

Performance study of Replica Concurrency
Control Algorithms for Distributed

Databases

By
Kamal Bista

A dissertation submitted to the
Central Department of Computer Science and Information Technology,

Tribhuvan University
in partial fulfillment of the requirements for the degree of

Master’s Degree in Computer Science

and Information Technology

TRIBHUVAN UNIVERSITY
Kirtipur, Kathmandu, Nepal

August, 2008

 i

Tribhuvan University

Institute of Science and Technology
Central Department of Computer Science

and Information Technology

Date: _____________

Letter of Recommendation

Mr. Kamal Bista has carried out this dissertation work entitled “Performance study

of Replica Concurrency Control Algorithms for Distributed Databases”

under my supervision and guidance. This dissertation bears the candidate’s own work and

is in the form as required by Central Department of Computer Science and Information

Technology, Tribhuvan University. I, therefore recommend for further evaluation.

Prof. Dr. Shashidhar Ram Joshi

Department of Electronics and Computer Engineering
Institute of Engineering, Pulchowk Campus, Pulchowk

Tribhuvan University
Supervisor

 ii

Tribhuvan University

Institute of Science and Technology
Central Department of Computer Science

and Information Technology

Letter of Approval

We certify that we have read this dissertation and in our opinion it is satisfactory in the

scope and quality as a dissertation in the partial fulfillment for the requirement of

Master’s degree in Computer Science and Information Technology.

Evaluation Committee

________________________________ _____________________________

Head, Central Department of Computer Prof. Dr. Shashidhar Ram Joshi
Science and Information Technology Department of Electronics and
Tribhuvan University, Nepal Computer Engineering
 Institute of Engineering
 Tribhuvan University
 Supervisor

________________________________ _____________________________

 Internal Examiner External Examiner

Date: _____________

 iii

Acknowledgements

It is a great pleasure for me to acknowledge the contributions of a large number of

individuals to this work. First of all, I would like to thank my advisor Prof. Dr.

Shashidhar Ram Joshi for giving me an opportunity to work under his supervision and

for providing me guidance and support through out this work. I have learned many

principles on performing good research from him.

I would like to express my sincere gratitude to Prof. Dr. Devi Dutta Paudyal (Former

Head, Central Department of Computer Science and Information Technology) for his

inspiration and encouragement during two years study of my Master’s Degree.

I would like to express my gratitude to the respected teachers Prof. Dr. Srinath Srinivasa

(IIIT – Banglore, India), Prof. Dr. Laxmi P. Gewali (University of Nevada, Las Vegas,

USA), Prof. Sudarshan Karanjeet, Associate Prof. Manish Pokharel, Asst. Prof. Arun

Timilsina, Asst. Prof. Dr. Tanka Nath Dhamala (Head, CDCSIT), Asst. Prof. Min B.

Khati, Asst. Prof. Hemanta Bahadur G.C. and all other teacher who have taught us in

our Master Degree.

I am in debt to Achyut Pd. Pathak, Hem Raj Aryal and Dinesh Khadka for their fruitful

discussions. Last but not least, I would like to thank my family members for their

constant support and encouragement.

Kamal Bista

 iv

Abstract
This study examines three replica concurrency control algorithms namely Distributed

2PL, Distributed OCC, and Distributed O2PL for distributed database systems. Four

Different algorithms are performed are performed to evaluate the performance of above

algorithms when they are incorporated with real-time data conflict resolution techniques

namely PA, PB, PI, PA_PB. Among the four experiments, first experiment evaluates the

performance of the various conflict resolution mechanisms (PA, PB, PI and PA_PB)

when integrated with the 2PL and O2PL concurrency control protocols. Experiment 2

evaluates the performance of CC protocols based on the three different techniques: 2PL,

O2PL and OCC. Experiment 3 is performed to evaluate the performance of these

algorithms under different update frequencies. Experiment 4 is performed to evaluate the

performance of these algorithms while varying number of replicas. Results of these

experiments are analyzed and presented.

 The performance metric employed for all experiments is MissPercent, the percentage of

transactions that miss their deadlines. MissPercent values in the range of 0 to 30 percent

are taken to represent system performance under “normal” loads, while MissPercent

values in the range of 30 to 100 percent represent system performance under “heavy”

loads. Several additional statistics are used to aid in the analysis of the experimental

results, including the abort ratio, the message ratio, priority inversion ratio (PIR), and

the wait ratio, which is the average number of waits per transaction. Further, the useful

resource utilization is also measured as the resource utilization made by those

transactions that are successfully completed before their deadlines.

All the missed deadline percentage for all experiments in this study is shown by graphs

which only consider mean values that have relative half widths about the mean of less

than 10% at the 90% confidence interval, with each experiment having been run until at

least 10000 transactions are processed by the system.

 v

List of Figures

Figure 2.1 Database System Components ..3

Figure 2.2 Distributed Database System ..8

Figure 2.3 Transaction execution instance...…….10

Figure 2.4 Transaction execution states..12

Figure 5.1 Main Screen of RCCPA ..31

Figure 5.2 Experiment Selection Menu ..32

Figure 5.3 Parameter Stetting Component of RCCPA ...32

Figure 6.1.1 O2PL- based Algorithms (Normal Load)...34

Figure 6.1.2 O2PL- based Algorithms (Heavy Load)...34

Figure 6.2.1 2PL, O2PL, and OCC Algorithms (Normal Load).....................................37

Figure 6.2.2 2PL, O2PL, and OCC Algorithms (Heavy Load)37

Figure 6.3.1 Varying Update Freq (Low Update Freq) ...40

Figure 6.3.2 Varying Update Freq (High Update Freq) ...40

Figure 6.4.1 Partial Replication (DBSize = 800, NumSites = 8)....................................41

Figure 6.4.2 Partial Replication (Abort Ratio)..41

 vi

List of Tables

Table 2.1 Non-serializable execution ...6

Table 3.1 Schedule illustrating dirty read problem...13

Table 3.2 Schedule illustrating fuzzy read problem ...14

Table 3.3 Schedule illustrating lost update problem...15

Table 3.4 Schedule illustrating phantom problem ..16

Table 3.5 Schedule illustrating cascading abort ...17

Table 3.6 Schedule illustrating non recoverable schedule..17

Table 3.7 Schedule illustrating cascading aborts schedule...19

Table 3.8 Cascadelessness schedule………………… ...19

Table 5 Performance Evaluation Model Parameters and Default Settings28

Table 6 Performance of Algorithms ...43

 vii

LIST OF ACRONYMS
2PC Two Phase Commit

2PL Two Phase Locking
CM Cache Manager
CPU Central Processing Unit
DAR Data Access Ratio
DM Data Manager
DRTDBS Distributed Real Time Database System
O2PL Optimistic Two Phase Locking
OCC Optimistic Concurrency Control
PA Priority Abort

PB Priority Blocking
PEP Performance Evaluation Parameters
PI Priority Inheritence
PIR Priority Inversion Ratio
RCCPA Replica Concurrency Control Performance Analyzer
RM Recovery Manager
ROWA Read One copy, Write All copies

RTDBS Real-Time Database System
TM Transaction Manager

 viii

Contents

Letter of Recommendation... i

Letter of Approval ... ii

Acknowledgements ... iii

Abstract…….. iv

List of Figures..v

List of Tables ... vi

List of Acronyms.. vii

Contents ..viii-x

Chapter 1: Introduction ... 1-2

Chapter 2: Foundations for the Study of Concurrency Control 3-12
2.1 Introduction...3

2.2 Database System Components..3

2.2.1 Transaction manager..4

2.2.2 The Scheduler ..4

2.2.3 Recovery Manager ...6

2.2.4 Cache Manager ..7

2.3 Centralized and Distributed Database System..7

2.3.1 Centralized Database System...7

2.3.2 Distributed Database System ...7

2.4 Transaction Processing ...7

2.4.1 Motivation..7

2.4.2 Definition of Transaction...8

2.4.3 Transaction Properties ...9

2.4.4 State of Transaction ...11

Chapter 3: Concurrency Control Problems... 13-20
3.1 Introduction...13

3.2 Concurrency Control Problems...13

3.2.1 Dirty Read Problem ...13

 ix

3.2.2 Non - Repeatable (Fuzzy) Read Problem ..14

3.2.3 Lost update Problem ..14

3.2.4 Phantom Problem...15

3.3 Non Recoverability and Cascading Aborts as a Concurrency Control Problem16

3.4 Avoiding Cascading Aborts and Ensuring Recoverability ...18

3.5 Strict Execution...19

Chapter 4: Replica Concurrency Control Protocols ... 21-27
4.1 Introduction...21

4.2 Replica Concurrency Control Algorithms ..21

4.2.1 Distributed Two-Phase Locking (2PL)..21

4.2.2 Distributed Optimistic Concurrency Control (OCC)...22

4.2.3 Distributed Optimistic Two-Phase Locking (O2PL) ...23

4.2.4 Time of Updates to Replicas..23

4.3 Data Conflict Resolution Mechanisms ...24

4.3.1 Priority Blocking (PB) ...24

4.3.2 Priority Abort (PA) ..24

4.3.3 Priority Inheritance (PI) ...25

4.3.4 OPT-WAIT ..25

4.3.5 State-Conscious Priority Blocking (PA_PB) ...25

4.4 Incorporating PA_PB into the 2PL...26

4.5 Choice of Post-Demarcation Conflict Resolution Mechanism.......................................27

4.5.1 State-Conscious Priority Inheritance (PA_PI) ...27

Chapter 5: Performance Evaluation Strategies ... 28-33
5.1 Performance Parameters ...28

5.2 Experiment Strategies ...28

5.3 Program Overview..31

5.4 Snapshot of program Components..31

Chapter 6: Experiments and Results .. 33-43
6.1 Overview...33

 x

6.2 Experiment 1: Baseline – Real-Time Conflict Resolution ...34

6.3 Experiment 2: Baseline - Concurrency Control Algorithms...36

6.4 Experiment 3: Varying Update Frequency ...39

6.5 Experiment 4: Partial Replication...41

6.6 Summary of Experimental Results ...42

Chapter 7: Conclusions and Further Recommendations..44
7.1 Conclusions...44

7.2 Limitations and Further Recommendations..44

References….. 45-46

1

Chapter 1: Introduction

Many time-critical database applications are inherently distributed in nature. Recent

applications include the multitude of directory, data-feed and electronic commerce

services that have become available on the World Wide Web. The performance,

reliability, and availability of such applications can be significantly enhanced through the

replication of data on multiple sites of the distributed network. A pre-requisite for

realizing the benefits of replication, however, is the development of efficient replica

management mechanisms. In this field, many researchers contribute their knowledge and

developed many concurrency control algorithms. Most of these algorithms are based on

three basic approaches: locking, timestamps and optimistic concurrency control. Many

researchers evaluate the performance of these concurrency control algorithms. Uluosy, O.

studied the performances of classical 2PL protocol when augmented with priority abort

(PA) and priority inheritance (PI) conflict resolution techniques [1]. However differing

with prior performance studies, this study concentrates their efficiency in replicated

environment in distributed processing especially of OCC, 2PL, and O2PL. This study

evaluates the performances of 2PL and O2PL while these algorithms are incorporated

with several data conflict resolution techniques such as PA, PB, PI and state-conscious

priority blocking (PA_PB).

This study examines different replica concurrency control algorithms such as standard

Distributed 2PL, Distributed OCC, and Distributed O2PL.

The performances of these algorithms are evaluated with different class of transaction

and performance is indicated by number of performance parameters: Load, Message

Cost, Data Access Ratio, and Update Frequency.

Beside the performance study of replica concurrency control algorithms for distributed

databases, different theoretical study of concurrency control algorithms are studied and

analyzed.

This study is divided into 7 chapters. Chapter 2 is a foundation for the study of

concurrency control in database system. It describes database system components

2

including transaction manager and scheduler. Moreover, it briefly describes transaction

and transaction processing in database system.

Chapter 3 describes the major concurrency control problems: dirty read problem, fuzzy

read problem, lost update problem and phantom problem. These problems are generally

arises in database management system due to concurrent access in database system.

Concurrency control algorithms (i. e. replica concurrency control algorithms in this

study) must deal with these problems to ensure database consistency. Moreover, this

chapter describes non-recoverability and cascading abort as concurrency control

problems.

Chapter 4 describes various replica concurrency control algorithms in detail. Moreover,

this chapter describes various Data Conflict Resolution Mechanisms such as Priority

Blocking (PB), Priority Abort (PA), Priority Inheritance (PI), OPT-WAIT (for OCC

protocol), and State-Conscious Priority Blocking (PA_PB) to deal with data conflict that

arises in concurrent execution of transaction.

Chapter 5 describes different performance parameters and experiment strategies to

evaluate the performance of replica concurrency control algorithms. This chapter also

describes the program model for various experiments.

Chapter 6 presents four different experiments to evaluate the performance of replica

concurrency control algorithms. Each experiment evaluates the performance parameters

and performance results are summarized.

Chapter 7 summarizes the results of each experiment as conclusions of the study. This

chapter clearly expresses the performance of replica concurrency control algorithms in

different environments. Moreover this chapter also describes the limitations of this study

and explores the direction for further study in the area of replica concurrency control

algorithms.

3

Chapter 2: Foundations for the Study of Concurrency Control

2.1 Introduction

The database system components and transaction processing ([2], [3]) are the foundation

for the study of concurrency control ([4], [5], [6]) in database management system. This

chapter briefly describes database system components and transaction processing

providing the foundation for the study of currency control in database management

system.

2.2 Database System Components

Figure 2.1 Database System Components

Transaction 1 Transaction 2 … Transaction n

Data
Manager

Transaction

Scheduler

 Recovery

Manager

Cache
Manager

Database

4

In general, database system consists of four components: Transaction Manager(TM),

Scheduler, Recovery Manager (RM) and Cache Manager (CM). Transaction Manager is

responsible to perform any required preprocessing for database and transaction operations

that receives from transaction. Scheduler is major component for concurrency control. It

is responsible to control the relative order of database and transaction operations to

execute. Recovery Manager (RM) is major component for recovery from failures ([5],

[6]). It is responsible to commit and abort the transaction. And finally, Cache Manager

(CM) is responsible to actually perform database and transaction operations.

2.2.1 Transaction manager

The major function of transaction manager is to establish the communications between

user transaction and database. That is, transaction interacts with the database through a

transaction manager (TM). The TM receives database and transaction operations issued

by transactions and forwards them to the scheduler. If transaction is aborted, TM is

responsible to resubmit the transaction to scheduler. In distributed database system

environment [5] TM is more responsible, it has to decide in which site transaction

operation has to send for scheduler.

2.2.2 The Scheduler

The scheduler is a primary database system component for concurrency control.

Scheduler is responsible to relatively order the execution of database and transaction

operations such that resulting execution is serializable [7]. It may also ensure that

execution avoids cascading aborts and strict execution [6]. That all depends upon the

concurrency control algorithm in which schedule/scheduler is based. In fact, schedule is a

program, based on concurrency control algorithms for serializable execution of database

and transaction operations.

There are three basic actions scheduler performs once scheduler receives database and

transaction's operations from transaction.

5

(a) Execute: Scheduler pass transaction's operation to Data Manager (DM) to execute.

When DM finishes execution of passed operation it informs scheduler. Moreover, if

operation is read, it reads a data value from database and it relays back to transaction.

(b) Reject: Scheduler may refuse to process the operation which causes transaction to be

aborted. Abort can he issued by transaction or TM.

(c) Delay: Scheduler may delays operation placing it in queue. Later scheduler can either

execute or reject it.

These three actions of scheduler are preliminary to control the order of execution of

database and transaction's operations. When it receives an operation from the transaction,

usually tries to pass it to the DM. If it is unable to execute without producing non-

serializable execution, either it delays or reject it. If scheduler finds operation which

cannot be correctly processed in further it directly rejects the operation. If scheduler finds

possibility to correctly process operation in future it simply delays the operation.

Example 2.2.2.1

Let us consider two transactions

Transaction T1 Transaction T2

Procedure DepositA Procedure DepositB

Begin Begin

Read1(Accounts[A]); Read2(Accounts[A]);

Write1(Accounts[A],$100); Write2(Accounts[A],$500);

Commit1; Commit2;

End; End;

Consider a possible concurrent schedule produced by T1 and T2 as below

6

Table 2.1 Non-serializable execution

The above execution is non-serializable. To avoid non- serializable execution, the

scheduler might reject Write2, causing transaction T2 to abort. Transaction manager need

to resubmit T2 during which T1 may already committed before T2 commit. This

maintains serializable execution. Alternatively, the scheduler could delay Read1, until T2

commits its write. Such scheduling decision can be made using appropriate scheduling

algorithms [4].

2.2.3 Recovery Manager

Recovery manager is responsible for restoring the database from most recent consistent

state. Recovery manager keeps track of the following operationsin the system log:

 begin_transaction: This marks the beginning of transaction execution.

 read or write: These specify read or write operations on the database items that

are executed as part of a transaction.

 end_transaction: This specifies that read and write transaction operations have

ended and marks the end limit of transaction execution. At this point it may be

necessary to check whether the changes introduced by the transaction can be

permanently applied to the database or whether the transaction has to be aborted

because it violates concurrency control or for some other reason.

 T1 T2

Read1(Accounts[A]);

 Read2(Accounts[A]);

 Write2(Accounts[A],$500);

 Commit2;

Write1(Accounts[A],$100);

Commit1;

7

 commit_transaction: This signals a successful end of the transaction so that any
changes (updates) executed by the transaction can be safely committed to the
database and will not be undone.

 rollback (or abort): This signals that the transaction has ended unsuccessfully,
so that any changes or effects that the transaction may have applied to the
database must be undone.

2.2.4 Cache Manager

Cache manager coordinates buffers of data that store data before writing to the database

with database and transactions. Transaction; that performs read operation first seeks the

data item in buffers. If not in buffers, then transaction make a trip to database after then it

accesses the data item through buffers.

2.3 Centralized and Distributed Database System

2.3.1 Centralized Database System

Centralized database system [5] consist a single database unit and it is placed in a single

computer system. It basically adopts client server environment. In client server

environment, database is place in server and number of clients may connect to central

database stored in server via communication network.

For a centralized database system, centralized computer system could be the underlying

computer system on which it runs. In general, centralized database system consists of a

central processor, some main memory, secondary storage devices, and I/O devices. It

may also come with multiprocessors in which each processor has direct access to all of

main memory and to all I/O devices.

2.3.2 Distributed Database System

Distributed database system is a collection of sites connected by communication network.

Each site in distributed database is centralized database system which stores a copy of the

entire database. So the components of distributed database are same as for centralized

8

database system: Transaction Manager (TM), Scheduler, Recovery Manager (RM), and

Cache manager (CM).

Since database is distributed over several sites, each transaction may consist of one or

more processes that need to execute at one or more sites. TM needs to forward each

operation to appropriate scheduler in which site where data arc available to process the

operation. TM can communicate with all scheduler exist in all sites via communication

network.

Figure 2.2 Distributed Database Systems [8]

2.4 Transaction Processing

2.4.1 Motivation

Concurrency is a mandatory property of a database system it must allow by the database

system. In concurrent environment, read and write operations of one database user may

interfere with other. Due to interference only some read/write operations of database user

may execute rest of read /write operations could not be executed since database system

assumes each read/write operation as individual and independent task. If all read and

write operations issued by database user are really independent in nature, partial

execution of read/write operations does not create big problem. But in reality, each

database read or write operation rarely represent a complete task of database user. In such

9

situation, it may lead inconsistency problem [9]. This really demands encapsulation of set

of database operations which can perform a complete task. In fact, transaction is initiated

with this concept. It isolates set of database operations providing set of operations as a

single unit. If any one of the operations that exist in set of database operation could not

execute either because of concurrent transaction interfere or because of failure, database

system ignores set of all operations that exist. This helps to ensure consistency of

database in concurrent environment. That is the major motivation of transaction is to

ensure consistency allowing concurrent execution.

2.4.2 Definition of Transaction

A transaction is a unit of program consisting set of database operations whose execution

may change the database state. If database is initially in consistent state before executing

transaction, database should remain in consistent state at the end of transaction. To ensure

consistency of database before and after execution of transaction, it needs to be atomic

[10]. Read, Write, Commit, and Abort are major database operations that exist in

transaction.

Transaction can also be defined as a collection of actions that make consistent

transformations preserving database consistency.

Example 2.4.2.1: Fund transfer from account A to account B

Procedure FundTransfer
Begin

Input(A,B);
temp = Read(Accounts[A]);
temp1 = temp1-$100
write(Accounts [A],temp1);
temp2 = Read(Accounts[B]);
temp2 = temp2 +$100
write(Accounts[B],temp2);
commit;

End;

10

This can be expressed as

Figure 2.3 Transaction execution instance

2.4.3 Transaction Properties

The definition of transaction tells states of transaction and its actions are not visible to

other transactions or database users until transaction terminates. That is, partial changes

made by transaction are not visible outside this transaction. Only when transaction

terminates, database users notified its success or failure and changes made by transaction

are made visible. We already discussed that these characteristics are foundation for,

currency control. To achieve these characteristics, transaction should have atomicity,

consistency, isolation and durability properties, called ACID properties ([2], [10]) of

transaction.

The atomicity property of transaction tells transaction is an individual unit. It needs to

execute set of all operations that belong to this transaction then only system can reflects

changes made by this transaction. This is helpful to modify/update database in consistent

manner. Let us consider task, which is responsible to transfer funds from account A to B.

Assume that, failure occurs power failure or hardware failure or software error)

immediately after account A is updated but before update perform in account B.

Definitely, such incomplete transaction leads database in inconsistent state [9]; such

incomplete execution of transaction's effect should wipe out. Transaction's atomicity

property does not allow violating such integrity [9]. Transaction manager (TM) is

responsible for ensuring atomicity property of transaction.

 Account A $500
 Account B $500

 Account A $400
 Account B $600

 Beginning of transaction End of transaction
 Transfer $100 from A to B

During the execution of transaction database may go
temporarily in inconsistent state but it is not visible to
other transactions

11

The consistency property of transaction ensures transaction should preserve consistency

of database during its execution. That is, if database was initially in consistent state

before start of transaction execution, then database should again in consistent state once

transaction terminates. Database user itself is responsible to ensure consistency property

of transaction. In fund transfer transaction, we could enforce consistency criteria as sum

of amount of all account must not be changed by fund transfer transaction.

The isolation property of transaction tells actions performed by transaction should be

isolated or hidden from outside the transaction until transaction is not terminated. That is,

even though transactions are running concurrently, any changes made by transaction is

not visible to other transitions or database user until transaction is not terminated. For

example transaction T1 is executing fund transfer transaction form account A to B and

another transaction T2 try to read sum of the amount from account A and B. In such case,

isolation property of transaction does not allow to read changes made by transaction T1 to

T2 until and unless T1 is not terminated. The database system component scheduler is

responsible for ensuring isolation property of transaction.

The durability property of transaction ensures committed actions of transaction must

reflect in database. Any failure, after transaction commit will not cause loss of updates

made by this transaction. The recovery manager is responsible for ensuring durability

property of transaction. A simple idea for ensuring durability property of transaction is to

keep the log of all changes carried out before writing the effect of updated transaction to

disk. The content of log can be used by TM to restore the database state during the

system failure or system restart.

2.4.4 State of Transaction

Transaction model consists of the following state of transactions:

Active: Initial state, transaction stay in this state while it is executing.

Partially-Committed: Transaction stay in this state just after it executes final statement

of the transaction. It indicates that it is at the end of transaction. At this point, the

12

transaction completed its execution but still it may abort because up to this state actual

output of transaction may still temporarily residing in main memory; hardware failure

may cause impossible to reflect changes made by transaction from main memory to

database.

Failed: A transaction is said to be in failed sate once normal execution of transaction can

no longer proceed. It could be because of hardware and logical error. Failed transaction

must be rollback. That is, all changes made by transaction to database must be undone.

Committed: Signals successful end of transaction. Any changes made by transaction can

be safely committed to database which cannot undo in future.

Figure 2.4 Transaction execution states

Once a transaction successfully commits then the database system must guarantee that its

updates permanently store in the database, even system crash occurs in the very next

moment. It is possible that system may crash just after we issued a COMMIT but before

issuing updates to physically write changes in database [11]. It might still be waiting a

main memory buffer. The system's restart procedure may store those updates in the

database. The general technique to recover from such system crash is to maintain log of

each transaction actions, known as log-based recovery [12]. Write-ahead log rule tells,

log must be physically written before COMMIT processing completes. Database system

should have capabilities to recover from failure.

13

Chapter 3: Concurrency Control Problems

3.1 Introduction

Generally, database system allows multiple transactions to run concurrently. Concurrent

execution of transaction in database system improves database system performance [13],

reducing transaction waiting time to proceed. It improves resource utilization. But it may

lead the database in inconsistent state due to interference among actions of concurrent

transactions. Concurrent execution of transaction in database system leads several

concurrency control problems [9]. Major concurrency control problems that may

generally arise in concurrent execution will discuss in this chapter.

3.2 Concurrency Control Problems

The main reason of concurrency control problem is interference [9]. In concurrent

execution, transaction need to execute in interleave fashion and when number of

concurrent transactions executes in interleave fashion there is possibility of interference

which may lead different concurrency control problems.

3.2.1 Dirty Read Problem

Suppose transaction T1 modifies a data item x and another transaction T2 then reads that

data item x before T1 perform commit or abort. Now, if T1 perform abort then data item x

read by T2 can never committed. In such case, data item x read by T2 is known as dirty

read. Let us examine a concurrent schedule that demonstrates a possible dirty read

problem.

T1 T2

Write1(x)

 Read2(x)

 Write2(y)

Abort1

Table 3.1 Schedule illustrating dirty read problem

14

Since T2 read x (dirty read) that was already written by T1 but not committed yet T1

aborts also cause T2 to be abort, changes made by T2 is never committed. Dirty read

problem in concurrent execution occur if transaction T reads uncommitted transaction

and subsequently aborts before T's commit [11]. Similar case is shown in above schedule.

3.2.2 Non - Repeatable (Fuzzy) Read Problem

Suppose transaction T1 reads x and then another transaction T2 modifies it. But still T1

assumes data value of x is unchanged and proceeds further without reading updated

values of x. If transaction T1 need to perform further actions based on x that is updated

after T1's read then it could lead problem in there execution. The same scenario is

demonstrated by the following concurrent schedule.

T1 T2

Read1(x)

 Write2(x)
 Commit2

Read1(y)

Write1(x +y→z)
Commit1

Table 3.2 Schedule illustrating fuzzy read problem

Here job of transactions T1 is to read current values of x and y then stores their sum in z.

Before T1’s write, data value x read by T1 is already updated by T2. But T1 still assumes

old value of x as a current value that T1 reads before T2 update it. Therefore, when T1

commits it cannot write appropriate sum of x and y to z. Here problem occurs due to

fuzzy read of T1 [11].

3.2.3 Lost update Problem

If two or more transaction modifies data item x at a time then lost update problem occurs,

update made by one transaction may overwrite by other transaction update. If T1 updates

15

x but not committed yet, before T1 commit, if another transaction T2, update x and

eventually T2 commits before T1 then update made by T1 is lost. Let us consider a

schedule which demonstrates lost update problem.

T1 T2

Read1(x)

 Read2(x)

Write1(x)

 Write2(x)

 Commit2

Table 3.3 Schedule illustrating lost update problem

Initially T1 and T2 read same data value of x. when T2 commits, T1’s write to x is

overwritten by T2’s write to x.

3.2.4 Phantom Problem

Most of the databases are dynamic; meaning is that there are no fixed numbers of records

in which we always perform query to update and to retrieve required data. In normal, we

need to add, remove or moved data within database. Such database is called dynamic

database [5]. In dynamic database phantom problem may arise.

Suppose transaction T1 reads a set of data item satisfying some search condition and then

another transaction T2 say creates new data items satisfying the same search condition of

T1 then if T1 repeats its reads with the same search condition, it will get a set of data

items differ from the first read. This problem is known as phantom problem.

Let us consider a concurrent schedule that demonstrate phantom problem in dynamic

database. Suppose T1 is responsible to read data values of x and y then need to store their

sum in z and T2 is responsible to delete the data item x. Assume possible concurrent

schedule with T1 and T2 as below.

16

T1 T2

Read1(x)

 Delete2(x)

 Commit2

Read1(y)

Write1(x +y→z)

Commit1

Table 3.4 Schedule illustrating phantom problem

Initially T1 reads data value of x and keep it to add with data value of y but immediately

T2 deletes data item x before T1 store sum of x and y to z. When T1 commits T1 stores

sum of x and y even data item x is no longer exist in database.

3.3 Non Recoverability and Cascading Aborts as a Concurrency Control

Problem

When transaction T aborts, database system must undo its effects for each data item

updated by T. That is, database system need to rollback T's effect from database during

abort of T. There are two possible effects of transaction T. T may effect on data value

written in the database or it may also affect on other transactions. In both case, aborted

transaction’s effects should undo from database. If aborted transaction may trigger further

abortion, it is known as cascading abort.

Let us consider a schedule which illustrates cascading abort. Assume x and y are data

items having initial data value 1 for both x and y.

17

T1 T2

Write1(x,2)

 Read2(x)

 Write2(y,3)

Abort1

Table 3.5 Schedule illustrate cascading abort

In the above schedule, when transaction T1 aborts database system must restore update

made by T1. That is, database system must undo Write1 (x, 2) restoring x=1. Restoring

the update made by T1 is not sufficient since T2 reads value of x written by T1, T2 also

need to abort. That is, database system need to undo Write2(y, 3) restoring y=1. Even

cascading abort maintain consistency of database by aborting series of transactions, it is

in fact a concurrency problem. Cascading abort is really unpleasant. This is considered as

a concurrency problem because it requires significant bookkeeping to track which

transactions reads from which others, single transaction abortion force to abort one or

more other transactions; which is very expensive.

Cascading abort is not always possible. Durability property of transaction tells once a

transaction is committed, the database system must guarantee it could not be abort. There

would be a situation that where cascading abort required but not possible. This usually

happens if transaction Tj reads changes made by other Transaction Ti and Ti aborts after

Tj’s commit. Let's examine such situation by the following schedule.

T1 T2

Write1(x, 2)
 Read2(x)
 Write2(y, 3)
Read1(y) Commit2
Abort1

Table 3.6 Schedule illustrate non recoverable schedule

Here, once transaction T1 aborts, T2 need be aborted but it violates durability property of

18

transaction. T2 is already committed before T1 aborted. So here, cascading abort is not

possible. Here schedule demands cascading abort but it is not possible, such schedule

called non-recoverable schedule. Non-recoverability is in fact concurrency problem and

recoverability is required properly for concurrency control. Non-recoverable execution is

more danger than cascading abort [9]. Cascading abort is expensive but it does not violate

transaction property (durability property of transaction).

Formally, recoverable schedule is defined as follows.

Suppose transaction Tj reads x that was written by transaction Ti in the execution then

schedule S is called recoverable if it follows following conditions

• Tj reads x after Ti has written into it.

• Ti does not abort before Tj reads x and

• Every transaction (if any) that write x between Ti writes x and Tj reads x, aborts

before Tj read x.

It indicates that, for recoverable execution if Tj reads from Ti then Tj must follow Ti's

commit. An execution is recoverable if database system always able to reverse the effects

of aborted transaction on other transactions [6]. Recoverability is required to ensure

aborting transaction does not change the semantics of committed transaction's operations.

3.4 Avoiding Cascading Aborts and Ensuring Recoverability

It has been already stated that cascading abort and non-recoverable execution are

concurrency problems [6], it should avoid during concurrent execution.

Cascading aborts can avoid if database ensures that every transaction read only those data

values that were written by committed transactions. To achieve cascadelessness, database

system need to delay each Read(x) until transaction that has previously issued a Write (x,

val) have either aborted or committed. Avoiding cascading abort also ensures

recoverability but enforcing recoverability does not remove the possibility of cascading

aborts. Let us reexamine the schedule defined in the table below.

19

Table 3.7 Schedule illustrate cascading aborts schedule

Here, this schedule is not cascadelessness and not recoverable. To achieve

cascadelessness Read2(x) must wait till T1's abort. And definitely it ensures recoverability

as well as cascadelessness. In the above schedule if T1 aborts just before T2’s commits,

then schedule becomes recoverable but it does not avoid cascading aborts, abortion of T1

lead T2 to abort.

3.5 Strict Execution

From the practical point of view, avoiding cascading aborts is not always enough [5]. A

further restriction on execution is often desirable. The cascadelessness schedule only

enforces transaction could not read data item x that was already written by uncommitted

transaction. But it does not enforce transaction could not write x that was already written

by uncommitted transaction. Let us examine the cascadelessness schedule it can lead

problem in concurrent execution.

T1 T2

Write1(x, 2)

 Write2(x, 3)

Abort1

Table 3.8 Cascadelessness schedule

Here, T2 didn't read x that already written by T1 so schedule is cascadelessness.

T1 T2

Write1(x, 2)

 Read2(x)

 Write2(y, 3)

 Commit2

Abort1

20

According to the definition of cascadelessness schedule, it does not need to enforce T2 to

abort but T2's write may dependent to T1's write. If so such cascadelessness schedule may

cause problem. Let's look the scenario more preciously, assume that initial value of x is

50. Transaction T1 is responsible to add 20 in x and transaction T2 is responsible to add

say 5% of current value of x then T2's write becomes logically invalid when T1 aborts but

T1 does not need to enforce T2 to abort.

The strict execution is serious about such problem. Strict execution delays T2's write to x

until T1 abort or commit. That is, strict execution restricts both reads and writes to x if x

is already written by T1 until T1 is either committed or aborted. Strict execution ensures

both cascadelessness and recoverability [6].

21

Chapter 4: Replica Concurrency Control Protocols

4.1 Introduction

Distributed database systems are multi-user systems, which allow the number of

transactions from the different sites to access the same database simultaneously.

Concurrent access to shared database may lead database in inconsistent state. To preserve

the consistency of database, the database system must adopt some concurrency control

mechanisms to ensure that the modifications made by transactions are not lost.

4.2 Replica Concurrency Control Algorithms

To preserve the consistency of database, the database system must adopt some

concurrency control mechanisms to ensure that the modifications made by transactions

are not lost. For this purpose, here, this study mainly focuses three classical families of

distributed Concurrency Control (CC) protocols, Two Phase Locking (2PL), Optimistic

Concurrency Control (OCC), and Optimistic Two-Phase Locking (O2PL). All three

protocol classes belong to the ROWA (“read one copy, write all copies”) category with

respect to their treatment of replicated data.

4.2.1 Distributed Two-Phase Locking (2PL)

In the distributed two-phase locking algorithm [15], a transaction that intends to read a

data item has to only set a read lock on any copy of the item; to update an item, however,

write locks are required on all copies. Write locks are obtained as the transaction

executes, with the transaction blocking on a write request until all of the copies of the

item to be updated have been successfully locked by a local cohort and its remote

updaters. Only the data locked by a cohort is updated in the data processing phase of a

transaction. Remote copies locked by updaters are updated after those updaters have

received copies of the relevant updates with the PREPARE message during the first phase

of the commit protocol. Read locks are held until the transaction has entered the prepared

22

state while write locks are held until they are committed or aborted.

4.2.2 Distributed Optimistic Concurrency Control (OCC)

Distributed optimistic concurrency control algorithm, OCC [16], extends the

implementation strategy for centralized OCC algorithms proposed in to handle data

distribution and replication.

In OCC, transactions execute in three phases: read, validation, and write. In the read

phase, cohorts only access data items in their local sites and all updating of replicas is

deferred to the end of transaction, that is, to the commit processing phase. More

specifically, the two-phase commit (2PC) protocol is “overloaded” to perform validation

in its first phase, and then installation of the private updates of successfully validated

transactions in its second phase.

The validation process works as follows: After receiving a PREPARE message from its

master, a cohort initiates local validation. If a cohort fails during validation, it sends an

ABORT message to its master. Otherwise, it sends PREPARE messages as well as copies

of the relevant updates to all the sites that store copies of its updated data items. Each site

which receives a PREPARE message from the cohort initiates an updater to update the

data in its local work area used by OCC. When the updates are done, the updater

performs local validation and sends a PREPARED message to its cohort. After the cohort

collects PREPARED messages from all its updaters, it sends a PREPARED message to

the master. If the master receives PREPARED messages from all its cohorts, the

transaction is successfully globally validated and the master then issues COMMIT

messages to all the cohorts.

A cohort that receives a COMMIT message enters the write phase (the third phase) of the

OCC algorithm. After it finishes the write phase, it sends a COMMIT message to all its

updaters which then complete their write phase in the same manner as the cohort.

For the implementation of the validation test itself, an efficient strategy called Lock-

based Distributed Validation is employed.

23

An important point to note here is that in contrast to centralized databases where

transactions that validate successfully always commit, a distributed transaction that gets

locally validated might be aborted later because it fails during global validation. This can

lead to wasteful aborts of transactions – other transactions could be aborted when a

transaction gets locally validated, but the locally validated transaction itself is aborted

later. This is a potential performance drawback for OCC in distributed systems.

4.2.3 Distributed Optimistic Two-Phase Locking (O2PL)

The O2PL algorithm[16] can be thought of as a hybrid occupying the middle ground

between 2PL and OCC. Specifically, O2PL handles read requests in the same way that

2PL does; in fact, 2PL and O2PL are identical in the absence of replication. However,

O2PL handles replicated data optimistically. When a cohort updates a replicated data

item, it requests a write lock immediately on the local copy of the item. But it defers

requesting write locks on any of the remote copies until the beginning of the commit

phase is reached. As in the OCC algorithm, replica updaters are initiated by cohorts in the

commit phase. Thus, communication with the remote copy site is accomplished by

simply passing update information in the PREPARE message of the commit protocol. In

particular, the PREPARE message sent by a cohort to its remote updaters includes a list

of items to be updated, and each remote updater must obtain write locks on these copies

before it can act on the PREPARE request. Since O2PL waits until the end of a

transaction to obtain write locks on copies, both blocking and abort are possible rather

late in the execution of a transaction. In particular, if two transactions at different sites

have updated different copies of a common data item, one of the transactions has to be

aborted eventually after the conflict is detected. In this case, the lower priority transaction

is usually chosen for abort in RTDBS.

4.2.4 Time of Updates to Replicas

It is important to note that the time at which the remote update processes are invoked is a

function of the choice of CC protocol. In 2PL, a cohort invokes its remote replica update

processes to obtain locks before the cohort updates a local data item in the transaction

24

execution phase. Replicas are updated during the commitment of the transaction.

However, in the O2PL and OCC protocols, a cohort invokes the remote replica update

processes only in the first phase of the two-phase commit protocol.

4.3 Data Conflict Resolution Mechanisms

Here, the integration of real time cognizant data conflict resolution mechanism into the

replica concurrency control protocols is discussed. There are three different ways to

introduce real-time associated priorities into locking protocols:

4.3.1 Priority Blocking (PB)

This mechanism is similar to the conventional locking protocol in that a transaction is

always blocked when it encounters a lock conflict and can only get the lock after the lock

is released. The lock request queue, however, is ordered by transaction priority.

4.3.2 Priority Abort (PA)

This scheme attempts to resolve all data conflicts in favor of high-priority transactions.

Specifically, at the time of a data lock conflict, if the lock holding cohort (updater) has

higher priority than the priority of the cohort (updater) that is requesting the lock, the

requester is blocked. Otherwise, the lock holding cohort (updater) is aborted and the lock

is granted to the requester. Upon the abort of a cohort (updater), a message is sent to the

master (cohort) of the cohort (updater) to abort and then restart the whole transaction (if

its deadline has not expired by this time).

The only exception to the above policy is when the low priority cohort (updater) has

already reached the PREPARED state at the time of the data conflict. In this case, it

cannot be aborted unilaterally since its destiny can only be decided by its master and

therefore the high priority transaction is forced to wait for the commit processing to be

completed.

25

4.3.3 Priority Inheritance (PI)

In this scheme, whenever data conflict occurs the requester is inserted into the lock

request queue which is ordered by priority. If the requester’s priority is higher than that of

any of the current lock holders, then these low priority cohort(s) holding the lock

subsequently execute at the priority of the requester, that is, they “inherit” this priority.

This means that lock holders always execute either at their own priority or at the priority

of the highest priority cohort waiting for the lock, whichever is greater.

The implementation of priority inheritance in distributed databases is not trivial. For

example, whenever a cohort inherits a priority, it has to notify its master about the

inherited priority. The master propagates this information to all the sibling cohorts of the

transaction. This means that the dissemination of inheritance information to cohorts takes

time and effort and significantly adds to the complexity of the system implementation.

For the optimistic protocol, OCC, the OPT-WAIT [18] conflict resolution mechanism is

used, described below:

4.3.4 OPT-WAIT

In this mechanism, a transaction that reaches validation and finds higher priority

transactions in its conflict set is “put on the shelf”, that is, it is made to wait and not

allowed to commit immediately. This gives the higher priority transactions a chance to

make their deadlines first. After all conflicting higher priority transactions leave the

conflict set, either due to committing or due to aborting, the on-the-shelf waiter is

allowed to commit. Note that a waiting transaction might be restarted due to the commit

of one of the conflicting higher priority transactions.

4.3.5 State-Conscious Priority Blocking (PA_PB)

To resolve a conflict in O2PL, the CC manager uses Priority Abort (PA) mechanism if

the lock holder has not passed a point called the demarcation point; otherwise it uses PB

(Priority Blocking) mechanism.

26

The demarcation points of a cohort/updater Ti is assigned as follows:

• Ti is a cohort:

when Ti receives a PREPARE message from its master.

• Ti is a replica updater:

when Ti has acquired all the local write locks

Essentially, this study sets the demarcation point in such a way that, beyond that point,

the cohort or the updater does not incur any locally induced waits. So, in the case of

O2PL, a cohort reaches its demarcation point when it receives a PREPARE message from

its master. This happens before the cohort sends PREPARE messages to its remote

updaters. It is worth noting that, to a cohort, the difference between PA and PA_PB is

with regard to when the cohort reaches the point after which it cannot be aborted by lock

conflict. In case of the classical priority abort (PA) mechanism, a cohort enters the

PREPARED state after it votes for COMMIT, and a PREPARED cohort cannot be

aborted unilaterally. This happens after all the remote updaters of the cohort vote to

COMMIT. On the other hand, in the PA_PB mechanism, a cohort reaches its demarcation

point before it sends PREPARE messages to its remote updaters. PA and PA_PB become

identical if databases are not replicated. Thus, in state-conscious protocols, cohorts or

updaters reach demarcation points only after the two phase commit protocol starts. This

means that a cohort/updater cannot reach its demarcation point unless it has acquired all

the locks. Note also that a cohort/updater that reaches its demarcation point may still be

aborted due to write lock conflict.

4.4 Incorporating PA_PB into the 2PL

PA_PB conflict resolution mechanism which was discussed above in the context of the

O2PL, can be also added to the distributed 2PL. For 2PL, we assign the demarcation

points of a cohort/updater Ti is assigned as follows:

• Ti is a cohort:

when Ti receives a PREPARE message from its master

27

• Ti is a replica updater:

when Ti receives a PREPARE message from its cohort

One special effect in combining with 2PL, unlike the combination with O2PL, is that a

low priority transaction which has reached its demarcation point and has blocked a high

priority transaction will not suffer any lock based waits.

4.5 Choice of Post-Demarcation Conflict Resolution Mechanism

In the above description, Priority Blocking (PB) is used for the post-demarcation conflict

resolution mechanism. Alternatively, Priority Inheritance could be used instead, as given

below:

4.5.1 State-Conscious Priority Inheritance (PA_PI)

To resolve a conflict, the CC manager uses PA if the lock holder has not passed the

demarcation point, otherwise it uses PI.

At first glance, the above approach may appear to be significantly better than PA_PB

since it does not only prevent close-to-completion transactions from being aborted, but

also helps them complete quicker, thereby reduces the waiting time of the high-priority

transactions blocked by such transactions.

28

Chapter 5: Performance Evaluation Strategies

5.1 Performance Parameters

This study identified load, message cost, data access ratio (DAR) and update frequency

as performance parameters to evaluate the performance of replica concurrency control

protocols.

5.2 Experiment Strategies

To evaluate the performance of the concurrency control protocols described in Chapter 5,

a detailed performance evaluation model of a distributed real-time database system

(DRTDBS) is developed. This model is based on the distributed database model

presented in [17]. A summary of the parameters used in the simulation model are

presented in Table 5.

 Table 5: Performance Evaluation Model Parameters and Default Settings

The database is modeled as a collection of DBSize pages that are distributed over

NumSites sites. The number of replicas of each page, that is, the “replication degree”, is

Parameter Meaning Setting

NumSites
DBSize
ReplDegree

Number of sites
Number of Pages in the databases
Degree of Replication

4
1000 pages
4

NumCPUs
NumDataDisks
NumLogDisks
BufHitRatio
ArrivalRate
SlackFactor
TransSize
UpdateFreq
PageCPU time
InitWriteCPU
PageDisk
LogDisk
MsgCPU

Number of CPUs per site
Number of data disks per site
Number of log disks per site
Buffer hit ratio on a site
Transaction arrival rate (Trans./Second)
Slack factor in deadline assignment
No. of pages accessed per trans.
Update frequency
CPU page processing
Time to initiate a disk write
Disk page access time
Log force time
CPU message send/receive time

2
4
1
0.1
Varied
6.0
16 pages
0.25
10 ms
2 ms
20 ms
5 ms
1 ms

29

determined by the ReplDegree parameter. The physical resources at each site consist of

NumCPUs CPUs, NumDataDisks data disks and NumLogDisks log disks. At each site,

there is a single common queue for the CPUs and the scheduling policy is preemptive

Highest-Priority-First. Each of the disks has its own queue and is scheduled according to

a Head-Of-Line policy, with the request queue being ordered by transaction priority. The

PageCPU and PageDisk parameters capture the CPU and disk processing times per data

page, respectively. The parameter InitWriteCPU models the CPU overhead associated

with initiating a disk write for an updated page.

When a transaction makes a request for accessing a data page, the data page may be

found in the buffer pool, or it may have to be accessed from the disk. The BufHitRatio

parameter gives the probability of finding a requested page already resident in the buffer

pool.

The communication network is simply modeled as a switch that routes messages and the

CPU overhead of message transfer is taken into account at both the sending and receiving

sites and its value is determined by theMsgCPU parameter – the network delays are

subsumed in this parameter. This means that there are two classes of CPU requests –

local data processing requests and message processing requests. Any distinction is not

made, however, between these different types of requests and it is only ensured that all

requests are served in priority order.

With regard to logging costs, we explicitly model only forced log writes since they are

done synchronously, i.e., operations of the transaction are suspended during the

associated disk writing period. This logging cost is captured by the LogDisk parameter.

Transactions arrive in a Poisson stream with rate ArrivalRate, and each transaction has an

associated firm deadline, assigned as described below. Each transaction randomly

chooses a site in the system to be the site where the transaction originates and then forks

off cohorts at all the sites where it has to access data. Transactions in a distributed system

can execute in either sequential or parallel fashion. The distinction is that cohorts in a

sequential transaction execute one after another, whereas cohorts in a parallel transaction

30

are started together and execute independently until commit processing is initiated.

However, only sequential transactions are considered in this study. However, it is noted

that the execution of replica updaters belonging to the same cohort is always in parallel.

The total number of pages accessed by a transaction, ignoring replicas, varies uniformly

between 0.5 and 1.5 times TransSize. These pages are chosen uniformly (without

replacement) from the entire database. The proportion of accessed pages that are also

updated is determined by UpdateF req.

Upon arrival, each transaction T is assigned a firm completion deadline using the formula

DeadlineT = ArrivalTimeT + SlackFactor * RT

where DeadlineT , ArrivalTimeT , and RT are the deadline, arrival time, and resource time,

respectively, of transaction T, while SlackFactor is a slack factor that provides control of

the tightness/slackness of transaction deadlines. The resource time is the total service

time at the resources at all sites that the transaction requires for its execution in the

absence of data replication. This is done because the replica-related cost differs from one

CC protocol to another.

It is important to note that while transaction resource requirements are used in assigning

transaction deadlines, the system itself lacks any knowledge of these requirements in our

model since for many applications it is unrealistic to expect such knowledge [18]. This

also implies that a transaction is detected as being late only when it actually misses its

deadline.

As discussed earlier, transactions in an RTDBS are typically assigned priorities so as to

minimize the number of killed transactions. In our model, all cohorts inherit their parent

transaction’s priority. Messages also retain their sending transaction’s priority. The

transaction priority assignment used in all of the experiments described here is the

widely-used Earliest Deadline policy [20], wherein transactions with earlier deadlines

have higher priority than transactions with later deadlines.

31

Deadlock is possible with some of the CC protocols that we evaluate in our experiments,

deadlocks are detected using a time out mechanism. Both this study’s own model as well

as the results reported in previous studies [21] show that the frequency of deadlocks is

extremely small – therefore a low-overhead solution like timeout is preferable compared

to more expensive graph-based techniques.

5.3 Program Overview

The simulator Program “Replica Concurrency Control Performance Analyzer” (RCCPA)

is designed to evaluate the performance of Distributed 2PL, O2PL, and OCC. Simulation

program RCCPA allows different experiments.

Experiments Component of RCCPA allows to choose the particular experiment.

Performance Evaluation Parameter (PEP) component allows us to set different

parameters for each experiment. Performance Report component of RCCA analyze the

performance reports of each experiments and performance trends of locking algorithms

are present in graphical representation.

5.4 Snapshot of program Components

Figure 5.1 Main Screen of RCCPA

32

Figure 5.2 Experiment Selection Menus

Figure 5.3 Parameter Stetting Component of RCCA

33

Chapter 6: Experiments and Results

6.1 Overview

This study performs four different experiments to evaluate the performance of replica

concurrency control algorithms. First experiment evaluates the performance of the

various conflict resolution mechanisms (PA, PB, PI and PA_PB) when integrated with

the 2PL and O2PL concurrency control protocols. Experiment 2 evaluates the

performance of CC protocols based on the three different techniques: 2PL, O2PL and

OCC. Experiment 3 is performed to evaluate the performance of these algorithms under

different update frequencies. Experiment 4 is performed to evaluate the performance of

these algorithms while varying number of replicas.

 The performance metric employed for all experiments is MissPercent, the percentage of

transactions that miss their deadlines. MissPercent values in the range of 0 to 30 percent

are taken to represent system performance under “normal” loads, while MissPercent

values in the range of 30 to 100 percent represent system performance under “heavy”

loads. Several additional statistics are used to aid in the analysis of the experimental

results, including the abort ratio, which is the average number of aborts per transaction,

the message ratio, which is the average number of messages sent per transaction, the

priority inversion ratio (PIR), which is the average number of priority inversions per

transaction, and the wait ratio, which is the average number of waits per transaction.

Further, the useful resource utilization is also measured as the resource utilization made

by those transactions that are successfully completed before their deadlines. All the

missed deadline percentage graphs in this study shows mean values that have relative half

widths about the mean of less than 10% at the 90% confidence interval, with each

experiment having been run until at least 10000 transactions are processed by the system.

Only statistically significant differences are discussed here.

34

6.2 Experiment 1: Baseline – Real-Time Conflict Resolution

0

10

20

30

6 8 10 12 14 16

Arrival Rate

M
is

se
d

D
ea

dl
in

es

O2PL-PA
O2PL-PI
O2PL-PA_PB
O2PL-PB
NoCC

Figure 6.1.1 O2PL- based Algorithms (Normal Load)

0

20

40

60

80

100

16 18 20 22 24 26 28 30
Arrival Rate

M
is

se
d

De
ad

lin
es

O2PL-PA
O2PL-PI
O2PL-PA_PB
O2PL-PB
NoCC

Figure 6.1.2 O2PL- based Algorithms (Heavy Load)

Table 5 presents the setting of the performance evaluation model parameters for our first

experiment. With these settings, the database is fully replicated and each transaction

executes in a sequential fashion (note, however, that the execution of replica updaters

35

belonging to the same cohort is always in parallel). The parameter values for CPU, disk

and message processing times are similar to those in [16]. While these times have

certainly reduced due to technology advances in the interim period, this study also

continue to use them here for the following reasons:

1) To enable easy comparison and continuity with the several previous studies that

have used similar models and parameter values;

2) The ratios of the settings, which is what really matters in determining

performance behavior, have changed a lot less as compared to the decrease in

absolute values;

3) This study’s objective is to evaluate the relative performance characteristics of the

protocols, not their absolute levels. Here the database size represents only the “hot

spots”, that is, the heavily accessed data of practical applications, and not the

entire database.

Here, objective of this experiment was to investigate the performance of the various

conflict resolution mechanisms (PA, PI and PA_PB) when integrated with the 2PL and

O2PL concurrency control protocols. Since the qualitative performance of the conflict

resolution mechanisms was found to be similar for 2PL and O2PL, for ease of exposition

and graph clarity, the O2PL-based performance results are only presented here.

For this experiment, Figures 6.1.1 and 6.1.2 present the missed deadline percentages of

transactions for the O2PL-PB, O2PL-PA, O2PL-PI, and O2PL-PA_PB protocols under

normal loads and heavy loads, respectively. To help isolate the performance degradation

arising out of concurrency control, the performance of NoCC (is a protocol which

processes read and write requests like O2PL, but ignores any data conflicts that arise in

this process and instead grants all data requests immediately) is also presented. It is

important to note that NoCC is only used as an artificial baseline in our experiments.

Focusing the attention first on O2PL-PA, it is observed that O2PL-PA and O2PL-PB

have similar performance at arrival rates lower than 14 transactions per second, but

O2PL-PA outperforms O2PL-PB under heavier loads. This is because O2PL-PA ensures

36

that urgent transactions with tight deadlines can proceed quickly since they are not made

to wait for transactions with later deadlines in the event of data conflicts. From collected

statistics, it is found that O2PL-PA greatly reduces the priority inversion ratio, the wait

ratio and the wait time as compared to O2PL-PB. The performance of O2PL-PI and

O2PL-PB is virtually identical. This is because

(1) a low priority transaction whose priority is increased holds the new priority until

it commits, i.e., the priority inversion persists for a long time. Thus, higher

priority transactions which are blocked by that transaction may miss their

deadlines. In contrast, normal priority inheritance in real-time systems only

involves critical sections which are usually short so that priority increase of a task

only persists for a short time, i.e., until the low priority task gets out of the critical

section. This is the primary reason that priority inheritance works well for real-

time tasks accessing critical sections, but it fails to improve performance in real-

time transaction processing.

(2) it takes considerable time for priority inheritance messages to be propagated to the

sibling cohorts (or updaters) on different sites, and

(3) under high loads, high priority transactions are repeatedly datablocked by lower

priority transactions. As a result, many transactions are assigned the same priority

by “transitive inheritance” and priority inheritance essentially degenerates to “no

priority”, i.e., to basic O2PL, defeating the original intention. This is confirmed

by the similar priority inversion ratio (PIR), wait ratio and wait time statistics of

O2PL-PI and O2PL-PB collected in the experiments. Hence, it is concluded that

priority inheritance does not help to improve performance in distributed

environment.

6.3 Experiment 2: Baseline - Concurrency Control Algorithms

The goal of this experiment was to investigate the performance of CC protocols based on

the three different techniques: 2PL, O2PL and OCC. For this experiment, the parameter

settings are the same as those used for Experiment 1. The missed deadline percentage of

37

transactions is presented in Figures 6.2.1 and 6.2.2 for the normal load and heavy load

regions, respectively.

0

5

10

15

20

25

6 8 10 12 14 16

Arrival Rate

M
is

se
d

D
ea

dl
in

es

2PL-PA_PB
O2PL-PA_PB
OCC

Figure 6.2.1 2PL, O2PL, and OCC Algorithms (Normal Load)

0

20

40

60

80

100

16 18 20 22 24 26 28 30

Arrival Rate

M
is

se
d

D
ea

dl
in

es

2PL-PA_PB
O2PL-PA_PB
OCC

Figure 6.2.2 2PL, O2PL, and OCC Algorithms (Heavy Load)

38

Focusing the attention on the locking-based schemes, it is observed that O2PL-PA_PB

outperforms 2PL-PA PB in both normal and heavy workload ranges. For example, O2PL-

PA_PB outperforms 2PL-PA PB by about 12% (absolute) at an arrival rate of 14

transactions/second. This can be explained as follows: First, 2PL results in much higher

message overhead for each transaction, as is clearly indicated by the message ratio

statistic collected in the experiments. The higher message overhead results in higher CPU

utilization, thus aggravating CPU contention. Second, 2PL-PA PB detects data conflicts

earlier than O2PL-PA_PB. However, data conflicts cause transaction blocks or aborts.

2PL-PA PB results in more number of waits per transaction and longer wait time per wait

instance. Thus 2PL-PA PB results in more transaction blocks and longer blocking times

than O2PL-PA_PB. On the other hand, O2PL-PA_PB has less transaction blocks. In

other words, unlike in 2PL-PA PB, a cohort with O2PL cannot be blocked or aborted by

data conflicts with cohorts on other sites before one of them reaches the commit phase.

Thus, with O2PL-PA_PB, transactions can proceed faster. On the other hand, O2PL-

PA_PB improves performance by detecting global CC conflicts late in the transaction

execution thereby reducing wasted transaction aborts.

Turning the attention to the OCC protocol, it is observed that OCC is slightly worse than

2PL-PA_PB and O2PL-PA_PB under arrival rates less than 14 transactions/second. This

is due to the fact that OCC has a higher CC abort ratio than 2PL-PA_PB and O2PL-

PA_PB under those loads. With higher loads, OCC outperforms 2PL-PA_PB because

OCC has less number of wasteful aborts, less number of waits and shorter blocking time

of a transaction than 2PL-PA_PB. It may be considered surprising that O2PL-PA_PB has

the best performance over a wide workload range, improving slightly even over OCC. It

is observed that O2PL-PA_PB has higher useful CPU and disk utilization, even though

its overall CPU and disk utilization is lower than OCC. This clearly indicates that OCC

wastes more resources than O2PL-PA_PB does. It implies that the average progress made

by transactions before they were aborted due to CC conflicts is larger in OCC than that in

O2PL-PA_PB. As observed in the previous studies of centralized RTDB settings [10], the

wait control in OCC can actually cause all the conflicting transactions of a validating

transaction to be aborted at a later point in time, thereby wasting more resources even if

39

OCC has slightly less CC abort ratio than O2PL-PA_PB. In contrast, O2PL-PA_PB

reduces wasted resources by avoiding transaction aborts after cohorts/updaters reach

demarcation points. In summary, although OCC outperforms 2PL-PA_PB, O2PL-

PA_PB, the protocol of O2PL augmented with PA_PB, outperforms OCC in the tested

workloads.

6.4 Experiment 3: Varying Update Frequency

The next experiment investigates the performance of these algorithms under different

update frequencies. For this experiment, Figure 6.3.1 and 6.3.2 present the missed

deadline percentage when the update frequencies are low and high for an arrival rate of

14 transactions/second. It should be noted that data is normally replicated in distributed

database systems only when the update frequency is not very high. Therefore, the high

update frequency results that are presented here are only to aid in understanding the

tradeoffs of different protocols. When the update frequency is comparatively low (less

than 0.5), we observe that the qualitative behavior of the various algorithms is similar to

that of Experiment 1. A difference, however, occurs when the update frequency is high

(more than 0.5). We observe in Figure 6.3.2 that the performance of O2PL-PA_PB

degrades more drastically with the increase of update frequency. For example, O2PL-

PA_PB performs slightly worse than both 2PL-PA_PB and OCC when the update

frequency is 1.0. The reason for the degraded performance of O2PL-PA_PB is that with

high update frequency, O2PL-PA_PB causes much more aborts due to both data

contention in the local site and global update conflicts, as discussed earlier in Section 6.3,

and more aborts are wasted under O2PL-PA_PB. In summary, for low to moderate

update frequencies, O2PL-PA_PB is the preferred protocol. For high update frequencies,

on the other hand, OCC performs better than O2PL-PA_PB.

40

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5

Arrival Rate

M
is

se
d

D
ea

dl
in

es
2PL-PA_PB
O2PL-PA_PB
OCC

Figure 6.3.1 Varying Update Freq (Low UpdateFreq)

0

20

40

60

80

100

0.5 0.6 0.7 0.8 0.9 1

Arrival Rate

M
is

se
d

D
ea

dl
in

es

2PL-PA_PB
O2PL-PA_PB
OCC

Figure 6.3.2 Varying Update Freq (High UpdateFreq)

41

6.5 Experiment 4: Partial Replication

0
10
20
30
40
50
60

1 2 3 4 5 6 7 8

Arrival Rate

M
is

se
d

D
ea

dl
in

es

2PL-PA_PB
O2PL-PA_PB
OCC

Figure 6.4.1 Partial Replication (DBSize = 800, NumSites = 8)

0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8

O2PL-PA_PB

OCC

O2PL-PA_PB
(Useful)
OCC (Useful)

Figure 6.4.2 Partial Replication (Abort Ratio)

For this experiment, the NumSites and DBSize are fixed at 8 and 800, respectively, while

the NumCPUs and NumDataDisks per site are set at 1 and 2, respectively. These changes

were made to provide a system operational region of interest without having to model

very high transaction arrival rates. The other parameter settings are the same as those

given in Table 5. For this environment, Figure 6.4.1 presents the missed deadline

42

percentage of transactions when the number of replicas is varied from 1 to 8, i.e., from no

replication to full replication, for an arrival rate of 14 transactions/second. In the absence

of replication, we observe first that 2PL-PA_PB and O2PL-PA_PB perform identically as

expected since O2PL reduces to 2PL in this situation. Further, OCC outperforms all the

other algorithms.

As the number of replicas increases, the performance difference between O2PL-PA_PB

and 2PL-PA_PB increases. Because of its inherent mechanism for detecting data

conflicts, 2PL-PA_ PB suffers much more from data replication than O2PL-PA_PB and

OCC do. It is observed that the performance crossover between O2PL-PA_PB and OCC.

The reason for this change in their relative performance behavior is explained in the abort

curves shown in Figure 6.4.2 (for graph clarity, the abort ratio and useful abort ratio of

O2PL-PA_PB and OCC are only shown), where it is seen that the number of aborts of

O2PL-PA_PB is significantly reduced while data is replicated. This helps reduce the

resource wastage in O2PL-PA_PB. In O2PL, read operations can benefit from local data

when data is replicated. However, as data replication level goes up, update operations

suffer due to updates to remote data copies. Hence, the performance degrades after a

certain replication level. On the other hand, it is observed that the performance of 2PL-

PA_PB always degrades as data replication level goes up. This is due to the pessimistic

conflict detection mechanism in 2PL since the number of messages sent out for conflict

detection increases drastically which in turn increases CPU contention. The similar

behavior of OCC and 2PL is also observed in conventional replicated databases [22].

6.6 Summary of Experimental Results

Apart from the experiments described above, a variety of experiments was conducted that

cover a range of workloads and system configurations, including “infinite” resources to

isolate the impact of data contention, variations in message cost, message propagation

delay, slack factor and data access ratio, etc. Table 6 summarizes these results under both

tight and loose slack factor: In the table, system parameters, i.e., load, message cost, data

access ratio (DAR) and update frequency have been coarsely categorized into low and

high, and ’*’ refers to both low and high categories. The terms “poor”, “fair”, “good”,

43

and “best” are used to describe the relative performance in a given system state and for a

given algorithm. Whereas in a particular row, “fair” is better than “poor”, “good” is better

than “fair”, and “best” represents the best algorithm in a row, the terms in two different

rows are not comparable. The following general observations pertain to Table 6.

1. 2PL based algorithms perform poorly in most cases, especially when the message

cost is high. Thus 2PL based algorithms are not the proper choices for high

message cost environments.

2. O2PL-PA and O2PL-PA_PB achieve good performance for low to moderate

update frequencies but the O2PL approach does not work well at high update

frequencies.

3. OCC achieves better performance than all the O2PL based and 2PL-based

algorithms over most of the update frequency range.

4. Protocols integrated with only PB or PI (e.g., O2PL-PB, O2PL-PI) always

perform poorly. Thus they are not suited to distributed real-time databases. A

similar poor performance of these mechanisms has also been observed for

centralized real-time databases [10].

5. No single algorithm can always outperform all the others: O2PL-PA_PB performs

best for low to moderate update frequencies whereas OCC performs best at high

update frequencies. However, since it is expected that most replicated RTDBS

applications will belong to the former category, O2PL-PA_PB appears to be the

best overall choice for implementation in these systems.

Parameter Algorithm’s Performance

2PL O2PL OCC

Load

MsgCost

DAR

UpdateFreq PB PI PA PA_PB PB PI PA PA_PB Wait

Low Low High Low Poor Poor Fair Good Poor Poor Good Best Good

Low High High Low Poor Poor Poor Poor Poor Poor Good Best Good

High Low High Low Poor Poor Poor Fair Poor Poor Fair Best Good

High High High Low Poor Poor Poor Poor Fair Fair Good Best Good

* * High High Poor Poor Poor Poor Poor Poor Poor Good Best

* * Low Low Fair Fair Fair Fair Good Good Good Best Good

* * Low High Poor Poor Poor Poor Good Good Good Good Good

Table 6 Performance of Algorithms

44

Chapter 7: Conclusions and Further Recommendations

7.1 Conclusions

In this study, the problems of accessing replicated data in distributed real-time databases

have been addressed where transactions have firm deadlines, a framework under which

many current time-critical applications, especially Web-based ones, operate. In this study,

the performance of the 2PL, O2PL, OCC, and O2PL-PA_PB is investigated.

This performance study shows the following:

1. The relative performance characteristics of replica concurrency control algorithms in

the real-time environment could be significantly different from their performance in a

non-real-time database system. For example, the O2PL algorithm, which is reputed to

provide the best overall performance in traditional databases, performs poorly in real-

time databases.

2. OCC outperforms 2PL and O2PL based algorithms when these locking based

algorithms are integrated with priority blocking, priority abort and priority inheritance

protocols.

3. The O2PL-PA_PB protocol provides the best performance in both fully and partially

replicated environments for real-time applications with low or moderate update

frequencies. For high update frequencies, however, OCC is better. But, given that

most of the distributed real time applications that this study is aware of fall into the

former category, O2PL-PA_PB appears to be an attractive choice for designers of

replicated RTDBS.

7.2 Limitations and Further Recommendations

This study has certain limitations which can be fulfilled by further study. This study

specially focused on evaluating the performance of three different replica concurrency

control algorithms namely distributed 2PL, O2PL, and OCC when distributed 2PL and

O2PL are associated with PA, PB, PI, and PA_PB data conflict resolution techniques and

OCC is associated with OPT-WAIT. This study can extend to evaluate the performances

of these algorithms when these are associated with PA_PI and PB_PI.

45

References

[1] Ulusoy, O., “Processing Real–time Transactions in a Replicated Database

System”, Distributed and Parallel Databases, 2, pp. 405-436, 1994.

[2] Philip A. Bernstein, “Transaction Processing”, 1999.

[3] Ilyen, “Concurrency Control for Transaction Processing”, 2002.

[4] Bharat Bhargava “Concurrency Control in Database Systems”, IEEE Transactions

on Knowledge and Data Engineering, Vol. 11, No. 1, January/February 1999.

[5] Philip A. Berstein, Vassos Hadzilacos, Natham Goodman, “Concurrency Control

and Recovery in Database systems”, Addison Wesley publication, 1987.

[6] Mario Lauria, “Concurrency Control”, Ohio State University, Nov 2004.

[7] Berstein P. A., Sihipman D.W., and Wong W.S., “Formal Aspects of

Serializability in Database Concurrency Control”, IEEE Transactions on Software

Engineering, Vol. SE-5, pp. 203-215, May 1979.

[8] Silberschatz, Korth, Sudarshan, “Database System Concepts”, pp. 699, Fourth

Edition, 2002

[9] M. Casanova, “The Concurrency Control Problem for Database Systems”, Ph. D.

Thesis, Computer Science Department, Harvard University, 1979.

[10] Gray J., Reuter A. “Transaction processing: Concepts and Techniques”, Morgan

Kaufmann, 1993.

[11] Barghouti N. S., Kaiser G. E., “Concurrency control in Advanced Database

Applications”, ACM Computing Survey 23, pp 269- 317, Sept 1991.

[12] Heiko Achuldt, Gustavo Alonso, Hans-Jorg Schek, “Concurrency Control and

Recovery in Transactional Process Management”, Proceedings of the ACM

Symposium on Principles of Database Systems (PODS’99), pp 316-326,

May/June 1999.

[13] Kumar V., “Performance of Concurrency Control Mechanisms in Centralized

Database Systems”, Prentice-Hall, 1995.

[14] Robinson J., “Design of Concurrency Controls for Transaction Processing

Systems”, Ph. D. Thesis, Department of Computer Science, Carnegie-Mellon

University, 1982.

46

[15] Gray, J., “Notes On Database Operating Systems”, in Operating Systems: An

Advanced Course, R. Bayer, R. Graham, and G. Seegmuller, eds., Springer-

Verlag, 1979.

[16] Huang, J., Stankovic, J.A., Ramamritham, K., Towsley, D., “Experimental

Evaluation of Real-Time Optimistic Concurrency Control Schemes”, Proc. of the

17th International Conference on Very Large Data Bases, Barcelona, September,

1991.

[17] Carey, M., and Livny, M., “Conflict Detection Tradeoffs for Replicated Data”,

ACM Transactions on Database Systems, Vol. 16, pp. 703-746, 1991.

[18] Haritsa, J. R., Carey, M., and Livny, M., “Data Access Scheduling in Firm Real-

Time Database Systems”, the Journal of Real-Time Systems, 4, 203-241, 1992.

[19] Stankovic, J.A., Zhao, W., “On Real-Time Transactions”, ACM Sigmod Record,

March 1988.

[20] Liu, C., and Layland, J., “Scheduling Algorithms for Multiprogramming in a Hard

Real-Time Environment”, Journal of the ACM, 20(1), 1973.

[21] Agrawal, R., Carey, M., and McVoy, L., “The Performance of Alternative

Strategies for Dealing With Deadlocks in Database Management Systems”, IEEE

TOSE, Dec 1987.

[22] Ciciani, B., Dias, D. M., Yu, P. S., “Analysis of Replication in Distributed

Database Systems”, IEEE Transactions on Knowledge and Data Engineering,

Vol. 2, No. 2, June 1990.

