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CHAPTER 1 OVERVIEW 

1.1. Introduction 

Over 80 percent of the population of Nepal is involved in agriculture, which constitutes 

41 percent of GDP. Diseases are the main problems that threaten tomato cultivation these 

require careful diagnosis and timely handling to protect the crops form heavy loss. 

Problems growing tomatoes are often the result of weather conditions. This is something 

that is out of the gardener's control. Diseases in plants have been largely studied in the 

scientific area, mainly focusing on the biological characteristics of diseases. For instance, 

studies on potato and tomato show how susceptible a plant is to be affected by diseases. 

The problem of plant diseases is a worldwide issue also related to food security. 

Regardless of frontiers, media, or technology, the effects of diseases in plants cause 

significant losses to farmers. An earlier identification of disease is nowadays a 

challenging approach and needs to be treated with special attention. 

In tomato plant disease can be found in various parts such stem, leaves and fruit  Major 

diseases that affect tomato are: Tomato Diseases – Foliage (Early Blight, Gray Leaf Spot, 

and Late Blight etc) Tomato Diseases – Fruit (Anthracnose, Bacterial Speck, etc) 

 

                 (a)                          (b)     (c) 

 

 

    (d)    (e)      (f) 

Figure 1.1: Leaf infected by common disease (a), (d) by early blight, (b), (e) by late blight 

and (c) (f) by septoria.  
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1.2 Problem Definition 

In current scenario of Nepal, farmers are suffering from lack of knowledge to indentify 

the exact disease and its type especially in tomato farming .In addition to this; they are 

also unable to access not only the lab resources but also human expert in their territory.  

It is very important to address problem technically and efficiently. This thesis specifically 

focus to solve these problem in tomato plant by building a system which takes input as 

leaf of tomato plant and  classify the type of diseases based on input provided. 

1.3 Objective 

 To predict diseases namely early blight, late blight and septoria present in leaf of 

tomato  

 To compare the accuracy of proposed model with other model 

1.4 Scope of the work 

The study work is focused on creating  imputation model for accurately predicting 

whether leaf of tomato are infected by early blight, late blight and septoria disease or not  

which  can be used in several areas especially in agriculture field of tomato farming.  
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CHAPTER 2 LITERATURE REVIEW 

A number of approaches have turned to computer vision and machine learning techniques 

to create a fast method for plant diseases detection at the early onset of the symptom. 

Most of the studies presented in the literature of plant disease identification follow the 

steps shown in the Figure 2.1 [1]. As shown in Figure 2.1, the identification process starts 

by an image acquisition step where different digital devices are used to capture healthy 

and infected plant images. Then, further analysis is needed to edit the image and prepare 

it for later treatment, such as image enhancement, segmentation, color space conversion 

and filtering. In particular, image segmentation methods, like thresholding, are frequently 

used to detect boundaries in images. 

 

 

 

 

 

 

 

 

Figure 2.1: General steps applied to plant disease identification 

Within the feature extraction step, features such as color, shape and texture are calculated 

from the image. Finally, the classification step is performed. Different classification 

algorithms are used in the literature such as neural network [2], and support vector 

machine [3]. In the following, we present a set of the state-of-the-art approaches 

following the general architecture in Figure 2.1. 

In [4] applies an image processing methods for quantitatively detecting rust severity from 

multi-spectral images. A fast manual threshold-setting method was originally developed 

based on HSI (Hue Saturation Intensity) color model for segmenting infected areas from 

plant leaves. Two disease diagnostic parameters, ratio of infected area (RIA) and rust 

color index (RCI), were extracted and used as symptom indicators for quantifying rust 

severity. 
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In [5] proposes a method for disease identification, based on color transformations, color 

histograms and a pair wise-based classification system. Its performance was tested using 

large database containing images of symptoms belonging to 82 different biotic and abiotic 

stresses, affecting the leaves of 12 different plant species. 

Even though different methods have achieved good classification results in identifying 

and recognizing some of the diseases, they suffer from some limitations. For example, 

segmentation is used in most methods as the first step in the leaf disease analysis. If the 

leaf image is captured with a black background, the segmentation is straightforward and 

no obstacles should be faced. However, when the background contains other leaves or 

plants, the segmentation may be questionable. Most of the methods will fail to effectively 

extract the leaf from its background which will lead to unreliable results. Also, some 

disease symptoms do not have well represented edges and they could gradually fade into 

healthy tissue. This may disturb solutions like color based methods and thresholding. 

Furthermore, a number of the methods rely on hand-crafted features such as color 

histograms, texture features, shape features and SIFT that requires expensive work and 

depends on expert knowledge. However, these methods do not generalize well and they 

are not effective when dealing with a large amount of data that could contain significant 

varieties [6].  

Numerous procedures are currently in use for plant disease detection applying 

computer vision. One of them is disease detection by extracting color feature as 

authors in [7] have presented. In this paper YcbCr, HSI, and CIELB color models 

were used in the study; as a result, predictions were successfully done. 

Subsequently, due to the recent advance in Machine Learning, the principle of CNN has 

been applied to plant diseases recognition in different crops, such as [8] using a CNN-

based LeNet and image processing to recognize two leaf diseases out of healthy ones.  

Another approach for cucumber leaf diseases, [9], used a three-layer CNN to train images 

containing two diseases out of healthy ones. To support the application of machine 

learning, [10] proposed to use a method called Color and Oriented FAST and Rotated 

BRIEF (ORB) to extract features and tree classifiers (Linear Support Vector Classifier 

(SVC), K-Nearest Neighbor, Extremely Randomized Trees) to recognize four types of 

diseases in cassava. 
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 In [11], an image processing and statistical inference approach was introduced to identify 

three types of leaf diseases in wheat. In [12], the authors developed a method to 

discriminate good and bad condition images which contain seven types of diseases out of 

healthy ones in cucumber leaves. For that effect, they used an image-processing technique 

and a four-layer CNN, which showed an average of 82.3% accuracy under a 4-fold cross-

validation strategy.  

The pattern recognition system achieved an average accuracy of 85%. Islam et al. 

presented an approach that integrated image processing and machine learning to allow the 

diagnosis of diseases from leaf images. This automated method classifies diseases on 

potato plants from „Plant Village‟, which is a publicly available plant image database. 

The segmentation approach and utilization of an SVM demonstrated disease classification 

in over 300 images, and obtained an average accuracy of 88% [13]. 

A handcrafted method is called so because of all the human knowledge implied in the 

development of the algorithm itself and the complex parameters that are included in the 

process. Some disadvantages of these methods are also the high computational cost and 

time consumption due to the complex preprocessing, feature extracting, and classifying. 

Some of the best-known handcrafted feature methods are the Histogram of Oriented 

Gradients (HOG) [14] and Scale-Invariant Feature Transform (SIFT) [15], which are 

usually combined with classifiers such as Support Vector Machines (SVM) [16]. 
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CHAPTER 3 METHODOLOGY 

3.1 Model development 

To deal with the mentioned challenges, convolution neural network combined with 

recurrent neural network is used to classify and identify tomato leaves diseases. The 

general architecture of the proposed framework is illustrated in Figure 3.1. In the 

following, we present details about each component. 

 

 

Figure 3.1: Proposed framework architecture 

3.1.1 Dataset Preparation 

Data provided is first being divided into training set, validation set and testing sets. 

Training sets are used to adjust weights and parameters of the model. Validation set are 

not used to adjust the parameters of the model, instead they are used to reduce over fitting 

problem. Testing set is used for evaluating the predictive power of the model. 

3.1.2 Image processing 

The dataset stored contains 2400 images of healthy and infected leaves. Each image has 3 

channels which are red (R), green (G), and blue (B).  Image in dataset are resized. 
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3.1.3 Convolution and recurrent neural network 

Convolution neural networks (CNNs) are a kind of feeding forward neural network where 

every single node can be used to apply filters through overlapping regions. The 

processing occurs in an alternative fashion between convolution and sub-sampling layers 

followed by RNN and one fully connected layer such as standard multilayer perceptron 

(MLP). This architecture has various benefits compared to the standard Neural Networks. 

The NNs have been successfully applied to features that have been extracted from other 

systems, which mean that the performance of NNs depends on matching relevant features 

that can be obtained. Another way to use NNs is to apply them directly to the raw pixel of 

the image. However, if the images have high dimensions, more parameters are needed 

because the hidden layer would be fully connected. To tackle this problem CNNs could 

be applied. The CNNs depend on sharing the weights, which reduces the numbers of 

parameters. 

The convolution layers apply a local filter to the input image, which leads to a better 

classification there are correlation in the neighborhood pixels of the same image. In other 

words, the pixels of the input images can have some correlations with each other. For 

instance, the nose is always between the eyes and the mouth in face images. When we 

apply the filter to a subset of the image, we will extract some local features. By 

combining them subsequently, we will get the same format as the original image but with 

less dimensional image. These kinds of formats are not found in the fully connected 

layers. 

3.1.3.1 Convolution Layers  

The convolution layers can be mainly divided into two parts: Part 1 is a linear feature 

mapping that can be done by applying fixed size filters on the output of former layers.  

𝑌𝑙=𝑊𝑙⊗𝑋𝑙−1
 …………………………………………………………………...............(3.1)  

Where ⨂ denotes the convolution operator Part 2 involves convolution layers which is 

usually a nonlinear mapping as the ReLu function. The Rectified Linear Unit has become 

very popular in the last few years. It computes the function  

f(x)=max(0,x)……...…………………………………………………………………..(3.2) 
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In other words, the activation is simply threshold at zero 

3.1.3.2 Pooling Layers  

Pooling layers usually receive their inputs from convolution layers. The pooling or the so 

called sub sampling layers is average or max operators over small squared areas. Based 

on the operator used, these layers are called average pooling or max pooling.  

The average pooling can be defined as:  

𝑠𝑖 =
1

𝑛
   𝑗

𝑛
𝑖∈𝑅𝑗

…………………………………………………………...... ………(3.3)  

Where  is some pixel in the sub-region 𝑅𝑗 from the features mapping, and 𝑛 is number 

of features in the sub-region where sub sampling is required.  

The max pooling can be defined as:  

𝑠𝑖 = 𝑚𝑎𝑥𝑖∈𝑅𝑗
𝑖  …………………………………………………………………….(3.4)  

The goals of pooling layers are to reduce the feature mapping sizes and provide a 

connection to the local neighborhood of the convolution layer feature by doing their 

operations on a sequence of mapping features. Both the average and max pooling 

operators have some drawbacks. The average pooling pays attention to all elements in the 

pooling region even those that have ≤ zero value, which leads to a reduction in weight 

magnitudes. On the other hand, the max pooling can easily over fit the network.  
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Figure 3.2: The pooling operations 
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A represents feature mapping from a previous layer, B represents the features that 

resulted from Average pooling, and C represents features that resulted from max pooling. 

3.1.3.3 Dropout layer 

Dropout layers have a very specific function in neural networks. The problem of over 

fitting, where after training, the weights of the network are so tuned to the training 

examples they are given that the network doesn‟t perform well when given new 

examples. The idea of dropout is simplistic in nature. This layer “drops out” a random set 

of activations in that layer by setting them to zero.  

3.1.3.4 Flatten layer 

Once the featured map is obtained, the next step is to flatten it. Flattening involves 

transforming the entire pooled feature map matrix into a single column which is then fed 

to the neural network for processing. Flattening is the process of converting all the 

resultant 2 dimensional arrays into a single long continuous linear vector. 

3.1.3.5 Recurrent Neural Networks 

In a RNN, the information cycles through a loop. When it makes a decision, it takes into 

consideration the current input and also what it has learned from the inputs it received 

previously. A Recurrent Neural Network is able to remember exactly that, because of its 

internal memory. It produces output, copies that output and loops it back into the 

network. 

During the training of RNN, as the information goes in loop again and again which results 

in very large updates to neural network model weights. This is due to the accumulation of 

error gradients during an update and hence, results in an unstable network. At an extreme, 

the values of weights can become so large as to overflow and result in NaN values. The 

drawback of RNN is over come by a new variant of the RNN model, called Long Short 

Term Memory. LSTM can solve this problem, because it uses gates to control the 

memorizing process. 

Long Short-Term Memory (LSTM) networks are an extension for recurrent neural 

networks, which basically extends their memory. LSTM‟s enable RNN‟s to remember 

their inputs over a long period of time. 
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With RNN, the connections are no longer purely feed-forward. As its name implies, there 

is now a recurrent connection that connects the output of a RNN neuron back to itself. 

Figure 3.3 shows a single RNN neuron. 

 

 

 

 

 

Figure 3.3: Basic Structure of Recurrent Neural Network 

In this picture, the input, xt is the input at time t. As in the feed-forward case, we feed the 

input into our neuron (block A), it does some computation, and we get the output ht. 

However note an additional recurrent connection feeding the same output ht back into A. 

What happens with this neuron at the next time step? Well, we will get another input, 

xt+1 and will feed that into our neuron (Block A), however recall our recurrent 

connection from the previous time step, ht, this is also part of our input. In a simple 

function mapping, a RNN‟s computation will be, following the diagram notation above: 

ht=f(xt,ht−1)……………………………………………………………………………(3.5) 

This means that for RNN, for each neuron, there‟re two weights, a feed-forward weight 

(just like we would have in a MLP) and a recurrent weight. 

Long Short Term Memory Networks 

LSTMs are special kind of RNNs with capability of handling Long-Term dependencies. 

LSTMs also provide solution to Vanishing/Exploding Gradient problem. A simple LSTM 

cell representation is shown in figure 3.4. 

     xt 

         A 

     ht 
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Figure 3.4: LSTM cell visual representation [17] 

Forget Gate: After getting the output of previous state, h(t-1), Forget gate helps us to 

take decisions about what must be removed from h(t-1) state and thus keeping only 

relevant stuff. It is surrounded by a sigmoid function which helps to crush the input 

between [0, 1].It is represented as in figure 3.5. 

 

Figure 3.5: Forget gate visual representation [17] 

𝑓𝑡 = 𝜎(𝑊𝑓 .  𝑡−1, 𝑥𝑡 + 𝑏𝑓) …………………………………………………………(3.6) 
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We multiply forget gate with previous cell state to forget the unnecessary stuff from 

previous state which is not needed anymore. 

Input Gate: In the input gate, we decide to add new stuff from the present input to our 

present cell state scaled by how much we wish to add them. 

 

Figure 3.6: Input gate visual representation [17] 

 

𝑖𝑡 = 𝜎( 𝑊𝑖 .  𝑡−1, 𝑥𝑡 + 𝑏𝑖  )…………………………………………………………...(3.7) 

𝐶 
𝑡 = tanh(𝑊𝐶 .  𝑡−1, 𝑥𝑡 + 𝑏𝐶)……………………………………………………….(3.8) 

In figure 3.6, sigmoid layer decides which values to be updated and tanh layer creates a 

vector for new candidates to added to present cell state. 

To calculate the present cell state, we add the output of ((input_gate*gate_gate) and forget 

gate) as shown below: 

𝐶𝑡= 𝑓𝑡 + 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶 
𝑡…………………………………………………………………(3.9) 

Output Gate: Finally we‟ll decide what to output from our cell state which will be done 

by our sigmoid function. 
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Figure 3.7: Output gate visual representation [17] 

𝑜𝑡 = 𝜎(𝑊𝑜 𝑡−1, 𝑥𝑡 + 𝑏𝑜)…………………………………………………………...(3.10) 

𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)…………………………………………………………………...(3.11) 

As shown in Figure 3.1 system diagram is composed of four main parts which are 

convolution, pooling, recurrent and fully connected layers. The convolution and pooling 

layers act as feature extractors from the input images while RNN acts as memory and the 

fully connected layer acts as a classifier. The essential purpose of convolution is to extract 

features automatically from each input image. The dimensionality of these features is then 

reduced by the pooling layer. At the end of the model, the fully connected layer with a 

softmax activation function makes use of the learned high-level features to classify the 

input images into predefined classes. 

3.1.3.6 Fully Connected Layers  

After alternating between the convolution and the sub sampling operations, and 

performing dropout, flatten and reshape operation a single long continuous linear vector 

is passed to RNN where it produces output to fully connected layer, copies that output 

and loops it back into the network. 

The fully connected layer is similar to the hidden layer in ANNs but in this case it‟s fully 

connected. The output layer is where we get the predicted classes. The information is 
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passed through the network and the error of prediction is calculated. The error is then 

back-propagated through the system to improve the prediction. 

3.1.3.7 Back propagation Algorithm  

There are two passes in the back propagation algorithm, the forward and backward pass.  

Forward Propagation  

To simplify illustration, we assume our CNN has only one convolution layer, one sub 

sampling layer, one recurrent neural network layer and one fully connected layer. 

For convolution layers, suppose we have an image x that has a size of 𝑚 ×𝑚 and a weight 

kernel w that has a size of 𝑘. So we shall have an output that has a size of (𝑚−𝑘+1) × 

(𝑚−𝑘+1) after we convolve the input image with the kernel. The convolution process is a 

dot product between the weight and part size of the input that has a size equal to the 

weight; after that, we sum over all the dot product results.  

𝑦𝑖𝑗
𝑙 =   𝑤𝑎𝑏   

𝑙 𝑥𝑖+𝑎 ,𝑗 +𝑏
𝑙−1𝑚

𝑏=1
𝑚
𝑎=1  ……………………………………………........(3.12) 

where 𝑙 denote the current layer and i, j defines the location of the next pixel in the output 

of the l th layer.  

Every convolution layer has a normalization part defined as:  

𝑥𝑖𝑗
𝑙 = 𝑓(𝑦𝑖𝑗   

𝑙 + 𝑏𝑙     )……………………………………………………………… (3.13)  

where 𝑓(∙) is the normalization function and commonly chosen to be the logistic 

(sigmoid) function and 𝑏𝑙 is the bias. 

The sub sampling layer: As noted in Section (3.1.3.2), there are two types of these layers. 

Neither of them have weights nor a normalization part. The output‟s size from this layer 

will drop to half if we have a kernel size of (2 x 2).  

Backward propagation  

The back-propagation process starts from the end layer to the first layer. This process 

would be similar to Neural Networks on the fully connected layers. 
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Back propagation for the sub sampling layer: The pooling layers need not to have any 

trainable parameters to be updated. Those kinds of layers can only serve to reduce the size 

of the features mapping, so, in the backward pass, there is no derivative operation 

required. In the forward pass, we do sub sampling over a square area that is reduced to a 

single value after the operation. In the backward pass, it is required to return a single 

value from the error to same size of the squared area. Let‟s call it dissampling. The 

dissampling operation depends on the kind of subsampling required. In the case of 

average pooling, the errors that computed from the layer before the pooling layer 

distribute on the square area equally. In the max pooling case, the error forwards directly 

to the place where the feature in the max pooling originated from and the remaining 

spaces are filled by zeros.  

The back propagation in the convolution layers: If we know what errors occurred in 

the layer before the convolution layers, say E, then we can find the error in the 

convolution layer. Note that we have a square kernel that has a size of k X k. Hence, we 

need to perform the chain rule and consequently find the sum over all the regions.  

 

𝜕𝐸𝑙

𝜕𝑤𝑖𝑗
𝑙 =   

𝜕𝐸𝑙+1

𝜕𝑦 𝑙  

𝑚−𝑘
𝑗 =1

𝑚−𝑘
𝑖=1

𝜕𝑦 𝑙

𝜕𝑤𝑖𝑗
𝑙  ..………………………………………………….(3.14) 

From equation (3.12) 
𝜕𝑌𝑙

𝜕𝑊𝑖𝑗
𝑙 = xij

l−1
 and we can get  

∂El+1   

∂Y l   
  by applying the chain rule 

again; 

 
∂El+1   

∂y l   
=

∂El+1  

∂xij
l   

∂xij
l

∂y ij
l   …………………………………………………….. ..………(3.15) 

Where 
𝜕𝑥

𝜕𝑦
 from equation (3.12) equals the derivative of the activation functions; by 

putting all the terms together, we get 

𝜕𝐸𝑙

𝜕𝑤𝑖𝑗
𝑙 =   

𝜕𝐸𝑙

𝜕𝑥𝑖𝑗
𝑙 𝑥𝑖𝑗

𝑙−1𝑓 ,(𝑦𝑖𝑗
𝑙 )𝑚−𝑘

𝑗 =1
𝑚−𝑘
𝑖=1  ………………..……………....... ….……(3.16) 

After that we update the weights accordingly using equation 

𝑤 𝑡 = 𝑤 𝑡 − 1 − 𝜂
𝜕𝐸

𝜕𝑤
 ………………………………………………..............(3.17) 
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Algorithm 

Step1: Initialize all filters and parameters / weights with random values 

Step2: The network takes a training image as input, goes through the forward 

propagation step (convolution, and pooling operations along with RNN and forward 

propagation in the Fully Connected layer) and finds the output probabilities for each 

class. 

Step 3: Calculate the loss for batch  

− 𝑦𝑜 ,𝑐 𝑙𝑜𝑔(𝑝𝑜 ,𝑐)𝑀
𝑐=1 …………………………………………………………….(3.18) 

Step 4: Use Back propagation to calculate the gradients of the error with respect to all 

weights in the network and use gradient descent to update all filter values / weights and 

parameter values to minimize the output error.  

Step 5: Repeat steps 2-4 with all images in the training set. 

The step1 to step 5 trains the network – this essentially means that all the weights and 

parameters of the network have been optimized using Adaptive moment estimation 

algorithm to correctly classify images from the training set. 

When a new (unseen) image is input into the network, the network would go through the 

forward propagation step and output a probability for each class (for a new image, the 

output probabilities are calculated using the weights which have been optimized to 

correctly classify all the previous training examples).  

3.2 Tools and technology 

The following tools will be used in the research work: 

 Python 

 Visual studio code editor 

 Deep learning framework(Keras and Tensorflow) 
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3.3 Data Collection  

Collected from www.PlantVillage.org and www.narc.gov.np.  Dataset consists of four 

thousand images of size 100X100. 70 % images are used for Training while 30% are Test 

image. There are 1000 images per class. Different classes of Dataset are: 

Table 3.1: Classes of datasets and their corresponding label 

Label Class 

0 BacterialSpot(Early blight) 

1 septoriaLeaf Spot 

2 Late blight 

3 Healthy 
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CHAPTER 4 RESULT ANALYSIS AND DISCUSSION 

4.1 Overview of task 

4.1.1 Deep Learning Framework Installation and CPU Configuration  

A very effective deep learning framework „Tensor Flow‟ is installed and is configured to 

run on Core i5.TensorFlow is an open source software library for numerical computation 

using data flow graphs. Nodes in the graph represent mathematical operations, while the 

graph edges represent the multidimensional data arrays (tensors) that flow between them. 

A deep learning framework „Keras‟ is used for efficient implementation. 

4.1.2 Network Architectures  

Architecture is designed with following layers‟ configuration: 

i. INPUT Layer accepting input of 100X100 image with three channel color  

ii. First CONV Layer with 100 3x3 filters. With RELU activation function.  

iii. MAXPOOL Layer with size 2x2.  

iv. Second CONV Layer with 50 3x3 filters. With RELU activation function.  

v. Second MAXPOOL Layer with size 2x2  

vi. Third CONV Layer with 25 3x3 filters. With RELU activation function.  

vii. Third MAXPOOL Layer with size 2x2  

viii. Dropout Layer with 25% dropout. 

ix. Fourth CONV Layer with 10 3x3 filters. With RELU activation function.  

x. Fourth MAXPOOL Layer with size 2x2  

xi. Dropout Layer with 25% dropout. 

xii) Flatten layer 

xiii) Reshape layer which reshapes into 2X80 

xiv. Recurrent layer having units 30 

xv. . FULL Connection Layer with 4 units with softmax activation function 
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4.1.3 Experiment Results 

 

 

Figure 4.1: Sample image 

When figure 4.1 sample image is passed through 1
st
 convolution layer its output is shown 

in figure 4.2 

  
 

 
  

 

Figure 4.2:  (a), (b), (c), (d), (e) and (f) are outputs from first convolution layer without 

activation and max pooling operation (Filter size 3X3) 

(a)                                                  (b)                                                      (c) 

             (d)                                                   (e)                                                     (f) 
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Figure 4.3 Outputs from first convolution layer with relu activation 

 

Figure 4.4 Outputs from first convolution layer with relu activation and max pooling 

operation 

 

   

Figure 4.5 Outputs from first convolution layer without activation and max pooling 

operation (Filter size 5X5) 
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As we can see in figure 4.5, we lost some of the detail because the kernel was big (5X5) 

compared in figure 4.2 where kernel size is 3X3. 

Output of first layer acts as input for second layer. Output from 2
nd

 layer is shown in 

figure 4.7. 

 

Figure 4.6 Sample input for Second Convolution layer 

 

  

 

 

Figure 4.7: Output from Second convolution layer (Filter size 3X3) 

Figure 4.2, 4.3, 4.5 and 4.7 shows that convolution neural network are powerful due to 

their ability to extract the core features of an image and use these features to indentify 

images that contain features like them. Even with our two layers CNN we can start to see 

the network is paying a lot attention to different regions. 
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4.1.4 Result Analysis 

               

 

 

Figure 4.8: Loss when number of epochs is 200 

The figure 4.8 shows loss when number of epochs is 200 which is equal to 0.1934 and 

achieved 92.16 % of accuracy. 

 

Figure 4.9:   Accuracy when number of epochs is 200 

                Loss 

No. of Epoch 

No. of Epoch 

       Accuracy 
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The figure 4.9 shows accuracy when number of epochs is 200 which is equal to 92.16%.         

 

Figure 4.10: Loss when number of epochs is 50(training set 70%) 

The figure 4.10 shows loss during training period when number of epochs is 50 which is 

equal to 0.3637 and achieved 85.75 % of accuracy. In this case percentage of training set 

equals to 80 and testing set equals to 20. 

 

Figure 4.11: Loss when number of epochs is 50(training set 80%) 

The figure 4.11 shows loss during training period when number of epochs is 50 which is 

equal to 0.44 and achieved 82.46 % of accuracy. In this case percentage of training set 

equals to 70 and testing set equals to 30. 

Table 4.1 Performance comparison by assigning different values of hyper parameter 

No. of Epoch 

                 loss 

                 loss 

  No. of Epoch 

s 



24 
 

No_

of_e

poch 

L_rat

e 

Train 

set 

Validti

on_set 

K_size Pool 

size 

Act 

functio

n 

Dropou

t 

Loss accu

racy 

20 0.001 80% 20% 3X3 2X2 ReLU 25% 0.59 

 

0.73 

 

20 0.001 70% 30% 3X3 2X2 ReLU 25% 0.44 

 

0.76 

 

50 0.001 80% 20% 3X3 2X2 ReLU 25% 0.3637 

 

0.85 

 

50 0.001 70% 30% 3X3 2X2 ReLU 25% 0.44 

 

0.82 

 

100 0.001 70% 30% 3X3 2X2 ReLU 25% 0.2822 0.88 

200 0.001 70% 30% 3X3 2X2 ReLU 25 0.1934 0.92 

  

Table 4.1 shows loss and accuracy of network.  Result shows that when number of 

epoch‟s increases and also number of dataset increases the performance of the system 

increase. 

Further 40 standard images were selected for cross validating the model and the results 

were as follows: 

   

   

  

 

Figure 4.12: Healthy image 
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When figure 4.12 were tested against the model. All images are healthy. Healthy images 

are labeled as 3.The predicted result is as below: 

 

 

Figure 4.13: Healthy leaf tested against built model 

 Healthy leaf is labeled as 3. Figure 4.13 shows out of 8 images from validating set 5 

images are predicted correctly. 

 

   

   

  

 

 

Figure 4.14:  Leaf infected by Septoria disease. 
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When figure 4.14 were tested against the model. All images are infected by Septoria 

disease. Leaf infected by Septoria images are labeled as 1.The predicted result is as 

below: 

 

 

Figure 4.15: Septoria Leaf spot tested against model 

Septoria leaf spot is labeled as 1. Figure 4.15 shows out of 8 images from validating set 6 

images are predicted correctly. 

 

   

   

  

 

Figure 4.16 Leaf infected by late blight 
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When figure 4.16 were tested against the model. All images are infected by late blight 

disease. Leaf infected by late blight images are labeled as 2.The predicted result is as 

below: 

 

 

Figure 4.17: Late blight tested against model 

Late blight is labeled as 2. Figure 4.17 shows out of 8 images from validating set 6 

images are predicted correctly 

   

   

  

 

 

Figure 4.18: Two image of each class 
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When figure 4.18 were tested against the model. All images are infected by late blight 

disease. Leaf infected by late blight images are labeled as 2.The predicted result is as 

below: 

 

 

Figure 4.19: Two images from each class are tested against model 

As in our model b1, b2 represent bacterial spot labeled as 0, sep1, sep2 represent 

sepotoria labeled as 1, l1, l2 represent late blight labeled as 2 and h1 and h2 represent 

healthy image labeled as 3. Figure 4.19 shows out of 8 images from validating set all are 

predicted correctly. 

Table 4.2: Number of Correct and wrong prediction 

 

Input No Correct 

Predicted 

Wrong Predict 

Healthy_image 8 5 3 

Septoria leaf 8 6 2 

Late blight 8 6 2 

Early blight 8 8 0 

2 images from 

each class 

8 8 0 

Result 40 33 8 

 

Data present in Table 4.2 is taken from figure 4.13, 4.15, 4.17and 4.19.  
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4.1.5 Confusion matrix Analysis 

 

Table 4.3 Confusion matrix of model 

 Predicated 

 

 

 

Actual 

 Early 

blight(bacterial 

spot) 

Septoria 

leaf spot 

Late 

Blight 

Healthy 

Early 

blight(bacterial 

spot) 

10 2 0 0 

Septoria leaf 

spot 

0 8 2 2 

Late Blight 0 0 8 1 

Healthy 0 0 0 7 

 

Table 4.3 illustrates confusion matrix for these report. it consists of four classes (Early 

blight, bacterial spot, Septoria leaf spot, Late Blight, Healthy)  having 10 images of each 

class and the diagonal elements represents  true positive value. 

Table 4.4, 4.5, 4.6 and 4.7 were derived from table 4.3 which show binary confusion 

matrix of each class. 

Table 4.4: Confusion matrix for early blight 

  Actual class 

  Early 

blight 

Non- Early 

blight 

Predicted 

class 

Early 

blight 

10 TP 0 FP 

Non- 

Earlyblight 

2FN 28 TN 
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Table 4.5: Confusion matrix for septoria leaf spot 

  Actual class 

  septoria 

leaf spot 

Non- septoria 

leaf spot 

Predicted 

class 

septoria 

leaf spot 

8 TP 2 FP 

Non- 

septoria 

leaf spot 

4FN 26 TN 

 

Table 4.6: Confusion matrix for late blight 

  Actual class 

  Late 

blight 

Non- late blight 

Predicted 

class 

Late 

blight 

8 TP 2 FP 

Non- Late 

blight 

1FN 29 TN 

 

Table 4.7: Confusion matrix for healthy 

  Actual class 

  Healthy Non- Healthy 

Predicted 

class 

Healthy 7 TP 3 FP 

Non-

Healthy 

0FN 30 TN 

 

Overall accuracy=(10+8+8+7)/40=0.85 

Precison Calculation(TP/TP+FP) 

Precison of healthy leaf=7/(7+3)=0.7 
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Precison of late blight leaf=8/(8+2)=0.8 

Precison of septoria leaf spot=8/(8+2)=0.8 

Precison of Early blight=10/(10+0)=1 

Avg precison=(0.7+0.8+0.8+1)/4=0.825 

Recall or Sensitivity Calculation (TP/TP+FN) 

Sensitivity of healthy leaf)=7/(7+0)=1 

Sensitivityof late blight leaf=8/(8+1)=0.89 

Sensitivity of septoria leaf spot=8/(8+4)=0.67 

Sensitivity of Early blight=10/(10+2)=0.84 

Avg Sensitivity=(1+0.89+0.67+0.84)/4=0.85 

Specificity Calculation (TN/TN+FP) 

Specificity of healthy leaf=30/(30+3)=0.91 

Specificity of late blight leaf=29/(29+2)=0.93 

Specificity of septoria leaf spot=26/(26+2)=0.92 

Specificity of Early blight=28/(28+0)=1 

Avg Specificity=(0.91+0.93+0.92+1)/4=0.94 

 

Fmeasure(healthy)=2*precision*recall/precision+recall=2*0.7*1/1+0.7=0.82 

Fmeasur(Early blight)=2*1*0.84/(1+0.84)=0.913 

Fmeasure(seproria)=2*0.8*0.67/(0.8+0.67)=0.73 

Fmeasure(late blight)=2*0.8*0.89/0.8+0.89=0.842 

Fmeasure(Avg)=0.826 
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Table 4.8: Comparison with other model 

Model name Accuracy loss 

Support vector machine[3] 0.82 0.36 

CNN[8] 0.72 0.42 

CNN with RNN 0.92 0.1934 

 

4.1.6 Discussion 

It is found that the developed model is pretty much able to learn feature of input image 

and predict disease present in leaf of tomato with accuracy 92.16%. This research 

presents the study on plant diseases detection using artificial neural network. The 

optimum result shows that proficiency of combined CNN with RNN in recognition of 

tomato plant disease using infected leaf‟s image.  

As expected the accuracy of CNN model was the least due to not an integer problem. So, 

RNN was added to overcome this problem. In addition, SVM layer introduced to CNN 

for further comparison. The accuracy and losses of these models are illustrated in table 

4.8. 

From table 4.8 it is clear that CNN has the least accuracy and adding RNN layer to CNN 

layer increased the models accuracy, which was greater than adding SVM layer to CNN. 
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CHAPTER 5 CONCLUSION AND RECOMMENDATION 

5.1. Conclusion 

Agriculture suffers from a severe problem, plant diseases, which reduce the production 

and quality of yield. This thesis work focus to detect disease present in leaf of tomato 

plant and involves collecting four class of tomato leaf, i.e., healthy leaf, leaf infected by 

early blight, late blight and septoria. Work was carried out to investigate the use of 

computer vision for classifying tomato leaf disease. 

 This thesis presented an approach based on convolution neural networks along with 

recurrent neural network to identify and classify tomato leaf diseases. The proposed 

model can serve as a decision support tool to help farmers to identify the disease in the 

tomato leaf. Hence, the farmer can take a picture of the leaf with the symptoms and then 

the system will identify the type of the disease. Main contribution is to apply deep neural 

networks along with recurrent neural network to detect common diseases such early 

blight, late blight and septoria. 

 

5.2 Limitation and Future Enhancement 

As a limitation; this system is only capable of detecting three classes of diseases and 

healthy plant. In order to detect other class of diseases data has to be trained on current 

model. Algorithm will use transfer learning method to classify other class of diseases. 

The main challenge while developing object detection model on machine learning was to 

collect large number of train images with different shapes, sizes, with different 

background, light intensity, orientation and aspect ratio. 

As per the recommendation; the further study can be detect all types of plant diseases, not 

only detection but also suggesting remedies for diseases. Finally, integrated with IOT 

server to implement system on rural and remote area. 

To overcome problem of convolution neural network another class of deep neural 

network named capsule network can be use to get better result. 
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