARE messages to its remote 

updaters. It is worth noting that, to a cohort, the difference between PA and PA_PB is 

with regard to when the cohort reaches the point after which it cannot be aborted by lock 

conflict. In case of the classical priority abort (PA) mechanism, a cohort enters the 

PREPARED state after it votes for COMMIT, and a PREPARED cohort cannot be 

aborted unilaterally. This happens after all the remote updaters of the cohort vote to 

COMMIT. On the other hand, in the PA_PB mechanism, a cohort reaches its demarcation 

point before it sends PREPARE messages to its remote updaters. PA and PA_PB become 

identical if databases are not replicated. Thus, in state-conscious protocols, cohorts or 

updaters reach demarcation points only after the two phase commit protocol starts. This 

means that a cohort/updater cannot reach its demarcation point unless it has acquired all 

the locks. Note also that a cohort/updater that reaches its demarcation point may still be 

aborted due to write lock conflict. 

 
4.4 Incorporating PA_PB into the 2PL 

PA_PB conflict resolution mechanism which was discussed above in the context of the 

O2PL, can be also added to the distributed 2PL. For 2PL, we assign the demarcation 

points of a cohort/updater Ti is assigned as follows: 

 

• Ti is a cohort: 

when Ti receives a PREPARE message from its master 

 



 
 

27

• Ti is a replica updater: 

when Ti receives a PREPARE message from its cohort 

 

One special effect in combining with 2PL, unlike the combination with O2PL, is that a 

low priority transaction which has reached its demarcation point and has blocked a high 

priority transaction will not suffer any lock based waits. 

 

4.5 Choice of Post-Demarcation Conflict Resolution Mechanism 

In the above description, Priority Blocking (PB) is used for the post-demarcation conflict 

resolution mechanism. Alternatively, Priority Inheritance could be used instead, as given 

below: 
 
4.5.1 State-Conscious Priority Inheritance (PA_PI) 

To resolve a conflict, the CC manager uses PA if the lock holder has not passed the 

demarcation point, otherwise it uses PI. 

 

At first glance, the above approach may appear to be significantly better than PA_PB 

since it does not only prevent close-to-completion transactions from being aborted, but 

also helps them complete quicker, thereby reduces the waiting time of the high-priority 

transactions blocked by such transactions.  
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Chapter 5: Performance Evaluation Strategies 

5.1 Performance Parameters 

This study identified load, message cost, data access ratio (DAR) and update frequency 

as performance parameters to evaluate the performance of replica concurrency control 

protocols. 

 

5.2 Experiment Strategies 

To evaluate the performance of the concurrency control protocols described in Chapter 5, 

a detailed performance evaluation model of a distributed real-time database system 

(DRTDBS) is developed. This model is based on the distributed database model 

presented in [17]. A summary of the parameters used in the simulation model are 

presented in Table 5. 

 
         Table 5:  Performance Evaluation Model Parameters and Default Settings 
  

The database is modeled as a collection of DBSize pages that are distributed over 

NumSites sites. The number of replicas of each page, that is, the “replication degree”, is 

Parameter Meaning Setting 

NumSites 
DBSize 
ReplDegree 

Number of sites  
Number of Pages in the databases  
Degree of Replication 

4 
1000 pages 
4 

NumCPUs  
NumDataDisks  
NumLogDisks  
BufHitRatio  
ArrivalRate  
SlackFactor  
TransSize   
UpdateFreq  
PageCPU time 
InitWriteCPU  
PageDisk  
LogDisk  
MsgCPU  

Number of CPUs per site  
Number of data disks per site 
Number of log disks per site 
Buffer hit ratio on a site 
Transaction arrival rate (Trans./Second) 
Slack factor in deadline assignment 
No. of pages accessed per trans. 
Update frequency 
CPU page processing 
Time to initiate a disk write 
Disk page access time 
Log force time 
CPU message send/receive time 

2 
4 
1 
0.1 
Varied 
6.0 
16 pages 
0.25 
10 ms 
2 ms 
20 ms 
5 ms 
1 ms 
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determined by the ReplDegree parameter. The physical resources at each site consist of 

NumCPUs CPUs, NumDataDisks data disks and NumLogDisks log disks. At each site, 

there is a single common queue for the CPUs and the scheduling policy is preemptive 

Highest-Priority-First. Each of the disks has its own queue and is scheduled according to 

a Head-Of-Line policy, with the request queue being ordered by transaction priority. The 

PageCPU and PageDisk parameters capture the CPU and disk processing times per data 

page, respectively. The parameter InitWriteCPU models the CPU overhead associated 

with initiating a disk write for an updated page. 
 
When a transaction makes a request for accessing a data page, the data page may be 

found in the buffer pool, or it may have to be accessed from the disk. The BufHitRatio 

parameter gives the probability of finding a requested page already resident in the buffer 

pool.  

 

The communication network is simply modeled as a switch that routes messages and the 

CPU overhead of message transfer is taken into account at both the sending and receiving 

sites and its value is determined by theMsgCPU parameter – the network delays are 

subsumed in this parameter. This means that there are two classes of CPU requests – 

local data processing requests and message processing requests. Any distinction is not 

made, however, between these different types of requests and it is only ensured that all 

requests are served in priority order.  

 

With regard to logging costs, we explicitly model only forced log writes since they are 

done synchronously, i.e., operations of the transaction are suspended during the 

associated disk writing period. This logging cost is captured by the LogDisk parameter. 

 

Transactions arrive in a Poisson stream with rate ArrivalRate, and each transaction has an 

associated firm deadline, assigned as described below. Each transaction randomly 

chooses a site in the system to be the site where the transaction originates and then forks 

off cohorts at all the sites where it has to access data. Transactions in a distributed system 

can execute in either sequential or parallel fashion. The distinction is that cohorts in a 

sequential transaction execute one after another, whereas cohorts in a parallel transaction 
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are started together and execute independently until commit processing is initiated. 

However, only sequential transactions are considered in this study. However, it is noted 

that the execution of replica updaters belonging to the same cohort is always in parallel. 

The total number of pages accessed by a transaction, ignoring replicas, varies uniformly 

between 0.5 and 1.5 times TransSize. These pages are chosen uniformly (without 

replacement) from the entire database. The proportion of accessed pages that are also 

updated is determined by UpdateF req. 

 

Upon arrival, each transaction T is assigned a firm completion deadline using the formula 

 

DeadlineT = ArrivalTimeT  + SlackFactor * RT 

 

where DeadlineT , ArrivalTimeT , and RT are the deadline, arrival time, and resource time, 

respectively, of transaction T, while SlackFactor is a slack factor that provides control of 

the tightness/slackness of transaction deadlines. The resource time is the total service 

time at the resources at all sites that the transaction requires for its execution in the 

absence of data replication. This is done because the replica-related cost differs from one 

CC protocol to another. 

It is important to note that while transaction resource requirements are used in assigning 

transaction deadlines, the system itself lacks any knowledge of these requirements in our 

model since for many applications it is unrealistic to expect such knowledge [18]. This 

also implies that a transaction is detected as being late only when it actually misses its 

deadline. 

 

As discussed earlier, transactions in an RTDBS are typically assigned priorities so as to 

minimize the number of killed transactions. In our model, all cohorts inherit their parent 

transaction’s priority. Messages also retain their sending transaction’s priority. The 

transaction priority assignment used in all of the experiments described here is the 

widely-used Earliest Deadline policy [20], wherein transactions with earlier deadlines 

have higher priority than transactions with later deadlines.  
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Deadlock is possible with some of the CC protocols that we evaluate in our experiments, 

deadlocks are detected using a time out mechanism. Both this study’s own model as well 

as the results reported in previous studies [21] show that the frequency of deadlocks is 

extremely small – therefore a low-overhead solution like timeout is preferable compared 

to more expensive graph-based techniques. 

 
 
5.3 Program Overview 

The simulator Program “Replica Concurrency Control Performance Analyzer” (RCCPA) 

is designed to evaluate the performance of Distributed 2PL, O2PL, and OCC. Simulation 

program RCCPA allows different experiments. 

 

Experiments Component of RCCPA allows to choose the particular experiment. 

Performance Evaluation Parameter (PEP) component allows us to set different 

parameters for each experiment. Performance Report component of RCCA analyze the 

performance reports of each experiments and performance trends of locking algorithms 

are present in graphical representation. 

 
5.4 Snapshot of program Components 

 
Figure 5.1 Main Screen of RCCPA 
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Figure 5.2 Experiment Selection Menus 
 
 

 
 

Figure 5.3 Parameter Stetting Component of RCCA 
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Chapter 6: Experiments and Results 

6.1 Overview 

This study performs four different experiments to evaluate the performance of replica 

concurrency control algorithms.  First experiment evaluates the performance of the 

various conflict resolution mechanisms (PA, PB, PI and PA_PB) when integrated with 

the 2PL and O2PL concurrency control protocols. Experiment 2 evaluates the 

performance of CC protocols based on the three different techniques: 2PL, O2PL and 

OCC. Experiment 3 is performed to evaluate the performance of these algorithms under 

different update frequencies. Experiment 4 is performed to evaluate the performance of 

these algorithms while varying number of replicas. 

 

 The performance metric employed for all experiments is MissPercent, the percentage of 

transactions that miss their deadlines. MissPercent values in the range of 0 to 30 percent 

are taken to represent system performance under “normal” loads, while MissPercent 

values in the range of 30 to 100 percent represent system performance under “heavy” 

loads. Several additional statistics are used to aid in the analysis of the experimental 

results, including the abort ratio, which is the average number of aborts per transaction, 

the message ratio, which is the average number of messages sent per transaction, the 

priority inversion ratio (PIR), which is the average number of priority inversions per 

transaction, and the wait ratio, which is the average number of waits per transaction. 

Further, the useful resource utilization is also measured as the resource utilization made 

by those transactions that are successfully completed before their deadlines. All the 

missed deadline percentage graphs in this study shows mean values that have relative half 

widths about the mean of less than 10% at the 90% confidence interval, with each 

experiment having been run until at least 10000 transactions are processed by the system. 

Only statistically significant differences are discussed here. 
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6.2 Experiment 1: Baseline – Real-Time Conflict Resolution 
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Figure 6.1.1 O2PL- based Algorithms (Normal Load) 
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Figure 6.1.2 O2PL- based Algorithms (Heavy Load) 
 

Table 5 presents the setting of the performance evaluation model parameters for our first 

experiment. With these settings, the database is fully replicated and each transaction 

executes in a sequential fashion (note, however, that the execution of replica updaters 
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belonging to the same cohort is always in parallel). The parameter values for CPU, disk 

and message processing times are similar to those in [16]. While these times have 

certainly reduced due to technology advances in the interim period, this study also 

continue to use them here for the following reasons:  

1) To enable easy comparison and continuity with the several previous studies that 

have used similar models and parameter values;  

2) The ratios of the settings, which is what really matters in determining 

performance behavior, have changed a lot less as compared to the decrease in 

absolute values; 

3) This study’s objective is to evaluate the relative performance characteristics of the 

protocols, not their absolute levels. Here the database size represents only the “hot 

spots”, that is, the heavily accessed data of practical applications, and not the 

entire database. 

 

Here, objective of this experiment was to investigate the performance of the various 

conflict resolution mechanisms (PA, PI and PA_PB) when integrated with the 2PL and 

O2PL concurrency control protocols. Since the qualitative performance of the conflict 

resolution mechanisms was found to be similar for 2PL and O2PL, for ease of exposition 

and graph clarity, the O2PL-based performance results are only presented here.  

 

For this experiment, Figures 6.1.1 and 6.1.2 present the missed deadline percentages of 

transactions for the O2PL-PB, O2PL-PA, O2PL-PI, and O2PL-PA_PB protocols under 

normal loads and heavy loads, respectively. To help isolate the performance degradation 

arising out of concurrency control, the performance of NoCC ( is a protocol which 

processes read and write requests like O2PL, but ignores any data conflicts that arise in 

this process and instead grants all data requests immediately) is also presented. It is 

important to note that NoCC is only used as an artificial baseline in our experiments.  

 

Focusing the attention first on O2PL-PA, it is observed that O2PL-PA and O2PL-PB 

have similar performance at arrival rates lower than 14 transactions per second, but 

O2PL-PA outperforms O2PL-PB under heavier loads. This is because O2PL-PA ensures 
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that urgent transactions with tight deadlines can proceed quickly since they are not made 

to wait for transactions with later deadlines in the event of data conflicts. From collected 

statistics, it is found that O2PL-PA greatly reduces the priority inversion ratio, the wait 

ratio and the wait time as compared to O2PL-PB. The performance of O2PL-PI and 

O2PL-PB is virtually identical. This is because  

(1) a low priority transaction whose priority is increased holds the new priority until 

it commits, i.e., the priority inversion persists for a long time. Thus, higher 

priority transactions which are blocked by that transaction may miss their 

deadlines. In contrast, normal priority inheritance in real-time systems only 

involves critical sections which are usually short so that priority increase of a task 

only persists for a short time, i.e., until the low priority task gets out of the critical 

section. This is the primary reason that priority inheritance works well for real-

time tasks accessing critical sections, but it fails to improve performance in real-

time transaction processing. 

(2) it takes considerable time for priority inheritance messages to be propagated to the 

sibling cohorts (or updaters) on different sites, and  

(3) under high loads, high priority transactions are repeatedly datablocked by lower 

priority transactions. As a result, many transactions are assigned the same priority 

by “transitive inheritance” and priority inheritance essentially degenerates to “no 

priority”, i.e., to basic O2PL, defeating the original intention. This is confirmed 

by the similar priority inversion ratio (PIR), wait ratio and wait time statistics of 

O2PL-PI and O2PL-PB collected in the experiments. Hence, it is concluded that 

priority inheritance does not help to improve performance in distributed 

environment. 
 
 
6.3 Experiment 2: Baseline - Concurrency Control Algorithms 
 

The goal of this experiment was to investigate the performance of CC protocols based on 

the three different techniques: 2PL, O2PL and OCC. For this experiment, the parameter 

settings are the same as those used for Experiment 1. The missed deadline percentage of 
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transactions is presented in Figures 6.2.1 and 6.2.2 for the normal load and heavy load 

regions, respectively. 
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Figure 6.2.1 2PL, O2PL, and OCC Algorithms (Normal Load) 
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Figure 6.2.2 2PL, O2PL, and OCC Algorithms (Heavy Load) 
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Focusing the attention on the locking-based schemes, it is observed that O2PL-PA_PB 

outperforms 2PL-PA PB in both normal and heavy workload ranges. For example, O2PL-

PA_PB outperforms 2PL-PA PB by about 12% (absolute) at an arrival rate of 14 

transactions/second. This can be explained as follows: First, 2PL results in much higher 

message overhead for each transaction, as is clearly indicated by the message ratio 

statistic collected in the experiments. The higher message overhead results in higher CPU 

utilization, thus aggravating CPU contention. Second, 2PL-PA PB detects data conflicts 

earlier than O2PL-PA_PB. However, data conflicts cause transaction blocks or aborts. 

2PL-PA PB results in more number of waits per transaction and longer wait time per wait 

instance. Thus 2PL-PA PB results in more transaction blocks and longer blocking times 

than O2PL-PA_PB. On the other hand, O2PL-PA_PB has less transaction blocks. In 

other words, unlike in 2PL-PA PB, a cohort with O2PL cannot be blocked or aborted by 

data conflicts with cohorts on other sites before one of them reaches the commit phase. 

 

Thus, with O2PL-PA_PB, transactions can proceed faster. On the other hand, O2PL-

PA_PB improves performance by detecting global CC conflicts late in the transaction 

execution thereby reducing wasted transaction aborts.  

Turning the attention to the OCC protocol, it is observed that OCC is slightly worse than 

2PL-PA_PB and O2PL-PA_PB under arrival rates less than 14 transactions/second. This 

is due to the fact that OCC has a higher CC abort ratio than 2PL-PA_PB and O2PL-

PA_PB under those loads. With higher loads, OCC outperforms 2PL-PA_PB because 

OCC has less number of wasteful aborts, less number of waits and shorter blocking time 

of a transaction than 2PL-PA_PB. It may be considered surprising that O2PL-PA_PB has 

the best performance over a wide workload range, improving slightly even over OCC. It 

is observed that O2PL-PA_PB has higher useful CPU and disk utilization, even though 

its overall CPU and disk utilization is lower than OCC. This clearly indicates that OCC 

wastes more resources than O2PL-PA_PB does. It implies that the average progress made 

by transactions before they were aborted due to CC conflicts is larger in OCC than that in 

O2PL-PA_PB. As observed in the previous studies of centralized RTDB settings [10], the 

wait control in OCC can actually cause all the conflicting transactions of a validating 

transaction to be aborted at a later point in time, thereby wasting more resources even if 
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OCC has slightly less CC abort ratio than O2PL-PA_PB. In contrast, O2PL-PA_PB 

reduces wasted resources by avoiding transaction aborts after cohorts/updaters reach 

demarcation points. In summary, although OCC outperforms 2PL-PA_PB, O2PL-

PA_PB, the protocol of O2PL augmented with PA_PB, outperforms OCC in the tested 

workloads.  

 

6.4 Experiment 3: Varying Update Frequency 
 
The next experiment investigates the performance of these algorithms under different 

update frequencies. For this experiment, Figure 6.3.1 and 6.3.2 present the missed 

deadline percentage when the update frequencies are low and high for an arrival rate of 

14 transactions/second. It should be noted that data is normally replicated in distributed 

database systems only when the update frequency is not very high. Therefore, the high 

update frequency results that are presented here are only to aid in understanding the 

tradeoffs of different protocols. When the update frequency is comparatively low (less 

than 0.5), we observe that the qualitative behavior of the various algorithms is similar to 

that of Experiment 1. A difference, however, occurs when the update frequency is high 

(more than 0.5). We observe in Figure 6.3.2 that the performance of O2PL-PA_PB 

degrades more drastically with the increase of update frequency. For example, O2PL-

PA_PB performs slightly worse than both 2PL-PA_PB and OCC when the update 

frequency is 1.0. The reason for the degraded performance of O2PL-PA_PB is that with 

high update frequency, O2PL-PA_PB causes much more aborts due to both data 

contention in the local site and global update conflicts, as discussed earlier in Section 6.3, 

and more aborts are wasted under O2PL-PA_PB. In summary, for low to moderate 

update frequencies, O2PL-PA_PB is the preferred protocol. For high update frequencies, 

on the other hand, OCC performs better than O2PL-PA_PB. 
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Figure 6.3.1 Varying Update Freq (Low UpdateFreq) 
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Figure 6.3.2 Varying Update Freq (High UpdateFreq) 
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6.5 Experiment 4: Partial Replication 

0
10
20
30
40
50
60

1 2 3 4 5 6 7 8

Arrival Rate

M
is

se
d 

D
ea

dl
in

es

2PL-PA_PB
O2PL-PA_PB
OCC

 
 

Figure 6.4.1 Partial Replication (DBSize = 800, NumSites = 8) 
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Figure 6.4.2 Partial Replication (Abort Ratio) 
 
For this experiment, the NumSites and DBSize are fixed at 8 and 800, respectively, while 

the NumCPUs and NumDataDisks per site are set at 1 and 2, respectively. These changes 

were made to provide a system operational region of interest without having to model 

very high transaction arrival rates. The other parameter settings are the same as those 

given in Table 5. For this environment, Figure 6.4.1 presents the missed deadline 
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percentage of transactions when the number of replicas is varied from 1 to 8, i.e., from no 

replication to full replication, for an arrival rate of 14 transactions/second. In the absence 

of replication, we observe first that 2PL-PA_PB and O2PL-PA_PB perform identically as 

expected since O2PL reduces to 2PL in this situation. Further, OCC outperforms all the 

other algorithms.  

 

As the number of replicas increases, the performance difference between O2PL-PA_PB 

and 2PL-PA_PB increases. Because of its inherent mechanism for detecting data 

conflicts, 2PL-PA_ PB suffers much more from data replication than O2PL-PA_PB and 

OCC do. It is observed that the performance crossover between O2PL-PA_PB and OCC. 

The reason for this change in their relative performance behavior is explained in the abort 

curves shown in Figure 6.4.2 (for graph clarity, the abort ratio and useful abort ratio of 

O2PL-PA_PB and OCC are only shown), where it is seen that the number of aborts of 

O2PL-PA_PB is significantly reduced while data is replicated. This helps reduce the 

resource wastage in O2PL-PA_PB. In O2PL, read operations can benefit from local data 

when data is replicated. However, as data replication level goes up, update operations 

suffer due to updates to remote data copies. Hence, the performance degrades after a 

certain replication level. On the other hand, it is observed that the performance of 2PL-

PA_PB always degrades as data replication level goes up. This is due to the pessimistic 

conflict detection mechanism in 2PL since the number of messages sent out for conflict 

detection increases drastically which in turn increases CPU contention. The similar 

behavior of OCC and 2PL is also observed in conventional replicated databases [22]. 
 
6.6 Summary of Experimental Results 

Apart from the experiments described above, a variety of experiments was conducted that 

cover a range of workloads and system configurations, including “infinite” resources to 

isolate the impact of data contention, variations in message cost, message propagation 

delay, slack factor and data access ratio, etc. Table 6 summarizes these results under both 

tight and loose slack factor: In the table, system parameters, i.e., load, message cost, data 

access ratio (DAR) and update frequency have been coarsely categorized into low and 

high, and ’*’ refers to both low and high categories. The terms “poor”, “fair”, “good”, 



 
 

43

and “best” are used to describe the relative performance in a given system state and for a 

given algorithm. Whereas in a particular row, “fair” is better than “poor”, “good” is better 

than “fair”, and “best” represents the best algorithm in a row, the terms in two different 

rows are not comparable. The following general observations pertain to Table 6.  

1. 2PL based algorithms perform poorly in most cases, especially when the message 

cost is high. Thus 2PL based algorithms are not the proper choices for high 

message cost environments. 

2. O2PL-PA and O2PL-PA_PB achieve good performance for low to moderate 

update frequencies but the O2PL approach does not work well at high update 

frequencies. 

3.  OCC achieves better performance than all the O2PL based and 2PL-based 

algorithms over most of the update frequency range. 

4. Protocols integrated with only PB or PI (e.g., O2PL-PB, O2PL-PI) always 

perform poorly. Thus they are not suited to distributed real-time databases. A 

similar poor performance of these mechanisms has also been observed for 

centralized real-time databases [10]. 

5. No single algorithm can always outperform all the others: O2PL-PA_PB performs 

best for low to moderate update frequencies whereas OCC performs best at high 

update frequencies. However, since it is expected that most replicated RTDBS 

applications will belong to the former category, O2PL-PA_PB appears to be the 

best overall choice for implementation in these systems. 

Parameter Algorithm’s Performance 

2PL O2PL OCC 

Load 

 

MsgCost 

 

DAR 

 

UpdateFreq PB PI PA PA_PB PB PI PA PA_PB Wait 

Low Low High Low Poor Poor Fair Good Poor Poor Good Best Good

Low High High Low Poor Poor Poor Poor Poor Poor Good Best Good

High Low High Low Poor Poor Poor Fair Poor Poor Fair Best Good

High High High Low Poor Poor Poor Poor Fair Fair Good Best Good

* * High High Poor Poor Poor Poor Poor Poor Poor Good Best 

* * Low Low Fair Fair Fair Fair Good Good Good Best Good

* * Low High Poor Poor Poor Poor Good Good Good Good Good

Table 6 Performance of Algorithms 
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Chapter 7: Conclusions and Further Recommendations 

7.1 Conclusions 
 
In this study, the problems of accessing replicated data in distributed real-time databases 

have been addressed where transactions have firm deadlines, a framework under which 

many current time-critical applications, especially Web-based ones, operate. In this study, 

the performance of the 2PL, O2PL, OCC, and O2PL-PA_PB is investigated. 

 

This performance study shows the following: 

1. The relative performance characteristics of replica concurrency control algorithms in 

the real-time environment could be significantly different from their performance in a 

non-real-time database system. For example, the O2PL algorithm, which is reputed to 

provide the best overall performance in traditional databases, performs poorly in real-

time databases. 

2. OCC outperforms 2PL and O2PL based algorithms when these locking based 

algorithms are integrated with priority blocking, priority abort and priority inheritance 

protocols. 

3. The O2PL-PA_PB protocol provides the best performance in both fully and partially 

replicated environments for real-time applications with low or moderate update 

frequencies. For high update frequencies, however, OCC is better. But, given that 

most of the distributed real time applications that this study is aware of fall into the 

former category, O2PL-PA_PB appears to be an attractive choice for designers of 

replicated RTDBS. 

 
7.2 Limitations and Further Recommendations 
 
This study has certain limitations which can be fulfilled by further study. This study 

specially focused on evaluating the performance of three different replica concurrency 

control algorithms namely distributed 2PL, O2PL, and OCC when distributed 2PL and 

O2PL are associated with PA, PB, PI, and PA_PB data conflict resolution techniques and 

OCC is associated with OPT-WAIT. This study can extend to evaluate the performances 

of these algorithms when these are associated with PA_PI and PB_PI.  
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