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ABSTRACT 
 

 

Most commonly found thyroid nodules are benign which is less harmful in comparison 

to malignant nodules. Number of techniques are available such as Ultrasonography 

imaging, percutaneous biopsy to determine whether a nodule is benign or malignant. 

However, these techniques require well experienced and senior radiologists. Only 

benignity and malignancy classification sometime result unnecessary surgery. Current 

Classification scheme, Thyroid Imaging Reporting and Data System (TIRADS) further 

classified the benign and malignant nodule which preclude biopsies required or not. 

The ensemble RetinaNet in conjunction with US image which improve nodule 

characterization and reduce biopsies. RetinaNet is promising technique as it is a simpler 

one-stage object detector which is fast and efficient. RetinaNet has been proven to 

perform conventional object detection tasks but has not been tested on detecting in 

Thyroid nodules. Here ensemble RetinaNet has been implemented which classified 

thyroid nodules based on TIRADS classes successfully. To validate its performance, 

the experimental setup has been constructed using the thyroid digital image database 

(TDID). In addition to training and testing on the same dataset, evaluation of model set 

up is done by pre-trained ImageNet dataset. The diagnostic performance of the 

ensemble network model was calculated on the basis of precision, recall and F1 value. 

The precision value of the aforementioned network obtained up to 94% while recall 

value obtained up to 96% and F1 score obtained up to 93%.   

 

Keywords: Thyroid Digital Image Database, Thyroid Nodule, TIRADS, RetinaNet, 

Ultrasonography. 

 

 

 

 

 

 

 



viii 
 

TABLE OF CONTENTS 

 

COPYRIGHT© ............................................................................................................ iii 

DEPARTMENT ACCEPTANCE ................................................................................. v 

ACKNOWLEDGEMENT ............................................................................................ vi 

ABSTRACT ................................................................................................................. vii 

LIST OF FIGURES ....................................................................................................... x 

LIST OF TABLES ........................................................................................................ xi 

LIST OF ABBREVIATIONS ...................................................................................... xii 

CHAPTER 1  INTRODUCTION .................................................................................. 1 

1.1 Background and Motivation ............................................................................ 1 

1.2 Organization of the Thesis .............................................................................. 2 

1.3 Problem statement ........................................................................................... 3 

1.4 Objectives ........................................................................................................ 4 

CHAPTER 2  LITERATURE REVIEW ....................................................................... 5 

CHAPTER 3  THEORETICAL BACKGROUND........................................................ 9 

3.1 Convolutional Neural Network (ConvNet or CNN) ............................................ 9 

3.1.1 CNN architecture ........................................................................................... 9 

3.2 Neuron Activation Function ............................................................................... 11 

3.2.1 Sigmoid Function ........................................................................................ 11 

3.2.2 Hyperbolic Tangent Function(tanh) ............................................................ 11 

3.2.3 Rectified Liner Unit (ReLU) ....................................................................... 12 

3.3 Parameter Tuning ............................................................................................... 13 

3.3.1 Learning Rate .............................................................................................. 13 

3.3.2 Batch Size .................................................................................................... 14 

3.3.3 Dropout Regularization ............................................................................... 14 

3.4 Dataset Processing.............................................................................................. 15 



ix 
 

3.5 Tools ................................................................................................................... 15 

CHAPTER 4  METHODOLOGY ............................................................................... 16 

4.1 System Block Diagram....................................................................................... 16 

4.1.2 Data Collection ............................................................................................ 17 

4.1.3 Fine Tuning.................................................................................................. 19 

4.1.4 AlexNet ........................................................................................................ 19 

4.1.5 GoogleNet .................................................................................................... 21 

4.1.6 RetinaNet ..................................................................................................... 22 

4.1.7 Softmax ........................................................................................................ 26 

4.1.8 Evaluation Metrics ....................................................................................... 27 

CHAPTER 5  RESULT AND DISCUSSION ............................................................. 29 

5.1 Suspicious Nodular Area Detection ................................................................... 29 

5.2 Parameter Tuning (Hyperparameter for CNN) ............................................. 30 

5.3 Comparison with different Fine-tuned Ensemble Network Model .................... 33 

5.3 Thyroid Nodular Classification .......................................................................... 34 

5.4 Test Result .......................................................................................................... 37 

CHAPTER 6  CONCLUSION AND LIMITATION .................................................. 40 

6.1 Conclusion and Limitation ................................................................................. 40 

6.2 Future Works ...................................................................................................... 40 

REFERENCES ............................................................................................................ 41 

 

 

 

 

 

 



x 
 

LIST OF FIGURES 

 

Figure 1:A CNN sequence to classify image ................................................................. 9 

Figure 2 The Output of Sigmoid Function as x varies ................................................. 12 

Figure 3 The Output of tanh Function as x varies ....................................................... 12 

Figure 4 The output of ReLU as x varies ..................................................................... 13 

Figure 5 Dropout Regularization ................................................................................. 14 

Figure 6 Dataset include the validation set to prevent Overfitting during training ..... 15 

Figure 7:Thyroid Ultrasonography Image Classification Block Diagram ................... 16 

Figure 8 Ultrasonography Image of Thyroid of TDID dataset .................................... 18 

Figure 9:AlexNet system block diagram ..................................................................... 20 

Figure 10 A Structure of single Inception Layer ......................................................... 21 

Figure 11:The network architecture of RetinaNet ....................................................... 23 

Figure 12 Resnet Block ................................................................................................ 24 

Figure 13 Original Image of Thyroid Nodule (TIRADS5) .......................................... 29 

Figure 14 Suspicious Nodule area Detection using Image Thresholding .................... 30 

Figure 15 Accuracy (a) and Loss (b) plot on different learning rate ........................... 31 

Figure 16 Accuracy(a) and Loss(b) plot on varying the Batch Size ............................ 32 

Figure 17 Accuracy (a) and Loss(b) plot of different ensemble CNN model ............. 33 

Figure 18: Training(a) and Validation(a) Accuracy of the given Network Model ...... 36 

Figure 19:  Training (a) and Validation (b) loss of the given model ........................... 37 

Figure 20 Prediction of ultrasonography of thyroid test image by the given model ... 38 

Figure 21 Confusion Matrix for Classification of Thyroid Nodules ........................... 38 

 

 

 

 

  



xi 
 

LIST OF TABLES 
 

 

Table 1 : Simulation Environment and parameter of AlexNet .................................... 20 

Table 2: Simulation Environment and parameter of GoogleNet ................................. 21 

Table 3 : Simulation Environment and parameter of ResNet ...................................... 24 

Table 4: ImageNet dataset classification by Ensemble Network ................................. 34 

Table 5: Classification Performance of the given Fine-tuned Network ...................... 39 

  



xii 
 

LIST OF ABBREVIATIONS 

 

ANN Artificial Neural Network 

CAD Computer Aided Design 

CNN Convolution Neural Network 

LBP Local Binary Pattern 

MC-CNN Multitask Cascaded Convolution Neural Network 

ReLU Rectified Linear Unit 

ROI Region of Interest 

SIFT Scale Invariant Feature Transform 

SR Super Resolution 

TDID Thyroid Digital Image Database 

TIRADS Thyroid Imaging Reporting and Data System 

US Ultrasonography  

USSR Unsupervised Super-Resolution 

  

  

  

 

 

 

 

 

 

 

 

 

 



1 
 

CHAPTER 1  INTRODUCTION 
 

1.1 Background and Motivation 

 

A thyroid nodule is a lump that can develop in thyroid gland. It can be solid or filled 

with fluid. It can have a single nodule or a cluster of nodules. Thyroid nodules are 

relatively common and rarely cancerous. Recent study shows that thyroid nodules can 

be found in 68% of adults undergoing a thyroid ultrasound. Thyroid nodules increase 

with age and are present in almost 10% of the adult population. Most of solitary thyroid 

nodules are benign, and few of thyroid nodules are malignant.  

Deep learning models such as Convolutional Neural Networks (CNN) has proved its 

efficiency in various learning tasks, including the image classification problems. 

However, training a deep convolutional neutron network from beginning requires 

enormous number of images while the medical images are usually more difficult to 

gather and more cumbersome to process due to their particularities. Lack of sufficient 

images will result in problems like over-fitting; thus, two possible solutions are transfer 

learning and data augmentation. Transfer learning adopts pre-trained deep learning 

models and then fine-tuning the parameter with existing images in purpose of adjusting 

the pre-trained model to fit the current classification problem. As for data augmentation, 

the classical methods for augmenting images such as cropping, rotation, flipping and 

rescaling. But unlike other images that can easily be labeled and recognized, medical 

images needs well trained physicians to classifier various type of diseases. 

Additionally, traditional way of augmenting image data risk eliminating the paramount 

region of the image by random cropping, such as the tumor in an ultrasound Images.   

Convolution is the basis of CNN and it works  by  having  a  kernel  to  capture specific 

local patterns and gradually assemble layers of local patterns together to form more  

general  patterns.  For example, given an image of  a  thyroid ultrasonography,  a  

convolution may first extract edges in the first layer, then use those edges to construct 

simple shapes in the second layer and then use these shapes to determine higher-level 

features, such as thyroid nodules. By using the Convolutional Neural Networks (CNN) 

architecture for generalization, essentially making an assumption: all specific local 

patterns in testing data are arranged by a similar rule as in training data.   
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1.2 Organization of the Thesis  

 

This thesis implements the thyroid ultrasonography image classification such as benign 

nodules as TIRADS 2 and TIRADS 3 and malignant nodules as TIRADS 4a, 4b, 4c and 

TIRADS 5 based on fine-tuned ensemble convolutional neural network. The thesis 

report is organized and presented Chapter wise.  

Chapter I introduces with some background and motivational introduction about the 

thyroid nodules and their types and how it effects on health with some description on 

problem statement and introduces the objective of this thesis.   

Chapter II is regarding the Literature Review where includes the different research was 

done previously closely related to this thesis work.  It also includes the different 

researcher approach and technology that used in their research and their outcomes and 

limitation discussed.    

Chapter III is regarding the Theoretical Background of this Thesis including 

convolutional neural network and how it extracts feature from image, different 

architecture of CNN, Neuron activation function, parameter tuning for deep neural 

network, data processing and tools used in this thesis work. 

Chapter IV Methodology includes the overall system implementation to fullfill the 

objective of this thesis work. It also includes the architecture and simulation parameter 

and environment for different CNN such AlexNet, GoogleNet and RetinaNet and 

Dataset collection, different approach that support the deep CNN such as fine-tuning, 

ensemble and data augmentation. In this section also describe the classifier which 

classified the ultrasonography image and evaluation metrics which gives the system 

appropriateness. 

Chapter V gives the result of the experiment done in this research and the discussion of 

the result.  

Chapter VI gives overall completion and conclusion of the thesis work and describe the 

limitation of the thesis work and recommend future work to further enhance the 

performance of the work. 
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1.3 Problem statement 

Recently, many guidelines have been established for radiologists to evaluate thyroid 

nodules based on ultrasound characteristics. However, since ultrasonography is 

susceptible to echo disturbances and speckle noises, ultrasonography based thyroid 

nodule diagnosis still heavily relies on rich experiences and delicate skills of senior 

radiologists. Less experienced practitioners may potentially have high misdiagnosis 

rate due to their inability of accurately comprehending ultrasonography characteristics. 

Mis-diagnosis might consequently call for unnecessary biopsy and surgery, that would 

make patients have much more pressure and anxiety, and at the same time unavoidably 

increase medical expense. To effectively leverage the high-quality diagnosis 

experiences gained by senior radiologists, smart thyroid diagnosis Computer Aided 

Design (CAD) system is urgently needed. The benign nodules and the malignant 

nodules both have a wide variety of styles and layouts. The benign nodules have 

irregular shapes, smooth regions, and boundaries whereas malignant nodules have 

irregular shapes, coarse regions, and boundaries. Therefore, the thyroid nodules are 

hard to be directly recognized based on color and shape features. 

It is difficult to use hand-crafted features for thyroid nodule images to detect benign 

and malignant due to factors such as nodule composition, echogenicity, shape and 

calcification of the affected part of patient and differences in imaging devices. To 

address these problems, several studies have leveraged a deep convolutional neural 

network that does not require hand-crafted features. Deep learning technique that 

implicitly perform feature extraction on image data with deeper networks, generally 

learns more sophisticated representations of the image data. Training deep learning to 

perform this kind of automated feature extraction typically comes with the onus of 

requiring large volumes of labeled training data. When such training corpora are 

available, deep learning are capable of achieving state-of-the-art performance in general 

object recognition. CNNs may be indirectly limited when used with highly variable 

image datasets with limited samples (e.g., thyroid nodule images): shallow deep 

learning may be too general and would not be able to capture the subtle differences 

between such images while deep network may become highly sensitive to subtle 

differences and would not be able to capture the general similarity between such 

images. A method for classifying the different classes of thyroid nodule 

ultrasonography images using an ensemble of different CNN architectures such as 
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AlexNet, GoogleNet and RetinaNet. Ensemble learning is a machine learning process 

in which better predictive performance is obtained by combining the results from 

multiple classification models into one high quality classifier.  The model network 

resolves the challenges associated with using deep learning on multi-class classification 

problems with limited and unevenly distributed sample data by using ensemble network 

that have been pre-trained on a large collection of natural images (> 1 million) and fine-

tuning (optimizing) them using a smaller thyroid US image dataset (thousands).  

 

1.4 Objectives 

• To classify the US Thyroid Nodule Images using ensemble One-Stage Classifier 

model RetinaNet. 

• To analyze the performance of model on various classes of the Thyroid Nodule 

based on TIRADS. 
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CHAPTER 2  LITERATURE REVIEW 
 

Image patch classification is an important task in many different medical imaging 

applications. Customized Convolutional Neural Networks (CNN) with shallow 

convolution layer to classify lung image patches with interstitial lung disease (ILD). 

While many feature descriptors have been proposed over the past years, they can be 

quite complicated and domain-specific. CNN framework can automatically and 

efficiently learn the intrinsic image features from lung image patches that are most 

suitable for the classification purpose. The same architecture can be generalized to 

perform other medical image or texture classification tasks. [1] 

Artificial Neural Network (ANN) has been studied for many years to solve complex 

classification problems including image classification. The distinct advantage of neural 

network is that the algorithm could be generalized to solve different kinds of problems 

using similar designs. In image classification problems, the descriptiveness and 

discriminative power of features extracted are critical to achieve good classification 

performance. Feature extraction techniques commonly used in medical imaging include 

intensity histograms, filter-based features and the recently very popular scale-invariant 

feature transform (SIFT) and local binary patterns (LBP).[2] 

The key challenge for automatically classifying the modality of a medical image is due 

to the visual characteristics of different modalities: some are visually distinct while 

others may have only subtle differences. This challenge is compounded by variations 

in the appearance of images based on the diseases depicted and a lack of sufficient 

training data for some modalities. A new method for classifying medical images that 

uses an ensemble of different convolutional neural network (CNN) architectures. CNNs 

are a state-of-the-art image classification technique that learns the optimal image 

features for a given classification task. We hypothesize that different CNN architectures 

learn different levels of semantic image representation and thus an ensemble of CNNs 

will enable higher quality features to be extracted. The fine-tuning process leverages 

the generic image features from natural images that are fundamental for all images and 

optimizes them for the variety of medical imaging modalities. These features are used 

to train numerous multi-class classifiers whose posterior probabilities are fused to 

predict the modalities of unseen images.[3] 
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Deep learning in conjunction with professional image characterization could improve 

nodule characterization and reduce benign biopsies. The extracted features using 

convolutional autoencoders, local binary patterns as well as histogram of oriented 

gradients descriptors in association with medical professional thyroid image 

characterization. The experiment showed the classifiers using these features can 

improve negative predictive value of thyroid nodule evaluation using ultrasound.[4] 

The method of transfer learning is applied to classify the malignant and benign thyroid 

nodules based on their ultrasound images. The principal steps are preprocessing, data 

augmentation and classification by transfer learning. The preprocessing concentrates in 

extracting the region of interest (ROI). Two techniques of data augmentation are 

realized, the traditional ways of augmenting images and a small convolutional network. 

The best accuracy on the augmented dataset via convolutional network attains 93.75%, 

which exceeds the results of other two datasets and in the meanwhile outperforms other 

relevant methods.[5] 

In clinical practice, senior doctors could pinpoint nodules by analyzing global context 

features, local geometry structure, and intensity changes, which would require rich 

clinical experience accumulated from hundreds and thousands of nodule case studies. 

To alleviate doctors’ tremendous labor in the diagnosis procedure, advocate a machine 

learning approach to the detection and recognition. Developing a multi-task cascade 

convolution neural network framework (MC-CNN) to exploit the context information 

of thyroid nodules. It may be noted that, the framework is built upon a large number of 

clinically-confirmed thyroid ultrasound images with accurate and detailed ground truth 

labels. Other key advantages of our framework result from a multi-task cascade 

architecture, two stages of carefully-designed deep convolution networks in order to 

detect and recognize thyroid nodules in a pyramidal fashion, and capturing various 

intrinsic features in a global-to-local way.[6] 

A novel unsupervised super-resolution (USSR) framework to solve the single image 

super-resolution (SR) problem in ultrasound images which lack of training examples. 

The powerful nonlinear mapping ability of convolutional neural networks (CNNs), 

without relying on prior training or any external data. We exploit the multi-scale 

contextual information extracted from the test image itself to train an image-specific 

network at test time. To capture valuable internal information, dilated convolution is 
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employed to increase the receptive field without increasing the network parameters. To 

speed up the convergence of the training, residual learning is used to directly learn the 

difference between the high-resolution and low-resolution images.[7] 

Among the recent object detectors, RetinaNet is particularly promising as it is a simpler 

one-stage object detector that is fast and efficient while achieving state-of-the art 

performance. RetinaNet has been proven to perform conventional object detection tasks 

to validate its performance in diverse use cases, constructing several experimental 

setups using the public dataset INbreast and the in-house dataset GURO. In addition to 

training and testing on the same dataset (i.e. training and testing on INbreast) and 

evaluate mass detection model in setups using additional training data (i.e. training on 

INbreast + GURO and testing on INbreast). Also evaluate the model in setups using 

pre-trained weights (i.e. using Weights pre-trained on GURO, training and testing on 

INbreast). In all the experiments, the mass detection model achieves comparable or 

better performance than more complex state-of-the-art models including the two-stage 

object detector. Also, the results show that using the weights pre-trained on data sets 

achieves similar performance as directly using datasets in the training phase.[8] 

Training a deep convolutional neural network (CNN) from scratch is difficult because 

it requires a large amount of labeled training data and a great deal of expertise to ensure 

proper convergence. A promising alternative to training from scratch is to fine-tune a 

CNN that has been pre-trained using, for instance, a large set of labeled natural images. 

The idea of fine-tuning is indeed attractive for medical imaging applications; however, 

the substantial differences between natural and medical images may compromise the 

effectiveness of such knowledge transfer [9]. Use of a pre-trained CNN with adequate 

fine-tuning outperformed or, in the worst case, performed as well as a CNN trained 

from scratch. The superiority of the fined-tuned CNNs became even more evident when 

reduced training sets were used for training and fine-tuning. The required level of fine-

tuning differed from one application to another, neither shallow tuning nor deep tuning 

may be the optimal choice for a particular application. Layer wise fine-tuning may offer 

a practical way to reach the best performance for the application at hand based on the 

amount of available data. The performance of the CNN-based systems was greater than 

that of the handcrafted counterparts, further favoring the use of CNNs in medical 

imaging as a powerful alternative to handcrafted approaches. 
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Deeper neural networks are more difficult to train, a residual learning framework to 

ease the training of networks that are substantially deeper than those used previously. 

We explicitly reformulate the layers as learning residual functions with reference to the 

layer inputs, instead of learning unreferenced functions. A comprehensive empirical 

evidence showing that these residual networks are easier to optimize, and can gain 

accuracy from considerably increased depth [10]. 

 

The selection of parameters is one of the most important tasks in the training of a neural 

network. The choice of activation and loss functions is particularly relevant as the 

formulation of training procedures strongly depends on the pairing of these functions. 

Different combinations of these functions present the formulations of pairings of most 

common activation and loss functions. The impact of these formulations, including 

natural pairings, on both binary and multi-class classification in artificial and real-world 

datasets [11]. 
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CHAPTER 3  THEORETICAL BACKGROUND 
 

3.1 Convolutional Neural Network (ConvNet or CNN) 

 

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm which 

can take in an input image, assign importance (learnable weights and biases) to various 

aspects/objects in the image and be able to differentiate one from the other. The pre-

processing required in a ConvNet is much lower as compared to other classification 

algorithms. While in primitive methods filters are hand-engineered, with enough 

training, ConvNets have the ability to learn these filters/characteristics. The 

architecture of a ConvNet is analogous to that of the connectivity pattern of Neurons in 

the Human Brain and was inspired by the organization of the Visual Cortex. Individual 

neurons respond to stimuli only in a restricted region of the visual field known as the 

Receptive Field. A collection of such fields overlaps to cover the entire visual area. 

 

Figure 1:A CNN sequence to classify image 

3.1.1 CNN architecture 

 

A simple ConvNet is a sequence of layers, and every layer of a ConvNet transforms 

one volume of activations to another through a differentiable function. We use three 

main types of layers to build ConvNet architectures: Convolutional Layer, Pooling 

Layer, and Fully-Connected Layer.  
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The Convolution layer is the core building block of a Convolutional Network that does 

most of the computational heavy lifting. The CONV layer’s parameters consist of a set 

of learnable filters. Every filter is small spatially (along width and height), but extends 

through the full depth of the input volume. For example, suppose that the input volume 

has size [32x32x3], (e.g. an RGB CIFAR-10 image). If the receptive field (or the filter 

size) is 5x5, then each neuron in the Conv Layer will have weights to a [5x5x3] region 

in the input volume, for a total of 5*5*3 = 75 weights (and +1 bias parameter). Notice 

that the extent of the connectivity along the depth axis must be 3, since this is the depth 

of the input volume. 

Periodically insert a Pooling layer in-between successive Convolution layers in a 

ConvNet architecture. Its function is to progressively reduce the spatial size of the 

representation to reduce the number of parameters and computation in the network, and 

hence to also control overfitting. The Pooling Layer operates independently on every 

depth slice of the input and resizes it spatially. 

Neurons in a fully connected layer have full connections to all activations in the 

previous layer, as seen in regular Neural Networks. Their activations can hence be 

computed with a matrix multiplication followed by a bias offset. 

Convolutional layers are responsible for detecting certain local features in all locations 

of their input images. To detect local structures, each node in a convolutional layer is 

connected to only a small subset of spatially connected neurons in the input image 

channels. To enable the search for the same local feature throughout the input channels, 

the Thus, a convolutional layer with n kernels learns to detect n local features whose 

strength across the input images is visible in the resulting n feature maps. To reduce 

computational complexity and achieve a hierarchical set of image features, each 

sequence of convolution layers is followed by a pooling layer, a workflow reminiscent 

of simple and complex cells in the primary visual cortex. The max pooling layer reduces 

the size of feature maps by selecting the maximum feature response in overlapping or 

nonoverlapping local neighborhoods, discarding the exact location of such maximum 

responses. As a result, max pooling can further improve translation invariance. CNNs 

typically consist of several pairs of convolutional and pooling layers, followed by a 

number of consecutive fully connected layers, and finally a softmax layer, or regression 

layer, to generate the desired outputs. In more modern CNN architectures, 
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computational efficiency is achieved by replacing the pooling layer with a convolution 

layer with a stride larger than 1.  

3.2 Neuron Activation Function 

 

Activation functions are really important for an Artificial Neural Network to learn and 

make sense of something really complicated and Non-linear complex functional 

mappings between the inputs and response variable. They introduce non-linear 

properties to our Network. Their main purpose is to convert an input signal of a node 

in an ANN to an output signal. That output signal now is used as an input in the next 

layer in the stack. The most popular type of activation functions is described as: 

3.2.1 Sigmoid Function 

 

It is an activation function of form: 

                     𝑓(𝑥) =
1

𝑒−𝑥 
                                                                           (3.1)   

It is easy to understand and apply but it has major reasons which have made it fall out 

of popularity. 

➢ Vanishing gradient problem 

➢ its output isn’t zero centered. It makes the gradient updates go too far in different 

directions. 0 < output < 1, and it makes optimization harder. 

➢ Sigmoid saturate and kill gradients 

➢ Sigmoid have slow convergence. 

3.2.2 Hyperbolic Tangent Function(tanh) 

It is an activation function of form: 

                     𝑓(𝑥) =
2

1 + 𝑒−2𝑥 
 − 1                                                        (3.2) 

Function output is zero centered and its value range in between -1 to 1 i.e.  -1 < output 

< 1. Hence optimization is easier in this method. Deu to this reason in practice it is 

always preferred over Sigmoid function. But still it suffers from Vanishing gradient 

problem. 
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3.2.3 Rectified Liner Unit (ReLU) 

 

It is an activation function of form: 

𝑓(𝑥) = max(0, 𝑥)                                                              (3.3) 

if x < 0, 𝑓(𝑥) = 0 and if x >= 0, 𝑓(𝑥)= x. 

It has become very popular in the past couple of years. It was recently proved that it 

had 6 times improvement in convergence from Tanh function. It avoids and rectifies 

vanishing gradient problem. So that almost all deep learning Models use ReLU 

nowadays. 

 

 

 

 

 

 

 

 

Figure 2 The Output of Sigmoid Function as x varies 

 

 

 

 

 

 

 

Figure 3 The Output of tanh Function as x varies 
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Figure 4 The output of ReLU as x varies 

 

3.3 Parameter Tuning 

 

The parameters of Neural Network that are fixed, also called hyperparameters, which 

are not learnt as part of the neural network, but rather passed as arguments to the 

classifier or regressor. Examples are the learning rate, optimizer or the kernel initializer 

that we set as part of building the neural network. The objective of hyperparameter 

optimization is to find the combination of hyperparameters that would result in an 

optimal model that would minimize the loss function. Loss function is the difference 

between the actual value and the predicted value. 

3.3.1 Learning Rate 

 

The learning rate is a hyperparameter that controls how much to change the model in 

response to the estimated error each time the model weights are updated. Choosing the 

learning rate is challenging as a value too small may result in a long training process 

that could get stuck, whereas a value too large may result in learning a sub-optimal set 

of weights too fast or an unstable training process. Deep learning neural networks are 

trained using the stochastic gradient descent algorithm. Stochastic gradient descent is 

an optimization algorithm that estimates the error gradient for the current state of the 

model using examples from the training dataset, then updates the weights of the model 

using the back-propagation of errors algorithm, referred to as simply backpropagation. 
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3.3.2 Batch Size 

 

The number of examples from the training dataset used in the estimate of the error 

gradient is called the batch size and is an important hyperparameter that influences the 

dynamics of the learning algorithm. This involves using the current state of the model 

to make a prediction, comparing the prediction to the expected values, and using the 

difference as an estimate of the error gradient. This error gradient is then used to update 

the model weights and the process is repeated. 

3.3.3 Dropout Regularization 

 

The primary reason overfitting happens is because the model learns even the tiniest 

details present in the data. So, after learning all the possible patterns it can find, the 

model tends to perform extremely well on the training set but fails to produce good 

results on the validation and test sets. It falls apart when faced with previously unseen 

data. This neural network is overfitting on the training data. Suppose add a dropout of 

0.5 to all these images. The model will randomly remove 50% of the units from each 

layer and we finally end up with a much simpler network: 

 

 

 

 

 

 

 

Figure 5 Dropout Regularization 

The dropout regularization parameter set to a large value, the decay in the weights 

during gradient descent update will be more. Hence, the weights of most of the hidden 

units will be close to zero. Since the weights are negligible, the model will not learn 

much from these units. This will end up making the network simpler and thus reduce 

overfitting. 
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3.4 Dataset Processing 

 

Training Dataset: The sample of data used to fit the model. The actual dataset that we 

use to train the model (weights and biases in the case of Neural Network). The model 

sees and learns from this data. 

Validation Dataset: The sample of data used to provide an unbiased evaluation of a 

model fit on the training dataset while tuning model hyperparameters. The evaluation 

becomes more biased as skill on the validation dataset is incorporated into the model 

configuration. The validation set is used to evaluate a given model, but this is for 

frequent evaluation. Validation Dataset stop the training process as soon as overfitting 

start and prevent from poor generalization. 

Test Dataset: The sample of data used to provide an unbiased evaluation of a final 

model fit on the training dataset. The Test dataset provides the gold standard used to 

evaluate the model. It is only used once a model is completely trained (using the train 

and validation sets).  

 

 

 

 

Figure 6 Dataset include the validation set to prevent Overfitting during training 

3.5 Tools 

 

Different computational task in this research are computed Using Python (Python 

3.6.6), end to end open source platform for machine learning TensorFlow, TFLearn, 

TensorBord etc. 

 

 

 

Training Data 
Validation 

Data 
Test Data 
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CHAPTER 4  METHODOLOGY 
 

4.1 System Block Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7:Thyroid Ultrasonography Image Classification Block Diagram 

 

Figure7 shows an overall system block diagram of thyroid nodule image classification, 

in which first fine-tuned the CNN architectures that had been pretrained (initialized) on 

natural image dataset i.e. ImageNet. After that the dataset used for this research to fine 

tune the pretrained network comes from open access database for thyroid nodule TDID 

(Thyroid Digital Image Database). Each of the fine-tuned CNNs will then use a 

classifier generating softmax probabilities to determine the class of the image. 
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Archive 
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GoogleNet 

Thyroid 
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Pre-trained 

RetinaNet 

 

Pre-trained 

AlexNet 

Pre-trained 

GoogleNet 
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Fine-tuned 

AlexNet 
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Output Benign 

(TIRADS 2 and TIRADS 3) 

Output Malignant 

(TIRADS 4a, TIRADS 4b, TIRADS 4c and 

TIRADS 5) 
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CNNs are trained with the back-propagation algorithm by minimizing the following 

cost function with respect to the unknown weights W which is given as 

𝐿 =  −
1

|𝑋|
∑ ln

|𝑋|

𝑖

(𝑝(𝑦𝑖|𝑋𝑖))                             (4.1) 

Where, 

where |𝑋| denotes the number of training images, Xi denotes the ith training image with 

the corresponding label 𝑦𝑖, and 𝑝(𝑦𝑖|𝑋𝑖) denotes the probability by which 𝑋𝑖 is 

correctly classified.  

Stochastic gradient descent is commonly used for minimizing this cost function, where 

the cost over the entire training set is approximated with the cost over mini-batches of 

data. 

 

𝛾𝑡 = 𝛾
𝑡𝑁
|𝑋|                                                                                 

𝑉𝑙
𝑡+1 = 𝜇𝑉𝑙

𝑡 − 𝛾𝑡𝛼𝑙

𝜕𝐿

𝑊𝑙
                                                         

𝑊𝑙
𝑡+1 = 𝑊𝑙

𝑡 +  𝑉𝑙
𝑡+1                                                   ( 4.2) 

where αl is the learning rate of the, 𝑙𝑡ℎ layer is the momentum that indicates the 

contribution of the previous weight update in the current iteration, and γ is the 

scheduling rate that decreases learning rate at the end of each epoch. 

4.1.2 Data Collection  

 

The dataset was collected from open access database for thyroid nodule TDID (Thyroid 

Digital Image Database), which contains in total 480 valid cases and the images in the 

grayscale. Among the 480 cases with TIRADS score, 280 cases were diagnosed as 

malignant (TIRADS score 4a, 4b, 4c and 5) and 200 cases as Benign (TIRADS score 2 

and 3). The image augmentation process was used to produce 2000 number of datasets 

for training the convolutional Neural Network model. Among them 1400 images were 

used for training, 400 images used for validation and rest 200 images for test sets. The 

different classes of TIRADS images of TDID dataset is shown in figure 8. 
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(a)TIRADS2        (b) TIRADS3 

(c) TIRADS 4a     (d) TIRADS 4b 

 

(e) TIRADS 4c                                                           (f) TIRADS 5 

 

Figure 8 Ultrasonography Image of Thyroid of TDID dataset 
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4.1.3 Fine Tuning 

 

The iterative weight update in Eq 4.2 begins with a set of randomly initialized weights. 

Specifically, before the commencement of the training phase, weights in each 

convolutional layer of a CNN are initialized by values randomly sampled from a normal 

distribution with a zero mean and small standard deviation. However, considering the 

large number of weights in a CNN and the limited availability of labeled data, the 

iterative weight update, starting with a random weight initialization, may lead to an 

undesirable local minimum for the cost function. Alternatively, the weights of the 

convolutional layers can be initialized with the weights of a pre-trained CNN with the 

same architecture. The pre-trained net is generated with a massive set of labeled data 

from a different application. Training a CNN from a set of pre-trained weights is called 

finetuning and has been used successfully in several applications.  

Fine-tuning begins with copying (transferring) the weights from a pre-trained network 

to the network we wish to train. The exception is the last fully connected layer whose 

number of nodes depends on the number of classes in the dataset. A common practice 

is to replace the last fully connected layer of the pre-trained CNN with a new fully 

connected layer that has many neurons as the number of classes in the new target 

application. In this research, it deals with 6-class classification tasks; therefore, the new 

fully connected layer has 6 neurons. After the weights of the last fully connected layer 

are initialized, the new network can be fine-tuned in a layer-wise manner, starting with 

tuning only the last layer, then tuning all layers in a CNN. 

4.1.4 AlexNet 

 

This well-established CNN follows standard neural network architecture of stacked and 

connected layers. It comprises eight layers that need to be trained, five convolutional 

layers followed by three fully connected layers, as well as max-pooling layers. first, 

second, and fifth convolutional layers are followed by overlapping max-pooling layers 

that make it more difficult for the network to overfit. The output of the fifth 

convolutional layer (after max-pooling) is fed into the stack of fully-connected layers. 

A rectified linear unit (ReLU) non-linearity is applied to each convolutional and fully 

connected layer to enable faster training. 
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Figure 9:AlexNet system block diagram 

 

Table 1 : Simulation Environment and parameter of AlexNet 

Layer Width Hight Depth Filter Strides 

Input 300 300    

Conv1, ReLU 300 300 64 11*11 2 

Max pool1 55 55 64 3*3 1 

Conv2, ReLU 27 27 64 5*5 1 

Maxpool2 27 27 32 3*3 1 

Conv3, ReLU 27 27 64 3*3 1 

Conv4, ReLU 13 13 128 3*3 1 

Conv5, ReLU 6 6 128 3*3 1 

Maxpool3 6 6 64   

Dropout (.5)      

Fully Connected, 1024      

Dropout (0.5)      
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Fully connected, 512      

Regression, 6 classes, 

Softmax 

     

 

4.1.5 GoogleNet 

 

This CNN architecture introduced a new “Inception” module, a subnetwork comprising 

of parallel convolutional filters whose outputs are concatenated. The repetition of the 

Inception modules captures the optimal sparse representation of the image while 

simultaneously reducing dimensionality. The network comprises 22 layers that require 

training (or 27 if pooling layers are also considered). Experiments have shown that 

GoogLeNet has fewer trainable weights than AlexNet and is more accurate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 A Structure of single Inception Layer 

 

Table 2: Simulation Environment and parameter of GoogleNet 

Layer Width Hight Depth Filter Strides 

Input 300 300    

Conv1, ReLU 112 112 64 7*7 2 

Max pool1 56 56 64 3*3 2 

Conv2, ReLU 56 56 128 3*3 1 

Filter 

Concatenation 

1*1 Conv 5*5 Conv 3*3 Conv 
3*3 max 

polling 

Previous Layer 
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Maxpool2 28 28 128 3*3 2 

Inception (3a), ReLU 28 28 256   

Inception (3b), ReLU 28 28 128   

Maxpool3 28 28 128 3*3 2 

Inception (4a), ReLU 14 14 64   

Inception (4b), ReLU 14 14 64   

Inception (4c), ReLU 14 14 128   

Inception (4d), ReLU 14 14 256   

Inception (4e), ReLU 14 14 256   

Maxpool4 7 7 128 3*3 2 

Inception (5a), ReLU 7 7 512   

Inception (5a), ReLU 7 7 512   

Average pool 1 1 512 7*7 1 

Dropout(0.5)      

Fully Connected, 1024      

Dropout(0.4)      

Fully Connected, 512      

Regression, 6 classes, 

Softmax 

     

 

4.1.6 RetinaNet 

 

RetinaNet is a single, unified network composed of a backbone network and two task-

specific subnetworks. The backbone is responsible for computing a conv feature map 

over an entire input image and is an off-the-self convolution network. The first subnet 

performs classification on the backbones output; the second subnet performs 

convolution bounding box regression. 

Backbone: Feature Pyramid network built on top of ResNet32 which can use classify 

the US Image.  

Classification subnet: It predicts the probability of object presence at each spatial 

position for the object classes. Takes a input feature map with C channels from a 

pyramid level, the subnet applies four 3x3 conv layers, each with C filters and each 
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followed by ReLU activations. Finally, sigmoid activations are attached to the outputs. 

Focal loss is applied as the loss function. 

Figure11 shows the overall architecture of RetinaNet. The backbone network computes 

convolutional feature map of   an entire input image. The first subnetwork is the class 

subnet which classifies the output of the backbone network and the second subnetwork 

is the box subnet that performs convolutional bounding box regression. The architecture 

of RetinaNet is simpler than that of a two-stage object detector that is composed of 

independent multiple networks for classification and Regression. 

 

 

 

 

 

 

 

 

Figure 11:The network architecture of RetinaNet 

4.1.6.1 ResNet 

The degradation (of training accuracy) indicates that not all systems are similarly easy 

to optimize. Let us consider a shallower architecture and its deeper counterpart that 

adds more layers onto it. There exists a solution by construction to the deeper model: 

the added layers are identity mapping, and the other layers are copied from the learned 

shallower model. The existence of this constructed solution indicates that a deeper 

model should produce no higher training error than its shallower counterpart. But 

experiments show that our current solvers on hand are unable to find solutions that are 

comparably good or better than the constructed solution. 

The residual block has two 3×3  convolutional layers with the same number of output 

channels. Each convolutional layer is followed by a batch normalization layer and a 

ReLU activation function. Then skip these two convolution operations and add the input 

directly before the final ReLU activation function. This kind of design requires that the 

ResNet 

FPN 



24 
 

output of the two convolutional layers be of the same shape as the input, so that they 

can be added together. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Resnet Block 

 

Table 3 : Simulation Environment and parameter of ResNet 

Layer Depth Filter Strides 

Input 1 N/A 1 

Conv1 64 3*3 2 

Conv2 64 3*3 2 

Add Residual, ReLU   1 

Conv3 128 3*3 2 

Conv4 256 3*3  

Add Residual, ReLU 128   

Conv5 128 3*3 1 

Conv6 64 3*3  

Add Residual, ReLU    
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Conv7 128 3*3  

Conv8 256 3*3  

Add Residual, ReLU    

Conv9 128 3*3 2 

Conv10 512 3*3  

Add Residual, ReLU    

… … …..  

… … ….  

… … …..  

Conv31 512 3*3 1 

Conv32 512 3*3  

Average Pool    

Fully connected, 1056    

Regression, 6 classes, 

Softmax 

   

 

4.1.6.2 Focal Loss 

One-stage detectors that are applied over a regular, dense sampling of possible object 

locations have the potential to be faster and simpler, but have trailed the accuracy of 

two-stage detectors because of extreme class imbalance encountered during training 

Focal loss is the reshaping of cross entropy loss such that it down-weights the loss 

assigned to well-classified examples. The novel focal loss focuses training on a sparse 

set of hard examples and prevents the vast number of easy negatives from 

overwhelming the detector during training. 

Focal loss function is simple extension of cross entropy (CE) loss function. CE loss 

function is defined as when the estimated probability for binary classification is defined 

as: 

𝑃𝑡 = {1−𝑃     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       (4.3)
𝑃,        𝑖𝑓 𝑦=1

 

𝐶𝐸(𝑃𝑡) = − log(𝑃𝑡)                                                  (4.4) 

𝐹𝐿(𝑃𝑡) = −𝛼(1 −)𝛾 log(𝑃𝑡)                                    (4.5) 
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The main property of CE loss function is that even samples that are easy to classify 

have a considerable amount of loss. Using CE loss function guarantees successful result 

when training a model on a balanced set. 

4.1.7 Softmax 

The softmax function is a generalization of the logistic function that highlights the 

largest values in a vector while suppressing those that are significantly below the 

maximum. When applied to a D-dimensional feature vector, the softmax function can 

be used as a non-linear variant of multinomial logistic regression to generate a vector 

of D probability values, the d-th element of which is the likelihood that the vector 

represents a member of the d-th class. The softmax function is widely used as the 

classification layer of many CNN architectures. 

Oftentimes, we want our output vector to be a probability distribution over a set of 

mutually exclusive labels. For example, let’s say we want to build a neural network to 

recognize handwritten digits from the MNIST dataset. Each label (0 through 9)  is 

mutually exclusive, but it’s unlikely that we will be able to recognize digits with 100% 

confidence. Using a probability distribution gives us a better idea of how confident we 

are in our predictions. As a result, the desired output vector is of the form below, where 

∑ 𝑃𝐼 = 1 ;
5

𝑖=0
                            ( 4.6) 

[𝑃0    𝑃1      𝑃2 … … . … … . . 𝑃5] 

 

This is achieved by using a special output layer called a softmax layer. Unlike in other 

kinds of layers, the output of a neuron in a softmax layer depends on the outputs of all 

the other neurons in its layer. This is because we require the sum of all the outputs to 

be equal to 1. Letting zi be the logit of the ith softmax neuron, we can achieve this 

normalization by setting its output to: 

𝑦𝑖 =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗
𝑗

                                              (4.7) 
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A strong prediction would have a single entry in the vector close to 1, while the 

remaining entries were close to 0. A weak prediction would have multiple possible 

labels that are more or less equally likely 

4.1.8 Evaluation Metrics 

 

4.1.8.1 Confusion Matrix  

The Confusion matrix is one of the most intuitive and metrics used for finding the 

correctness and accuracy of the model. It is used for Classification problem where the 

output can be of two or more types of classes. the confusion matrix, is a table with two 

dimensions Actual and Predicted), and sets of classes in both dimensions. Actual 

classifications are columns and Predicted ones are Rows. 

 

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 = [
𝑇𝑃 𝐹𝑁
𝐹𝑃 𝑇𝑁

] 

1. True Positives (TP): True positives are the cases when the actual class of the 

data point was 1(True) and the predicted is also 1(True). 

2. True Negatives (TN): True negatives are the cases when the actual class of the 

data point was 0(False) and the predicted is also 0(False) 

3. False Positives (FP): False positives are the cases when the actual class of the 

data point was 0(False) and the predicted is 1(True). False is because the model 

has predicted incorrectly and positive because the class predicted was a positive 

one. (1) 

4. False Negatives (FN): False negatives are the cases when the actual class of the 

data point was 1(True) and the predicted is 0(False). False is because the model 

has predicted incorrectly and negative because the class predicted was a 

negative one. (0) 

5. Precision: It is defined as: 

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                      (4.8) 

Which gives proportion of positive identifications was actually correct. 

6. Recall: It is defined as: 
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Recall  =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                            (4.9) 

Which gives proportion of actual positives was identified correctly.  

7. F1-Score: It is the harmonic mean of precision and recall. 

Recall  = 2 ∗  
𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                       (4.10) 

Which gives the score which shows that how much the model is appropriate. 

8. Multiple Classification: For multiple classification, TPi,, FPi,, and FNi, to 

respectively indicate true positives, false positives, and false negatives in the 

confusion matrix associated with the i-th class. Moreover, let precision be 

indicated by P and recall by R and are calculated as: 

𝑃 =
∑ 𝑇𝑃𝑖𝑖

∑ (𝑇𝑃𝑖 + 𝐹𝑃𝑖)𝑖
                                   (4.11) 

 

𝑅 =
∑ 𝑇𝑃𝑖𝑖

∑ (𝑇𝑃𝑖 + 𝐹𝑁𝑖)𝑖
                                   (4.12) 
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CHAPTER 5  RESULT AND DISCUSSION 
 

5.1 Suspicious Nodular Area Detection 

 

The method utilizes two bounds: horizontal projection and vertical projection, to locate 

the suspicious thyroid regions. This restricts the location of the segmentation and 

excludes some artifacts of the images. An example is shown in Figure12. Anatomical 

information in the image is obtained and the image is divided into three parts: skin, 

thyroid area, and dark region. Among of three parts, skin has higher gray levels, and 

the intensity of thyroid area is between skin and dark region. According to the 

characteristics, a horizontal projection is utilized to separate the thyroid area from other 

parts. We calculate the average intensity for each row of the image. Then Otsu’s 

Thresholding were used which sets the average threshold value and separate the 

intensity information for both skin parts and nodules parts. Finally, the thresholding 

omitted the high intensity part and the average intensity part shown by a dark spot which 

indicated the nodular area in the given ultrasonography image. The dark spot in 

figure14 shows the thyroid affected area,  

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Original Image of Thyroid Nodule (TIRADS5) 
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Figure 14 Suspicious Nodule area Detection using Image Thresholding 

5.2 Parameter Tuning (Hyperparameter for CNN) 

 

a. Learning Rate: An aforementioned network model i.e. ensemble of 

AlexNet, GoogleNet and RetinaNet was trained through the 

ultrasonography Image of training dataset by varying a learning rate as 0.1, 

0.01 and 0.001. The accuracy and loss value at every training step was 

recorded in a log file and then all values plotted as shown in figure15.  

Figure15 shows that training with 0.1 and 0.01 learning rate did not 

converge and result low training accuracy and high validation losses 

whereas training with learning rate 0.001 results high training accuracy and 

low validation losses. 

Pixel 

P
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(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 15 Accuracy (a) and Loss (b) plot on different learning rate 

 

b. Batch Size: An aforementioned network model i.e. ensemble of AlexNet, 

GoogleNet and RetinaNet was trained through the ultrasonography Image 

of training dataset varying by batch size as 32, 64 and 128. The accuracy 

and loss value at every training step was recorded in a log file and then all 

values plotted as shown in figure16. As shown in figure16, training with 32 

and 64 batch size converged and result high training and validation accuracy 

whereas with batch size with 128 results high training and validation loss 

and did not converge. 

LR=0.01 

LR=0.1 

LR=0.001 

Training Step 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 16 Accuracy(a) and Loss(b) plot on varying the Batch Size 
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5.3 Comparison with different Fine-tuned Ensemble Network Model 

 

The ensemble AlexNet and GoogleNet CNN model was compared with the CNN model 

used in this research i.e. ensemble AlexNet and GoogleNet with RetinaNet. A similar 

experimental set up was done for both model such as hyperparameter learning rate set 

to 0.001, batch size to 32. The both ensemble models were trained through the same 

thyroid ultrasonography dataset and the training accuracy and loss values were 

recorded. The accuracy and loss graph of two different ensemble model is shown in 

figure 17. 

(a) 

(b) 

Figure 17 Accuracy (a) and Loss(b) plot of different ensemble CNN model 
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As shown in figure 17, the combination of AlexNet, GoogleNet and RetinaNet model 

had high accuracy and low training loss as compared to the combination of only 

AlexNet and GoogleNet. Hence the model used in this research had better performance 

for classifying ultrasonography image and ensemble RetinaNet framework can improve 

the performance of thyroid nodules recognition and classified the nodule more 

appropriately.  

5.3 Thyroid Nodular Classification 

 

By Using the preprocessed Ultrasonography images, the neural network was trained to 

classify the US image benign as TRAID2 and TRAID3 whereas malignant nodules as 

TRAID4a, TRAID4b, TRAID4c and TRAID5. The transfer learning method such 

AlexNet, GoogleNet and RetinaNet was used to train the model, which are the most 

popular image recognition model and has been previously successfully adapted for 

medical image analysis. The AlexNet, GoogleNet and RetinaNet model was pretrained 

with 1.2 million images labeled with 1000 semantic classes from the ImageNet Large 

Scale Visual Recognition Challenge repository. The AlexNet, GoogleNet and 

RetinaNet model architecture consists of the following layers which are pretrained, and 

contain information that can discriminate between images: a stem layer, Inception-A 

layers, Inception-B layers, Inception-B layer, Feature Pyramid Layer,  a pooling layer, 

a dropout layer, a fully connected layer, and a softmax layer.  

The pretrained AlexNet, GoogleNet and RetinaNet models were classified the natural 

Image successfully as shown in table 4: 

Table 4: ImageNet dataset classification by Ensemble Network 

S.N. Real Image of ImageNet 

Dataset 

Predicted by the model 

1.  

 

Rocking Chair 

Probability 94.929% - Rocking chair 

Probability 5.26% - Throne 

Probability 0.10% - Barber chair 

Probability 0.03% - Barber shop 

Probability 0.03% - Folding Chair 

2.  

 

Probability 30.21% - Magpie 

Probability 7.96% - Coucal 
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Magpie Probability 6.75% - Junco 

Probability 6.50% - Indigo Bounting 

Probability 3.37% - Jay 

 

The dataset used for this study comes from open access database for thyroid nodule 

TDID (Thyroid Digital Image Database), which contains in total 480 valid cases and 

the images in the grayscale. Among the 480 cases with TIRADS score, 280 cases were 

diagnosed as malignant (TIRADS score 4a, 4b, 4c and 5) and 200 cases as Benign 

(TIRADS score 2 and 3). The image augmentation process such as rotation by 90 

degree, Gaussian noise, flip and random colorization was used to produce 2000 number 

of datasets for training the convolutional Neural Network model. Among them 1400 

images were used for training, 400 images used for validation and rest 200 images for 

test sets. The US Image was tuned on the Network model pretrained by ImageNet 

dataset to produce the fine-tuned fully connect network model to create a new fully 

connected layer. A “bottleneck layer,” used with an extremely small number of units 

(compared with the adjacent layers). A small number of units can aggregate the 

propagated information and extract fundamental features from the input data. The new 

fully connected layer was trained with hyperparameters, with a learning rate of 0.001, 

a batch size of 32, model store frequency of 300, and 6000 training steps. The validation 

data was used in a holdout cross-validation manner.  
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(b) 

Figure 18: Training(a) and Validation(a) Accuracy of the given Network Model 

 

The accuracy was recorded as training accuracy and validation accuracy in every 10 

training steps for 6000 steps. The training step 2200 was identified as the point where 

the gap between the training accuracy and validation accuracy began to spread. So that 

training step 2200 was selected as the final model without overfitting. Benignity 

(TIRADS2, TIRADS3) or malignancy (TIRADS4a, TIRADS4b, TIRADS4c and 

TIRADS5) was presented based on a probability threshold of 0.85.  
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(b) 

Figure 19:  Training (a) and Validation (b) loss of the given model 

 

5.4 Test Result 

 

The internal test datasets comprised 200 US nodule images having 64 images were 

benign and 136 images were malignant. Of the 64 benign nodule, 33 nodules were 

TIRADS2 and 31 nodules were TIRADS3 and of the 136 malignant nodules, 43 were 

TIRADS4a, 28 were TIRADS4b, 33 were TIRADS4c and 32 were TIRADS5. 

The test dataset run on the aforementioned fine-tuned ensemble CNN network and the 

outputs are observed. Some of the test result is shown in figure 20.  

   (a)Original Image of TIRADS 4a            (b) Model Predicted as TIARADS 4a 

 

Training Steps 
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 (c) Original Image of TIRADS 3   (d) Model Predicted as TIRADS 2 

Figure 20 Prediction of ultrasonography of thyroid test image by the given model 

 

The 200-test ultrasonography image of different thyroid nodule run on the fine-tuned 

ensemble AlexNet, GoogleNet and RetinaNet networks and the predicted result is 

shown in the form of Confusion matrix for multiple classification. Then Evaluation 

metric such as Precision, Recall and F1 score was calculated separately. 

 

 

Figure 21 Confusion Matrix for Classification of Thyroid Nodules 
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The confusion matrix shown in figure 21 reflected that the model used in this research 

i.e. ensemble of AlexNet, GoogleNet and RetinaNet could not classify the thyroid 

ultrasonography image hundred percent but the overall performance score of the model 

is about 93% was satisfactory. The difference in classification done by senior 

radiologist of TDID dataset and the model used in this research was shown in table 5.   

Table 5: Classification Performance of the given Fine-tuned Network 

Thyroid Type Classification by Radiologist 

(Based on TDID dataset) 

Classification by Fine-

tuned Network 

TIRADS2 33 31 

TIRADS3 31 28 

TIRADS4a 43 39 

TIRADS4b 28 25 

TIRADS4c 33 31 

TIRADS5 32 29 
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CHAPTER 6  CONCLUSION AND LIMITATION 
 

6.1 Conclusion and Limitation  

 

It has been explored the problem of thyroid nodule classification based on TIRADS. 

The overall process includes preprocessing of ultrasonography images, image 

augmentation and classification by ensemble of AlexNet and GoogleNet with one stage 

fast object detection technique such as RetinaNet. The performance parameters of the 

ensemble network model set up was calculated from the confusion matrix. The 

evaluation metrics such as precision which gives the proportion of predicted TIRADS 

was actually correct and value ranged from 89% to 94%. Another metric recall was 

calculated which gives the proportion of actual TIRADS was predicted correctly and 

its value ranged from 86% to 96%. Similarly, F1 score was calculated which gives the 

score that how much the mode is appropriate and its value ranged 87% to 93%.  Hence 

the overall performance of the aforementioned ensembled network model was found 

satisfactory for the internal test dataset.  

The performance of the aforementioned fine-tuned ensemble model is expected to 

increase by including more data and expanding the datasets to realistic data from the 

local hospital and diagnostic center. The features of different classes of thyroid nodule 

are less heterogenous to each other so that sometimes miss to predict correctly.  

6.2 Future Works 

 

In future research, it is planned to apply this method of image classification to various 

real and local images for in-depth analysis of Ultrasonography images to gain a better 

comprehension result. The benign and malignant thyroid nodules are very similar to 

each other and classify them using the factor such as nodule composition, echogenicity, 

shape and calcification. So identifying the region of interest (ROI) of the affected area 

which further improves the performance of the given model. 
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