
1

CHAPTER 1 OVERVIEW

1.1. Introduction

Over 80 percent of the population of Nepal is involved in agriculture, which constitutes

41 percent of GDP. Diseases are the main problems that threaten tomato cultivation these

require careful diagnosis and timely handling to protect the crops form heavy loss.

Problems growing tomatoes are often the result of weather conditions. This is something

that is out of the gardener's control. Diseases in plants have been largely studied in the

scientific area, mainly focusing on the biological characteristics of diseases. For instance,

studies on potato and tomato show how susceptible a plant is to be affected by diseases.

The problem of plant diseases is a worldwide issue also related to food security.

Regardless of frontiers, media, or technology, the effects of diseases in plants cause

significant losses to farmers. An earlier identification of disease is nowadays a

challenging approach and needs to be treated with special attention.

In tomato plant disease can be found in various parts such stem, leaves and fruit Major

diseases that affect tomato are: Tomato Diseases – Foliage (Early Blight, Gray Leaf Spot,

and Late Blight etc) Tomato Diseases – Fruit (Anthracnose, Bacterial Speck, etc)

 (a) (b) (c)

 (d) (e) (f)

Figure 1.1: Leaf infected by common disease (a), (d) by early blight, (b), (e) by late blight

and (c) (f) by septoria.

2

1.2 Problem Definition

In current scenario of Nepal, farmers are suffering from lack of knowledge to indentify

the exact disease and its type especially in tomato farming .In addition to this; they are

also unable to access not only the lab resources but also human expert in their territory.

It is very important to address problem technically and efficiently. This thesis specifically

focus to solve these problem in tomato plant by building a system which takes input as

leaf of tomato plant and classify the type of diseases based on input provided.

1.3 Objective

 To predict diseases namely early blight, late blight and septoria present in leaf of

tomato

 To compare the accuracy of proposed model with other model

1.4 Scope of the work

The study work is focused on creating imputation model for accurately predicting

whether leaf of tomato are infected by early blight, late blight and septoria disease or not

which can be used in several areas especially in agriculture field of tomato farming.

3

CHAPTER 2 LITERATURE REVIEW

A number of approaches have turned to computer vision and machine learning techniques

to create a fast method for plant diseases detection at the early onset of the symptom.

Most of the studies presented in the literature of plant disease identification follow the

steps shown in the Figure 2.1 [1]. As shown in Figure 2.1, the identification process starts

by an image acquisition step where different digital devices are used to capture healthy

and infected plant images. Then, further analysis is needed to edit the image and prepare

it for later treatment, such as image enhancement, segmentation, color space conversion

and filtering. In particular, image segmentation methods, like thresholding, are frequently

used to detect boundaries in images.

Figure 2.1: General steps applied to plant disease identification

Within the feature extraction step, features such as color, shape and texture are calculated

from the image. Finally, the classification step is performed. Different classification

algorithms are used in the literature such as neural network [2], and support vector

machine [3]. In the following, we present a set of the state-of-the-art approaches

following the general architecture in Figure 2.1.

In [4] applies an image processing methods for quantitatively detecting rust severity from

multi-spectral images. A fast manual threshold-setting method was originally developed

based on HSI (Hue Saturation Intensity) color model for segmenting infected areas from

plant leaves. Two disease diagnostic parameters, ratio of infected area (RIA) and rust

color index (RCI), were extracted and used as symptom indicators for quantifying rust

severity.

Image

acquisition

Image processing Feature extraction

Recognition and

classification

technique

4

In [5] proposes a method for disease identification, based on color transformations, color

histograms and a pair wise-based classification system. Its performance was tested using

large database containing images of symptoms belonging to 82 different biotic and abiotic

stresses, affecting the leaves of 12 different plant species.

Even though different methods have achieved good classification results in identifying

and recognizing some of the diseases, they suffer from some limitations. For example,

segmentation is used in most methods as the first step in the leaf disease analysis. If the

leaf image is captured with a black background, the segmentation is straightforward and

no obstacles should be faced. However, when the background contains other leaves or

plants, the segmentation may be questionable. Most of the methods will fail to effectively

extract the leaf from its background which will lead to unreliable results. Also, some

disease symptoms do not have well represented edges and they could gradually fade into

healthy tissue. This may disturb solutions like color based methods and thresholding.

Furthermore, a number of the methods rely on hand-crafted features such as color

histograms, texture features, shape features and SIFT that requires expensive work and

depends on expert knowledge. However, these methods do not generalize well and they

are not effective when dealing with a large amount of data that could contain significant

varieties [6].

Numerous procedures are currently in use for plant disease detection applying

computer vision. One of them is disease detection by extracting color feature as

authors in [7] have presented. In this paper YcbCr, HSI, and CIELB color models

were used in the study; as a result, predictions were successfully done.

Subsequently, due to the recent advance in Machine Learning, the principle of CNN has

been applied to plant diseases recognition in different crops, such as [8] using a CNN-

based LeNet and image processing to recognize two leaf diseases out of healthy ones.

Another approach for cucumber leaf diseases, [9], used a three-layer CNN to train images

containing two diseases out of healthy ones. To support the application of machine

learning, [10] proposed to use a method called Color and Oriented FAST and Rotated

BRIEF (ORB) to extract features and tree classifiers (Linear Support Vector Classifier

(SVC), K-Nearest Neighbor, Extremely Randomized Trees) to recognize four types of

diseases in cassava.

5

 In [11], an image processing and statistical inference approach was introduced to identify

three types of leaf diseases in wheat. In [12], the authors developed a method to

discriminate good and bad condition images which contain seven types of diseases out of

healthy ones in cucumber leaves. For that effect, they used an image-processing technique

and a four-layer CNN, which showed an average of 82.3% accuracy under a 4-fold cross-

validation strategy.

The pattern recognition system achieved an average accuracy of 85%. Islam et al.

presented an approach that integrated image processing and machine learning to allow the

diagnosis of diseases from leaf images. This automated method classifies diseases on

potato plants from „Plant Village‟, which is a publicly available plant image database.

The segmentation approach and utilization of an SVM demonstrated disease classification

in over 300 images, and obtained an average accuracy of 88% [13].

A handcrafted method is called so because of all the human knowledge implied in the

development of the algorithm itself and the complex parameters that are included in the

process. Some disadvantages of these methods are also the high computational cost and

time consumption due to the complex preprocessing, feature extracting, and classifying.

Some of the best-known handcrafted feature methods are the Histogram of Oriented

Gradients (HOG) [14] and Scale-Invariant Feature Transform (SIFT) [15], which are

usually combined with classifiers such as Support Vector Machines (SVM) [16].

6

CHAPTER 3 METHODOLOGY

3.1 Model development

To deal with the mentioned challenges, convolution neural network combined with

recurrent neural network is used to classify and identify tomato leaves diseases. The

general architecture of the proposed framework is illustrated in Figure 3.1. In the

following, we present details about each component.

Figure 3.1: Proposed framework architecture

3.1.1 Dataset Preparation

Data provided is first being divided into training set, validation set and testing sets.

Training sets are used to adjust weights and parameters of the model. Validation set are

not used to adjust the parameters of the model, instead they are used to reduce over fitting

problem. Testing set is used for evaluating the predictive power of the model.

3.1.2 Image processing

The dataset stored contains 2400 images of healthy and infected leaves. Each image has 3

channels which are red (R), green (G), and blue (B). Image in dataset are resized.

7

3.1.3 Convolution and recurrent neural network

Convolution neural networks (CNNs) are a kind of feeding forward neural network where

every single node can be used to apply filters through overlapping regions. The

processing occurs in an alternative fashion between convolution and sub-sampling layers

followed by RNN and one fully connected layer such as standard multilayer perceptron

(MLP). This architecture has various benefits compared to the standard Neural Networks.

The NNs have been successfully applied to features that have been extracted from other

systems, which mean that the performance of NNs depends on matching relevant features

that can be obtained. Another way to use NNs is to apply them directly to the raw pixel of

the image. However, if the images have high dimensions, more parameters are needed

because the hidden layer would be fully connected. To tackle this problem CNNs could

be applied. The CNNs depend on sharing the weights, which reduces the numbers of

parameters.

The convolution layers apply a local filter to the input image, which leads to a better

classification there are correlation in the neighborhood pixels of the same image. In other

words, the pixels of the input images can have some correlations with each other. For

instance, the nose is always between the eyes and the mouth in face images. When we

apply the filter to a subset of the image, we will extract some local features. By

combining them subsequently, we will get the same format as the original image but with

less dimensional image. These kinds of formats are not found in the fully connected

layers.

3.1.3.1 Convolution Layers

The convolution layers can be mainly divided into two parts: Part 1 is a linear feature

mapping that can be done by applying fixed size filters on the output of former layers.

𝑌𝑙=𝑊𝑙⊗𝑋𝑙−1
 …………………………………………………………………...............(3.1)

Where ⨂ denotes the convolution operator Part 2 involves convolution layers which is

usually a nonlinear mapping as the ReLu function. The Rectified Linear Unit has become

very popular in the last few years. It computes the function

f(x)=max(0,x)……...…………………………………………………………………..(3.2)

8

In other words, the activation is simply threshold at zero

3.1.3.2 Pooling Layers

Pooling layers usually receive their inputs from convolution layers. The pooling or the so

called sub sampling layers is average or max operators over small squared areas. Based

on the operator used, these layers are called average pooling or max pooling.

The average pooling can be defined as:

𝑠𝑖 =
1

𝑛
 𝑗

𝑛
𝑖∈𝑅𝑗

…………………………………………………………...... ………(3.3)

Where is some pixel in the sub-region 𝑅𝑗 from the features mapping, and 𝑛 is number

of features in the sub-region where sub sampling is required.

The max pooling can be defined as:

𝑠𝑖 = 𝑚𝑎𝑥𝑖∈𝑅𝑗
𝑖 …………………………………………………………………….(3.4)

The goals of pooling layers are to reduce the feature mapping sizes and provide a

connection to the local neighborhood of the convolution layer feature by doing their

operations on a sequence of mapping features. Both the average and max pooling

operators have some drawbacks. The average pooling pays attention to all elements in the

pooling region even those that have ≤ zero value, which leads to a reduction in weight

magnitudes. On the other hand, the max pooling can easily over fit the network.

 A

 C

Figure 3.2: The pooling operations

0.2 0.6 0.0 0.2

0.3 0.1 0.3 0.9

0.2 0.0 0.0 0.6

0.0 0.4 0.7 0.5

0.3 0.35

0.15 0.45

0.6 0.9

0.4 0.7

Max pooling

 B

Avg pooling

9

A represents feature mapping from a previous layer, B represents the features that

resulted from Average pooling, and C represents features that resulted from max pooling.

3.1.3.3 Dropout layer

Dropout layers have a very specific function in neural networks. The problem of over

fitting, where after training, the weights of the network are so tuned to the training

examples they are given that the network doesn‟t perform well when given new

examples. The idea of dropout is simplistic in nature. This layer “drops out” a random set

of activations in that layer by setting them to zero.

3.1.3.4 Flatten layer

Once the featured map is obtained, the next step is to flatten it. Flattening involves

transforming the entire pooled feature map matrix into a single column which is then fed

to the neural network for processing. Flattening is the process of converting all the

resultant 2 dimensional arrays into a single long continuous linear vector.

3.1.3.5 Recurrent Neural Networks

In a RNN, the information cycles through a loop. When it makes a decision, it takes into

consideration the current input and also what it has learned from the inputs it received

previously. A Recurrent Neural Network is able to remember exactly that, because of its

internal memory. It produces output, copies that output and loops it back into the

network.

During the training of RNN, as the information goes in loop again and again which results

in very large updates to neural network model weights. This is due to the accumulation of

error gradients during an update and hence, results in an unstable network. At an extreme,

the values of weights can become so large as to overflow and result in NaN values. The

drawback of RNN is over come by a new variant of the RNN model, called Long Short

Term Memory. LSTM can solve this problem, because it uses gates to control the

memorizing process.

Long Short-Term Memory (LSTM) networks are an extension for recurrent neural

networks, which basically extends their memory. LSTM‟s enable RNN‟s to remember

their inputs over a long period of time.

10

With RNN, the connections are no longer purely feed-forward. As its name implies, there

is now a recurrent connection that connects the output of a RNN neuron back to itself.

Figure 3.3 shows a single RNN neuron.

Figure 3.3: Basic Structure of Recurrent Neural Network

In this picture, the input, xt is the input at time t. As in the feed-forward case, we feed the

input into our neuron (block A), it does some computation, and we get the output ht.

However note an additional recurrent connection feeding the same output ht back into A.

What happens with this neuron at the next time step? Well, we will get another input,

xt+1 and will feed that into our neuron (Block A), however recall our recurrent

connection from the previous time step, ht, this is also part of our input. In a simple

function mapping, a RNN‟s computation will be, following the diagram notation above:

ht=f(xt,ht−1)……………………………………………………………………………(3.5)

This means that for RNN, for each neuron, there‟re two weights, a feed-forward weight

(just like we would have in a MLP) and a recurrent weight.

Long Short Term Memory Networks

LSTMs are special kind of RNNs with capability of handling Long-Term dependencies.

LSTMs also provide solution to Vanishing/Exploding Gradient problem. A simple LSTM

cell representation is shown in figure 3.4.

 xt

 A

 ht

11

Figure 3.4: LSTM cell visual representation [17]

Forget Gate: After getting the output of previous state, h(t-1), Forget gate helps us to

take decisions about what must be removed from h(t-1) state and thus keeping only

relevant stuff. It is surrounded by a sigmoid function which helps to crush the input

between [0, 1].It is represented as in figure 3.5.

Figure 3.5: Forget gate visual representation [17]

𝑓𝑡 = 𝜎(𝑊𝑓 . 𝑡−1, 𝑥𝑡 + 𝑏𝑓) …………………………………………………………(3.6)

12

We multiply forget gate with previous cell state to forget the unnecessary stuff from

previous state which is not needed anymore.

Input Gate: In the input gate, we decide to add new stuff from the present input to our

present cell state scaled by how much we wish to add them.

Figure 3.6: Input gate visual representation [17]

𝑖𝑡 = 𝜎(𝑊𝑖 . 𝑡−1, 𝑥𝑡 + 𝑏𝑖)…………………………………………………………...(3.7)

𝐶
𝑡 = tanh(𝑊𝐶 . 𝑡−1, 𝑥𝑡 + 𝑏𝐶)……………………………………………………….(3.8)

In figure 3.6, sigmoid layer decides which values to be updated and tanh layer creates a

vector for new candidates to added to present cell state.

To calculate the present cell state, we add the output of ((input_gate*gate_gate) and forget

gate) as shown below:

𝐶𝑡= 𝑓𝑡 + 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶
𝑡…………………………………………………………………(3.9)

Output Gate: Finally we‟ll decide what to output from our cell state which will be done

by our sigmoid function.

13

Figure 3.7: Output gate visual representation [17]

𝑜𝑡 = 𝜎(𝑊𝑜 𝑡−1, 𝑥𝑡 + 𝑏𝑜)…………………………………………………………...(3.10)

𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)…………………………………………………………………...(3.11)

As shown in Figure 3.1 system diagram is composed of four main parts which are

convolution, pooling, recurrent and fully connected layers. The convolution and pooling

layers act as feature extractors from the input images while RNN acts as memory and the

fully connected layer acts as a classifier. The essential purpose of convolution is to extract

features automatically from each input image. The dimensionality of these features is then

reduced by the pooling layer. At the end of the model, the fully connected layer with a

softmax activation function makes use of the learned high-level features to classify the

input images into predefined classes.

3.1.3.6 Fully Connected Layers

After alternating between the convolution and the sub sampling operations, and

performing dropout, flatten and reshape operation a single long continuous linear vector

is passed to RNN where it produces output to fully connected layer, copies that output

and loops it back into the network.

The fully connected layer is similar to the hidden layer in ANNs but in this case it‟s fully

connected. The output layer is where we get the predicted classes. The information is

14

passed through the network and the error of prediction is calculated. The error is then

back-propagated through the system to improve the prediction.

3.1.3.7 Back propagation Algorithm

There are two passes in the back propagation algorithm, the forward and backward pass.

Forward Propagation

To simplify illustration, we assume our CNN has only one convolution layer, one sub

sampling layer, one recurrent neural network layer and one fully connected layer.

For convolution layers, suppose we have an image x that has a size of 𝑚 ×𝑚 and a weight

kernel w that has a size of 𝑘. So we shall have an output that has a size of (𝑚−𝑘+1) ×

(𝑚−𝑘+1) after we convolve the input image with the kernel. The convolution process is a

dot product between the weight and part size of the input that has a size equal to the

weight; after that, we sum over all the dot product results.

𝑦𝑖𝑗
𝑙 = 𝑤𝑎𝑏

𝑙 𝑥𝑖+𝑎 ,𝑗 +𝑏
𝑙−1𝑚

𝑏=1
𝑚
𝑎=1 ……………………………………………........(3.12)

where 𝑙 denote the current layer and i, j defines the location of the next pixel in the output

of the l th layer.

Every convolution layer has a normalization part defined as:

𝑥𝑖𝑗
𝑙 = 𝑓(𝑦𝑖𝑗

𝑙 + 𝑏𝑙)……………………………………………………………… (3.13)

where 𝑓(∙) is the normalization function and commonly chosen to be the logistic

(sigmoid) function and 𝑏𝑙 is the bias.

The sub sampling layer: As noted in Section (3.1.3.2), there are two types of these layers.

Neither of them have weights nor a normalization part. The output‟s size from this layer

will drop to half if we have a kernel size of (2 x 2).

Backward propagation

The back-propagation process starts from the end layer to the first layer. This process

would be similar to Neural Networks on the fully connected layers.

15

Back propagation for the sub sampling layer: The pooling layers need not to have any

trainable parameters to be updated. Those kinds of layers can only serve to reduce the size

of the features mapping, so, in the backward pass, there is no derivative operation

required. In the forward pass, we do sub sampling over a square area that is reduced to a

single value after the operation. In the backward pass, it is required to return a single

value from the error to same size of the squared area. Let‟s call it dissampling. The

dissampling operation depends on the kind of subsampling required. In the case of

average pooling, the errors that computed from the layer before the pooling layer

distribute on the square area equally. In the max pooling case, the error forwards directly

to the place where the feature in the max pooling originated from and the remaining

spaces are filled by zeros.

The back propagation in the convolution layers: If we know what errors occurred in

the layer before the convolution layers, say E, then we can find the error in the

convolution layer. Note that we have a square kernel that has a size of k X k. Hence, we

need to perform the chain rule and consequently find the sum over all the regions.

𝜕𝐸𝑙

𝜕𝑤𝑖𝑗
𝑙 =

𝜕𝐸𝑙+1

𝜕𝑦 𝑙

𝑚−𝑘
𝑗 =1

𝑚−𝑘
𝑖=1

𝜕𝑦 𝑙

𝜕𝑤𝑖𝑗
𝑙 ..………………………………………………….(3.14)

From equation (3.12)
𝜕𝑌𝑙

𝜕𝑊𝑖𝑗
𝑙 = xij

l−1
 and we can get

∂El+1

∂Y l
 by applying the chain rule

again;

∂El+1

∂y l
=

∂El+1

∂xij
l

∂xij
l

∂y ij
l …………………………………………………….. ..………(3.15)

Where
𝜕𝑥

𝜕𝑦
 from equation (3.12) equals the derivative of the activation functions; by

putting all the terms together, we get

𝜕𝐸𝑙

𝜕𝑤𝑖𝑗
𝑙 =

𝜕𝐸𝑙

𝜕𝑥𝑖𝑗
𝑙 𝑥𝑖𝑗

𝑙−1𝑓 ,(𝑦𝑖𝑗
𝑙)𝑚−𝑘

𝑗 =1
𝑚−𝑘
𝑖=1 ………………..……………....... ….……(3.16)

After that we update the weights accordingly using equation

𝑤 𝑡 = 𝑤 𝑡 − 1 − 𝜂
𝜕𝐸

𝜕𝑤
 ………………………………………………..............(3.17)

16

Algorithm

Step1: Initialize all filters and parameters / weights with random values

Step2: The network takes a training image as input, goes through the forward

propagation step (convolution, and pooling operations along with RNN and forward

propagation in the Fully Connected layer) and finds the output probabilities for each

class.

Step 3: Calculate the loss for batch

− 𝑦𝑜 ,𝑐 𝑙𝑜𝑔(𝑝𝑜 ,𝑐)𝑀
𝑐=1 …………………………………………………………….(3.18)

Step 4: Use Back propagation to calculate the gradients of the error with respect to all

weights in the network and use gradient descent to update all filter values / weights and

parameter values to minimize the output error.

Step 5: Repeat steps 2-4 with all images in the training set.

The step1 to step 5 trains the network – this essentially means that all the weights and

parameters of the network have been optimized using Adaptive moment estimation

algorithm to correctly classify images from the training set.

When a new (unseen) image is input into the network, the network would go through the

forward propagation step and output a probability for each class (for a new image, the

output probabilities are calculated using the weights which have been optimized to

correctly classify all the previous training examples).

3.2 Tools and technology

The following tools will be used in the research work:

 Python

 Visual studio code editor

 Deep learning framework(Keras and Tensorflow)

17

3.3 Data Collection

Collected from www.PlantVillage.org and www.narc.gov.np. Dataset consists of four

thousand images of size 100X100. 70 % images are used for Training while 30% are Test

image. There are 1000 images per class. Different classes of Dataset are:

Table 3.1: Classes of datasets and their corresponding label

Label Class

0 BacterialSpot(Early blight)

1 septoriaLeaf Spot

2 Late blight

3 Healthy

http://www.plantvillage.org/
http://www.narc.gov.np/

18

CHAPTER 4 RESULT ANALYSIS AND DISCUSSION

4.1 Overview of task

4.1.1 Deep Learning Framework Installation and CPU Configuration

A very effective deep learning framework „Tensor Flow‟ is installed and is configured to

run on Core i5.TensorFlow is an open source software library for numerical computation

using data flow graphs. Nodes in the graph represent mathematical operations, while the

graph edges represent the multidimensional data arrays (tensors) that flow between them.

A deep learning framework „Keras‟ is used for efficient implementation.

4.1.2 Network Architectures

Architecture is designed with following layers‟ configuration:

i. INPUT Layer accepting input of 100X100 image with three channel color

ii. First CONV Layer with 100 3x3 filters. With RELU activation function.

iii. MAXPOOL Layer with size 2x2.

iv. Second CONV Layer with 50 3x3 filters. With RELU activation function.

v. Second MAXPOOL Layer with size 2x2

vi. Third CONV Layer with 25 3x3 filters. With RELU activation function.

vii. Third MAXPOOL Layer with size 2x2

viii. Dropout Layer with 25% dropout.

ix. Fourth CONV Layer with 10 3x3 filters. With RELU activation function.

x. Fourth MAXPOOL Layer with size 2x2

xi. Dropout Layer with 25% dropout.

xii) Flatten layer

xiii) Reshape layer which reshapes into 2X80

xiv. Recurrent layer having units 30

xv. . FULL Connection Layer with 4 units with softmax activation function

19

4.1.3 Experiment Results

Figure 4.1: Sample image

When figure 4.1 sample image is passed through 1
st
 convolution layer its output is shown

in figure 4.2

Figure 4.2: (a), (b), (c), (d), (e) and (f) are outputs from first convolution layer without

activation and max pooling operation (Filter size 3X3)

(a) (b) (c)

 (d) (e) (f)

20

Figure 4.3 Outputs from first convolution layer with relu activation

Figure 4.4 Outputs from first convolution layer with relu activation and max pooling

operation

Figure 4.5 Outputs from first convolution layer without activation and max pooling

operation (Filter size 5X5)

21

As we can see in figure 4.5, we lost some of the detail because the kernel was big (5X5)

compared in figure 4.2 where kernel size is 3X3.

Output of first layer acts as input for second layer. Output from 2
nd

 layer is shown in

figure 4.7.

Figure 4.6 Sample input for Second Convolution layer

Figure 4.7: Output from Second convolution layer (Filter size 3X3)

Figure 4.2, 4.3, 4.5 and 4.7 shows that convolution neural network are powerful due to

their ability to extract the core features of an image and use these features to indentify

images that contain features like them. Even with our two layers CNN we can start to see

the network is paying a lot attention to different regions.

22

4.1.4 Result Analysis

Figure 4.8: Loss when number of epochs is 200

The figure 4.8 shows loss when number of epochs is 200 which is equal to 0.1934 and

achieved 92.16 % of accuracy.

Figure 4.9: Accuracy when number of epochs is 200

 Loss

No. of Epoch

No. of Epoch

 Accuracy

23

The figure 4.9 shows accuracy when number of epochs is 200 which is equal to 92.16%.

Figure 4.10: Loss when number of epochs is 50(training set 70%)

The figure 4.10 shows loss during training period when number of epochs is 50 which is

equal to 0.3637 and achieved 85.75 % of accuracy. In this case percentage of training set

equals to 80 and testing set equals to 20.

Figure 4.11: Loss when number of epochs is 50(training set 80%)

The figure 4.11 shows loss during training period when number of epochs is 50 which is

equal to 0.44 and achieved 82.46 % of accuracy. In this case percentage of training set

equals to 70 and testing set equals to 30.

Table 4.1 Performance comparison by assigning different values of hyper parameter

No. of Epoch

 loss

 loss

 No. of Epoch

s

24

No_

of_e

poch

L_rat

e

Train

set

Validti

on_set

K_size Pool

size

Act

functio

n

Dropou

t

Loss accu

racy

20 0.001 80% 20% 3X3 2X2 ReLU 25% 0.59

0.73

20 0.001 70% 30% 3X3 2X2 ReLU 25% 0.44

0.76

50 0.001 80% 20% 3X3 2X2 ReLU 25% 0.3637

0.85

50 0.001 70% 30% 3X3 2X2 ReLU 25% 0.44

0.82

100 0.001 70% 30% 3X3 2X2 ReLU 25% 0.2822 0.88

200 0.001 70% 30% 3X3 2X2 ReLU 25 0.1934 0.92

Table 4.1 shows loss and accuracy of network. Result shows that when number of

epoch‟s increases and also number of dataset increases the performance of the system

increase.

Further 40 standard images were selected for cross validating the model and the results

were as follows:

Figure 4.12: Healthy image

25

When figure 4.12 were tested against the model. All images are healthy. Healthy images

are labeled as 3.The predicted result is as below:

Figure 4.13: Healthy leaf tested against built model

 Healthy leaf is labeled as 3. Figure 4.13 shows out of 8 images from validating set 5

images are predicted correctly.

Figure 4.14: Leaf infected by Septoria disease.

26

When figure 4.14 were tested against the model. All images are infected by Septoria

disease. Leaf infected by Septoria images are labeled as 1.The predicted result is as

below:

Figure 4.15: Septoria Leaf spot tested against model

Septoria leaf spot is labeled as 1. Figure 4.15 shows out of 8 images from validating set 6

images are predicted correctly.

Figure 4.16 Leaf infected by late blight

27

When figure 4.16 were tested against the model. All images are infected by late blight

disease. Leaf infected by late blight images are labeled as 2.The predicted result is as

below:

Figure 4.17: Late blight tested against model

Late blight is labeled as 2. Figure 4.17 shows out of 8 images from validating set 6

images are predicted correctly

Figure 4.18: Two image of each class

28

When figure 4.18 were tested against the model. All images are infected by late blight

disease. Leaf infected by late blight images are labeled as 2.The predicted result is as

below:

Figure 4.19: Two images from each class are tested against model

As in our model b1, b2 represent bacterial spot labeled as 0, sep1, sep2 represent

sepotoria labeled as 1, l1, l2 represent late blight labeled as 2 and h1 and h2 represent

healthy image labeled as 3. Figure 4.19 shows out of 8 images from validating set all are

predicted correctly.

Table 4.2: Number of Correct and wrong prediction

Input No Correct

Predicted

Wrong Predict

Healthy_image 8 5 3

Septoria leaf 8 6 2

Late blight 8 6 2

Early blight 8 8 0

2 images from

each class

8 8 0

Result 40 33 8

Data present in Table 4.2 is taken from figure 4.13, 4.15, 4.17and 4.19.

29

4.1.5 Confusion matrix Analysis

Table 4.3 Confusion matrix of model

 Predicated

Actual

 Early

blight(bacterial

spot)

Septoria

leaf spot

Late

Blight

Healthy

Early

blight(bacterial

spot)

10 2 0 0

Septoria leaf

spot

0 8 2 2

Late Blight 0 0 8 1

Healthy 0 0 0 7

Table 4.3 illustrates confusion matrix for these report. it consists of four classes (Early

blight, bacterial spot, Septoria leaf spot, Late Blight, Healthy) having 10 images of each

class and the diagonal elements represents true positive value.

Table 4.4, 4.5, 4.6 and 4.7 were derived from table 4.3 which show binary confusion

matrix of each class.

Table 4.4: Confusion matrix for early blight

 Actual class

 Early

blight

Non- Early

blight

Predicted

class

Early

blight

10 TP 0 FP

Non-

Earlyblight

2FN 28 TN

30

Table 4.5: Confusion matrix for septoria leaf spot

 Actual class

 septoria

leaf spot

Non- septoria

leaf spot

Predicted

class

septoria

leaf spot

8 TP 2 FP

Non-

septoria

leaf spot

4FN 26 TN

Table 4.6: Confusion matrix for late blight

 Actual class

 Late

blight

Non- late blight

Predicted

class

Late

blight

8 TP 2 FP

Non- Late

blight

1FN 29 TN

Table 4.7: Confusion matrix for healthy

 Actual class

 Healthy Non- Healthy

Predicted

class

Healthy 7 TP 3 FP

Non-

Healthy

0FN 30 TN

Overall accuracy=(10+8+8+7)/40=0.85

Precison Calculation(TP/TP+FP)

Precison of healthy leaf=7/(7+3)=0.7

31

Precison of late blight leaf=8/(8+2)=0.8

Precison of septoria leaf spot=8/(8+2)=0.8

Precison of Early blight=10/(10+0)=1

Avg precison=(0.7+0.8+0.8+1)/4=0.825

Recall or Sensitivity Calculation (TP/TP+FN)

Sensitivity of healthy leaf)=7/(7+0)=1

Sensitivityof late blight leaf=8/(8+1)=0.89

Sensitivity of septoria leaf spot=8/(8+4)=0.67

Sensitivity of Early blight=10/(10+2)=0.84

Avg Sensitivity=(1+0.89+0.67+0.84)/4=0.85

Specificity Calculation (TN/TN+FP)

Specificity of healthy leaf=30/(30+3)=0.91

Specificity of late blight leaf=29/(29+2)=0.93

Specificity of septoria leaf spot=26/(26+2)=0.92

Specificity of Early blight=28/(28+0)=1

Avg Specificity=(0.91+0.93+0.92+1)/4=0.94

Fmeasure(healthy)=2*precision*recall/precision+recall=2*0.7*1/1+0.7=0.82

Fmeasur(Early blight)=2*1*0.84/(1+0.84)=0.913

Fmeasure(seproria)=2*0.8*0.67/(0.8+0.67)=0.73

Fmeasure(late blight)=2*0.8*0.89/0.8+0.89=0.842

Fmeasure(Avg)=0.826

32

Table 4.8: Comparison with other model

Model name Accuracy loss

Support vector machine[3] 0.82 0.36

CNN[8] 0.72 0.42

CNN with RNN 0.92 0.1934

4.1.6 Discussion

It is found that the developed model is pretty much able to learn feature of input image

and predict disease present in leaf of tomato with accuracy 92.16%. This research

presents the study on plant diseases detection using artificial neural network. The

optimum result shows that proficiency of combined CNN with RNN in recognition of

tomato plant disease using infected leaf‟s image.

As expected the accuracy of CNN model was the least due to not an integer problem. So,

RNN was added to overcome this problem. In addition, SVM layer introduced to CNN

for further comparison. The accuracy and losses of these models are illustrated in table

4.8.

From table 4.8 it is clear that CNN has the least accuracy and adding RNN layer to CNN

layer increased the models accuracy, which was greater than adding SVM layer to CNN.

33

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1. Conclusion

Agriculture suffers from a severe problem, plant diseases, which reduce the production

and quality of yield. This thesis work focus to detect disease present in leaf of tomato

plant and involves collecting four class of tomato leaf, i.e., healthy leaf, leaf infected by

early blight, late blight and septoria. Work was carried out to investigate the use of

computer vision for classifying tomato leaf disease.

 This thesis presented an approach based on convolution neural networks along with

recurrent neural network to identify and classify tomato leaf diseases. The proposed

model can serve as a decision support tool to help farmers to identify the disease in the

tomato leaf. Hence, the farmer can take a picture of the leaf with the symptoms and then

the system will identify the type of the disease. Main contribution is to apply deep neural

networks along with recurrent neural network to detect common diseases such early

blight, late blight and septoria.

5.2 Limitation and Future Enhancement

As a limitation; this system is only capable of detecting three classes of diseases and

healthy plant. In order to detect other class of diseases data has to be trained on current

model. Algorithm will use transfer learning method to classify other class of diseases.

The main challenge while developing object detection model on machine learning was to

collect large number of train images with different shapes, sizes, with different

background, light intensity, orientation and aspect ratio.

As per the recommendation; the further study can be detect all types of plant diseases, not

only detection but also suggesting remedies for diseases. Finally, integrated with IOT

server to implement system on rural and remote area.

To overcome problem of convolution neural network another class of deep neural

network named capsule network can be use to get better result.

34

REFERENCES

[1] Al-Hiary, H.; Bani-Ahmad, S.; Reyalat, M.; Braik, M.; ALRahamneh, Z.: Fast and

accurate detection and classification of plant diseases. International Journal of Computer

Applications, 17(1):0975–8887, 2016.

[2] Sannakki, Sanjeev S; Rajpurohit, Vijay S; Nargund, V B; Kulkarni, Pallavi: Diagnosis

and Classification of Grape Leaf Diseases using Neural Networks. In: Fourth

International Conference on Communications and Networking Technologies. 2013.

[3] Elangovan, K; Nalini, S: Plant Disease Classification Using Image Segmentation and

SVM Technique. International Journal of Computational Intelligence Research, vol 13,

no.7,pp.1821-1828, 2017.

[4] Cui, Di; Zhang, Qin; Li, Minzan; Hartman, Glen L.; Zhao, Youfu: Image processing

methods for quantitatively detecting soybean rust from multispectral images. Biosystems

Engineering,107(3):186–193, 2010.

[5] Barbedo, Jayme Garcia Arnal; Koenigkan, Luciano Vieira; Santos, Thiago Teixeira:

Identifying multiple plant diseases using digital image processing. Biosystems

Engineering,147:104–116, 2016.

[6] Schor, Noa; Bechar, Avital; Ignat, Timea; Dombrovsky, Aviv; Elad, Yigal; Berman,

Sigal: Robotic Disease Detection in Greenhouses: Combined Detection of Powdery

Mildew and Tomato Spotted Wilt Virus. IEEE ROBOTICS AND AUTOMATION

LETTERS,1(1):354–360, 2016.

[7] P. Chaudhary, A.K. Chaudhari, A.N. Cheeran, and S. Godara: Color transform based

approach for disease spot detection on plant leaf. International Jounal of Computer

Science and Telecommunications, vol 3,no. 6,pp 65-69,2012

[8] Amara J., Bouaziz B., Algergawy A. Lecture Notes in Informatics (LNI) Gesellschaft

für Informatik; Bonn, Germany: 2017. A Deep Learning-based Approach for Banana

Leaf Diseases Classification.

[9] Kawasaki Y., Uga H., Kagiwada S., Iyatomi H. Basic Study of Automated Diagnosis

of Viral Plant Diseases Using Convolutional Neural Networks. In: Bebis G.,

editor. Advances in Visual Computing, Proceedings of the 11th International Symposium,

35

ISVC 2015, Las Vegas, NV, USA, 14–16 December 2015. Volume 9475. Springer;

Cham, Switzerland: 2015. pp. 638–645. Lecture Notes in Computer Science..

[10] Owomugisha, G.; Mwebaze, E. Machine Learning for Plant Disease Incidence and

Severity Measurementsfrom Leaf Images. In Proceedings of the 2016 15th IEEE

International Conference on Machine Learning andApplications (ICMLA), Anaheim, CA,

USA, 18–20 December 2016.

[11] Johannes A., Picon A., Alvarez-Gila A., Echazarra J., Rodriguez-Vaamonde S.,

Diez-Navajas A., Ortiz-Barredo A. Automatic plant disease diagnosis using mobile

capture devices, applied on a wheat use case. Comput.Electron. Agric. 2017;138:200–209.

doi: 10.1016.compag.2017.04.013.

[12] Fujita E., Kawasaki Y., Uga H., Kagiwada S., Iyatomi H. Basic investigation on a

robust and practical plant diagnostic system; Proceedings of the 2016 15th IEEE

International Conference on Machine Learning and Applications (ICMLA); Anaheim,

CA, USA. 18–20 December 2016.

[13] Islam, A. Dinh, K. Wahid and P. Bhowmik, "Detection of potato diseases using

image segmentation and multiclass support vector machine," Conference on Electrical

and Computer Engineering, Canada, 30 April–3 May 2017.

[14] Dalal, N.; Trigs, B. Histogram of Oriented Gradients for Human Detection. In

Proceedings of the IEEEComputer Society Conference on Computer Vision and Pattern

Recognition, San Diego, CA, USA, 20–25June 2005.

[15] Lowe, D. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput.

Vis. 2004, 60, 91–110.

[16] Cortes, C.; Vapnik, V. Support Vector Networks. Mach. Learn. 1995, 20, 293–297.

[17] Manik Soni- https:hackermoon.com/Understanding- architecture-of-lstm-cell-from

scratch

