COPYRIGHT

The author has agreed that the library, Department of Electronics and Computer Engineering, Pulchowk Campus, Institute of Engineering may make this thesis freely available for inspection. Moreover, the author has agreed that permission for extensive copying of this thesis work for scholarly purpose may be granted to Associate professor Dr. Sanjeeb Prasad Panday, who supervised the thesis work recorded herein or, in their absence, by the Head of the Department wherein the thesis was done. It is understood that the recognition will be given to the author of this thesis and to the Department of Electronics and Computer Engineering, Pulchowk Campus, and Institute of Engineering in any use of the material of this thesis. Copying or publication or the other use of this thesis for financial gain without approval of the Department of Electronics and Computer Engineering, Pulchowk Campus, Institute of Engineering and author's written permission is prohibited. Request for permission to copy or to make any other use of the material in this thesis in whole or in part should be addressed to:

Head

Department of Electronics and Computer Engineering Institute of Engineering Central Campus, Pulchowk Lalitpur, Nepal

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING CENTRAL CAMPUS, PULCHOWK DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certify that they have read, and recommended to the Institute of Engineering for acceptance, a thesis entitled " An Approach to Identify Early Blight, Late Blight and Septoria Disease Present in Leaf of Tomato Plant by Applying Convolution Neural Network and Recurrent Neural Network" submitted by Himal Chand Thapa in partial fulfillment of the requirements for the degree of Master of Science in Computer System and Knowledge Engineering.

Supervisor, Dr. Sanjeeb Prasad Panday Associate Professor Department of Electronics and Computer Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University

External Examiner, Er. Subhash Dhakal Under – Secretary (IT) Ministry of Communication and Information Technology

Committee Chairperson, Dr. Aman Shakya

Program Coordinator

Department of Electronics and Computer Engineering,

Pulchowk Campus,

Institute of Engineering, Tribhuvan University

DEPARTMENTAL ACCEPTANCE

The thesis entitled "AN APPROACH TO IDENTIFY EARLY BLIGHT, LATE BLIGHT AND SEPTORIA DISEASE PRESENT IN LEAF OF TOMATO PLANT BY APPLYING CONVOLUTION NEURAL NETWORK AND RECURRENT NEURAL NETWORK", submitted by Himal Chand Thapa in partial fulfillment of the requirement for the award of the degree of "Master of Science in Computer System and Knowledge Engineering" has been accepted as a bona fide record of work independently carried out by him in the department.

Associate Professor Dr. Surendra Shrestha

Head of the Department

Department of Electronics and Computer Engineering,

Pulchowk Campus,

Institute of Engineering,

Tribhuvan University,

Central Campus, Pulchowk

Lalitpur, Nepal.

ABSTRACT

Tomato plant is one of the most cultivated plants in Nepal. Large losses due to several diseases threaten the cultivation of tomato plant. Most of the diseases of tomato plant detected at initial stages as they affects leaves first. In this thesis work, a deep learning based approach (combination of convolution neural network and recurrent neural network) is used to find disease named early blight, late blight and septoria present in leaf of tomato.

The dataset contains 4000 images of tomato leaves infected by three diseases. Convolution neural network in combination of recurrent neural network are introduced and that leads to the direct use of image which avoids conventional image processing techniques. The obtained results are applicable; they can be used as a practical tool for farmers to protect against disease. Accuracy of these architectures has been calculated by feeding the networks with the test data. Lastly, results are compared and analyzed to find out best architecture. Small filter size of having filter size 3X3 best accuracy. Thus, this study gives a way to design efficient architecture to predict disease present in leaf of tomato plant.

Keywords:

Convolution neural network, recurrent neural network, early blight, late blight, Septoria

ACKNOWLEDGEMENT

With my immense pleasure, I would like to thank my respected thesis supervisor Associate Professor Dr.Sanjeeb Prasad Panday for his expert guidance and mentorship. Also, I would like to express my sincere gratitude to our Head of Department Associate Professor Dr. Surendra Shrestha,, Professor Dr. Subarna Shakya, Associate Professor Dr. Dibakar Raj Panta, Dr Basanta Joshi for their encouragement and valuable suggestions.

Also, I would like to thank our Program Coordinator (MSCSKE) Dr. Aman Shakya for his encouragement and precious guidance. I would like to thanks all my faculty teachers and friends for their incredible help and suggestions to bring this thesis to this level.

Finally, a special thanks to my family for supporting me and encouraging me with their blessings to accomplish this work.

Sincerely, Himal Chand Thapa (071/MSCS/653)

TABLE OF CONTENT

Copyright	ii
Approval Page	iii
Departmental Acceptance	iv
Abstract	v
Acknowledgement	vi
Table of Contents	vii
List of table	ix
List of figure	X
Abbreviation	xii
Chapter 1: Introduction	1
1.1 Background	1
1.2 Problem Definition	2
1.3 Objective	2
1.4 Scope of the work	2
Chapter 2: Literature Review	3
Chapter 3: Methodology	6
3.1 Model Development	6
3.1.1Dataset preparation	6
3.1.2 Image processing	6
3.1.3 Convolution and recurrent neural network	7
3.1.3.1 Convolution layers	7
3.1.3.2 Pooling layers	8
3.1.3.3 Dropout layer	9

3.1.3.4 Flatten layer	9
3.1.3.5 Recurrent Neural Network	9
3.1.3.6 Fully Connected layer	13
3.1.3.7 Back Propagation Algorithm	14
3.2 Tools and Technology	17
3.3 Data Collection	17
Chapter 4: Result Analysis and Discussion	18
4.1 Overview of task	18
4.1.1 Deep learning Framework Installation and CPU Configuration	10
	18
4.1.2 Network Architecture	18
4.1.3 Experiment Results	19
4.1.4 Result Analysis	22
4.1.5 Confusion matrix Analysis	29
4.1.4 Discussion	32
Chapter 5: Conclusion and Recommendation	33
5.1 Conclusion	33
5.2 Limitation and Future Enhancement	33
References	34

LIST OF TABLES

Table 3.1: Classes of datasets and their corresponding label	17
Table 4.1: Performance comparison by assigning different values of hyper parameter	24
Table 4.2: No of Correct and wrong prediction	28
Table 4.3: Confusion matrix of model	29
Table 4.4: Confusion matrix for early blight	29
Table 4.5: Confusion matrix for septoria leaf spot	30
Table 4.6: Confusion matrix for late blight	30
Table 4.7: Confusion matrix for healthy leaf	30
Table 4.8: Comparison with other model	32

LIST OF FIGURES

Figure 1.1: Common disease in leaf of tomato plant	1
Figure 2.1: General steps applied to plant disease identification	3
Figure 3.1: Proposed framework architecture	6
Figure 3.2: The pooling operations:	8
Figure 3.3: Basic structure of RNN	10
Figure 3.4: LSTM cell visual representation	11
Figure 3.5: Forget gate visual representation	11
Figure 3.6:Input gate visual representation	12
Figure 3.7: Output gate visual representation	13
Figure 4.1: Sample image	19
Figure 4.2 Output from first convolution layer without activation and max pooling oper	ation
(filter size 3X3)	19
Figure 4.3: Output from first convolution layer with relu activation	20
Figure 4.4: Outputs from first convolution layer with relu activation and max po	oling
operation	20
Figure 4.5: Outputs from first convolution layer without activation and max pooling oper	ation
(Filter size 5X5)	20
Figure 4.6: Sample input for second convolution layer	21
Figure 4.7: Output from second convolution layer (Filter size 3X3)	21
Figure 4.8: Loss when number of epochs is 200	22
Figure 4.9: Accuracy when number of epochs is 200	22
Figure 4.10: loss when number of epochs is 50(training set 70%)	23
Figure 4.11: loss when number of epochs is 50(training set 80%)	23
Figure 4.12: Healthy image	24
Figure 4.13: Healthy leaf tested against built model	25
Figure 4.14: Leaf infected by septoria disease	25
Figure 4.15: Septorial leaf spot tested against built model	26
Figure 4.16 Leaf infected by late blight	26
Figure 4.17: late blight tested against built model	27

Figure 4.18: Two image of each class	27
Figure 4.19: Two images from each class are tested against built model	28

ABBREVIATIONS

CNN: Convolution Neural Network

GDP Gross Domestic Product

RNN: Recurrent Neural Network

SVM: Support Vector Machine

MLP: Multilayer Perceptron

LSTM: Long Short-Term Memory

CPU: Central Processing Unit

TP: True positive

FP: False positive

TN: True Negative

FN: False Negative