

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS, LALITPUR

THESIS NO: PUL074MSPHE007

"Assessment of Tunnel Stability and Evaluation of Rock Support in Headrace Tunnel of Super Madi Hydroelectric Project, Nepal"

by

Dev Raj Joshi

A THESIS

SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN HYDROPOER ENGINEERING DEPARTMENT OF CIVIL ENGINEERING LALITPUR, NEPAL

September, 2021

COPYRIGHT

The author has agreed that the library, Department of Civil Engineering, Pulchowk Campus, Institute of Engineering may make this thesis freely available for inspection. Moreover, the author has agreed that permission for extensive copying of this thesis for scholarly purpose may be granted by the professor(s) who supervised the work recorded herein or, in their absence, by the Head of the Department wherein the thesis was done. It is understood that the recognition will be given to the author of this thesis and to the Department of Civil Engineering, Pulchowk Campus, Institute of Engineering in any use of the material of this thesis. Copying, publication, or the other use of this thesis for financial gain without approval of the Department of Department of Civil Engineering, Pulchowk Campus, Institute of Engineering and author's written permission is prohibited. Request for permission to copy or to make any other use of the material in this thesis in whole or in part should be addressed to:

Head of the Department Department of Civil Engineering, Institute of Engineering, Pulchowk Campus, Pulchowk, Lalitpur, Nepal

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF CIVIL ENGINEERING

The undersigned certify that they have read, and recommended to the Institute of Engineering for acceptance, a thesis entitled "Assessment of Tunnel Stability and Evaluation of Rock Support in Headrace Tunnel of Super Madi Hydroelectric Project, Nepal" submitted by Mr. Dev Raj Joshi (074/MSHpE/007) in partial fulfillment of the requirements for the degree of Master of Science in Hydropower Engineering.

.....

Dr. Suman Panthee Supervisor, Department of Geology, Central Campus, Tribhuvan University

.....

Prof. Dr. Bhola NS Ghimire Supervisor, Department of Civil Engineering, Pulchowk Campus IOE, Tribhuvan University

.....

Dr. Pawan Kumar Shrestha Director, Hydro Tunnelling & Research Pvt. Ltd. External Examiner,

.....

Dr. Mukesh Raj Kafle Program Coordinator, M.Sc. Hydropower Engineering Department of Civil Engineering, Pulchowk Campus IOE, Tribhuvan University September, 2021

ABSTRACT

Underground structure is flexible construction alternative among various other construction. The presence of weathered rocks, difficult slopes and occurrence of frequent hazards in the surface has encouraged the investors and technical personals to work underground for completion of different development related works. Construction of a tunnel, changes in-situ condition and sometime leads to failure if not properly evaluated ground condition. In the most of the case, the risk involved and hazards that may occur is high. Therefore, providing support for tunnel stabilization is important before any failure. Using actual project information of Super Madi Hydroelectric Project the methods to provide tunnel support is discussed in this thesis. Typical site data formed input for the geotechnical engineering design of the tunnel support based on empirical, analytical and finite element modeling. The outcomes of the different approach in the study were unique function of their underlying scientific values.

The rock mass was classified using Q value within 400m of headrace tunnel was studied in this research. The Q value varied from minimum of 0.038 at chainage 1+200m to maximum 1.25 at chainage 1+300m. That can be a class of extremely poor rock class to poor rock class. There are three types of rock class within the selected portion i.e. poor, very poor and extremely poor. The finite element analysis was done using generalized Hoek Brown failure criteria for the support estimated from rock mass classification, analytical approach and support used by the project, all these three set of models was tested for different factor of safety. Such support was further analyzed for the block stability and squeezing problem. This thesis is focused to optimize the estimated support for economic project completion.

The rock support estimated from the rock mass classification is very first estimation for the different class of rock. These supports are optimized at every section using finite element method. This can conclude that the rock support can be optimized significantly while analyzing individual section with the geological condition instead of generalize the support class for the different category of Q values. Therefore, rock mass classification approach only is not adequate to design and estimation of tunnel support. Numerical analysis is very helpful to estimate the tunnel support in such geological region where rock masses are very poor with high rock cover.

ACKNOWLEDGEMENT

I am immensely grateful to my thesis supervisor Dr. Suman Panthee for his continuous support and guidance throughout this thesis. His persistent encouragement and intellect supervision have made me attempt this thesis work. I would like to thank my internal supervisor Prof. Dr. Bhola NS Ghimire for his guidance throughout my research work. I wish to express my gratitude to the respected program coordinator Dr. Mukesh Raj Kafle, for his valuable suggestions and support in different stages of this research work. I would like to thank all staffs of Department of Civil Engineering, MSc. in Geology program. I am equally thankful to my friends MSHpE/074 batch for their cooperation and intellect suggestions. My sincere thanks to all those who helped and gave valuable suggestions to me during the course of this research work. I would like to thank the University Grant Commission (UGC) Nepal for the financial Support.

I am very grateful to Super Madi Hydro Electric Project and official of related organization for providing the drawings and data.

Last but not the least, I would like to express my sincere thanks to friends, whose support, critical comments and suggestions on different stages of my research work actually motivated me to overcome the difficulties and led to this stage of my thesis.

Dev Raj Joshi 074/MSHpE/007 September, 2021

COPYRIGHT......i ABSTRACT......iii TABLE OF CONTENTS......v LIST OF TABLES......x ABBREVIATION......xi INTRODUCTION......1 1 1.1 Background......1 1.2 Problem Statement......1 1.3Scope and limitation of the study2 1.4 1.5 2 2.1 2.2 2.3 2.4 2.52.6 2.7Literature Review Related to Block Stability Analysis......14 2.82.9 METHODOLOGY......18 3 3.1 3.2 Description of Methodology......19 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.5.1 3.2.5.2

TABLE OF CONTENTS

3.2.0	5 Nume	rical Modeling		
3.2.7	7 Block	Block Stability Analysis		
3.2.8	Squeezing prediction			
3.2.9	Report Preparation			
4 STU	DY AREA	A AND PROJECT DESCRIPTION		
4.1	Location	Location of the Project		
4.2	Hydrolo	gy		
4.3	Regiona	Regional Geology4		
4.4	Geomor	phology	41	
4.5	Geologi	cal Condition of Project Components		
4.6	The Stud	ly Section		
4.6.	Geolo	gy		
4.6.2	2 Geote	chnical Data		
4.6.3	8 Rock	Mass Classification		
5 RES	ULT AND	DISCUSSION	54	
5.1	Estimati	on of Rock Mass Properties		
5.2	Tunnel S	Stability Evaluation		
5.2.1	Block	Stability Analysis		
5.2.2	2 Squee	zing Prediction	66	
5.	2.2.1 E	mpirical Approach	67	
5.	2.2.2 S	emi Empirical Method	70	
5.	2.2.3 S	emi Analytical Method	71	
5.2.3	3 Suppo	rt Estimation	74	
5.	2.3.1 E	mpirical Methods	74	
5.	2.3.2 A	nalytical Method	77	
5.2.3.3 Numerical Modelling		79		
5.	2.3.4 S	upport Adopted by the Project	96	
5.3	Discussi	on		
6 COI	NCLUSION	N AND RECOMMENDATION		
6.1	Conclus	ions		
6.2	Recomm	nendations		
7 REF	FERENCE			
ANNEX	A: DETA	LS OF CALCULATIONS		
ANNEX	B: PHASE	E MODELLING & RESULT		

ANNEX C: STANDARD TABLES, CHARTS & FUGURES	117
ANNEX D: PROJECT SITE PHOTOGRAPHS	
ANNEX E: STEREONET & UNWEDGE ANALYSIS	
ANNEX F: PROJECT RELATED DATA & DOCUMENTS	140

LIST OF FIGURES

	12
Figure 3-1 General Methodology Flow Chart	19
Figure 3-2 Estimation of GSI value. (Hoek, 2000)	25
Figure 3-3 Estimation of Disturbance Factor (Hoek, 2000)	
Figure 3-4 Mohr-Coulomb and Hoek-Brown failure criterions (Hoek, 2000)	27
Figure 4-1 Location Map of Project Area	
Figure 4-2 Catchment Area of Study Project	
Figure 4-3 Simplified Geological map of Nepal (Dhital M.R., 2015)	40
Figure 4-4 Physiographic divisions of Nepal (Dhital M.R. 2015)	41
Figure 4-5 Layout Showing Tunnel Alignment	43
Figure 4-6 Selected Tunnel Section for the Study	47
Figure 4-7 Tunnel Section	
Figure 4-8 Ground Profile of Study Section	51
Figure 5-1 Rosette Diagram Showing Discontinuities (Dip/Plunge)	59
Figure 5-2 Rosette Diagram Showing Joints (Dip/Trend)	60
Figure 5-3 Rosette Diagram Showing Strike	60
Figure 5-4 Joint Orientation and Stereonet at chainage 1+000m	62
Figure 5-5 Multi perspective view of wedge failure without Support at cl	hainage
1+000m	
Figure 5-6 Multi perspective view of wedge failure with Support at chainage 1	+000m
	63
Figure 5-7 Joint Orientation and Stereonet at chainage 1+150m	63
Figure 5-8 Multi perspective view of wedge failure without Support at cl	
ingule 5 6 Multi perspective view of weage fundie without Support at ch	nainage
1+150m	nainage
1+150m Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1	nainage 64 .+150m
1+150m Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1	+150m
Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m	+150m 64 64
Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m Figure 5-11 Multi perspective view of wedge failure without Support at cl	+150m +150m 64 65 hainage
 Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m Figure 5-11 Multi perspective view of wedge failure without Support at cl 1+350m 	hainage 64 +150m 64 65 hainage 65
Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m Figure 5-11 Multi perspective view of wedge failure without Support at cl 1+350m Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1	hainage +150m 64 65 hainage +350m
 Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m Figure 5-11 Multi perspective view of wedge failure without Support at cl 1+350m Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1 	hainage +150m 64 65 hainage 65 +350m 66
 Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m. Figure 5-11 Multi perspective view of wedge failure without Support at cl 1+350m. Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-13 Ground condition prediction based on rock mass quality 'Q'. 	hainage +150m +150m 64 65 hainage +350m 66 68
 Figure 5-0 Multi perspective view of wedge failure without Support at chainage 1 Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m Figure 5-11 Multi perspective view of wedge failure without Support at cl 1+350m Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-13 Ground condition prediction based on rock mass quality 'Q' Figure 5-14 Ground condition prediction using rock mass number 'N' 	hainage +150m +150m 64 65 hainage +350m 66 68 69
 Figure 5-0 Multi perspective view of wedge failure without Support at chainage 1 Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m Figure 5-11 Multi perspective view of wedge failure without Support at cl 1+350m Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-13 Ground condition prediction based on rock mass quality 'Q' Figure 5-14 Ground condition prediction using rock mass number 'N' Figure 5-15 Chart for Degree of Squeezing Analysis (Jethwa et al.) 	hainage +150m +150m 64 65 hainage +350m 66 66 69 70
 Figure 5-0 Multi perspective view of wedge failure without Support at chainage 1 Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-11 Multi perspective view of wedge failure without Support at cl 1+350m Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-13 Ground condition prediction based on rock mass quality 'Q' Figure 5-14 Ground condition prediction using rock mass number 'N' Figure 5-15 Chart for Degree of Squeezing Analysis (Jethwa et al.) Figure 5-16 Phase Model to showing (a) Strength factor (b) Total displace 	hainage +150m +150m 64 65 hainage 65 +350m 66 68 69 70 ment at
 Figure 5-0 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m Figure 5-11 Multi perspective view of wedge failure without Support at cla1+350m Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-13 Ground condition prediction based on rock mass quality 'Q' Figure 5-14 Ground condition prediction using rock mass number 'N' Figure 5-15 Chart for Degree of Squeezing Analysis (Jethwa et al.) Figure 5-16 Phase Model to showing (a) Strength factor (b) Total displaced chainage 1+000m 	hainage +150m +150m 64 65 hainage 65 +350m 66 69 69 70 ment at 80
 Figure 5-0 Multi perspective view of wedge failure without Support at chainage 1 Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m. Figure 5-11 Multi perspective view of wedge failure without Support at cl 1+350m. Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-13 Ground condition prediction based on rock mass quality 'Q'. Figure 5-14 Ground condition prediction using rock mass number 'N'. Figure 5-15 Chart for Degree of Squeezing Analysis (Jethwa et al.) Figure 5-16 Phase Model to showing (a) Strength factor (b) Total displacer Chainage 1+000m Figure 5-17 Support Capacity Plot at Chainage 1+000 	hainage +150m +150m 64 65 hainage 65 +350m 66 68 69 68 69 80 ment at 80
 Figure 5-6 Multi perspective view of wedge failure without Support at chainage 1 Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m Figure 5-11 Multi perspective view of wedge failure without Support at cla1+350m Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-13 Ground condition prediction based on rock mass quality 'Q' Figure 5-14 Ground condition prediction using rock mass number 'N' Figure 5-15 Chart for Degree of Squeezing Analysis (Jethwa et al.) Figure 5-16 Phase Model to showing (a) Strength factor (b) Total displacent Chainage 1+000m Figure 5-18 Phase Model to show Total Displacement at Chainage 1+050m 	hainage +150m +150m 64 65 hainage 65 +350m 66 69 69 70 ment at 80 81 81
Figure 5-0 Multi perspective view of wedge failure without Support at chainage 1 Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m Figure 5-11 Multi perspective view of wedge failure without Support at cl 1+350m Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-13 Ground condition prediction based on rock mass quality 'Q' Figure 5-14 Ground condition prediction using rock mass number 'N'. Figure 5-15 Chart for Degree of Squeezing Analysis (Jethwa et al.) Figure 5-16 Phase Model to showing (a) Strength factor (b) Total displacen Chainage 1+000m Figure 5-18 Phase Model to show Total Displacement at Chainage 1+050m Figure 5-19 Support Capacity Plot at Chainage 1+050m	hainage +150m +150m 64 65 hainage 65 +350m 66 68 69 66 68 69 80 81 82 82
 Figure 5.6 Multi perspective view of wedge failure without Support at chainage 1+150m. Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m. Figure 5-11 Multi perspective view of wedge failure without Support at cla1+350m. Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-13 Ground condition prediction based on rock mass quality 'Q'. Figure 5-14 Ground condition prediction using rock mass number 'N'. Figure 5-15 Chart for Degree of Squeezing Analysis (Jethwa et al.) Figure 5-16 Phase Model to showing (a) Strength factor (b) Total displacement at Chainage 1+000m. Figure 5-17 Support Capacity Plot at Chainage 1+000 Figure 5-19 Support Capacity Plot at Chainage 1+050m. Figure 5-20 Support Capacity Plot at Chainage 1+050m after redesigned. 	hainage +150m +150m 64 65 hainage 65 +350m 66 68 68 68 69 70 ment at 81
 Figure 5-6 Multi perspective view of wedge failure without Support at chainage 1+150m. Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m. Figure 5-11 Multi perspective view of wedge failure without Support at cla1+350m. Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-13 Ground condition prediction based on rock mass quality 'Q'. Figure 5-14 Ground condition prediction using rock mass number 'N'. Figure 5-15 Chart for Degree of Squeezing Analysis (Jethwa et al.) Figure 5-16 Phase Model to showing (a) Strength factor (b) Total displacer Chainage 1+000m. Figure 5-18 Phase Model to show Total Displacement at Chainage 1+050m. Figure 5-20 Support Capacity Plot at Chainage 1+050m after redesigned. Figure 5-21 Phase Model Showing Total Displacement at Chainage 1+100m 	hainage +150m +150m 64 65 hainage 65 +350m 66 68 69 66 68 69 80 81 81 82 83 83 83
 Figure 5-0 Multi perspective view of wedge failure without Support at chainage 1 Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m Figure 5-11 Multi perspective view of wedge failure without Support at cl 1+350m Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-13 Ground condition prediction based on rock mass quality 'Q' Figure 5-14 Ground condition prediction using rock mass number 'N'. Figure 5-15 Chart for Degree of Squeezing Analysis (Jethwa et al.) Figure 5-16 Phase Model to showing (a) Strength factor (b) Total displacement at Chainage 1+000m Figure 5-18 Phase Model to show Total Displacement at Chainage 1+050m Figure 5-20 Support Capacity Plot at Chainage 1+050m after redesigned Figure 5-21 Phase Model Showing Total Displacement at Chainage 1+100m 	hainage 64 +150m 65 hainage 65 +350m 66 68 69 70 ment at 80 81 81 83 83 83 84 85
 Figure 5-0 Multi perspective view of wedge failure without Support at chainage 1 Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m Figure 5-11 Multi perspective view of wedge failure without Support at classes Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1 Figure 5-13 Ground condition prediction based on rock mass quality 'Q' Figure 5-14 Ground condition prediction using rock mass number 'N'. Figure 5-15 Chart for Degree of Squeezing Analysis (Jethwa et al.) Figure 5-16 Phase Model to showing (a) Strength factor (b) Total displacent Chainage 1+000m. Figure 5-17 Support Capacity Plot at Chainage 1+000 Figure 5-20 Support Capacity Plot at Chainage 1+050m after redesigned Figure 5-21 Phase Model Showing Total Displacement at Chainage 1+100m Figure 5-23 Phase Model Showing Total Displacement at Chainage 1+150m 	nainage 64 +150m 64 65 hainage 65 +350m 66 68 69 66 68 69 80 81 81 82 83 83 83 84 85 86

Figure 5-24 Support Capacity Plot at Chainage 1+150m	87
Figure 5-25 Phase Model showing Total Displacement at Chainage 1+200m	88
Figure 5-26 Support Capacity Plot at Chainage 1+200m	89
Figure 5-27 Phase Model showing Total Displacement at Chainage 1+250m	90
Figure 5-28 Support Capacity Plot at Chainage 1+250m for Model Set-III	90
Figure 5-29 Phase Model showing Total Displacement at Chainage 1+300m	91
Figure 5-30 Support Capacity Plot at Chainage 1+300m	92
Figure 5-31 Phase Model showing Total Displacement at Chainage 1+350m	93
Figure 5-32 Support Capacity Plot at Chainage 1+350m	94
Figure 5-33 Support Capacity Plot at Chainage 1+350m after redesign	94
Figure 5-34 Phase Model showing Total Displacement at chainage 1+400m	95
Figure 5-35 Support Capacity Plot at Chainage 1+400m	96
Figure 5-36 Rock Support Type II & Type III	97
Figure 5-37 Rock Support Type IV & V	97

LIST OF TABLES

Table 2-1 Rock Parameters	10
Table 2-2 Failure Behavior in Rock	11
Table 4-1 Physiographical division of the Nepal Himalaya (modified after Upreti, 1	.999)
Table 4-2 Description of rock mass along headrace tunnel (source: Super Madi I	HEP)
Table 4-3 Properties of Discontinuities along study section	48
Table 4-4 Overburden Calculation of Study Section	51
Table 4-5 Q-Value of Study Section	52
Table 4-6 RMR Calculation of Study Section	53
Table 5-1 Rock Mass Properties	56
Table 5-2 Calculation of UCS for Rock Mass	57
Table 5-3 Deformation Modulus of Rock Mass	58
Table 5-4 Input Parameter for Wedge Analysis	61
Table 5-5 Tunnel overburden and Q value for Singh et al. (1992) approach	67
Table 5-6 Different parameters for Goel (1994) approach.	69
Table 5-7 Squeezing prediction using Jethwa et al	71
Table 5-8 Tunnel strain by using Pi	73
Table 5-9 Rock Support Estimation Using Q-Value	75
Table 5-10 Rock Support Estimation Using RMR Method	76
Table 5-11 Calculation of Hydrostatic & Internal Support Pressure	77
Table 5-12 Checking Failure Condition for Support from Analytical Approach	78
Table 5-13 Estimated Support from Analytical Approach	78
Table 5-14 Revised Support at Chainage 1+000	82
Table 5-15 Revised Support at Chainage 1+050	84
Table 5-16 Revised Support at Chainage 1+100m	85
Table 5-17 Revised Support at Chainage 1+150m	87
Table 5-18 Revised Support at Chainage 1+200m	89
Table 5-19 Revised Support at chainage 1+250m	91
Table 5-20 Revised Support at Chainage 1+300m	92
Table 5-21 Revised Support at chainage 1+350m	94
Table 5-22 Revised Support at chainage 1+400m	96
Table 5-23 Revised Rock Support with Comparing with Project Support	99

ABBREVIATION

SMHEP	Super Madi Hydro-Electric Project
Eb	Modulus of Elasticity of bolt
Ec	Modulus of Elasticity of concrete/shotcrete
Erm	Modulus of Elasticity of rock mass
Es	Modulus of Elasticity of steel
FEM	Finite Element Method
FS	Factor of Safety
Grm	Shear modulus of rock mass
GPa	Gega Pascal
GSI	Geological Strength Index
h	Height of overburden
ISRM	International Society of Rock Mechanics
m	Meters
MPa	Mega Pascal
MW	Mega Watt
Ро	In-situ stress
ri	Internal radius of tunnel
RMR	Rock Mass Rating
RQD	Rock Quality Designation
UCS	Uniaxial Compressive Strength
VDC	Village Development Committee
3	Strain
γ	Unit Weight
σr	Radial stress
σθ	Tangential Stress
υ	Poisson's ratio

1 INTRODUCTION

1.1 Background

Tunnels are passageways which can be built to serve different purposes including mobility of people and traffic, underground storage, military fortification and conveyance. An excavation or exposure requires support that may vary depending on the purpose and/or importance of the excavation. Sometimes support is required not necessarily to carry heavy loads, but solely for wisely reasons i.e. to ensure that the acceptable level of safety against personnel and equipment is maintained. The support is then called safety support system.

Tunnel construction has risk associated with it because of lack of knowledge of existing subsurface condition. Although the majority of tunnel construction projects have been completed safely there have been several incidents in various tunneling projects that have resulted in delays, cost overruns, and in a few cases more significant consequences such as injury, and loss of life.

Selection and design of support systems are only two of many inter-related factors in the overall design of serviceable and economical tunnel. The type of support, the method of excavation, and the character of ground are inseparable considerations. If the root is laid out to encounter the worst rather than best geological features, or if the construction method is ill-suited to the geology, no amount of refinement of the lining can appreciably influence the economy of the job. Nevertheless, for each tunnel lay out and each construction and final support during the functional life of the tunnel pose separate requirement, sometimes both are best satisfied by a single support system.

Rational Design presupposes knowledge of the demands on supports system, criteria for successful performance, familiarity with the capabilities of available systems, and method of analysis verified by experiences. The basic function of tunnel support system is to keep the tunnel stable and to make opening useable. The specific purpose of support system, however, depend greatly on the purpose of the tunnel.

1.2 Problem Statement

Fifty-three percent of global tunnel failures are related to ground conditions (Lance et al., 2007) Therefore, correctness of geotechnical and geological ground conditions, herein after referred to as the ground, is critical to ensure safe and stability.

Problematic ground varies comprising hard, abrasive, weak, squeezing and swelling material, rock bursts and discontinuities such as faults, fissures and jointing. These problems can be seen when the tunnel is excavated. Additionally, rock is naturally very diverse and impossible to generalize its properties, behavior, design and suitable construction methods.

The support required for a tunnel in rock is a complex function of the properties and condition of the rock, the geometry and orientation of the tunnel, and the construction procedures. Majority of tunnel in the design phase decision in selecting tunnel alignment and predicting the rock mass quality and rock support requirement has direct influence on the overall cost and time requirement. The past tunneling experience indicated that the majority of the tunnel projects developed have had suffered severe stability problems that made delay in completion and cost overruns.

In the Nepalese context the geological study is limited because of resources, that make change the designed parameter while excavation. This phenomenon also rises in this project. The preliminary design of rock support in this project is done with limited field observation, testing result and improper geological investigation. During the excavation, these supports may be over or less at the various section which affect the project timing and cost. This need to be revise the rock support design at various section with the proper geological investigation. This research is focused on the revision and optimization of rock support for the various geological condition.

1.3 Objective of Study

The overall objective of this research work is to design tunnel support and evaluate the support provided in order to stabilize the headrace tunnel.

The specific objectives of this research work are as follows:

- To assess stability of the tunnel at critical sections.
- To estimate a support in rock for hydro-tunnel using empirical as well as Finite Element Method

1.4 Scope and limitation of the study

• It is limited to relevant literature to tunneling principle of rock mechanics and geotechnical engineering.

• Only geotechnical engineering factors influencing the tunnel stability were considered.

1.5 Structure of Thesis

This thesis has been structured into six chapters. Chapter 1 includes introduction to thesis and include the need of the study, its objective and scope. Chapter 2 provides the review of literature about the rock mass classification, stress analysis, rock mass deformability, rock properties, this chapter also include the failure behavior of the tunnel, support optimization, block stability analysis, squeezing prediction and the numerical modelling. Chapter 3 involves methodology and process adopted to fulfill the objective of study. Chapter 4 describes the study area and the project description chosen in the thesis. Chapter 5 presents the summary of results obtained and its discussion. Final chapter gives the Conclusion of the study and Recommendation for further study.

The References and Annexes are incorporated at the end of this thesis while the Acknowledgements and Abstract are given in the preface portion.

2 LITERATURE REVIEW

2.1 Literature Review Related to the Rock Mass Classification

Different rock mass classification systems have been developing throughout the history of development of rock mechanics. The first attempt to develop a classification of rock mass was by Ritter (1879) and Wickham et al (1972) developed later on multiparameter classification schemes. One of the earliest use of rock mass classification schemes in tunnel support was used by Terzaghi (1946) in his classification system the rock mass was classified into intact, stratified, moderately jointed, blocky or seamy, crushed, squeezing and swelling rock.

Deere et al (1967) developed quantitative estimation of rock mass quality from drill cores and introduced RQD. When no core is available but discontinuity traces are visible in surface exposures or exploration adits, the Rock Quality Designation (RQD) is estimated from the number of discontinuities per unit volume Palmström (1982).

The RMR or Geomechanical classification developed by Bieniawski in 1973 and later revised in 1974, 1975, 1976, and 1989 gave the rock mass classification for the determination of rock mass quality and support design and suggested five parameters RQD, UCS, condition of discontinuities, orientation of discontinuities and groundwater condition for the classification and a correction factor for drive direction.

Barton et al (1974) of the Norwegian Geotechnical Institute proposed a Rock Quality Index (Q) system. The Q system suggested the six parameters for the rock mass classification and tunnel support estimation: Rock Quality Designation (RQD), joint set number (Jn), joint roughness number (Jr), joint alteration number (Ja) joint water reduction factor (Jw) and stress reduction factor (SRF).

GSI system was introduced by Hoek and According to Cai et al (2004), the Geological Strength Index (GSI) system is the only rock mass classification system that is directly correlated to the Mohr-Coulomb, Hoek-Brown and rock mass modulus engineering parameters. However, as the application of the GSI system is limited by its subjective nature, a quantitative approach, utilizing block volume and joint condition factors as quantitative parameters has been developed by Cai et al (2004).

Kim et. al. (2007) concluded that the significance of block size is higher than that of the angle between joint sets, indicating that it is important to consider joint persistence in a rock mass classification program.

The earliest reference to the use of rock mass classification for the design of tunnel support is in a paper by Terzaghi (1946) in which the rock loads, carried by steel sets, are estimated on the basis of a descriptive classification. While no useful purpose would be served by including details of Terzaghi's classification in this discussion on the design of support, it is interesting to examine the rock mass descriptions included in his original paper, because he draws attention to those characteristics that dominate rock mass behaviour, particularly in situations where gravity constitutes the dominant driving force.

Lauffer (1958) proposed that the stand-up time for an unsupported span is related to the quality of the rock mass in which the span is excavated. In a tunnel, the unsupported span is defined as the span of the tunnel or the distance between the face and the nearest support, if this is greater than the tunnel span. Lauffer's original classification has since been modified by a number of authors, notably Pacher et al (1974), and now forms part of the general tunnelling approach known as the New Austrian Tunnelling Method (NATM).

The New Austrian Tunnelling Method includes a number of techniques for safe tunnelling in rock conditions in which the stand-up time is limited before failure occurs. These techniques include the use of smaller headings and benching or the use of multiple drifts to form a reinforced ring inside which the bulk of the tunnel can be excavated. These techniques are applicable in soft rocks such as shales, phyllites and mudstones in which the squeezing and swelling problems, described by Terzaghi (see previous section), are likely to occur. The techniques are also applicable when tunnelling in excessively broken rock, but great care should be taken in attempting to apply these techniques to excavations in hard rocks in which different failure mechanisms occur.

The Rock Quality Designation index (RQD) was developed by Deere (Deere et al 1967) to provide a quantitative estimate of rock mass quality from drill core logs. RQD is defined as the percentage of intact core pieces longer than 100 mm (4 inches) in the total length of core. The core should be at least NW size (54.7 mm or 2.15 inches in diameter) and should be drilled with a double-tube core barrel.

Wickham et al (1972) described a quantitative method for describing the quality of a rock mass and for selecting appropriate support on the basis of their Rock Structure

Rating (RSR) classification. Most of the case histories, used in the development of this system, were for relatively small tunnels supported by means of steel sets, although historically this system was the first to refer to shotcrete support. In spite of this limitation, it is worth examining the RSR system in some detail since it demonstrates the logic involved in developing a quasi-quantitative rock mass classification system.

Bieniawski (1976) published the details of a rock mass classification called the Geomechanics Classification or the Rock Mass Rating (RMR) system. Over the years, this system has been successively refined as more case records have been examined that Bieniawski has made significant changes in the ratings assigned to different parameters. The discussion which follows is based upon the 1989 version of the classification (Bieniawski, 1989). Both this version and the 1976 version deal with estimating the strength of rock masses.

2.2 Literature Review Related to Stress Analysis

Basically, the numerical methods and analytical method are the two methods, highly used in stress analysis of a tunnel opening. In the Nepal Himalaya, where the major rocks are subjected to directional strength and deformability, empirical method of stress analysis can play vital role in prediction of squeezing phenomenon (Shrestha, 2005).

Hooker et al. 1972; Brown and Hoek 1978, indicate that for depth of stress determination of mining engineering interest shows the vertical direction is rarely the principal stress direction.

Stress-induced failure of tunnels in brittle rock is the notched-shape of the failure region and the associated slabbing and spalling that may occur in a stable manner or violently in the form of strain bursts. These slabs can range in thickness from a few millimeters to tens of centimeters and with large openings can be several square meters in surface area (Ortlepp, 1997 and Martin et al. 1997). Fairhurst and Cook (1966) suggested that the formation and thickness of these slabs could be related to strain energy. In rocks with low value of uniaxial compressive strength conditions for rock failure due to concentration of initial stresss may lead to slow compression 'squeeze' and destruction of tunnel support rather than violent collapse (Goodman 1989). The major discontinuities presence or of a number of joint sets does not necessarily imply that the rock mass will behave as a discontinum (Brady and Brown, 1985). According to them highly jointed rock mass also may have as an incompetent massive rock mass. In such a rock types solution for stresses and displacement derived from the theory of plasticity provide useful basis for engineering work. Martin et al. (1997) provided detailed observations of the failure process around a circular test tunnel and concluded that the slab formation is associated with the advancing tunnel face, and that once plane-strain conditions are reached the new notched-tunnel shape is essentially stable.

Palmstrom and Nilsen (2000) defined numerical modeling as descretization of the rock mass in consideration into a large number of individual elements that are analyzed by use of computers for the valuation of rock stresses and deformations.

Tunnel squeezing is commonly a problem in a tunnel with a relatively higher depth, but it may also occur in shallow depth due to tectonic or topographic setting of the area (Shrestha and Broch, 2008). Hoek and Marinos (2000) has developed a relation between rock mass uniaxial strength σ_{cm} and Lithostatic stress $\sigma_0 = \gamma_r H$ to predict the tunnel squeezing. It states that values of $\frac{\sigma_{cm}}{\sigma_0} < 0.35$ are likely to produce squeezing (as defined by normalized convergences of more than 1% in unsupported tunnels).

Solak and Schubert (2004) have studied the Influence of block size and shape on the deformation behavior and stress development around the tunnel. The change in block size and shape influence the mode of failure and stress development in the different parts of the tunnel.

Shrestha (2005) recommended that squeezing phenomenon of tunnel in Himalaya where major rocks are subjected to directional strength and deformability, empirical methods of stress analysis can play vital role in prediction of the squeezing phenomenon.

Kim et al. (2007) has used the non-persistent joints for estimation of block sizes for rock masses. The assumption of the persistent joints the sizes of the blocks tend to be underestimated. Moreover, poor understanding of the rock bridge strength may lead to lower rock mass strengths, and consequently, to excessive expenditure on rock support.

Ganesh (2010), Carried out the stress analysis along the underground structures produced by overburden rock body along the headrace tunnel using RMR, GSI and Q from surface mapping and other value obtained from different empirical methods.

Madirolas and Perucho (2014) studied in situ stress in rock mass for the reason, the stress state is directly introduce into the numerical model used for the design of tunnels. He concluded that stress analysis is necessary to implement a routine procedure of study of civil work project.

González et al. (2014) gives result for high values of stress amplification factor (SAF), deformation in the tunnel sections were much higher than these expected in the design. The stress amplification zone can be identified and evaluated by Tectonic Stress Indices (TSI) and SAF indices.

Khanal (2014), gives the conclusion that the stress analysis by numerical approach shows quite different result compared to empirical approach. Higher strength rock shows the higher principal stress difference and lower strength rock shows the lower difference in the principal stress.

The purpose of FEM is to obtain the optimum condition for the formation of over break similar to ground conditions. It was observed that the size of over break is controlled by joint persistence, spacing and shear strength of rock joints (Panthee et al. 2016).

2.3 Literature Review Related to Rock Mass Deformability

Different rock mass classification systems have been developed throughout the history of development of rock mechanics. The first attempt to develop a classification of rock mass was by Ritter (1879) and later on multi-parameter classification schemes were developed by Wickham et al. (1972). One of the earliest use of rock mass classification schemes in tunnel support was used by Terzaghi (1946) in his classification system the rock mass classified into intact, stratified, moderately jointed, blocky or seamy, crushed, squeezing and swelling rock.

ISRM (1978) gave the quantitative field estimation of the Uniaxial Compressive Strength by visual and sensory description of hardness of rock mass and suggested the strength of the rock can also be judged from the simple hardness tests in the field with a geological hammer by observing the resistance to breaking under impact. Martin et al. (1997) provided detailed observations of the failure process around a circular test tunnel and concluded that the slab formation is associated with the advancing tunnel face and that once plane-strain conditions are reached the new notched-tunnel shape I essentially stable. Hoek and Marions (2000) has developed a relation between rock mass uniaxial strength with overburden to predict the tunnel squeezing.

Solak and Schubert (2004) has studied the Influence of block size and shape on the deformation behavior and stress development around the tunnel. The change of the block size and shape influence the mode of failure and stress development in the different parts of the tunnel. Shrestha (2005) recommended that squeezing phenomenon of tunnel in Himalaya where major rocks are subjected to directional strength and deformability, empirical methods of stress analysis can play vital role in prediction of the squeezing phenomenon. Hoek (2007), developed the rock mass classification system, Geological Strength Index (GSI), which varies from 0-100.

Kim et al. (2007) has used the non-persistent joints for estimation of block sizes for rock masses. The assumption of the persistent joints the sizes of the blocks tend to be underestimated. Moreover, poor understanding of the rock bridge strength may lead to lower rock mass strengths, and consequently, to excessive expenditure on rock support. Ganesh (2010), Carried out the stress analysis along the underground structures produced by overburden rock body along the headrace tunnel using RMR, GSI and Q from surface mapping and other value obtained from different empirical methods.

Panthee et al.(2016) have studied about the deformation modulus and determination. Among the several equations proposed using regression analysis of E_m and rock mass class, equations based on RMR, and Q were selected for the calculation of E_m values for different rock types along the tunnel alignment of the Kulekhani III Hydroelectric Project, Nepal. Finally, he found that higher the rock mass class, the higher the difference of E_m values.

Kayabasi et al.(2003) have done the comparative study on deformation modulus of rock masses. This study includes the assessment of the prediction performance of some existing empirical equations, construction of fuzzy inference system for the estimation of modulus of deformation and making the comparison between the results obtained

from them. Among the prediction models, the fuzzy inference system provided the more reliable results than others.

Hoek and Diederichs (2006) have studied about estimating the values of rock mass deformation modulus on the basis of classification schemes by using empirical relationships. Finally, they proposed a new relationship based upon a sigmoid function.

Steiner et al. (1996)have studied about the case histories in tunneling in squeezing rocks and concluded that squeezing ground conditions are influenced by the factors such as rock type, strength of fragmentation if rock mass, orientation of the rock structure, stress state (overburden), water pressure, construction procedures and support system, not all of which contribute to the same degree.

Kavvadas (2003) have studied about the Monitoring and modelling ground deformation during tunneling. He described about the difficulties in obtaining ground measurement and their subsequent evaluation and, the application of these measurements in modelling tunnel excavations and support and in establishing early warning systems against incipient ground collapses or damages.

2.4 Literature Review Related to Properties of Rock

Although rock is naturally stable or slowly changes its chemical composition only under extreme conditions, its material properties influence strength, deformability, permeability and stability of rock masses (Stegner, 1971; Palmström, 1995). Material properties of a rock determines whether it is suitable for construction or not and the precautions required when using it. It is therefore important to understand rock mineralogy, structure and fabric, discontinuities/discontinuity sets, hydrogeology, squeezing and swelling problematic material behavior (Panthi, 2006; Sepp, 2000). Table 2-1 shows the specific material properties which influence discontinuous rock parameters.

Parameter	Specific Material Properties
Rock mass structure	Type, strength, degree of weathering of rock, in-situ stress
	magnitudes and direction
Rock mass description	Interlocking / wedge spacing, block size and shape,
	discontinuity sets and persistence

Discontinuities Type,	orientation, roughness, aperture / width, infilling material type
Construction	Excavation method and support sequence
Hydrogeology and voids	Groundwater, seepage / permeability, pore pressures

Textural characteristics of rock materials are influenced by the following factors: mineral composition, size, shape, and spatial distribution of mineral grains, porosity, and inherent micro cracks.

2.5 Literature Review Related to Failure Behavior in Tunnel

Rock mass failure does not always involve discontinuities. There are cases for tunnel where the stress simply exceeds the strength of the rock metrics and hence this later can fail (Table 2-2). Creating an opening in a rock mass modifies the stress distribution in the ground, some stresses would increase and some would decrease. The increase of stress could lead to failure. For opening, failure typically occurs in the vicinity of the excavation wall.

Hoek and Brown (1980) identified four principals of sources of underground instability.

- High rock stress failure associated with hard rock. This kind failure can occurs e.g. when mining at great depth or for large excavation at shallow depth. Stress conditions for tunneling in steep mountain regions or in weak rock conditions can also result in stress-induced instability problems.
- ii) Structurally controlled failure tends to occur in faulted and jointed hard rock, in particular when several joint sets are steeply inclined.
- Weathered or swelling rock failure often associated with relatively poor rock. This kind of failure may also occur in isolated seams within as otherwise sound hard rock.
- iv) Groundwater pressure or flow induced failure, which can occur in almost any rock mass. If the failure is combined with any of the other types of instability listed above, it could reach serious proportions.

According to Palmstrom and Stille (2007), more than one stability problem can occur simultaneously. This depends on factors such as the composition of the rock mass, stress, groundwater pressure, and size of the excavation.

Rock Mass	Failure	Behavior
Hard and Brittle	Spalling	Sudden detachment of thin rock slabs
Anisotropic	Bending	Deflection of column or beam when it is subjected to a force that is applied axial and perpendicular to its axis.

Weak -Altered	Shear	Shearing of the rock mass resulting is a shear surface
		and shearing along a pre-existing weakness zone/discontinuity in the rock mass.
Hard rock	Wedge	Falling or sliding of block formed pre-existing discontinuities.

Hoek et al, (1995) studied different types of failure and stability problem in underground excavation under high and low in-situ stress condition and as a function of the jointing of the rock mass. Martin et al (2001) incorporated the effect of the intermediate in-situ stress as presented in Figure 2-1.

Figure 2-1 Types of Failure in Rock Masses (Martin et al 2001)

2.6 Literature Review Related to Support Optimization

The design and performance of tunnels are usually affected by some uncertainties that can be costly and time-consuming for tunnel construction projects. Traditional empirical and deterministic design approaches do not include uncertainty in tunnel support design, but tend to be based on trial-and error processes that consider safety and cost. Reliability based optimization (RBO) makes provision for the uncertainty of structures by adding probabilistic constraints. This is quite straight forward if the results of the reliability analysis are accurate and precise so that no question arises as to whether a given design satisfies safety requirements. The purpose of RBO is to find a balanced design that is not only economical but also reliable in the presence of uncertainty.

Over the past few decades, numerous reliability optimization techniques have been proposed. Younes and Alaa (2009) overviewed the various RBDO approaches using mathematical and finite element models with different levels of difficulties. Marcos and Gerhart (2010) produced a detailed literature review on reliability-based optimization. Although RBO has some evident advantages over deterministic optimization design, it is often computationally inefficient. Response surface methodology has been applied in RBO in attempts to improve its efficiency. Zhang et al. applied the mean first-order reliability method (MFORM) to the optimization of geotechnical systems. Those methods improved the computational efficiency but decreased the accuracy of the reliability analysis, which affects the results of RBO. The selection of an optimization method is critical to RBO applications, especially for complex nonlinear optimization problems. Gen and Yun reviewed the application of soft computing methods in reliability optimization. Genetic algorithms and particle swarm optimization have also been applied to RBO. Lee et al. proposed a methodology to convert an RBO problem requiring very high reliability to an RBDO problem requiring relatively low reliability by appropriately increasing the input standard deviations for efficient computation in sampling-based RBDO.

Zhao et. al. (2018) use the least squares support vector machine (LSSVM) approach was adopted to build a relationship between reliability index and design variables, and the artificial bee colony (ABC) algorithm was employed for the reliability-based optimization. A proposed LSSVM/ABC-based reliability optimization method was applied to the case of a tunnel with rock bolt reinforcement. The mechanical parameters of the rock mass, in-situ stress and internal pressure were considered as the random variables. The reliability index of tunnel was analyzed. The length, distance out of plane and the number of rock bolts were determined and optimized considering the uncertainty based on RBO. The proposed method improved the efficiency of RBO while maintaining high accuracy.

Arbanas et al. (2010) conclude that, it is then possible to make the geotechnical model and perform the stability and stress-strain analyses. It is first assumed that the rock mass slope is unsupported during excavation. If a low initial factor of safety is obtained, the stability analysis should include a support system. The interactive design is applied throughout construction of the support system and includes extensive monitoring. A re-design of the excavation and additional support measures are required when monitoring imply on significant deviations of defined conditions.

2.7 Literature Review Related to Block Stability Analysis

Gautam (2012), studied about wedge analysis on headrace tunnel for the various section on hard rock. He recommended Numerical approaches have many benefits over empirical and analytical approaches, specifically in complex geometry like settling basin cavern. Rocscience software for numerical analysis such as and Un-wedge has been recommended. He used Generalized Hoek and Brown failure criterion are used to determine the state of stresses, strength factors, and deformations around the periphery of the caverns in. His study used to analyze the wedge failure due to low shear strength of joints, empirical approach suggested by Barton and Bandis is used in the numerical analysis through rocscience software-Unwedge.

Ajender (2016) did the Probabilistic Unwedge analysis to assess the structurally induced stability problems. Analytical and empirical studies involve Kirsch's equations and Hoek and Brown (1980) methods to assess the redistribution and concentration of stresses in the cavern contour. He determines the spalling potential and depth of brittle failure is estimated based on cavern span, rock mass spalling strength and tangential stresses. His results are compared to estimation of failure depth from numerical analysis using analysis of strength factor with Hoek-Brown brittle parameters in 2D finite element program, Phase2. He further did the 3D finite element analysis (RS3) is carried out for the final selected cavern alignment. Reasonable difference between analytical/empirical and numerical approach is found considering caverns location in low rock cover and near tow slope.

2.8 Literature Review Related to Tunnel Squeezing

Steiner (1996) studied about the case histories in tunneling in squeezing rocks and concluded that squeezing ground conditions are influenced by the factors such as rock type, strength of fragmentation if rock mass, orientation of the rock structure, stress

state (overburden), water pressure, construction procedures and support system, not all of which contribute to the same degree.

Shrestha (2005) recommended that squeezing phenomenon of tunnel in Himalaya where major rocks are subjected to directional strength and deformability, empirical methods of stress analysis can play vital role in prediction of the squeezing phenomenon.

Basnet et. al. (2013) assesses the squeezing phenomenon along headrace of Chameliya Project in which tunnel stretch through evaluation of rock mass properties and support pressure. He approaches three different methods (two analytical and one 2D finite element numerical modeling program) for the analysis. His finding is that it is possible to predict extent of squeezing in tunnel if more than one method is used to verify rock mass mechanical properties.

Singh's (1992), squeezing prediction method is based on the rock mass classification approach. Singh et al. (1992) developed an empirical relationship from the log-log plot between the tunnel depth (H) and the logarithmic mean of the rock mass quality, Q. A clear line of demarcation is in between the elastic and squeezing condition. Goel (1994) developed an empirical approach based on the rock mass number N. Rock mass number N is equal to Q-value with SRF = 1. 'N' was used to avoid the problems and uncertainties in obtaining the correct rating of parameter SRF in Q method.

Martin et al. (1997) provided detailed observations of the failure process around a circular test tunnel and concluded that the slab formation is associated with the advancing tunnel face and that once plane-strain conditions are reached the new notched-tunnel shape I essentially stable.

Ayden et al. (1993) studied about the squeezing potential of rocks around Tunnels. They proposed general method to predict the squeezing potential of rocks around the tunnel and its degree and a specific application of the method to circular tunnels under hydrostatic state of stress is described.

2.9 Literature Review Related to Numerical Modelling

Various researchers have used FEM (Finite Element method) showing versatility of the method towards successful implementation in various rock engineering problems (Eberhardt 2001; Vermeer et al. 2003; Lee 2009; Kainthola et al. 2012; Singh et al. 2013, 2015).

Equivalent Mohr-Coulomb shear strength parameters (c and f) have been obtained from linear curve fitting method, using generalized Hoek-Brown failure criterion. This criterion allows incorporation of GSI into the model, and the benefit of which is the fact that GSI includes rock mass deformation parameters in addition to disturbance factor (Sonmez and Ulusay 1999).

The low stress condition; a case of Kulekhani III hydroelectric project was analysed using Phase2 for the study of rock joint parameters on deformation of tunnel opening (Panthee et al. 2016).

In Phase², field stress can be constant or gravity stress. The gravity field stress option is used to define a gravity stress field which varies linearly with depth from a userspecified ground surface elevation. Gravity field stress is typically used for surface or near surface at shallow depth elevations and the areas where the effect of topography stress magnitudes and directions. Stress ratio is calculated with the help of Poisson's ratio. In addition, the material parameters such as unconfined compressive strength of intact rock(σ_{ci}), HoekBrown constant (m_i), Geological Strength Index (GSI), Young's Modulus of Intact Rock (E_i), Poisson's ratio (v), density of rock mass are the inputs to the material property.

The principle stress can be displayed and the results can be seen. The stress level could be checked in particular location of the analysis. The major and minor principle stress and angle between stresses with horizontal can be used to calculate the vertical and horizontal stress at that point and the result can be compared with the gravity and tectonic stress.

The strength factor of the rock mass around the tunnel can be displayed with contours. With the elastic analysis if the strength factor is greater than 1 everywhere around the tunnel, the result will be same even if the plastic analysis has been done. Hence there is necessity of plastic analysis if the strength factor is less than one around the tunnel with elastic analysis.

The value of vertical, horizontal, total displacement can be displayed with the contour around the tunnel. The value can be compared with the result obtained from analytical, semi-analytical method and also with the value of measured convergence. Li et al (2019) study the mechanical response of a hard rock tunnel excavated by double shield tunnel boring machine (DS-TBM), a numerical method was introduced to simulate the TBM excavating process. The failure modes of surrounding rock mass described based on the cohesion weakening and frictional strengthening (CWFS) Mohr-Coulomb strain-softening criterion. The characteristics of stress field and plastic zone on the cross and longitudinal section of the tunnel were analyzed in detail, and the results were compared with those in the intrinsic condition (when TBM model is not activated). The simulation results indicate that the stress paths at the vault are relatively simple, and the stress concentration caused by excavation unloading is obviously reduced by lining and backfill grouting, while the sidewall is less disturbed by the excavation of TBM. The invert experiences three unloading processes, due to excavation, the contact between the rear shield and the bottom of surrounding rock, as well as backfill grouting at gap between the lining and the rock mass. The vault has a larger plastic zone than the invert, attributing to the geometrical difference between the cutter-head and the front shield, as well as the conicity of the front and rear shields.

Khadka et al. (2019) conduct numerical analysis of hydropower tunnel of the Lesser Himalayan Region of Nepal. This region lies between two major faults namely Main Boundary Thrust (MBT) and the Main Central Thrust (MCT) with weak rock mass like phyllite, schist, gneiss, phyllitic schist, etc. Thus, to overcome the stability problems during underground construction, proper rock support system must be installed. Rock mass classification systems are commonly used for estimating the rock support system in this region, but this approach is inadequate to address the underground stability problems. In his study, numerical analysis is done to define the requirement of support and the result compared to actual support provided in selected case study. Analytical approach is used along with two-dimensional Finite Element Analysis using the software, RS2 provided by RocScience for the study. Finally, required modification of the provided support has been suggested to overcome the problem faced in the selected tunnel.

3 METHODOLOGY

3.1 General Flowchart

Limited research has been conducted in context to the stability analysis of underground structures in the Nepal Himalaya. Stress-induced failure is the common failure in the Himalayan geology having high overburden and poor rock mass quality. One hydropower tunnels are selected for the numerical modeling. The output from numerical modeling is used for the verification, namely Super Madi Hydro-Electric Project, taken as case studies in this MSc work.

The research question of this research is to design the reliable support system in rock underground excavation for the Super Madi Hydroelectric Project Headrace Tunnel. This is the primary objective of study by collecting various geological data either by site surveying or by the detailed project report of the project. Also, this study is focused on the economical point of view for the support system. How can we minimize the project cost? This is another big question for this study. This will be taken by analyzing various alternative of support system designed. And finally, we can recommend various support system for further excavation in the same Headrace tunnel based on the geological condition. At the end of this study we summarize the Q-value and rock support based on that Q-value for the recommendation.

To meet the above-mentioned objective, the following research methodology is applied in this study as presented in Figure 3-1. The flow chart clearly explains the overall methodology for this study from the beginning to the report writing.

As we know every research work starts from the Literature review related to the study. Lots of research paper on rock support, tunneling, support optimization, geotechnical field, Geology of Nepal and worlds, Support failure cases, Support System in rock, excavation methodology etc. this process have been continued to the end of this research.

Geological parameter of the study area was collected by surveying at site and from the detailed project report of Super Madi Hydroelectric Project. On the basis of these data rock support was designed by using Q-Chart, furthermore the finite element analysis was done using Rock science software provided for the study purpose. The detail of the research methodology taken for this thesis was described here. The methodology taken in this study was of from various research published and previous thesis.

Figure 3-1 General Methodology Flow Chart

3.2 Description of Methodology

Research methodology is the specific procedures or techniques used to identify, select, process, and analyze information about a topic. In a research, the methodology section allows the reader to critically evaluate a study's overall validity and reliability. The methodology of this thesis was summarized in Figure 3-1.

The methodology of the research was described individually in this section. The research starts with the literature review which help to identify the research question and selection of case study in that basis. The collection of data from the filed visit, observation, previous study, previous published research for the calculation of rock mass properties.

This followed to the estimation of rock support with various methods i.e. Empirical, Analytical, Numerical method and that compared to the project support. The tunnel section was also analyzed for the block failure.

3.2.1 Preliminary Study

Preliminary study consists of literature review, study of report, journals, papers, articles and old thesis documents. All the available previous study reports, data/information including maps and drawings and other information related to the study area was studied and analyzed in depth in the context of the objectives of the study.

Literature review related:

- To geology of the Himalaya regarding stress regime, rock types, weathering effect on rock mass and tectonic influence.
- > To rock mass classification and support design methods.
- > To excavation methods and their effect on stability of tunnel.
- > To failure behavior in underground excavation specially for hard rock.
- > To the effect of support installation time gap on stability.
- > To the study of properties of rock on the study area.
- > To used and available support material and their properties.
- To the existing empirical, semi empirical and analytical methods to evaluate the squeezing potential and design of undergrounds structures.
- > To numerical modeling and analysis of underground structures.
- > To support optimization for economic and safety purpose.
- > To in-situ testing for stability test of rock support

The case study was selected of Super Madi HEP headrace tunnel of 400m section which was at the construction stage at the time of field visit. The site need revision on the rock support on the basis of detailed geological investigation. Geological as well as project data was collected from the site office and verified these site condition by the field visit.

Study of Project report:

- To project salient features
- > To study the topographic map of the project area.
- > To engineering geological condition of project components
- To climatic condition of study area
- > To hydrology of the study area including flood hydrology, design flood etc.
- > To design and dimension of the various structure unit.
- > To construction method and equipment's

3.2.2 Data Collection

It includes the project details and engineering geological information on the rock mass condition. Geological properties of rock masses will be referred as provided. General data such as unit weight, modulus of elasticity, Poisson's ratio, uniaxial compressive strength and other properties of rock mass were obtained from empirical relations. Where the specific data of the tunnel i.e. dimension, plan and ground profile of tunnel alignment, rock type and rock mass classification were obtained from Geological Baseline Report of SMHEP.

Study site visit was conducted several times to collect various geological data, design data and their field verification. Site visit was focused on various activities discussed below.

- ➢ For Geological mapping at the various chainage.
- > To study surface geology of the study area.
- > To study various support system.
- Rock identification and verification as provided by the project report.
- ➤ Water table of the study area.
- Rock mass classification in tunnel

3.2.3 Rock Mass Classification

Calculation of Q-Value

Nepal Himal consists of various types of rocks and geological structures. The Khimti-1 Hydropower Project (KHP) is the first project applying Q-system in Nepali Himalayan Rock. The method was found to be appropriate for drill and blast tunnels in jointed, fractured and sheared rock, which tend to overbreak. Barton et al. (1974) at the Norwegian Geotechnical Institute (NGI) originally proposed Q system of rock mass classification based on 200 case studies of tunnels and caverns. The Q system was updated to include 1000 cases (Grimstad and Barton, 1993). RQD, joint set number (Jn), joint roughness (Jr), joint alteration (Ja), joint water reduction factor (Jw) and stress reduction factor (SRF) are utilized to calculate Q value. Q system was compiled again in 2002 and some changes on support recommendations were made.

The Q system chart for rock support estimate was developed by the Norwegian Geotechnical Institute (NGI), (based on www.ngi.no, 2014). The Q_{wall} values have been

introduced in that chart. On the basis of calculated value of Q using above mentioned parameter. The rock class was classified from exceptionally poor to exceptionally good rock. The Q value from 0.001 to 0.01 is classified as exceptionally poor rock mass, 0.01 -0.1 is extremely poor rock, 0.1 -1 is very poor, 1- 4 poor rock class. Q value from 4 to 10 is fair rock mass. If the Q value is greater than 10 and less than 40 is classified as good rock mass. Above 40 and up to 100 is classified as very good rock mass. Q value of 40 - 400 range classify the rock as extremely good. And above 400 is exceptionally good class. These rock classes are categorized as G, F, E, D, C, B and A class respectively.

Calculation of RMR Value

The *rock* mass rating (*RMR*) is a geo-mechanical classification system for *rocks*, developed by the sum of the six parameters is the "*RMR value*", which lies between 0 and 100. Some of the complex *mechanics* of actual *rocks* into *engineering* design. Moreover, the system was the first to enable *estimation* of *rock* mass. RMR combines the most significant geologic parameters of influence and represents them with one overall comprehensive index of rock mass quality, which is used for the design and construction of excavations in rock, such as tunnels, mines, slopes, and foundations.

RMR rock mass classification system was initially developed at the South African Council of Scientific and Industrial Research (CSIR) by Bieniawski (1974) on the basis of his experiences in shallow tunnels in sedimentary rocks. Classification parameters were reduced from 8 to 6 in 1974 and recommended support requirements and adjustment of rating were reduced in 1975. Class boundaries were modified in 1976 and ISRM rock mass descriptions were adopted in 1979. Uniaxial compressive strength (UCS), Rock Quality Designation (RQD), joint or discontinuity spacing, joint conditions, ground water condition and joint orientation are utilized parameters. In order to apply RMR, the site should be divided into a number of geological structural units in such a way that each type of rock mass is represented by a separate geotechnical structural unit. In this paper the 1989 version of RMR (Bieniawski, 1989) ratings for limestone, sandstone and diabase formations were used.

The RMR value was calculated using the following six parameters.

- Uniaxial compressive strength of intact rock material.
- Rock quality designation (RQD).
- Spacing of discontinuities.

- Condition of discontinuities, given as
 - Length, persistence
 - Separation
 - Smoothness
 - Infilling
 - Alteration / weathering
- Groundwater conditions.
- Orientation of discontinuities.

The rock mass is finally classified based on the RMR value using above mentioned parameter. Based on RMR value rock is classified from very poor to very good rock class as RMR value increases. If the RMR value is less than 20 than the rock class is very poor category. The value lies between 21 - 40 the rock class is known as poor rock. While value increases further up to 60 is a fair rock class. RMR value if lies of 61 – 80 the rock class is of good quality and finally if the rock class lies between 81 to 100 is of very good rock class. These rock masses are classified into five class from I to V as decreases the RMR value. RMR 100-81 is I class rock (Very Good Rock), 61-80 is II class rock, 41-60 is III class rock, 21- 40 is IV class rock and the RMR value is less than 20 is classified as V class rock i.e. very poor.

3.2.4 Determination of Rock Mass Parameter

The modulus of deformation of rock mass (E_m) may be defined as the ratio of stress to corresponding strain during loading of rock mass, including elastic and inelastic behavior whereas the modulus of elasticity of intact rock (E_i) is the ratio of applied stress and corresponding strain within the elasticity limit. The jointed rock mass does not behave elastically. Hence, the term modulus of deformation is used instead of modulus of elasticity. The deformation modulus of jointed rock mass is very low compared to the elasticity modulus of intact rock.

Estimation of rock mass characteristics is required to design an underground excavation. Methods such as the generalized Hoek-Brown criterion and Mohr-Coulomb failure criterion can be used to describe the characteristic behaviour of rock mass like strength and deformations. Measured data from core samples are often used to estimate the properties of intact rock (no weakness planes) and from that point through empirical approach to estimate the behaviour of the overall characteristics of the rock mass surrounding an underground opening. Strength of intact rock sample is usually higher than the overall strength of the rock mass and method are therefore needed to convert measured data from core samples to the rock mass (Hoek, 2000).

Generalized Hoek-Brown criterion

Hoek and Brown proposed in the 1980's a method to estimate the strength and properties of a jointed rock mass called Hoek-Brown failure criterion. The method is based on estimation of interlocking between rock blocks and shear conditions in the joints. This method was derived to be used to estimate strength of jointed rock mass where rock blocks are small relative to the excavation considered. The method has been modified over the years but the version introduced in this chapter is a modified version from 2002 (Hoek, Carranza, & al, 2002). The following series of equations represents the criteria:

$$\sigma'_1 = \sigma'_3 + \sigma_{ci} \left(m_b \frac{\sigma_3}{\sigma_{ci}} + s \right)^a$$
 Eq. 3-1

$$m_b = m_i e^{\left(\frac{GSI-100}{28-14D}\right)}$$
 Eq. 3-2

$$S = e^{\left(\frac{GSI-100}{9-3D}\right)}$$
 Eq. 3-3

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{-GSI/_{15}} - e^{-20/_3} \right)$$
 Eq. 3-4

Where σ'_1 and σ'_3 are the maximum and minimum effective principal stresses at failure, m_b is the Hoek-Brown constant for the rock mass and m_i is the Hoek-Brown constant for the intact rock samples, *s* and *a* are constants related to the rock mass characteristics and σ_{ci} is the uniaxial compressive strength of intact rock sample.

GSI is the geological strength index introduced by Hoek in 1994 to simplify the conversion between the intact rock strength and the rock mass strength.

A disturbance factor D is used to consider the disturbance from blasting and stress relaxations in the rock mass.

To estimate the value of mi the Equation 3-1 is used with S=1 and a=0,5 and becomes:

$$\sigma_1' = \sigma_3' + \sigma_{ci} \left(m_i \frac{\sigma_3'}{\sigma_{ci}} + 1 \right)^{0.5}$$
Eq. 3-5

A series of triaxial test on core samples can therefore be used to determine the value of m_i and σ_{ci} . Authors of the method recommends that series of at least five triaxial tests should be used (Hoek, Carranza, & al, 2002).
Authors also recommend that the range of σ'_3 should be equally distributed between zero and 0.5 time the intact compression strength.

 σ'_3 can be set to zero in Equation 3-5 to reveal the uniaxial compression strength of the rock mass and becomes:

$$\sigma_c = \sigma_{ci} s^a \qquad \qquad \text{Eq. 3-6}$$

The tensile strength of the rock mass can be found in a similar way by setting σ'_1 equal to zero and the tensile strength becomes:

$$\sigma_t = -\frac{s\sigma_{ci}}{m_b}$$

Eq. 3-7

Figure 3-2 Estimation of GSI value. (Hoek, 2000)

Appearance of rock mass	Description of rock mass	Suggested value of D
	Excellent quality controlled blasting or excavation by Tunnel Boring Machine results in minimal disturbance to the confined rock mass surrounding a tunnel.	D = 0
	Mechanical or hand excavation in poor quality rock masses (no blasting) results in minimal disturbance to the surrounding rock mass. Where squeezing problems result in significant floor heave, disturbance can be severe unless a temporary invert, as shown in the photograph, is placed.	D = 0 D = 0.5 No invert
	Very poor quality blasting in a hard rock tunnel results in severe local damage, extending 2 or 3 m, in the surrounding rock mass.	D = 0.8
	Small scale blasting in civil engineering slopes results in modest rock mass damage, particularly if controlled blasting is used as shown on the left hand side of the photograph. However, stress relief results in some disturbance.	D = 0.7 Good blasting D = 1.0 Poor blasting
	Very large open pit mine slopes suffer significant disturbance due to heavy production blasting and also due to stress relief from overburden removal. In some softer rocks excavation can be carried out by ripping and dozing and the degree of damage to the slopes is less.	D = 1.0 Production blasting D = 0.7 Mechanical excavation

Figure 3-3 Estimation of Disturbance Factor (Hoek, 2000)

Mohr-Coulomb failure criterion

The Hoek-Brown failure criteria is well suited for jointed or heavily jointed igneous rock types like basalt. But for other rock types like sedimentary or metamorphic rock the Mohr- Coulomb failure criterion can be a better choice (Hoek, 2000). Estimation of shear strength can be made by the Mohr-Coulumb equation:

$$\tau_f = C + \sigma'_n \tan(\theta)$$
 Eq. 3-8

where θ is the internal friction angle of the intact rock sample, *C* is the cohesion and σ'_n is the normal stress acting on the plain of failure (Erlingsson, 2009). The Mohr-Coulomb equation can also be written as:

$$\sigma_1 = \frac{1 + \sin(\theta)}{1 - \sin(\theta)} \sigma_3 + \frac{2C \cos(\theta)}{1 - \sin(\theta)} = C^* + \tan(\varphi) \sigma_3$$
 Eq. 3-9

Uniaxial compression strength and tensile strength can be derived from Equation 3-9 by putting σ_1 and σ_3 to zero respectively, thus

$$\sigma_1 = \frac{2C\cos(\theta)}{1-\sin(\theta)} = \sigma_c$$
 Eq. 3-10

$$\sigma_3 = \frac{2C\cos(\theta)}{1+\sin(\theta)} = -\sigma_T$$
 Eq. 3-11

Figure 3-4 Mohr-Coulomb and Hoek-Brown failure criterions (Hoek, 2000)

Rock mass properties such as Hoek–Brown constants, deformation modulus of rock masses and uniaxial compressive strength of rock mass were calculated in accordance with Q_c, Q_N, Q, RMR, RMi.

The modulus of deformation of rock mass (Em) may be defined as the ratio of stress to Corresponding strain during loading of rock mass, including elastic and inelastic behavior whereas the modulus of elasticity of intact rock (Ei) is the ratio of applied stress and corresponding strain within the elasticity limit. The jointed rock mass does not behave elastically. Hence, the term modulus of deformation is used instead of modulus of elasticity. The deformation modulus of jointed rock mass is very low compared to the elasticity modulus of intact rock.

Deformation modulus of rock masses In-situ determination of E_{mass} is costly and often very difficult. Thus, the utilization of empirical methods is inevitable. By means of the empirical methods, E_{mass} can easily be acquired. These values are shown in table 4-7. For RMRN50, Bieniawski (1978) defines Emass as below:

$$E_{mass} = 2RMR-100 \qquad Eq. 3-12$$

For RMRb50, Serafim and Pereira (1983) proposed the following formula

$$E_{mass} = 10^{\frac{RMR-10}{40}}$$
 Eq. 3-13

Grimstad and Barton (1993) suggested the following equation for calculating E_{mass} for Q>1 and generally for hard rock:

$$E_{mass} = 25 \log Q (GPa)$$
 Eq. 3-14

For poor rock rcib100, MPa Hoek and Brown (1998) found a correlation between Emass and GSI:

$$E_{mass} = \sqrt{\frac{\sigma c i}{100}} \ 10^{\frac{GSI-10}{40}} \ (GPa)$$
 Eq. 3-15

Read et al. (1999) proposed the below equation for calculating E_{mass} based on RMR value of rock mass:

$$E_{mass} = 0.1(\frac{RMR}{10})^3$$
 (GPa) Eq. 3-16

Strength of rock masses was also calculated using various empirical formulas and that was shown in table 4-6.

Hoek and Brown (1980b):

$$\sigma_{\rm cm} = \sigma ci. exp^{\left[\frac{RMR-100}{18}\right]}$$
 Eq. 3-17

Yudhbir et. al. (1983):

$$\sigma_{\rm cm} = \sigma ci. exp^{\left[\frac{7.65(RMR-100)}{100}\right]}$$
 Eq. 3-18

Ramamurthy (1986):

$$\sigma_{\rm cm} = \sigma ci. exp^{\left[\frac{RMR-100}{18.75}\right]}$$
 Eq. 3-19

Kalamaris and Bieniawski (1995):

$$\sigma_{\rm cm} = \sigma ci. exp^{\left[\frac{RMR-100}{24}\right]} \qquad \text{Eq. 3-20}$$

Shoery (1997):

$$\sigma_{\rm cm} = \sigma ci. exp^{\left[\frac{RMR-100}{20}\right]}$$
 Eq. 3-21

Barton (2002):

$$\sigma_{\rm cm} = 5\gamma \left[Q \left(\frac{\sigma c i}{100} \right) \right]^{1/3}$$
 Eq. 3-22

Hoek et. al. (1980):

$$\sigma_{\rm cm} = \sigma c i. s^a$$
 Eq. 3-23

Hoek–Brown failure criterion for rock masses uses mm and sm constants. Some suggested equations based on empirical methods are used to calculate these constants. Hoek et al. (2002) suggested some relationships between mm, sm and GSI as:

$$\frac{mm}{mi} = e^{\frac{GSI-100}{28-14D}}$$
 Eq. 3-24

$$s = e^{\frac{GSI-100}{9-3D}}$$
 Eq. 3-25

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{-\frac{GSI}{15}} - e^{-\frac{20}{3}} \right)$$
 Eq. 3-26

Ramamurthy (1985) used RMR for calculating s constant as follows:

$$S_m = e^{(\frac{1}{40}(0.0564RMR - 5.64))}$$
 Eq. 3-27

Palmstro"m (1995) suggested the following equations for calculating Hoek–Brown constants as:

$$\mathbf{S} = \mathbf{J} \mathbf{P}^2 \qquad \qquad \text{Eq. 3-28}$$

$$m_{\rm m} = m_{\rm i} \, J \, P^{0.64}$$
 Eq. 3-29

3.2.5 Estimation of Rock Support

Estimations of required rock support is usually based on observation, experience and personal judgment of those involved. Engineers generally uses support guidelines or methods to back up their estimation of required rock support. Three types of methods are mostly used for this purpose (Palmstöm & Nilsen, 2000):

- Analytical methods, involving analysis of stress distributions and deformations using methods like numerical analysis, analogue simulation.
- Observational methods, like the New Australian Tunnelling Method which uses measurements of movements in the rock mass during excavation. Observations are off course also used to check if the chosen installed rock support was the right way to go or not and adjustment made if required.
- Empirical methods, often illustrated in table or graphs that connect classification of rock mass to curtain rock support. Number of empirical methods has been derived such as the RMR system end the Q-system.

General overview of the most commonly used empirical methods, some analytical methods and finite element method for the estimation of rock support will be given in this chapter.

3.2.5.1 Empirical Method

Q-System

The *Q-system* for rock mass classification, developed at the Norwegian Geotechnical Institute (NGI) in 1974, originally included a little more than 200 tunnel case histories, mainly from Scandinavia (Barton et al., 1974). In 1993 the system was updated to include more than 1000 cases (Grimstad and Barton, 1993). It is a quantitative classification system for estimates of tunnel support, based on a numerical assessment of the rock mass quality using the following six parameters:

- Rock quality designation (RQD).
- \circ Number of joint sets (J_n).
- Roughness of the most unfavourable joint or discontinuity (Jr).
- \circ Degree of alteration or filling along the weakest joint (J_a).
- \circ Water inflow (J_w).
- Stress condition given as the stress reduction factor (SRF); composed of
 - Loosening load in the case of shear zones and clay bearing rock,

- Rock stress in competent rock, and
- Squeezing and swelling loads in plastic, incompetent rock.

The above six parameters are grouped into three quotients to give the overall rock mass quality:

$$Q = \frac{RQD}{Jn} * \frac{Jr}{Ja} * \frac{Jw}{SRF} \qquad Eq. 3-30$$

The first two parameters represent the overall structure of the rock mass, and their quotient is a relative measure of the block size.

- The second quotient is described as an indicator of the inter-block shear strength.
- The third quotient is described as the "active stresses".

The ratings of the various input parameters to the Q-value are given in Table 1.

The Q-value is related to tunnel support requirement by defining the equivalent dimensions of the underground opening. This equivalent dimension, which is a function of the size and type of the excavation, is obtained by dividing the span, diameter or wall height of the excavation (Dt) by a quantity called the *excavation support ratio (ESR)*, given as:

$$De = \frac{Dt}{ESR} \qquad Eq. 3-31$$

Ratings of ESR are shown in Table 3-7

The Q-value in Figure 1 is related to the total amount of support (temporary and permanent) in the roof. The diagram is based on numerous tunnel support cases. Wall support can also be found using the same figure by applying the wall height and the following adjustments to Q:

For Q > 10	use $Q_{wall} = 5Q$
For 0.1 < Q < 10	use $Q_{wall} = 2.5Q$
For Q< 0.1	use $Q_{wall} = Q$

The first quotient (RQD/Jn), representing the structure of the rock mass, is a crude measure of the block or particle size, with the two extreme values (100/0.5 and 10/20) differing by a factor of 400. If the quotient is interpreted in units of centimetres, the extreme 'particle sizes' of 200 to 0.5 cm are seen to be crude but fairly realistic approximations. Probably the largest blocks should be several times this size and the smallest fragments less than half the size. (Clay particles are of course excluded).

The second quotient (Jr/Ja) represents the roughness and frictional characteristics of the joint walls or filling materials. This quotient is weighted in favour of rough, unaltered joints in direct contact. It is to be expected that such surfaces will be close to peak strength, that they will dilate strongly when sheared, and they will therefore be especially favorable to tunnel stability.

When rock joints have thin clay mineral coatings and fillings, the strength is reduced significantly. Nevertheless, rock wall contacts after small shear displacements have occurred may be a very important factor for preserving the excavation from ultimate failure. Where no rock wall contact exists, the conditions are extremely unfavorable to tunnel stability. The 'friction angles' are a little below the residual strength values for most clays, and are possibly down-graded by the fact that these clay bands or fillings may tend to consolidate during shear, at least if normal consolidation or if softening and swelling has occurred. The swelling pressure of montmorillonite may also be a factor here.

The third quotient (Jw/SRF) consists of two stress parameters. SRF is a measure of:

- Loosening load in the case of an excavation through shear zones and clay bearing rock,
- Rock stress in competent rock, and
- Squeezing loads in plastic incompetent rocks. It can be regarded as a total stress parameter.

The parameter Jw is a measure of water pressure, which has an adverse effect on the shear strength of joints due to a reduction in effective normal stress. Water may, in addition, cause softening and possible out-wash in the case of clay-filled joints. It has proved impossible to combine these two parameters in terms of inter-block effective stress, because paradoxically a high value of effective normal stress may sometimes signify fewer stable conditions than a low value, despite the higher shear strength. The quotient (Jw/SRF) is a complicated empirical factor describing the 'active stress'.

RMR System

In RMR classification, the rock mass along a tunnel route is divided into a number of structural regions, i.e. zones in which certain geological feature are more or less uniform. The above six classification parameters are determined for each structural

region from measurements in the field. Once the classification parameters are determined, the ratings are assigned to each parameter. In this respect the typical, rather than the worst conditions, are evaluated. Furthermore, it should be noted that the ratings, which are given for discontinuity spacings, apply to rock masses having three sets of discontinuities. Thus, when only two sets of discontinuities are present, a conservative assessment is obtained.

The ratings of six parameters of the RMR system are provided by Bieniawski in 1973. For reducing doubts due to subjective judgments, the ratings for different parameters should be given a range rather than a single value.

3.2.5.2 Analytical Method

The rock support is estimated from E Hoek et. al. (1993) stress analysis. This hypothesis is highly recommended for the overstressed tunnel excavation. In this approach pressure were further more used to calculate total inward displacement at the respective section. The calculation of critical support pressure p_{cr} at each section is done using hydrostatic pressure and internal support pressure. If the internal support pressure is greater than the critical support pressure, no failure occurs and the behavior of the rock mass surrounding the tunnel is elastic. The radius of plastic zone was calculated and further more total inward radial elastic displacement of the tunnel wall is calculated and compared with the displacement from numerical modeling. The closer value in these comparisons is taken for the conclusion.

These pressures were further more used to calculate total inward displacement at the respective section. Now we have to calculate critical support pressure p_{cr} at each section using hydrostatic pressure and internal support pressure calculated above.

The critical support pressure was calculated using the relation:

$$P_{cr} = \frac{2Po - \sigma cm}{1+k}$$
 Eq. 3-32

If the internal support pressure is greater than the critical support pressure, no failure occurs and the behavior of the rock mass surrounding the tunnel is elastic. The inward radial elastic displacement of the tunnel wall is given by:

$$u_{ie} = \frac{ro(1+\nu)}{E} (Po - Pi)$$
 Eq. 3-33

Where E is the young's modulus or deformation modulus and v is the Poisson's ratio.

When the internal support pressure is less than the critical support pressure failure occurs and the radius of the plastic zone around the tunnel is given by:

$$r_{\rm p} = r_{\rm o} \left[\frac{2(Po(k-1) + \sigma cm)}{(1+k)((k-1)Pi + \sigma cm)} \right]^{\frac{1}{k-1}}$$
 Eq. 3-34

The total inward radial displacement of the walls of the tunnel is given by:

$$u_{ip} = \frac{ro(1+\nu)}{E} \left[2(1-\nu)(Po - Pcr)(\frac{rp}{ro})^2 - (1-2\nu)(Po - Pi) \right]$$
 Eq. 3-35

3.2.6 Numerical Modeling

Finite Element Methods (FEMs) comprising numerical approaches are useful for analysis of underground stresses and loading situations. The methods are used to calculate approximate ranges of a solution and generate two-dimensional (2D) or threedimensional (3D) models (Kim & Yoo, 2002). The software models simulate groundsupport interactions including tunnel deformation and construction sequences (RTM, 2009; Mohammed, 2015). This study used Rocscience Phase² software FEM package because of its ability to replicate existing geomechanical properties, inbuilt tutorials and examples and its suitability to model rock mass of various discontinuous excavated in 13 m wide spans (Crouch & Starfield, 1984). Furthermore, Phase² is recommended by the British Tunneling Society and the Institution of Civil Engineers and was used by Panda et al. (2014) to investigate the stability of tunnels at an operational hydropower plant in India (Tunnel Lining Design Guide, 2004) and many other projects. Phase² models are solutions for the progressive rock mass failure based on the Hoek-Brown failure criterion (Hoek, 2016).

There are two method of modeling under Phase² i.e. Core Replacement Method and Load Factor Method. Stress, deformation and stability of tunnel was determined using Phase². The tunnel alignment was divided into ten sections on the basis of change of rock type pattern and overburden. Field stress can be entered as gravity or constant value in the software. In this study, field stress is in the form of gravitational stress and calculated as product of unit weight of rock mass and overburden depth for σ_1 and σ_1 times active pressure coefficient of rock mass to estimate σ_3 . The head race tunnel was designed using load factor method. Load factor method was used for analysis so internal pressure was applied in the model. Internal pressure is applied normal to the boundary and varies with stage with maximum value equal to in-situ stress and

minimum value equals to zero. Maximum iteration is kept 500 with tolerance level of 0.01 which is expected to give significantly reliable results. Analysis of failure was performed using Generalized Hoek-Brown criterion.

The finite element analysis is carried out in three stages using Phase². The first stage is a consolidation stage in which the model, with no excavation present, is allowed to deform while being loaded by the in-situ stress field. In the second stage, after excavation of the tunnel of radius (R_t) of 2.1m, a uniform support pressure is applied to the tunnel boundary to control the closure of the tunnel. In the third step the internal pressure is removed a support is proposed. The following three steps is performed for the analysis of underground excavation:

a. The amount of tunnel wall deformation prior to support installation is determined.

In this method, a model of tunnel is built to determine the deformation far from the tunnel face using a simple plane strain analysis and to determine radius of plastic zone.

b. The internal pressure that yields the amount of tunnel wall deformation at the point of and prior to support installation is determined.

A uniform distributed load to the tunnel is added such that the magnitude and direction of the load will be equal and opposite to the in-situ stressed. There will be no deformation since the pressure is equal and opposite to the in-situ stress. Afterward, with suitable factor, the magnitude of the pressure is gradually reduced such that tunnel deformation will increase as the pressure is lowered to zero. Ten stages are considered in this analysis and the factor for each stage are diminished by 50% such that each stage has 1, 0.8, 0.4, 0.2, 0.1, 0.08, 0.04, 0.02 and 0.01 which will decrease to 0 at the final stage.

c. The support is assessed and it is checked whether i) the tunnel is stable, ii) tunnel wall deformation meets the specified requirements, and iii) the tunnel lining meets certain factor of safety requirements.

Care is taken that tunnel closure is not more that 4% of the tunnel span after installation of support. Support capacity diagram is generated for determining the factor of safety of the shotcrete and steel rib support. For a given factor of safety, capacity envelopes are plotted in axial force versus moment space and axial force versus shear force space. Values of axial force, moment and shear force for the liners are then compared to the capacity envelopes. The computed liners values must fall inside an envelope so that they have a factor of safety greater than envelop value.

Some steps are listed below to prepare model in phase² rock science software.

Project Setting

Project setting is very first and essential part of Project Modeling, this take analysis type, solver types, unit system, stage of excavations, ground water condition, project description.

Excavation Boundaries formation

After project setting, we need to create tunnel excavation boundary with tunnel crosssections. We must add external boundary three times bigger than excavation boundary. <u>Material identifying</u>

Now the important is to define material as per available data from the site. We define the ground material/rock type first and then assign to the model as same as field condition. Defined rock material properties such as unit weight, strength, specific gravity, poisons ration etc. are taken from project detailed design report.

Defining discontinuities

Various discontinuities such as fault, fold, joints etc. are defined on the model as per geological survey data i.e. face map at different chainage.

Loading condition

Before applying loading at the model, we divide the model in various meshes, mesh setup is done with graded mesh and three Nodded Triangle's support on all the sites after discretizing. Than field load is applying through gravity.

Calibration

Calibration is done through verifying of displacement and stress concentrated at the opening with field testing data.

Applying Support System

We should apply support system design before using various empirical methods. First, we should define a support material, properties of the material such as diameter of rock bolt, length of rock bolt, modulus of elasticity of bolt material, tensile strength of rock bolt, spacing of rock bolt etc. were taken from the detailed design report of the SMHEP. Some mechanical properties may be taken from the manufacturing company for the references.

<u>Analysis:</u> Now finally computation of the model was done and various result should be interpreted. On the basic of various result from the analysis we can recommend final support system for the tunnel.

3.2.7 Block Stability Analysis

The wedge stability analysis was done using rock science software UNWEDGE. The analysis of wedges formed at every section are very important for the stability of excavation. Most existing algorithms for underground wedge stability analysis assume that stresses are sufficiently low and can therefore be ignored. If the in-situ stress is low than we have to neglect the wedge but for the deep excavation it needs importantly to analyze the wedge analysis. In this research work, wedge analysis was done for each section and analyze whether they are stable by applying the minimum support as designed.

3.2.8 Squeezing prediction

Squeezing ground conditions refer to large convergence of excavations occurring during excavation and that may continue over time. These conditions are encountered in tunneling drives in poor quality or weak rock but also in structurally defined rock masses. In this portion the tunnel section from 1+000m to 1+400m was analyzed for the squeezing and that was study for safe support system which are minimum as designed earlier.

Squeezing problem seen in tunnel alignment were analyzed by Empirical, Semi-Analytical and Numerical methods. In Empirical methods Singh et al. (1992) and Goel (1994) approaches were used. It was also analyzed by Semi Analytical Method, Hoek and Morinas (2000) method. Which was found quite more acceptable and is recommended by different scientists. Finite Element Method (FEM) using RS2 computer software was used for the Numerical analysis.

3.2.9 Report Preparation

The required support system selected should be minimum results from these independent solutions. The support system designed should give safe and economical project completion.

4 STUDY AREA AND PROJECT DESCRIPTION

4.1 Location of the Project

Super Madi Hydroelectric Project is located in Kaski Districts (Figure 4-1), Gandaki Provience of Nepal. The project lies in the Namarjun and Parche Village of Kaski District. The headworks is located at the foothill of Sikles village and the powerhouse is located just opposite of Sodha village. The project lies about 23 km north-east of Pokhara. At present there is about 16km long earthen road access towards the project from Pokhara City.

Figure 4-1 Location Map of Project Area

4.2 Hydrology

Madi River is a perennial river which is one of the major tributaries of Seti river and ultimately Trishuli River. Madi River originates from Annapurna II, IV and Lamjung Himal with an elevation from about 7937 m amsl and meets Seti river after flowing about 52 km southwards from the proposed powerhouse location. The entire catchment

area of Madi River is of fern shape type with dendritic drainage pattern. The catchment area includes dense forest, cultivated area, barren land and rocky and snowy mountain including Himalayas.

The total catchment area at proposed headwork's location is 278.136 sq. km. (Figure 4-2) Out of the total area 63.742 sq.km. lies above 5000 amsl, 135.51 sq.km. lies between 3000-5000m amsl and 78.884 sq.km. below 3000 m amsl. The average elevation of the catchment area is 4648 m amsl. The annual precipitation of the catchment area has been calculated as 3194 mm.

Flows at Madi River is strongly influenced by the monsoon climate with high flows during summer monsoon period of 4 months (80% of total annual rainfall) and low

flows during off monsoon period of about 8 months when there will be less rainfall (20% of total annual rainfall). The period from October to November is medium flow period. The lowest monthly flow occurs in February or March. The daily flows are dominated by groundwater during the driest season. Snowmelt is usually the major source of flows in April through June.

4.3 Regional Geology

Geologically, project area lies in the Higher Himalayan succession. The Higher Himalayan is sandwiched between the Southern Tibetan Detachment System (STDS) in north and the Main Central Thrust (MCT) in south. The MCT is the major regional thrust in Himalayan which lies in about 2 km (aerial distance) south from the powerhouse area. This zone comprises mainly high-grade metamorphic rocks such as Kyanite-silliminitae bearing gneiss, schist and quartzite. Geologically the project location belongs to higher Higher Himalayan Crystalline Zone consisting of percambrian gneiss. (Figure 4-3) The main lithology of the project area is banded gneiss with the various infilling material. The banded gneisses are fresh to moderately weathered, whereas the mica gneiss is moderately to highly weathered. The overall rock mass condition of the project area is fair to good which is thickly to massively foliated, slightly fractured to highly fractured with intercalation of quartzite and schist. The geology of Nepal (Figure 4-4) is much variable from Terai region to Sewalik, Lesser Himalayan, Higher Himalayan.

Figure 4-3 Simplified Geological map of Nepal (Dhital M.R., 2015)

Figure 4-4 Physiographic divisions of Nepal (Dhital M.R. 2015)

4.4 Geomorphology

In the Himalayas, geo-disasters are recurrent features that generally result from the combination of several hazards (gullying, landsliding, flooding), affecting vulnerable, poorly prepared, human communities. Madi River is a snow fed perennial river, originating from Annapurna II, IV and Lamjung Himal which is one of the major tributaries of Seti River and ultimately Trishuli River. Madkyu khola is one of the main tributaries of Madi River that joins at about 800 m upstream of the proposed intake location. Madi River is about 6.7 km long from its confluence with madkyu khola at Palche to the confluence of Chipli khola at sodha. The average gradient of the river is this particular reach is about 2.5%.

Steel cliff of more than 150m are observed in major stretch of Madi River at both the banks. The project area consists of steep and rugged terrain. The occurrence of rigid gneiss in the project area has contributed to the steep and rugged terrain. The elevation of the project area 1345masl in the north to 1040m in south along the river thalweg. The major stream and spurs show east-west trend. Along most of the madi river, the hill slope is controlled by the foliation $(12^{\circ}/15)$ and two other joint set $(35^{\circ}/75$ and $28^{\circ}/71)$, one dipping west and the other dipping south respectively.

Table 4-1 Physiographical di	livision of the Nepal .	Himalaya (modified	after Upreti, 1999)
------------------------------	-------------------------	--------------------	---------------------

S N	Geomorphic Unit	Width (km)	Altitudes (m)	Main Rock Types	landform development	
1	Terai (Northern edge of the Gangetic Plain)	20-50	100-200	Alluvium: coarse gravels in the north near the foot of the mountains, gradually becoming finer southward	River deposition, erosion and tectonic upliftment	
2	Churia Range (Siwaliks)	10-50	200-1300	Sandstone, mudstone, shale and conglomerate.	Tectonic upliftment, erosion, and slope failure	
3	Dun Valleys	5-30	200-300	Valleys within the Churia Hills filled up by coarse to fine alluvial sediments	River deposition, erosion and tectonic upliftment	
4	Mahabharat Range	10-35	1000- 3000	Schist, phyllite, gneiss, quartzite, granite and limestone belonging to the Lesser Himalayan Zone	Tectonic upliftment, Weathering, erosion, and slope failure	
5	Midlands	40-60	300-2000	Schist, phyllite, gneiss, quartzite, granite, limestone geologically belonging to the Lesser Himalayan Zone	Tectonic upliftment, Weathering, erosion, and slope failure	
6	Fore Himalaya	20-70	2000- 5000	Gneisses, schists, phyllites and marbles mostly belonging to the northern edge of the Lesser Himalayan Zone	Tectonic upliftment, Weathering, erosion, and slope failure	
7	Higher Himalaya	10-60	>5000	Gneisses, schists, migmatites and marbles belonging to the Higher Himalayan Zone	Tectonic upliftment, Weathering, erosion (rivers and glaciers), and slope failure	

Figure 4-5 Layout Showing Tunnel Alignment

4.5 Geological Condition of Project Components

Weir

The headworks site is selected considering the favorable location available in the area from various aspects like foundation across the weir axis, stability of both sides hill slope and sediment deposit pattern. The proposed weir location is at an elevation of 1344m and the river is about 50m wide with steep tock slope (about $> 70^{\circ}$) at left bank and a bit less steep slope at right bank. The exposed rock type at the right and left banks of the headwork site is predominantly banded gneiss and thin layer of schist intercalated with weak thin bands of micaceous gneiss. The rock at both banks are slightly to moderately weathered, massive to medium foliated with medium to high persistency having three sets of planners to undulating joints (including foliation plane) filled with silt and clay. The RMR and Q values of the exposed rock is about 75 to 80 and 10 to 14 respectively which is defined as good rock. No major slope instability problems are anticipated in the area.

Intake, Gravel Trap and Head pond

The side intake, gravel trap, and headpond lie partially in the recent alluvial deposit and in bedrock. The alluvial deposit comprises rounded boulders, cobles and pebbles of banded gneiss augen gneisses, quartzite and limestone. ERT result have shown that bed rock in this area can be found within the depth of 5 m to 30 m and the average hydraulic conductivity calculated by mise-a'-la-masse method is 134.45 m/day.

The exposed rock in the area comprises slightly weathered, medium to massively foliated, medium to coarse-grained, strong to very strong banded gneiss with few partings of slightly weathered medium grained, thin to thickly foliated schist. The bedrock consists of three plus random joint sets. The joints comprise medium to high persistency, planer- undulated, joint contact is slightly weathered, slightly open to tight with sandy silty clay infilling.

Settling Basin and Tunnel

The geological and topographical site conditions of headworks do not allow exposed settling basin and other required flushing arrangements. Therefore, the settling basin and all other flushing structures are proposed underground along left bank hill side.

The geological condition of the inlet tunnel area, underground settling basin, flushing tunnel and adit-1 are fair to good and favorable. The rock mass of the area is slightly deformed and foliated banded gneiss with few partings of schist. The less deformed massive rocky mountain with sufficient vertical and horizontal rock cover above and valley side is a perfect location for the underground settling basin cavern. The geological condition of the area is favorable even for bigger size caverns.

The rock is slightly weathered, massive to medium foliated having three sets of rough and irregular, undulating, tight to moderately open joints (including foliation plane) with medium to high persistency filled with silt. The RMR and Q values of the exposed rock are about 80 to 85 and 10 to 14 respectively which is defined as good rock.

Headrace Tunnel

The head race tunnel is aligned along the left hill side of Madi River. The total length of headrace tunnel is approximately 5.28km excluding settling basin. The tunnel has exposed at both banks of kalbandi kholsi which is being used as adits during construction and shall be connected by penstock pipe at the final stage with river

crossing structure. The rock condition along the tunnel are interpreted by extrapolation of rock mass condition from the tributaries and foot trails in the vicinity of tunnel alignment. The rock types and their estimated attitudes that will be encountered in tunnel is summarized in table below.

Chainage	Description	Major
(meter)		joints
(0+240) To (0+450)	The rock mass is thickly to massively foliated, light grey, strong to very strong, fresh to slightly weathered banded gneiss. Three major joints are observed with random joint. Thin to thick schist parting is also present, which will be associated as weakness zone. The rock mass forms steep cliff. The tunnel alignment is oblique with the strike of major discontinuity (foliation). The rock overburden within this stretch is between 200m to 250m.	F:120°/13° J1:351°/75° J2:280°/71°
(0+450) To (0+650)	The rock mass is thickly to massively foliated, light grey, strong to very strong, fresh to slightly weathered banded gneiss of kyanite grade. The tunnel alignment is oblique to the major discontinuity (foliation plane) with the excavation driving against dip. The rock overburden within this stretch is between 250m to 325m.	F:75°/15° J1:188°/75° J2:278°/68°
(0+650) To (0+900)	The rock mass is thickly to massively foliated, light grey, strong to very strong, fresh to slightly weathered banded gneiss with three plus random joint sets. The tunnel alignment makes oblique angle to the major discontinuity with the excavation driving against dip. The rock overburden within this stretch is between 300m to 325m.	F:095°/17° J1:340°/70° J2:260°/65°
(0+900) To (1+300)	The tunnel alignment makes less angle with the strike of major discontinuity with the excavation driving against dip. The rock overburden within this stretch is between 200m to 300m.	F:082°/15° J1:181°/75° J2:278°/68°
(1+300) To (1+600)	The rock mass is thickly to massively foliated, light grey, strong to very strong, fresh to slightly weathered banded gneiss. Three major joint sets along with other joints shall be encountered. The rock overburden within this stretch is between 15m to 225m.	F:134°/32° J1:344°/81° J2:278°/57°
(1+600)	The rock mass is thickly to massively foliated, light grey, strong to very strong, fresh to slightly weathered banded	F:051°/27°

 Table 4-2 Description of rock mass along headrace tunnel (source: Super Madi HEP)

To (1+900) (1+900) To (2+900)	 gneiss. Three major joint sets. Shear zones shall be encountered at some stretches. The tunnel alignment makes oblique to the major discontinuity(foliation). The rock overburden within this stretch is between 15m to 150m. The rock mass are not exposed witin the area. The tunnel alignment makes less angle to the major discontinuity with the excavation driving towards dip. The rock overburden within this stretch is between 150m to 450m. 	J1:272°/62° J2:202°/48° F:134°/32° J1:344°/81° J2:278°/57°
(2+900) To (3+400)	The rock mass is thickly to massively foliated, light grey, strong to very strong, fresh to slightly weathered banded gneiss with few partings of slightly weathered medium foliated schist. The tunnel alignment is perpendicular to the major discontinuity with the excavation driving towards dip. The rock overburden within this stretch is between 200m to 450m.	F:77°/12° J2:182°/72° J3:269°/65°
(3+400) To (3+700)	The rock mass are not exposed in the area. The tunnel alignment is almost perpendicular to the major discontinuity (foliation). The rock overburden within this stretch is between 200m to 250m.	F:075°/15° J1:275°/70° J2:180°/65°
(3+700) To (4+000)	The rock mass are not exposed in the area. The tunnel alignment makes oblique with the strike of the major discontinuity (foliation). The rock overburden within this stretch is between 240m to 300m.	F:134°/32° J1:344°/81° J2:278°/57°
(4+000) To (4+700)	The rock mass consist of thick to massive foliated gneiss and garnetiferous schist. The tunnel alignment makes oblique angle with the strike of the major discontinuity (foliation).The rock overburden within this stretch is between 200m to 300m.	F:109°/33° J2:344°/81° J3:278°/57°
(4+700) To (5+300)	The rock mass is thickly to massively foliated, light grey, strong to very strong, fresh to slightly weathered banded gneiss with three major joint sets. Foliation is major discontinuity. The rock overburden within this stretch is between 100m to 250m. The tunnel alignment makes very low angle with the strike of the major discontinuity (foliation).	F:115°/21° J2:320°/60° J3:240°/57°

4.6 The Study Section

The selected project is Super Madi Hydro-electric Project with installed capacity 44 MW to generate annual average energy of 242.65 GWh. This project has Headrace tunnel of length 5282.31 m inverted D shaped. This headrace tunnel is designed for low pressure flow. The above length of the headrace tunnel is excluding of settling basin, adits, inspection tunnel, flushing tunnels, kalbandi kholsi crossing, approach tunnel and tunnel stretch before vertical drop, surge shaft connecting tunnel. The excavation is in the section of 1+000m to 1+400m while doing this research.

Figure 4-6 Selected Tunnel Section for the Study

The tunnel excavation size (Figure 4-6) without pay line is 4.2 m*4.2 m (B*H). The elevation of the tunnel section of this study varies from 1300.00 m to 1350.00m above mean sea level.

The tunnel is exposed at the bank of Kalbandi Kholsi which is also be used as adits during construction and shall be connected by penstock pipe at the final stage with river crossing structure.

Overburden in the selected section for this study varies from 116.66m at Kalbandi

Kholsi to 306.42 m at 500m upstream from the Kholsi.

Figure 4-7 Tunnel Section

4.6.1 Geology

The properties of the discontinuities along the study section was collected from the site office and were check to some section. The properties are listed in Table 4-3. Planes of weakness in rock are formed through failure in extension/tension, shear or in more complex failure modes that involve a combination of both. Failure surfaces formed in shear are usually smooth with some gouge material whereas failure surfaces formed in extension are rough and usually clean. Once formed, planes of weakness are more susceptible to weathering than the intact rock.

Table 4-3	Properties	of Discontinuities	along study see	ction
-----------	------------	--------------------	-----------------	-------

Chainage	Discontinuities	Geological Description			
	F/J1 80°/20°	The Excavated tunnel face consists gray colored, medium grained, foliated, slight to moderately weathered, medium strong, banded Gneiss with			
1+000	J2: 310°/40°	quartz veins parallel to the foliation plane. The rough, planar, moderately weathered joints with fair RQD, have tight to few (1-3) mm aperture with clay fillings			
	J3: 260°/60°	moderately spaced and have medium to high persistency. Surface water condition of the area is damp.			
	F/J1: 90°/15°	The Excavated tunnel face consists gray colored, medium grained, foliated, slight to moderately weathered, medium strong, banded Gneiss with			
1+050	J2:10°/60°	quartz veins parallel to the foliation plane. The rough, planar, moderately weathered joints with fair RQD, have tight to faw $(1, 3)$ mm aperture with clay fillings			
	J3:280°/30°	in some prominent joints. Joints are closely to moderately spaced and have medium to high			

		persistency. Surface water condition of the area is damp				
	F/J1: 90°/20°	The Excavated tunnel face consists gray colored, medium grained, foliated, slight to moderately weathered, medium strong, banded Gneiss with				
1+100	J2: 20°/60°	quartz veiss parallel to the foliation plane. The rough, planar, moderately weathered joints with fair RQD, have tight to few (2-3) mm aperture with clay fillings				
	J3: 340°/45°	in some prominent joints. Joints are closely to moderately spaced and have medium to high persistency. Surface water condition of the area is damp.				
	F/J1: 95°/20°	The Excavated tunnel face consists gray colored, medium grained, foliated, highly weathered, weak, banded Gneiss with quartz veins parallel to the				
1+150	J2: 185°/65°	thick. High amount of clay coating and filling can be seen on crown part and upper tunnel face. The rough, planar, moderately weathered joints with poor RQD,				
	J3:220°/80°	have tight to few (3 mm) aperture with clay fillings in some most of the joints. Joints are closely to moderately spaced and have medium to high persistency. Surface water condition of the area is dry to damp.				
	F/J1: 85°/20°	The Excavated tunnel face consists gray color medium grained, foliated, highly weathered, we banded Gneiss with quartz veins parallel to				
1+200	J2: 300°/50°	filling can be seen on crown part and upper tunnel face. Below the spring line, clay filling upto 1m can see. The rough planar, moderately weathered joints				
	J3: 180°/75°	with poor RQD, have tight to few (2 mm) aperture with clay fillings in most of the joints. Joints are closely to moderately spaced and have medium to high persistency. Surface water condition of the area is damp.				
	F/J1: 100°/20°	The Excavated tunnel face consists gray colored, medium grained, foliated, highly weathered, weak, banded Gneiss with quartz veins parallel to the				
1+250	J2: 170°/60°	foliation plane. The individual beds are 20-40 cm thick. High amount of clay coating and filling can be seen on crown part and upper tunnel face. The rough,				
	J3: 240°/85°	planar, moderately weathered joints with poor RQD, have tight to few (3 mm) aperture with clay fillings in most of the joints. Joints are closely to moderately spaced and have medium to high persistency. Surface water condition of the area is damp.				
1+300	F/J1: 110°/20°	The Excavated tunnel face consists gray colored, medium grained, foliated, Low weathered, Medium				

	J2: 280°/40°	to strong, banded Gneiss with quartz veins parallel to the foliation plane. The individual beds are 20-100 cm thick. The rough, planar, moderately weathered
	J3: 95°/80°	joints with good RQD, have tight to few (1 mm) aperture with clay coating in few joints. Joints are closely to moderately spaced and have medium persistency. Surface water condition of the area is dry to damp.
	F/J1: 95°/25°	The Excavated tunnel face consists gray colored, medium grained, foliated, moderately weathered, Medium strong to strong, banded Gneiss with quartz
1+350	J2: 280°/45°	veins parallel to the foliation plane. The individual beds are 20-80 cm thick. The rough, planar, moderately weathered joints with fair ROD have
	J3: 175°/85°	tight to few (1-2 mm) aperture with clay coating in few joints. Joints are closely to moderately spaced and have medium persistency. Surface water condition of the area is dry to damp.
	F/J1: 100°/20°	The Excavated tunnel face consists gray colored, medium grained, foliated, moderately weathered, Medium strong to strong banded Gneiss with quartz
1+400	J2: 220°/65°	veins parallel to the foliation plane. The individual beds are 10-60 cm thick. The rough, planar,
	J3: 285°/80°	tight to few (1-3 mm) aperture with clay coating and filling in few joints. Joints are closely to moderately spaced and have medium persistency. Surface water condition of the area is dry to damp.

4.6.2 Geotechnical Data

Overburden

Tunneling under high overburden stresses results in many tunnel instability problems due to the rock overstressing. Understanding and simulating the rock failure process is the major issue of a deep excavation to achieve an appropriate rock support system that provides possible cost-effective and stable construction. Overburden pressure is a geological term that denotes the pressure caused by the weight of the overlying layers of material at a specific depth under the earth's surface. Overburden pressure is also called lithostatic pressure, or vertical stress. Overburden stress (σ_v) is the pressure exerted on a formation at a given depth due to the total weight of the rocks and fluids above that depth.

The "roof" of the tunnel, or the top half of the tube, is the crown. The bottom half is the invert. The basic geometry of the tunnel is a continuous arch. Because tunnels must

withstand tremendous pressure from all sides, the arch is an ideal shape. It is the stress that will include the pressure coming from the soil, water in pores and from the external load. When the load is applied to the soil, it transfers the load to water in the pores and soil grains. It increases with the increasing depth of soil. It is denoted using the term σ_v .

Figure 4-8 Ground Profile of Study Section

The overburden height of the ground above tunnel section is calculated using the profile shown in Figure 4-8 by subtracting tunnel section level from the ground surface and that was shown in Table 4-4.

Chainage	Ground Level (masl)	Tunnel Excavation Level	Overburden (m)	
		(masl)		
1+000	1634.69	1328.27	306.42	
1+050	1620.86	1328.25	292.61	
1+100	1613.48	1328.22	285.26	
1+150	1603.57	1328.20	275.37	
1+200	1602.22	1328.17	274.05	
1+250	1581.19	1328.15	253.04	
1+300	1547.17	1328.12	219.05	
1+350	1514.95	1328.10	186.85	
1+400	1495.70	1328.07	167.63	

Table 4-4 Overburden Calculation of Study Section

4.6.3 Rock Mass Classification

Calculation of Q-Value

All the data were collected from the geological survey conducted by site office. Understanding to measure all the parameter required to calculate Q-value the site visit was conducted frequently. Table 4-5 shows that value along the study section which describe the rock mass class which was also noted on that table. This result shows the extremely variation along the study section from extremely poor rock to poor rock. The studied section was poor rock category that need much support and careful construction mechanism.

Chainage	RQD	JN	JR	JA	JW	SRF	Q value	Rock Class	Remarks
1+000	55	12	1.5	4	1	5	0.344	Е	Very Poor
1+050	70	12	1.5	3	1	5	0.583	E	Very Poor
1+100	55	12	1.5	6	1	5	0.229	E	Very Poor
1+150	45	15	1.5	6	1	10	0.075	F	Extremely Poor
1+200	30	15	1.5	8	1	10	0.038	F	Extremely Poor
1+250	45	12	1.5	8	1	10	0.070	F	Extremely Poor
1+300	75	12	1.5	3	1	2.5	1.250	D	Poor
1+350	65	12	1.5	3	1	2.5	1.083	D	Poor
1+400	65	12	1.5	6	1	5	0.271	E	Very Poor

Table 4-5 Q-Value of Study Section

These Q-value is to be applied for the estimation of rock support. The rock mass quality (Q) is a very sensitive index and its value varies from 0.001 to 1000. Use of the Q-system is specifically recommended for tunnels and caverns with an arched roof.

Calculation of RMR Value

All the RMR value were calculated using the geological description provided by the site office. All the description was closely studied and the rating value was calculated from the RMR classification of rock masses (Bieniawski, 1989). These values describe the rock mass class which was also shown in Table 4-6. The rock class found in that section was varies from very poor rock to fair rock which is similar classification as Q-value. Very poor rock class of category V from section 1+150 to 1+250 m. these values are furthers used for the support estimation which was described later in this chapter.

	Rating												
Chainag e						Condition of Di							
	Strength of Intact Rock Material	RQD	Spacing of Disconti nuities	Length, Persistenc e	, Separati on (apertur e) Rough		Infillin g Weathered		Ground Water Condition	Adjustment for Orientation	Total	Rock Mass Class	Remark
1+000	4	8	8	1	1	3	2	3	10	-5	35	IV	Poor
1+050	4	8	8	1	1	3	2	3	10	-5	35	IV	Poor
1+100	4	8	8	1	1	3	2	3	10	-5	35	IV	Poor
1+150	2	5	5	0	0	1	0	1	10	-5	19	V	Very
1+130	2	5	5	0	0	1	0	1	10		10	V	Very
1+200	2	5	5	0	0	1	0	1	10	-5	19	V	Very
1+250	2	5	5	0	0	1	0	1	10	-5	19	V	poor
1+300	7	13	10	2	4	5	2	5	15	-5	58	111	Fair
1+350	7	13	10	2	4	5	2	5	15	-5	58	111	Fair
						3							
1+400	4	8	8	1	1		2	3	10	-5	35	IV	Poor

Table 4-6 RMR Calculation of Study Section

5 **RESULT AND DISCUSSION**

The term rock support is the term widely used to describe the procedures and materials used to improve the stability and maintain the load bearing capacity of rock near to the boundaries of an underground excavation. Tunnels are generally grouped in four broad categories, depending on the material through which they pass: soft ground, consisting of soil and very weak rock; hard rock; soft rock. Three main types of primary support systems are presently used in rock.

The stretch of tunnel was excavated during the time of this study and has observed weak rock mass quality and challenges difficulty in stabilizing the tunnels with the designed rock support. This chapter includes tunnel stability analysis and numerical modelling of three typical sections in this stretch of tunnel.

5.1 Estimation of Rock Mass Properties

Rock mass properties such as Hoek–Brown constants, deformation modulus of rock masses and uniaxial compressive strength of rock mass were calculated in accordance with Q_c , Q_N , Q, RMR, RMi. Factors affecting the stress problems are rock mass properties such as jointing systems, strength properties, anisotropy, and elastic properties. Orientation of major principle stress relative to the direction of major joint sets and structural features, such as bedding and schistosity have a major influence on rock bursting and spalling. For gneiss, tunnel section having rich in mica are often characterized by stress relief, while the rock burst is confined to more quartz and feldspar rich sections (Panthi 2006).

The rock mass properties are presented in, Table 5-1 Table 5-2 and Table 5-3, UCS for the rock mass and deformation modulus of rock mass using various empirical analysis.

For SMHEP, there is no uni-axial compressive strength test data in the settling basin area. Panthi (2006) gives some good approximation of the UCS value of intact rock. These values are used for the guidance to estimate the UCS value of intact rock in Himalayan region. He found the UCS value for Banded rock is between 50 to 100 MPa and the value for schistose gneiss is 35 MPa.

Rock mass strength is defined as an ability to withstand stress and deformation. It is influenced by the foliation, schistosity, discontinuity and the orientation of structural features. Strength of rock mass and the intact rock have vast variation due to the non-

homogeneity, anisotropic and discontinuity of the rock mass (Bieniawaski and Van Heerden (1975)).

For SMHEP, banded gneiss is the metamorphic rock with few intercalations of mica schist. Therefore, for this type of schistose banded gneiss, value of M_i is taken as 28 for further analysis as an input parameter. The disturbance factor is taken as 0.5 to 0.8 for the poor blasting method. The Laboratory test for various mechanical properties like Poisson's ration, bulk density and modulus of elasticity are not carried out. Therefore, those parameters have taken from the similar projects where laboratory test has been carried out. In this respect, UTKHEP and SMHEP have many geological similarities such as rock type (Banded gneiss) and geological location (Higher Himalaya). Panthi (2006) and Neupane (2010) suggested the various mechanical properties for the similar geological condition. The poisson's ratio is taken 0.2 (Neupane 2010) and bulk density 2.68 g/cm³ (panthi, 2006) for the further analysis. Excavation and geometry of the opening incorporate the stress distribution around the opening. These stresses are the resultant of the vertical stress caused by gravity, tectonic stresses, topographic and residual stresses. These vertical stresses are changed after the excavation. Vertical stress is induced because of the overlying strata. If we assumed the homogenous and isotropic rock mass the vertical stress due to the overlying strata, (gravitational stress) is calculated by using following relation.

$$\sigma_{\rm V} = \gamma Z$$
 Eq.5-1

Where,

 γ =specific weight of the overlying rock mass (MN/m³)

Z=Depth of overburden (m)

Mathematical form of total horizontal stress is as follows:

$$\sigma h \frac{v}{1-v} \sigma_{v+} \sigma_{tec}$$
 Eq. 5-2

In SMHEP, there is not any test carried out to measure the tectonic stresses. this was neglected in this research. Sheorey (1994) suggested a relation to evaluate the value of `K` by considering the curvature of the crust and variation of elastic constants, density, and thermal expansion co-efficient through the crust to mantle. According to him:

$$K = 0.25 + 7E_h (0.001 + 1/Z)$$
 Eq. 5-3

Where E_h is the average deformation modulus of the upper part of the earth crust measured in a horizontal direction and Z (m) is the depth below the surface. For SMHEP, E_h is taken as 3.97 GPa (Gautam 2012) for banded gneiss.

T	able	5-1	Rock	Mass	Prope	erties
---	------	-----	------	------	-------	--------

Rock Type/	Chainage	Н	GSI	γ	γν	mi	σ_{cm}	E _{rm}	Disturbance	m _b	S	a	$\sigma_{\rm v}$	k	$\sigma_{\rm h}$
Group		(m)	(value)	(MN/m ³)			(MPa)	(GPa)	Factor				(MPa)		(MPa)
	1+000	306.42	34	0.026	0.20	28	2.835	3.872	0.8	0.5637	4.82E-05	0.5166	8.212	0.368	2.053
Very Poor (G01)	1+050	292.61	39	0.026	0.20	28	3.325	4.200	0.8	0.7484	9.91E-05	0.5120	7.842	0.373	1.960
	1+100	285.26	31	0.026	0.20	28	2.601	3.676	0.8	0.4537	2.77E-05	0.5213	7.645	0.375	1.911
Extremely Poor (G02)	1+150	275.37	21	0.026	0.20	28	0.527	1.260	0.5	0.6411	2.55E-05	0.5418	7.380	0.379	1.845
	1+200	274.05	14	0.026	0.20	28	0.491	1.117	0.5	0.4763	1.11E-05	0.5634	7.345	0.379	1.836
	1+250	253.04	20	0.026	0.20	28	0.523	1.244	0.5	0.6236	2.36E-05	0.5434	6.781	0.388	1.695
Poor (G03)	1+300	219.05	46	0.026	0.20	28	9.303	11.972	0.8	1.1257	2.80E-04	0.5075	5.871	0.405	1.468
	1+350	186.85	45	0.026	0.20	28	8.963	11.574	0.8	1.0426	2.30E-04	0.5082	5.008	0.427	1.252
Very Poor (G01)	1+400	167.63	32	0.026	0.20	28	2.686	3.752	0.8	0.4961	3.48E-05	0.5192	4.492	0.444	1.123

	Chainage			RMR	GSI	σ _{ci}		σ_{cm}							
Rock Type/ Group		H (m)	Q - Value			(MPa)	Hoek & Brown (1980b)	Yuhbir et al(1983)	Ramamurthy (1986)	Kalamaris & Bieniawski (1995)	Sheorey (1997)	Barton (2002)	Average	Remarks	
Very Poor (G01)	1+000	306.42	0.344	35	30	75	2.0266	0.519436	2.34157	4.999	2.9081	4.2152	2.83492		
	1+050	292.61	0.583	35	30	75	2.0266	0.519436	2.34157	4.999	2.9081	7.1531	3.32457		
	1+100	285.26	0.229	35	30	75	2.0266	0.519436	2.34157	4.999	2.9081	2.8102	2.60074		
	1+150	275.37	0.075	19	14	35	0.3888	0.071279	0.46550	1.198	0.6098	0.4292	0.52703		
Extremely Poor (G02)	1+200	274.05	0.038	19	14	35	0.3888	0.071279	0.46550	1.198	0.6098	0.2146	0.49127		
	1+250	253.04	0.070	19	14	35	0.3888	0.071279	0.46550	1.198	0.6098	0.4024	0.52256		
Poor (G03)	1+300	219.05	1.250	58	53	75	7.2729	3.017679	7.98439	13.033	9.1842	15.3281	9.30339		
	1+350	186.85	1.083	58	53	75	7.2729	3.017679	7.98439	13.033	9.1842	13.2844	8.96277		
Very Poor (G01)	1+400	167.63	0.271	35	30	75	2.0266	0.519436	2.34157	4.999	2.9081	3.3211	2.68590		

Cl. :	Н	GSI	Q	RMR	γ		Em						
Chainage	(m)	(value)			(MN/m ³)	V	Bieniawski (1978)	Serafim and Pereira (1983)	Grimstad and Barton (1993)	Read et al.	Hoek & Brown (1998)	Em	
1+000	306.42	30	0.344	35	0.026	0.20	-	4.217	-	4.2875	2.418	3.641	
1+050	292.61	30	0.583	35	0.026	0.20	-	4.217	-	4.2875	2.418	3.641	
1+100	285.26	30	0.229	35	0.026	0.20	-	4.217	-	4.2875	2.418	3.641	
1+150	275.37	14	0.075	19	0.026	0.20	-	1.679	-	0.6859	0.963	1.109	
1+200	274.05	14	0.038	19	0.026	0.20	-	1.679	-	0.6859	0.963	1.109	
1+250	253.04	14	0.070	19	0.026	0.20	-	1.679	-	0.6859	0.963	1.109	
1+300	219.05	53	1.250	58	0.026	0.20	16	15.849	2.4227	19.5112	9.087	12.574	
1+350	186.85	53	1.083	58	0.026	0.20	16	15.849	0.8690	19.5112	9.087	12.263	
1+400	167.63	30	0.271	35	0.026	0.20	-	4.217	-	4.2875	2.418	3.641	

Table 5-3 Deformation Modulus of Rock Mass

5.2 Tunnel Stability Evaluation

Stability of the tunnel section was analyzed by block failure analysis and squeezing prediction. Poor rock quality and the presence of various discontinuities in the tunnel alignment cause the instability problem which was studied in this chapter.

5.2.1 Block Stability Analysis

The blocks are formed by the intersection of discontinuities. When a right combination of joints is present at a given location, a wedge is formed. During tunnel excavations, rock wedges could form due to the presence of joints. These Blocks were falling due to the influence of gravity and other forces, roof and wall wedges may fail either by falling, sliding or rotating out of their sockets. The analysis of these Block/wedges are very important for the stability of excavation. Most existing algorithms for underground wedge stability analysis assume that stresses are sufficiently low and can therefore be ignored. If the in-situ stress is low than we have to neglect the wedge but for the deep excavation it needs importantly to analyze the wedge analysis. In this research work, wedge analysis was done for each section and analyze whether they are stable by applying the minimum support as designed.

Figure 5-1 Rosette Diagram Showing Discontinuities (Dip/Plunge)

Figure 5-2 Rosette Diagram Showing Joints (Dip/Trend)

Figure 5-3 Rosette Diagram Showing Strike
The above diagram present clear view of joints presented in the study section of Headrace tunnel. Dip direction (Figure 5-1) dip amount (Figure 5-2) and strike (Figure 5-3) of important joint of site condition its self a clear analysis tool for the block failure analysis.

For the analysis of wedge stability, UNWEDGE computer program was used. This is very popular software for the stability analysis of wedge formed during tunnel excavation which is developed by rockscience. UNWEDGE is a 3D stability analysis and visualization program for underground excavations in rock containing intersecting structural discontinuities. Safety factors are calculated for potentially unstable wedges and support requirements can be modeled using various types of pattern and spot bolting and shotcrete as designed after finite element method in previous topic.

Input Parameter

Tunnel Axis Orientation		Shear Strength				
Trend:	17.46°	Model Used:	Barton-Bandis			
Plunge:	Zero	JRC:	10			
Unit Weight		JCS	78 MPa			
Rock	0.027 MPa	$\Phi_{\rm r}$	30			
Water:	0.00981 MPa	Assume water pressure and	waviness are zero.			

Table 5-4 Input Parameter for Wedge Analysis

In this program wedges are subjected to gravity loading only, stress field are not taken into consideration that may affect in the result and lead to lower the factor of safety. This is the limitation of this software. It is assumed that displacement of wedges is takes place at the discontinuities and wedges move as rigid bodies with no internal deformation. All the section was analyzed for the wedge failure but only three section were discussed here and rest of the section were taken on appendix. These three sections were selected as different rock mass class categorized by the Q-value.

Chainage 1+000m

At all the sections three joint set are considered, Figure 5-4 shows the joint orientation and stereonet at this chainage with the tunnel axis. This is the input parameter of discontinuities for the wedge analysis.

Figure 5-4 Joint Orientation and Stereonet at chainage 1+000m

Figure 5-5 Multi perspective view of wedge failure without Support at chainage 1+000m

The joints all have the same Mohr-Coulomb strength parameters: a cohesion value of 0.1 MPa and a friction angle of 30°. The total of six wedges formed around the perimeter of the tunnel. Wedge #4 is in the lower left wall, #3 is on the lower right sidewall, while #6 and #8 are in the roof. Wedge #9 and #10 are on the near and far end. All the wedges are shown with the factor of safety before Figure 5-5 and after Figure 5-6 support installed. Roof wedge #8 have very low factor of safety i.e. 0.753

which is further increase to stable condition after installing minimum support designed

earlier.

Multi Perspective*]	ipport Window Help			- 0 ×
🗅 🖆 🕶 🔛 🔂 🎒 🗠 🔹 🕬 🖿	💐 💵 🔍 🔍 🛫 🛝 😭 🔍 🖉	l 🛸 🗃 💅 📋 🗉 🗞 🗖 🍯 🗸		
Lower Left wedge [4] FS: 50.251	Lower Right wedge [5] FS: 113.581	Roof wedge [6] FS: 591.530	Roof wedge [8] FS: 519.116	
				Bot Vsibily: Intersecting Wedges ▼ Wedge Translator. Turnel Asis Directation Trend 17.46 Plunge 0 + Wedge Information: Fater List
Weight: 8.337 tonnes, Support Pressure: 0	Weight: 6.279 tonnes, Support Pressure: 0	Weight: 0.255 tonnes, Support Pressure: 0	Weight: 0.088 tonnes, Support Pressu,	Weight: 8.337 tonnes Support Pressure: 0.00 tonnes/m2
Par Endwedge (9) FS: 4.185	FS: stable	No Wedge Formed	, , ,	Lower Right wedge [5] FS: 113.581 Weight 6.275 tonnes Support Pressure: 0.00 tonnes/m2 Roof wedge [6] FS: 591.530 Weight 0.255 tonnes Support Pressure: 0.00 tonnes/m2 Roof wedge [8] FS: 519.116 Weight 0.080 tonnes Support Pressure: 0.00 tonnes/m2 Harr End wedge [9] FS: 44.105 FS:
Weight: 7.810 tonnes, Support Pressure: 0	Weight: 6.600 tonnes, Support Pressure: 0			Go to Settings to activate Windows
For Help, press F1			J1: 20/080 J2: 40/310	J3: 60/260

Figure 5-6 Multi perspective view of wedge failure with Support at chainage 1+000m

Chainage 1+150m

Three joint set are considered, Figure 5-7 shows the joint orientation and stereonet at

Figure 5-7 Joint Orientation and Stereonet at chainage 1+150m

this chainage with the tunnel axis. This is the input parameter of discontinuities for the wedge analysis. The joints set with dip amount of 20, 65 and 80 were found in this section with dip direction 95, 185, 220 respectively.

Figure 5-8 Multi perspective view of wedge failure without Support at chainage 1+150m

The joints all have the same Mohr-Coulomb strength parameters: a cohesion value of 0.1 MPa and a friction angle of 30°. The total of five wedges formed around the perimeter of the tunnel. Wedge #3 is in the floor, #6 is on the upper left sidewall, while #7 in the upper right wall. Wedges #9 and #10 are on the near and far end. All the wedges are shown with the factor of safety before Figure 5-8 and after Figure 5-9 support installed.

Figure 5-9 Multi perspective view of wedge failure with Support at chainage 1+150m

Far end wedge #10 have very low factor of safety i.e. 1.281 which is further increase to stable condition after installing minimum support designed earlier. Wedge #3 will not fail since it is in the floor so it will also not be discussed further.

Chainage 1+350m

Three joint set are considered, Figure 5-10 shows the joint orientation and stereonet at this chainage with the tunnel axis. This is the input parameter of discontinuities for the wedge analysis. The joints set with dip amount of 25, 45 and 85 were found in this section with dip direction 95, 280, 175 respectively.

Figure 5-10 Joint Orientation and Stereonet at chainage 1+350m

The joints all have the same Mohr-Coulomb strength parameters: a cohesion value of 0.1 MPa and a friction angle of 30° . The total of seven wedges formed around the perimeter of the tunnel.

Figure 5-11 Multi perspective view of wedge failure without Support at chainage 1+350m

Wedge #1 is in the floor, #3 is on the lower left sidewall, while #5 in the upper right wall. Wedges #7 and #8 are on the roof. Wedges #9 and #10 are on the near and far end. All the wedges are shown with the factor of safety before Figure 5-11 and after Figure 5-12 support installed. Roof wedge #7 and #8 have very low factor of safety i.e. 0.240 and 0.00 respectively, which is further increase to stable condition after installing minimum support designed earlier. Wedge #1 will not fail since it is in the floor so it will also not be discussed further.

Figure 5-12 Multi perspective view of wedge failure with Support at chainage 1+350m

5.2.2 Squeezing Prediction

Squeezing ground conditions refer to large convergence of excavations occurring during excavation and that may continue over time. These conditions are encountered in tunneling drives in poor quality or weak rock but also in structurally defined rock masses. In this portion the tunnel section from 1+000m to 1+400m was analyzed for the squeezing and that was study for safe support system which are minimum as designed earlier.

Squeezing prediction in tunnel alignment were analyzed by Empirical, Semi-Analytical and Numerical methods. In Empirical methods Singh et al. (1992) and Goel (1994) approaches were used. For the analysis by Semi Analytical Method, Hoek and Morinas (2000) was used which found quite more acceptable and is recommended by different scientists. Finite Element Method (FEM) using RS2 computer software was used for the Numerical analysis.

5.2.2.1 Empirical Approach

Singh et al. (1992) approach

Singh et al. (1992) has given a demarcation line to differentiate squeezing condition from non-squeezing condition. This approach was developed by collecting data on rock mass quality Q (Barton et al., 1974) and overburden depth H explained in table 4-32. The equation of the line is:

$$H = 350 Q^{1/3} (m)$$
 Eq. 5-4

With the rock mass uniaxial compressive strength σ_{cm} estimated as σ_{cm}

$$\sigma_{\rm cm} = 0.75 \ \gamma \ {\rm Q}^{1/3} \ ({\rm MPa})$$
 Eq. 5-5

Where,

H = Overburden Depth

Q = Rock mass quality

 γ = Rock mass unit weight.

Considering the above equations, the different data needed for this approach were obtained from my study area and tabulated as below Table 5-5.

Chainage	Overburden (m)	Q value	Equation of Line (H)	Remarks
1 000	20 < 12	0.044	245.40	<u> </u>
1+000	306.42	0.344	245.18	Squeezing
1+050	292.61	0.583	292.44	Squeezing
1+100	285.26	0.229	214.18	Squeezing
1+150	275.37	0.075	147.60	Squeezing
1+200	274.05	0.038	117.15	Squeezing
1+250	253.04	0.070	144.46	Squeezing
1+300	219.05	1.250	377.03	Non Squeezing
1+350	186.85	1.083	359.46	Non Squeezing
1+400	167.63	0.271	226.45	Non Squeezing

Table 5-5 Tunnel overburden and Q value for Singh et al. (1992) approach.

The graph obtained Figure 5-13 shows about the ground condition prediction based on rock mass quality Q. From the graph we can conclude that most of the area (about 67%)

falls under the squeezing zone and the remaining (33%) falls under the non-squeezing zone. The section from 1+000m to 1+250m where high overburden pressure lies falls under squeezing condition and rest of the section with lesser overburden pressure is safe for squeezing problem.

Figure 5-13 Ground condition prediction based on rock mass quality 'Q'.

Goel (1994) approach

Goel (1994) developed an empirical approach based on the rock mass number N, defined as Q with SRF = 1. N was used to avoid the problems and uncertainties in obtaining the correct rating of parameter SRF in Q method. Considering the overburden depth H, the tunnel span or diameter B, and the rock mass number N from our tunnel sections, we have plotted the available data on log-log diagram between N and $HB^{0.1}$. All the section is studied for the squeezing problems and found five section fall for squeezing and rest lies for non-squeezing condition. As shown in the Table 5-6, distinguishes the squeezing and non-squeezing cases. The equation of this line is

$$H=(275N^{0.33}) B^{-0.1} Eq. 5-6$$

Considering the above equations, the different data needed for this approach were obtained from my study area and tabulated as below Table 5-6.

Chainage	Overburden (m)	Rock Mass Number 'N'	Tunnel Diameter 'B'	Equation of Line 'H'	HB ^{0.1}	Remarks
1+000	306.42	1.72	4.200	284.86	328.82	Squeezing
						Non-
1+050	292.61	2.92	4.200	339.17	391.51	Squeezing
1 + 100	285.26	1.15	4.200	249.18	287.64	Squeezing
1+150	275.37	0.75	4.200	216.66	250.09	Squeezing
1+200	274.05	0.38	4.200	172.36	198.96	Squeezing
1+250	253.04	0.70	4.200	212.09	244.82	Squeezing
						Non-
1+300	219.05	3.13	4.200	346.98	400.53	Squeezing
						Non-
1+350	186.85	2.71	4.200	330.98	382.05	Squeezing
						Non-
1+400	167.63	1.35	4.200	263.31	303.94	Squeezing

Table 5-6 Different parameters for Goel (1994) approach.

The Figure 5-14 represent the ground condition at the study section for different value of 'N', the most of the section fall under minor squeezing and other has non-squeezing condition.

Goel et al. (1995) approach

Figure 5-14 Ground condition prediction using rock mass number 'N'.

5.2.2.2 Semi Empirical Method

Jethwa et al. approach (1984)

The degree of squeezing in this approach is described using coefficient Nc which is equal to the ratio of rock mass uniaxial compressive strength (UCS) to insitu stress. Based on this value, type of behavior of tunnel can be estimated. Jethwa et al. (1984) define the degree of squeezing based on following relation:

$$Nc = \frac{\sigma cm}{Po} \qquad Eq. 5-7$$

Where, σ_{cm} = rock mass uniaxial compressive strength Po = in-situ stress γ = Unit weight of rock mass H = tunnel depth below surface.

Figure 5-15 Chart for Degree of Squeezing Analysis (Jethwa et al.)

The calculation is done for the prediction of squeezing at each section of this research on the basic of Jethwa et al. approach. For the various rock class i.e. very poor rock, poor rock and fair rock with degree of squeezing Figure 5-15 the prediction of squeezing was done for the nine section of this study Table 5-7.

Chainage	Overburden				Po=	Nc =	
	(m)	RMR	Q	σcm	γH	σcm/2Po	Remarks
							NT
1+000	306 42	35	0.344	16.66	8 77	1.01	Non- Squeezing
1+000	300.42	- 55	0.544	10.00	0.27	1.01	Squeezing
							Non-
1+050	292.61	35	0.583	16.66	7.90	1.05	Squeezing
1 100	205.26	25	0.000	16.66	7 70	1.00	Non-
1+100	285.26	35	0.229	16.66	7.70	1.08	Squeezing
							Mildly-
1+150	275.37	19	0.075	8.55	7.43	0.58	Squeezing
							Mildly-
1+200	274.05	19	0.038	8.55	7.40	0.58	Squeezing
							N (*1 11
1.050	252.04	10	0.070	0.55	6.02	0.62	Mildly-
1+250	253.04	19	0.070	8.55	6.83	0.63	Squeezing
							Non-
1+300	219.05	58	1.250	31.01	5.91	2.62	Squeezing
							Non-
1+350	186.85	58	1.083	29.88	5.04	2.96	Squeezing
1 . 400	167.62	25	0.071	10.00	4.52	1.04	Non-
1+400	167.63	35	0.271	16.66	4.53	1.84	Squeezing

Table 5-7 Squeezing prediction using Jethwa et al.

5.2.2.3 Semi Analytical Method

Hoek and Marinos (2000)

A semi-analytical approach given Hoek and Marinos (2000) have been used for estimation of the deformation caused by squeezing and estimation of support pressure required in the squeezing tunnel. Hoek and Marinos showed that a plot **Error! R eference source not found.** of tunnel strain (ξ) against the ratio cm/po could be used effectively to assess tunneling problems under squeezing condition. Hoek and Brown's criteria for estimating the strength and deformation characteristics of rock masses assume that rock mass behaves isotropically. However, if the rock mass is heavily

fractured, the continuity of the bedding surfaces will have been disrupted and the rock may behave as an isotropic mass. Thus, this criterion can be adapted to weak heterogeneous rock masses too.

This curve can be obtained by using the following equation:

$$\varepsilon = \frac{\delta i}{do} = [0.002 - 0.0025 \frac{pi}{po}] \frac{\sigma cm^{(2.4\frac{pi}{po}-2)}}{po} \qquad Eq. 5-8$$

$$\sigma_{\rm cm} = (0.0034 m i^{0.8}) \sigma_{\rm ci} \{1.029 + 0.025 e^{(-0.1mi)}\}^{\rm GSI}$$
 Eq. 5-9

In the equation given above, value of support pressure (pi) will be zero for an unsupported condition. The value of 'pi' should be increased until the strain reaches an acceptable range. The rock mass compressive strength (cm) is estimated by the following equation:

In case semi analytical method of squeezing analysis, Hoek and Marinos (2000) approach was used with correlation with ground condition. This method shown quite acceptable result and is more recommended by different scientists in rock engineering. In this method, tunnel strain (ϵ) was calculated by using different parameters such as Tunnel overburden depth, vertical stress, intact strength, material constant, GSI, rock mass strength and support pressure. Support pressure Pi was calculated by using the supports used in the tunnel such as steel ribs, shotcrete and rock bolts. From the calculated value of Pi i.e. Pimax tunnel strain was calculated.

The various physical parameters are determined in the empirical method. The empirically derived relationship between rock mass parameters and supports are then utilized to predict the support types and quantities and possibly the excavation procedure. Empirical method is generally applied during two circumstances when there might be limited geological information but relatively unlimited time and during construction when there is ample geological information but time is critical.

Among the above method of predicting squeezing for our tunnel section, the semi analytical method is most appropriate for the study in which we can use the installed support pressure. The describe the strain in percentage at every section that lies in the < 1 %. That indicate the minor support problem not the squeezing problem. So, the designed support is safe for the installation. It generally happens in weak rock such as shale, phylite, and slates or at weakness zone. In case of SMHEP, rock mass seems (from surface) strong and brittle, there is less chance of squeezing.

Table 5-8 Tunnel strain by using Pi	
-------------------------------------	--

Chainage	Tunnel Depth	γ	Ро									
	(m)	(KN/m^2)	(Mpa)	σci	mi	GSI	σcm	σcm/Po	Pi	Pi/Po	ξ(%)	Remarks
1+000	306.42	27	5.133	75.00	28	30	2.835	0.55	3.739	0.729	0.021%	
1+050	292.61	27	4.901	75.00	28	30	3.325	0.68	3.574	0.729	0.020%	
1+100	285.26	27	4.778	75.00	28	30	2.601	0.54	3.574	0.748	0.015%	
1+150	275.37	27	4.612	35.00	28	14	0.527	0.11	3.376	0.732	0.029%	
1+200	274.05	27	4.590	35.00	28	14	0.491	0.11	3.351	0.730	0.030%	
1+250	253.04	27	4.238	35.00	28	14	0.523	0.12	3.307	0.780	0.006%	
1+300	219.05	27	3.669	75.00	28	53	9.303	2.54	2.389	0.651	0.025%	
1+350	186.85	27	3.130	75.00	28	53	8.963	2.86	2.091	0.668	0.022%	
1+400	167.63	27	2.808	75.00	28	30	2.686	0.96	2.091	0.745	0.014%	

5.2.3 Support Estimation

The support system was estimated considering empirical, analytical and finite element Modelling which was further more analyzed for the ground characterization i.e. block stability and squeezing. Rock mass characterization using Q value and RMR value was used for the rock support estimation under empirical method. The applied support pressure compared with the critical support pressure is used for the estimating rock support analytically. Al last all the support are applied to the finite element model to optimize the support individually.

5.2.3.1 Empirical Methods

Statistical analysis of underground observations is the empirical technique for evaluating the stability of underground structures. Engineering rock mass classification is the best empirical approach for assessing the underground opening (Goodman, 1980; Hoek and Brown, 1980). Q-system and RMR (Geo-mechanics) system, are the commonly used type of Empirical methods to evaluate the rock support requirement and support design. Some empirical approaches, which are commonly used and universally accepted, are described here in detail.

Support Estimation by Q- Chart

Based on the Q value the permanent support is estimated using Q-chart. In addition to the rock mass quality (the Q-value) two other factors are decisive for the support design in underground openings and caverns. These factors are the safety requirements and the dimensions, i.e., the span or height of the underground opening. Generally, there will be an increasing need for support with increasing span and increasing wall height. Safety requirements will depend on the use (purpose) of the excavation. To express safety requirements, a factor called ESR (Excavation Support Ratio) is 1.6 used. The estimated support from the Q value are listed in Table 5-9.

The support chart gives an average of the empirical data from examined cases. For a given combination of Q-value and Equivalent dimension, a given type of support has been used and the support chart has been divided into areas according to type of support. The support chart indicates what type of support is used in terms of the centre to centre spacing for rock bolts and the thickness of sprayed concrete. It also indicates the energy absorption of the fibre reinforced sprayed concrete, as well as the bolt length and design of reinforced ribs of sprayed concrete. All the estimated support was further analyzed using finite element method from RS^2 software from rock science.

Table 5-9 Rock Support	t Estimation	Using	Q-Value
------------------------	--------------	-------	---------

Chainage	Q-Value	Class Number	Rock Mass Description	Final-Support
1+000	0.344	V	Very Poor	Systematic Bolt of φ-20mm, length 2.5m at 1.3m c/c, Fibre Reinforced shotcrete of 70 mm, (Sfr + B)
1+050	0.583	IV	Very Poor	Systematic Bolt of φ-20mm, length 2.0m at 1.5m c/c, Fibre Reinforced shotcrete of 40mm. (Sfr + B)
1+100	0.229	V	Very Poor	Systematic Bolt of φ-20mm, length 2.5m at 1.5m c/c, Fibre Reinforced shotcrete of 50 mm, (Sfr + B)
1+150	0.075	VI	Extremely Poor	Systematic Bolt of φ-20mm, length 2.5 m at 1.2m c/c, Fibre Reinforced shotcrete of 100 mm. (Sfr + B)
1+200	0.038	VI	Extremely Poor	Systematic Bolt of φ-20mm, length 2.5 m at 1.2m c/c, Fibre Reinforced shotcrete of 150 mm. (Sfr + B)
1+250	0.070	VI	Extremely Poor	Systematic Bolt of φ-20mm, length 2.5 m at 1.2m c/c, Fibre Reinforced shotcrete of 100 mm. (Sfr + B)
1+300	1.250	IV	Poor	Systematic Bolt of φ-20mm, length 2m at 2m c/c, unreinforced shotcrete of 50mm. (Sfr + B)
1+350	1.083	IV	Poor	Systematic Bolt of φ-20mm, length 2m at 2m c/c, unreinforced shotcrete of 50mm. (Sfr + B)
1+400	0.271	V	Very Poor	Systematic Bolt of φ-20mm, length 2.5m at 1.5m c/c, Fibre Reinforced shotcrete of 50 mm, (Sfr + B)

The thickness of the sprayed concrete increases towards decreasing Q-value and increasing span, and lines are drawn in the support chart indicating thicknesses. For positions between these lines the thicknesses will have an intermediate value. If deformation occurs, for instance caused by high stresses, reinforced concrete should be used in all categories. The length of the bolts depends on the span or wall height of the underground opening and to some degree on the rock mass quality.

Sometimes alternative methods of support are given. At high Q-values in the support chart, sprayed concrete may or may not be used. The mean bolt spacing in such cases will be dependent upon whether or not sprayed concrete is used. Due to this, the support chart is divided into two areas. The area defined as "Bolt spacing in fibre reinforced sprayed concrete" refers to bolting in combination with sprayed concrete.

Support Estimation using RMR Value

Rock support was also estimated from RMR value using support table design by Bieniawski, 1989. These supports are listed in Table 5-10.

Chainaga	Rock Support-RMR Method							
Chamage	RMR	Rock Class	Rock Type	RMR Support				
1+000	35	IV	Poor	Systematic 20mm diameter bolts 2m long, spaced 1–1.5 m in crown and wall with wire mesh, shotcrete				
1+050	35	IV	Poor	with a thickness range of between 100mm and 150m in crown and 100mm in the sides of tunnel and				
1+100	35	IV	Poor	Light to medium ribs spaced 1.5 m steel set where required				
1+150	19	V	Very poor	Systematic 20mm diameter bolts 2.5m long, spaced 1–1.5 m in crown and walls with wire mesh;				
1+200	19	V	Very poor	thickness range of between 150mm and 200m in crown and 150mm in the sides of tunnel and 50mm on face, and Medium to heavy ribs				
1+250	19	V	Very poor	spaced 0.75 m with steel lagging and fore poling if required; close invert				

Table 5-10 Rock Support Estimation Using RMR Method

1+300	58	111	Fair	Systematic 2m long systematic bolts of 20mm diameter and fully grouted, spacing range between bolts of 1.5–2m in crown and walls with wire mesh in crown, shotcrete		
1+350	58	III	Fair	with a thickness range of betwee 50mm and 100m in crown and 30mm in the sides of tunnel, and no steel set required		
1+400	35	IV	Poor	Systematic 20mm diameter bolts 2m long, spaced 1–1.5 m in crown and wall with wire mesh, shotcrete with a thickness range of between 100mm and 150m in crown and 100mm in the sides of tunnel, and Light to medium ribs spaced 1.5 m steel set where required		

RMR method is generally used for horseshoe shaped tunnel of width 10m under the vertical stress 25 MPa, Calculated supports were compared with the support from various other methods.

5.2.3.2 Analytical Method

Now the model is validated through the comparison of total displacement computed and result shown by the model. For this first we have calculated the total inward displacement here.

For this first we have to calculate hydrostatic stresses P_0 and uniform internal support pressure P_i . These pressures are subjected to the support applied at the section. Generally, we have applied the shotcrete, systematic bolting and steel ribs.

Estimated support can be optimized using analytical equation such that there is no failure condition. If the Internal support pressure is greater than the critical pressure than no failure. With the help of this condition, we can optimize the support and these models is said to be model set III.

Chainaga		Bolt	Shotcrete	Steel	pi			Total
Chamage	μ₀	Spacing	Thickness	Туре	Bolt	Shotcrete	Steel Rib	Pi
				ISMB				
1+000	8.212	1.600	100	150	0.0719	1.7887	3.755	5.6156
				ISMB				
1+050	7.842	1.400	100	150	0.0939	1.7887	2.888	4.7710

Table 5-11 Calculation of Hydrostatic & Internal Support Pressure

				ISMB				
1 + 100	7.645	1.400	100	150	0.0939	1.7887	3.414	5.2962
				ISMB				
1+150	7.380	1.400	200	150	0.0939	3.4304	3.129	6.6534
				ISMB				
1+200	7.345	1.200	200	150	0.1278	3.4304	2.888	6.4466
				ISMB				
1+250	6.781	1.400	200	150	0.0939	3.4304	2.347	5.8711
				ISMB				
1 + 300	5.871	2.000	100	150	0.0460	1.7887	1.173	3.0081
				ISMB				
1+350	5.008	2.000	100	150	0.0460	1.7887	1.173	3.0081
	4 402			ISMB				
1+400	4.492	2.000	100	150	0.0460	1.7887	1.173	3.0081

Table 5-12 Checking Failure Condition for Support from Analytical Approach

Chainage	po	Pi	pcr	Remarks
1+000	5.133	5.6156	5.4295	No Failure
1+050	4.901	4.7710	4.7189	No Failure
1+100	4.778	5.2962	5.0578	No Failure
1+150	4.612	6.6534	6.3087	No Failure
1+200	4.590	6.4466	6.3003	No Failure
1+250	4.238	5.8711	5.7323	No Failure
1+300	3.669	3.0081	1.3991	No Failure
1+350	3.130	3.0081	1.8950	No Failure
1+400	2.808	3.0081	2.0295	No Failure

Table 5-13 Estimated Support from Analytical Approach

Chainage	Description
1+000	Systematic Bolting of 20mm- φ & 2m length with 1.6m c/c spacing. Fibre reinforced sprayed concrete 100 mm + Steel Ribs (ISMB 150) at 0.5m c/c.
1+050	Systematic Bolting of 20mm- φ & 2m length with 1.4m c/c spacing. Fibre reinforced sprayed concrete 100 mm + Steel Ribs (ISMB 150) at 0.65m c/c.
1+100	Systematic Bolting of $20\text{mm}-\phi$ & 2m length with 1.4m c/c spacing. Fibre reinforced sprayed concrete $100 \text{ mm} + \text{Steel}$ Ribs (ISMB 150) at 0.55m c/c.
1+150	Systematic Bolting of 20mm- ϕ & 2m length with 1.4m c/c spacing. Fibre reinforced sprayed concrete 200 mm + Steel Ribs (ISMB 150) at 0.6m c/c.

1+200	Systematic Bolting of 20mm- φ & 2m length with 1.2m c/c spacing. Fibre reinforced sprayed concrete 200 mm + Steel Ribs (ISMB 150) at 0.65m c/c.
1+250	Systematic Bolting of 20mm- ϕ & 2m length with 1.4m c/c spacing. Fibre reinforced sprayed concrete 200 mm + Steel Ribs (ISMB 150) at 0.8m c/c.
1+300	Systematic Bolting of 20mm- ϕ & 2m length with 2m c/c spacing. Fibre reinforced sprayed concrete 100 mm + Steel Ribs (ISMB 150) at 0.8m c/c.
1+350	Systematic Bolting of 20mm- φ & 2m length with 2m c/c spacing. Fibre reinforced sprayed concrete 100 mm + Steel Ribs (ISMB 150) at 0.8m c/c
1+400	Systematic Bolting of 20mm- φ & 2m length with 2m c/c spacing. Fibre reinforced sprayed concrete 100 mm + Steel Ribs (ISMB 150) at 0.8m c/c

5.2.3.3 Numerical Modelling

Modeling of rock mass is a very difficult job due to the presence of discontinuities, anisotropic, heterogeneous, and nonelastic nature of rock mass, using empirical and numerical methods. Complex nature and different formation make the rock masses a difficult material for empirical and numerical modeling. During initial stages of excavation projects, the detailed data are not available about strength properties, deformation modulus, in situ stresses, and hydrological of rock masses. To handle the no availability of the detailed project data, the empirical methods like rock mass classification systems are considered to be used for solving engineering problems. empirical methods used defined input parameters in designing of any underground structures, recommendation of support systems, and determination of input parameters for numerical modeling. Empirical methods classified the rock mass quantitatively into different classes having similar characteristics for easily understanding and construction of underground engineering structures. Despite its wide applications, the empirical methods do not evaluate the performance of support systems, stress redistribution, and deformation around the tunnel. Therefore, it is very important to consider these parameters in designing of optimum underground structure and support systems. is deficiency of empirical method is solved by numerical methods.

Numerical modeling is gaining more attention in the field of civil and rock engineering for prediction of rock mass response to various excavation activities. The numerical methods are convenient, less costly, and less time consuming for the analysis of redistribution stresses and their effects on the behavior of rock mass and designing of structures within the rock mass environment. Numerical methods give the exact mathematical solution for the problem based on the engineering judgment and input parameters like physical and strength parameters of rock masses. In this study, the rock mass along the tunnel axis was assessed using rock mass rating (RMR) and tunneling quality index (Q-system). The support system was recommended by these two classification systems. the rock mass behavior with the interaction of two different support systems was analyzed based on stresses, total deformation, and plastic yield thickness around the tunnel using finite element method- (FEM-) based Phase² software for selection of an appropriate support system for tunnel, which is of great importance for the practicing engineers in the field.

Chainage 1+000m

The selected chainage consists gray colored, medium grained, foliated, slight to moderately weathered, medium strong, banded Gneiss with quartz veins parallel to the foliation plane. The rough, planar, moderately weathered joints with fair RQD, have tight to few (1-3) mm aperture with clay fillings in some prominent joints. Joints are closely to moderately spaced and have medium to high persistency. Surface water condition of the area is damp.

Figure 5-16 Phase Model to showing (a) Strength factor (b) Total displacement at Chainage 1+000m

In elastic analysis, the material type is considered as elastic that means rock mass behaves elastically. The major concern of this analysis is to find the strength factor around tunnel periphery that was shown in the Figure 5-16 (a). The strength factor is less than one around the tunnel in both cases with and without support. If the strength factor is less than one in elastic analysis, there will be failure of the material and for more additional information plastic analysis would be necessary (Phase² tutorial no.1). Strength factor is less than one for all tunnel sections considered. Hence Plastic analysis has been done in each chainage.

The total displacement of the tunnel is 2.71mm. This is about 0.06% of the tunnel span. The extend of the plastic zone (Rp) is about 3.684m as shown in tables (Annex A). The ration of distance from tunnel face to tunnel radius (X/Rt) is 1.19. And plastic zone to tunnel radius (Rp /Rt) is 1.754. By using Vlachopoulos and Diederichs method, the above values are plotted gives ratio of closure to maximum closure equal to 0.74. Therefore, the closure equals 2.005mm. This is about 74% of the total closure 2.71mm. 74% of total deformation will already take place before support is installed. Internal pressure factor of 0.04 yields the tunnel wall displacement computed above for the point of support installation.

In Plastic analysis, uniform distributed load is added to the tunnel in the initial stage. The factor is taken such that it will gradually reduce the magnitude of the pressure. As a result, tunnel deformation will increase as the pressure is lowered to zero. At this stage the internal pressure is removed, simulating the reduction of support due to the advance of tunnel face.

Figure 5-17 Support Capacity Plot at Chainage 1+000

Support is installed as shown in Table 5-14 the support capacity diagram, which are presented as Thrust Vs Shear Force and Thrust vs Moment for support system as suggested in Figure 5-17.

The supports are safe for the installation as it comes under the all three envelops, so the support for the similar geological condition with the similar Q-value, Steel Sets and shotcrete are preferred.

Steel set	ts		Tensile Strength	400	MPa
Туре	ISSB	75	Weight	8.5	Kg/m
Sectional Depth	0.0762	m	Moment of Inertia	$1*10^{6}$	
Area	0.00107	m2	Shotcrete		
			Unconfined Compressive		
Young's Modulus	200000	MPa	Strength	30	Mpa
Poisson Ratio	0.25		Young's Modulus	30000	Mpa
Spacing	0.5	m	Thickness of Shotcrete	100	mm
Compressive Strength	400	MPa	Poisson's Ratio	0.25	

Table 5-14 Revised Support at Chainage 1+000

Chainage 1+050m

The selected tunnel section consists gray colored, medium grained, foliated, slight to moderately weathered, medium strong, banded Gneiss with quartz veins parallel to the foliation plane. The rough, planar, moderately weathered joints with fair RQD, have tight to few (1-3) mm aperture with clay fillings in some prominent joints. Joints are closely to moderately spaced and have medium to high persistency. Surface water condition of the area is damp.

A uniform distributed load to the tunnel is in the initial stage. The factor is taken such that it will gradually reduce the magnitude of the pressure. As a result, tunnel deformation will increase as the pressure is lowered to zero. At this stage the internal pressure is removed, simulating the reduction of support due to the advance of tunnel face.

Figure 5-18 Phase Model to show Total Displacement at Chainage 1+050m

The total displacement of the tunnel is 2.26mm. This is about 0.054% of the tunnel span. The extend of the plastic zone (Rp) is about 3.058m as shown in tables (Annex A). The ration of distance from tunnel face to tunnel radius (X/Rt) is 1.19. And plastic zone to tunnel radius (Rp /Rt) is 1.456. By using Vlachopoulos and Diederichs method, the above values are plotted gives ratio of closure to maximum closure equal to 0.78. Therefore, the closure equals 1.767mm. This is about 78% of the total closure 2.26mm. 78% of total deformation will already take place before support is installed. Internal pressure factor of 0.1 yields the tunnel wall displacement computed above for the point of support installation.

Figure 5-19 Support Capacity Plot at Chainage 1+050m

The support needs to redesign because of some elements was lies outside the envelop. The thickness of shotcrete was increases from 50mm to 75mm which comes under all the three envelop i.e. safe as shown in Figure 5-20

Figure 5-20 Support Capacity Plot at Chainage 1+050m after redesigned

Support is installed as shown in Table 5-15 the support capacity diagram, which are presented as Thrust Vs Shear Force and Thrust vs Moment for support system as suggested in Figure 5-20.

Steel	sets		Tensile Strength	400	MPa
Туре	ISSB	75	Weight	8.5	Kg/m
Sectional Depth	0.0762	m	Moment of Inertia	1*10 ⁶	
Area	0.00107	m2	Shotcrete		
			Unconfined Compressive		
Young's Modulus	200000	Mpa	Strength	30	Mpa
Poisson Ratio	0.25		Young's Modulus	30000	Mpa
Spacing	0.85	m	Thickness of Shotcrete	75	mm
Compressive					
Strength	400	Mpa	Poisson's Ratio	0.25	

Table 5-15 Revised Support at Chainage 1+050

Chainage 1+100m

The selected tunnel section consists gray colored, medium grained, foliated, slight to moderately weathered, medium strong, banded Gneiss with quartz veins parallel to the foliation plane. The rough, planar, moderately weathered joints with fair RQD, have tight to few (2-3) mm aperture with clay fillings in some prominent joints. Joints are closely to moderately spaced and have medium to high persistency. Surface water condition of the area is damp.

Figure 5-21 Phase Model Showing Total Displacement at Chainage 1+100m

The total displacement of the tunnel is 2.59mm. This is about 0.062% of the tunnel span. The extend of the plastic zone (Rp) is about 3.656m as shown in tables (Annex A). The ration of distance from tunnel face to tunnel radius (X/Rt) is 1.19. And plastic zone to tunnel radius (Rp /Rt) is 1.741. By using Vlachopoulos and Diederichs method,

the above values are plotted gives ratio of closure to maximum closure equal to 0.73. Therefore, the closure equals 1.898mm. This is about 73% of the total closure 2.59mm. 73% of total deformation will already take place before support is installed. Internal pressure factor of 0.08 yields the tunnel wall displacement computed above for the point of support installation.

Figure 5-22 Support Capacity Plot at Chainage 1+100m

In Plastic analysis, uniform distributed load is added to the tunnel in the initial stage. The factor is taken such that it will gradually reduce the magnitude of the pressure. As a result, tunnel deformation will increase as the pressure is lowered to zero. At this stage the internal pressure is removed, simulating the reduction of support due to the advance of tunnel face.

Support system is redesigned and installed as shown in Table 5-16 the support capacity diagram, which are presented as Thrust Vs Shear Force and Thrust vs Moment for support system as suggested as in Figure 5-22.

Steel sets			Rock Bolt			
	ISSB			End		
Туре	250		Туре	Anchored		
Sectional Depth	0.203	m	Length	2	m	
Area	0.0048	m2	Diameter	20	mm	
Young's						
Modulus	200000	Mpa	Bolt Modulus	200000	Mpa	
Poisson Ratio	0.25		Spacing	1.5	m	
Spacing	0.5	m	Shotcret	e		
Compressive			Unconfined Compressive			
Strength	400	Mpa	Strength	30	Mpa	
Tensile Strength	400	Mpa	Young's Modulus	30000	Мра	
Weight	37.8	kg/m	Thickness of Shotcrete	250	mm	
Moment of	5.12*10-					
Inertia	5		Poisson's Ratio	0.25		

Table 5-16 Revised Support at Chainage 1+100m

Chainage 1+150m

The selected tunnel face consists gray colored, medium grained, foliated, highly weathered, weak, banded Gneiss with quartz veins parallel to the foliation plane. The individual beds are 20-40 cm thick. High amount of clay coating and filling can be seen on crown part and upper tunnel face. The rough, planar, moderately weathered joints with poor RQD, have tight to few (3 mm) aperture with clay fillings in some most of the joints. Joints are closely to moderately spaced and have medium to high persistency. Surface water condition of the area is dry to damp.

Figure 5-23 Phase Model Showing Total Displacement at Chainage 1+150m

The total displacement of the tunnel is 4.37mm. This is about 0.104% of the tunnel span. The extend of the plastic zone (Rp) is about 4.849m as shown in tables (Annex A). The ration of distance from tunnel face to tunnel radius (X/Rt) is 1.19. And plastic zone to tunnel radius (Rp /Rt) is 2.309. By using Vlachopoulos and Diederichs method, the above values are plotted gives ratio of closure to maximum closure equal to 0.64. Therefore, the closure equals 2.802mm. This is about 64% of the total closure 4.37m. 64% of total deformation will already take place before support is installed. Internal pressure factor of 0.02 yields the tunnel wall displacement computed above for the point of support installation.

Figure 5-24 Support Capacity Plot at Chainage 1+150m

Support system is installed as shown in Table 5-17 the support capacity diagram, which are presented as Thrust Vs Shear Force and Thrust vs Moment for support system as suggested as in Figure 5-24.

Table 5-17 Revised Support at Chainage 1+150m

Steel sets			Rock Bolt		
				End	
	ISMB			Anchore	
Туре	150		Туре	d	
Sectional Depth	0.152	m	Length	2	m
	0.00083				
Area	2	m2	Diameter	20	mm
					Mp
Young's Modulus	200000	Mpa	Bolt Modulus	200000	a
Poisson Ratio	0.25		Spacing	1.4	m
Spacing	0.5	m	Shotcrete		
Compressive			Unconfined		Mp
Strength	400	Mpa	Compressive Strength	30	a
					Mp
Tensile Strength	400	Mpa	Young's Modulus	30000	a
		kg/			
Weight	6.6	m	Thickness of Shotcrete	250	mm
Moment of Inertia	3.01E-06		Poisson's Ratio	0.25	

Chainage 1+200m

The selected tunnel face consists gray colored, medium grained, foliated, highly weathered, weak, banded Gneiss with quartz veins parallel to the foliation plane. High amount of clay coating and filling can be seen on crown part and upper tunnel face. Below the spring line, clay filling upto 1m can see. The rough, planar, moderately weathered joints with poor RQD, have tight to few (2 mm) aperture with clay fillings in most of the joints. Joints are closely to moderately spaced and have medium to high persistency. Surface water condition of the area is damp.

Figure 5-25 Phase Model showing Total Displacement at Chainage 1+200m

The total displacement of the tunnel is 12.71mm. This is about 0.303% of the tunnel span. The extend of the plastic zone (Rp) is about 9.125m as shown in tables (Annex A). The ration of distance from tunnel face to tunnel radius (X/Rt) is 1.19. And plastic zone to tunnel radius (Rp/Rt) is 4.345. By using Vlachopoulos and Diederichs method, the above values are plotted gives ratio of closure to maximum closure equal to 0.44. Therefore, the closure equals 5.596mm. This is about 44% of the total closure 12.71m. 44% of total deformation will already take place before support is installed. Internal pressure factor of 0.08 yields the tunnel wall displacement computed above for the point of support installation.

In Plastic analysis, uniform distributed load is added to the tunnel in the initial stage. The factor is taken such that it will gradually reduce the magnitude of the pressure. As a result, tunnel deformation will increase as the pressure is lowered to zero. At this stage the internal pressure is removed, simulating the reduction of support due to the advance of tunnel face.

Figure 5-26 Support Capacity Plot at Chainage 1+200m

Support system is designed and installed as shown in Table 5-18 the support capacity diagram, which are presented as Thrust Vs Shear Force and Thrust vs Moment for support system as suggested as in Figure 5-26.

Steel sets			Rock Bolt			
	ISMB			End		
Туре	200		Туре	Anchored		
Sectional Depth	0.0203	m	Length	2	m	
Area	0.00124	m2	Diameter	20	mm	
Young's Modulus	200000	Мра	Bolt Modulus	200000	Мра	
Poisson Ratio	0.25		Spacing	1	m	
Spacing	0.5	m	Shoter	rete		
			Unconfined			
Compressive			Compressive			
Strength	400	Mpa	Strength	30	Мра	
Tensile Strength	400	Мра	Young's Modulus	30000	Мра	
			Thickness of			
Weight	9.7	kg/m	Shotcrete	350	mm	

Table 5-18 Revised Support at Chainage 1+200m

Chainage 1+250m

The Excavated tunnel face consists gray colored, medium grained, foliated, highly weathered, weak, banded Gneiss with quartz veins parallel to the foliation plane. The individual beds are 20-40 cm thick. High amount of clay coating and filling can be seen on crown part and upper tunnel face.

The rough, planar, moderately weathered joints with poor RQD, have tight to few (3 mm) aperture with clay fillings in most of the joints. Joints are closely to moderately spaced and have medium to high persistency. Surface water condition of the area is damp.

Figure 5-27 Phase Model showing Total Displacement at Chainage 1+250m

The total displacement of the tunnel is 6.04mm. This is about 0.144% of the tunnel span. The extend of the plastic zone (Rp) is about 5.941m as shown in tables (Annex A). The ration of distance from tunnel face to tunnel radius (X/Rt) is 1.19. And plastic zone to tunnel radius (Rp/Rt) is 2.829. By using Vlachopoulos and Diederichs method, the above values are plotted gives ratio of closure to maximum closure equal to 0.58. Therefore, the closure equals 3.5mm. This is about 58% of the total closure 6.06mm. 58% of total deformation will already take place before support is installed. Internal pressure factor of 0.04 yields the tunnel wall displacement computed above for the point of support installation.

Figure 5-28 Support Capacity Plot at Chainage 1+250m for Model Set-III

Support system is redesigned and installed as shown in Table 5-19 the support capacity diagram, which are presented as Thrust Vs Shear Force and Thrust vs Moment for support system as suggested as in Figure 5-28.

Steel sets			Rock Bolt			
				End		
Туре	ISMB 150		Туре	Anchored		
Sectional Depth	0.152	m	Length	2	m	
Area	0.000832	m2	Diameter	20	mm	
Young's Modulus	200000	Mpa	Bolt Modulus	200000	Mpa	
Poisson Ratio	0.25		Spacing	1.4	m	
Spacing	0.5	m	Shotcrete			
Compressive			Unconfined			
Strength	400	Mpa	Compressive Strength	30	Mpa	
Tensile Strength	400	Mpa	Young's Modulus	30000	Mpa	
Weight	6.6	kg/m	Thickness of Shotcrete	250	mm	
Moment of						
Inertia	3.01E-06		Poisson's Ratio	0.25		

Table 5-19 Revised Support at chainage 1+250m

Chainage 1+300m

The Excavated tunnel face consists gray colored, medium grained, foliated, Low weathered, Medium to strong, banded Gneiss with quartz veins parallel to the foliation plane. The individual beds are 20-100 cm thick. The rough, planar, moderately weathered joints with good RQD, have tight to few (1 mm) aperture with clay coating in few joints. Joints are closely to moderately spaced and have medium persistency. Surface water condition of the area is dry to damp.

Figure 5-29 Phase Model showing Total Displacement at Chainage 1+300m

The total displacement of the tunnel is 1.77mm. This is about 0.042% of the tunnel span. The extend of the plastic zone (Rp) is about 3.21m as shown in tables (Annex A). The ration of distance from tunnel face to tunnel radius (X/Rt) is 1.19. And plastic zone to tunnel radius (Rp /Rt) is 1.529. By using Vlachopoulos and Diederichs method, the above values are plotted gives ratio of closure to maximum closure equal to 0.76. Therefore, the closure equals 1.349mm. This is about 76% of the total closure 1.77mm. 76% of total deformation will already take place before support is installed. Internal pressure factor of 0.1 yields the tunnel wall displacement computed above for the point of support installation.

Figure 5-30 Support Capacity Plot at Chainage 1+300m

Support system is redesigned and installed as shown in Table 5-20 the support capacity diagram, which are presented as Thrust Vs Shear Force and Thrust vs Moment for support system as suggested as in Figure 5-30.

Steel	sets		Tensile Strength	400	MPa
Туре	ISSB 75		Weight	8.5	Kg/m
Sectional Depth	0.0762	m	Moment of Inertia	1.21E06	
Area	0.00107	m2	Shotcrete		
			Unconfined		
Young's Modulus	200000	Mpa	Compressive Strength	30	Mpa
Poisson Ratio	0.25		Young's Modulus	30000	Mpa
Spacing	0.5	m	Thickness of Shotcrete	100	mm
Compressive					
Strength	400	Mpa	Poisson's Ratio	0.25	

Table 5-20 Revised Support at Chainage 1+300m

Chainage 1+350m

The Excavated tunnel face consists gray colored, medium grained, foliated, moderately weathered, Medium strong to strong, banded Gneiss with quartz veins parallel to the foliation plane. The individual beds are 20-80 cm thick. The rough, planar, moderately weathered joints with fair RQD, have tight to few (1-2 mm) aperture with clay coating in few joints. Joints are closely to moderately spaced and have medium persistency. Surface water condition of the area is dry to damp.

Figure 5-31 Phase Model showing Total Displacement at Chainage 1+350m

The total displacement of the tunnel is 1.88mm. This is about 0.045% of the tunnel span. The extend of the plastic zone (Rp) is about 3.577m as shown in tables (Annex A). The ration of distance from tunnel face to tunnel radius (X/Rt) is 1.19. And plastic zone to tunnel radius (Rp /Rt) is 1.703. By using Vlachopoulos and Diederichs method, the above values are plotted gives ratio of closure to maximum closure equal to 0.82. Therefore, the closure equals 1.547mm. This is about 82% of the total closure 1.88mm. 82% of total deformation will already take place before support is installed. Internal pressure factor of 0.02 yields the tunnel wall displacement computed above for the point of support installation.

Figure 5-32 Support Capacity Plot at Chainage 1+350m

Figure 5-33 Support Capacity Plot at Chainage 1+350m after redesign

Support system is redesigned and installed as shown in Table 5-21 the support capacity diagram, which are presented as Thrust Vs Shear Force and Thrust vs Moment for support system as suggested as in Figure 5-33.

Table 5-21 Revised Support at chainage 1+350m

Steel	sets		Tensile Strength	400	MPa
Туре	ISSB 75		Weight	8.5	Kg/m
Sectional Depth	0.0762	m	Moment of Inertia	1.21E-06	
Area	0.00107	m2	Shotcrete		
Voung's Modulus	200000	Mpg	Unconfined Compressive Strength	30	Mpo
1 oung s Modulus	200000	wipa	Compressive Strength		wipa
Poisson Ratio	0.25		Young's Modulus	30000	Мра
Spacing	0.5	m	Thickness of Shotcrete	250	mm
Compressive					
Strength	400	Мра	Poisson's Ratio	0.25	

Chainage 1+400m

The Excavated tunnel face consists gray colored, medium grained, foliated, moderately weathered, Medium strong to strong, banded Gneiss with quartz veins parallel to the foliation plane. The individual beds are 10-60 cm thick. The rough, planar, moderately weathered joints with fair RQD, have tight to few (1-3 mm) aperture with clay coating and filling in few joints. Joints are closely to moderately spaced and have medium persistency. Surface water condition of the area is dry to damp.

Figure 5-34 Phase Model showing Total Displacement at chainage 1+400m

In Plastic analysis, uniform distributed load is added to the tunnel in the initial stage. The factor is taken such that it will gradually reduce the magnitude of the pressure. As a result, tunnel deformation will increase as the pressure is lowered to zero. At this stage the internal pressure is removed, simulating the reduction of support due to the advance of tunnel face.

The total displacement of the tunnel is 1.58mm. This is about 0.038% of the tunnel span. The extend of the plastic zone (Rp) is about 3.567m as shown in tables (Annex A). The ration of distance from tunnel face to tunnel radius (X/Rt) is 1.19. And plastic zone to tunnel radius (Rp /Rt) is 1.699. By using Vlachopoulos and Diederichs method, the above values are plotted gives ratio of closure to maximum closure equal to 0.73. Therefore, the closure equals 1.15mm. This is about 73% of the total closure 1.58mm.

73% of total deformation will already take place before support is installed. Internal pressure factor of 0.1 yields the tunnel wall displacement computed above for the point of support installation.

Figure 5-35 Support Capacity Plot at Chainage 1+400m

Support system installed as shown in Table 5-22 the support capacity diagram, which are presented as Thrust Vs Shear Force and Thrust vs Moment for support system as suggested as in Figure 5-35.

Table 5-22	Revised	Support a	t chainage	1+400m
------------	---------	-----------	------------	--------

Steel sets			Rock Bolt			
				End		
Туре	ISSB 250		Туре	Anchored		
Sectional Depth	0.203	m	Length	2	m	
Area	0.0048	m2	Diameter	20	mm	
Young's Modulus	200000	Mpa	Bolt Modulus	200000	Mpa	
Poisson Ratio	0.25		Spacing	1.5	m	
Spacing	0.5	m	Shotcrete			
			Unconfined			
Compressive			Compressive			
Strength	400	Mpa	Strength	30	Mpa	
Tensile Strength	400	Mpa	Young's Modulus	30000	Мра	
			Thickness of			
Weight	37.8	kg/m	Shotcrete	250	mm	
Moment of						
Inertia	5.12*10-5		Poisson's Ratio	0.25		

5.2.3.4 Support Adopted by the Project

The site is under-construction and they have designed the support with the preliminary data for the construction purpose. We will analysis these supports using numerical
modelling and comparing with the above designed support. The site office categories the various support system for different Q value. The support adopted by the construction company at site are shown in Figure 5-36 and Figure 5-37. The all four type of support are used in our study section.

Support type II and Type III have fibre reinforce shotcrete of 75mm and 100 mm respectively and same size of bolt used with center to center spacing 1.6m and 1.4 m respectively. These two types of support are applied for the rock class E.

Similarly, for rock class F they used a support type IV and Type V. In this type of support fibre reinforced shotcrete of 125mm -150mm thickness was applied and of same size bolt with spacing 1m - 1.2m.

5.3 Discussion

Different methods i.e. empirical approaches, analytical and numerical were used either in combine or in individual form - to analyze the support for the headrace tunnel of Super-Madi Hydroelectric Project. All the methods have some uniqueness, such as RMR value gives the idea for stand-up time whereas Q-system does not. Since Qsystem consider the more parameters (Including strength reduction factor) and have better support chart for estimation.

As an empirical approach, Rock mass classification system is used to predict the quality of rock mass either in the form of Q-Parameter or RMR parameter. Selection or rock bolt and lining type are also depending upon their market availability in the vicinity area. For more accurate and optimum solution to estimate the rock support system, numerical analysis technique was suggested which is discussed in this chapter. For the analysis through numerical approach, initial values of rock support for the simulation were needed. In this regard, suggested values of rock supports from the Q-system would be better choice and was used. Various combination of lining (shotcrete, Concrete, RCC) and Bolts are analyzed through numerical analysis and have eventually estimated the optimum values of support combinations which provides the required degree of safety and have relatively least cost. In numerical analysis, this requirement was achieved by reducing the maximum number of yielded elements. The estimated rock support was then reduced using critical pressure criteria in analytical method. The support pressure greater than the critical pressure indicates no failure condition. Therefore, support estimated from empirical methods were reduced such that the support pressure was higher than that critical pressure developed during excavation.

Analysis shows that rock support estimated from analytical method at chainage 1+100m, 1+200m and 1+350m tends to fail using numerical analysis that needs to redesign for the required factor of safety. Joint properties play crucial role in the rock mass stability during excavation. The depth geological survey of the area enhances the tunnel design, construction and stability. Which also help in the estimating required rock support and help in optimization. It was strongly recommended to perform numerical analysis, which may give more reliable result than any other methods.

The steel ribs were recommended to apply as a major rock support for stability with better factor of safety. All the section are numerically analyzed and suitable support are listed in Table 5-23 Revised Rock Support with Comparing with Project SupportTable 5-23 with the comparison of support taken by the project.

Chainage	Support Type	Support Designed by Project	This Study Reviewed Support
1+000	III	Systematic bolting of 2 m long, 20 mm diameter at 1.4m c/c spacing and Fibre reinforced sprayed concrete of 100 mm thickness.	Fibre Reinforce Shotcrete of 100 mm thickness and Steel Sets ISSB75*8.5 at 0.5 c/c.
1+050	Π	Systematic bolting of 2 m long, 20 mm diameter at 1.6m c/c spacing and Fibre reinforced sprayed concrete of 75 mm thickness.	Fibre Reinforce Shotcrete of 50 mm thickness and Steel Sets ISSB75*8.5 at 0.85 c/c.
1+100	III	Systematic bolting of 2 m long, 20 mm diameter at 1.4m c/c spacing and Fibre reinforced sprayed concrete of 100 mm thickness.	Systematic Bolting of 2m length -20mm dia. @ 1.5m c/c. Fibre Reinforce Shotcrete of 250 mm thickness and Steel Sets ISSB250*37.8 at 0.5 c/c.
1+150	IV	Systematic bolting of 2 m long, 20 mm diameter at 1.2m c/c spacing and Fibre reinforced sprayed concrete of 125 mm thickness.	Systematic Bolting of 2m length -20mm dia. @ 1.4m c/c. Fibre Reinforce Shotcrete of 250 mm thickness and Steel Sets ISMB150*6.6 at 0.5
1+200	V	Systematic bolting of 2.5 m long, 20 mm diameter at 1.0m c/c spacing and Fibre	Systematic Bolting of 2m length -20mm dia. @ 1.0m c/c. Fibre Reinforce Shotcrete of 350 mm

Table 5-23 Revised Rock Support with Comparing with Project Support

		reinforced sprayed concrete of	thickness and Steel Sets
		150 mm thickness.	ISMB200*9.7 at 0.5
1+250	IV	Systematic bolting of 2 m long, 20 mm diameter at 1.2m c/c spacing and Fibre reinforced sprayed concrete of 125 mm thickness.	Systematic Bolting of 2m length -20mm dia. @ 1.4m c/c. Fibre Reinforce Shotcrete of 250 mm thickness and Steel Sets ISMB150*6.6 at 0.5
1+300	II	Systematic bolting of 2 m long, 20 mm diameter at 1.6m c/c spacing and Fibre reinforced sprayed concrete of 75 mm thickness.	Fibre Reinforce Shotcrete of 100 mm thickness and Steel Sets ISSB75*8.5 at 0.5 c/c.
1+350	Π	Systematic bolting of 2 m long, 20 mm diameter at 1.6m c/c spacing and Fibre reinforced sprayed concrete of 75 mm thickness.	Fibre Reinforce Shotcrete of 150 mm thickness and Steel Sets ISSB75*8.5 at 0.5 c/c.
1+400	III	Systematic bolting of 2 m long, 20 mm diameter at 1.4m c/c spacing and Fibre reinforced sprayed concrete of 100 mm thickness.	Systematic Bolting of 2m length -20mm dia. @ 1.5m c/c. Fibre Reinforce Shotcrete of 250 mm thickness and Steel Sets ISSB250*37.8 at 0.5

The estimated support using various empirical as well as analytical method were tested in Phase² model. The presence of various joint in the rock mass tends to block failure during exaction. The installed support must stabilize such blocks. All the section is tested for the block failure before and after estimated minimum support applied. All the sections were safe against block failure with factor of safety is always greater than desired value (1.5). some section has critical factor of safety for the applied minimum support. So, it can be increase while excavation at the site. Such section is 1+100m, 1+200m, and 1+350m, these sections has lower factor of safety for the roof wedge. The most common problem in the tunneling is squeezing. Hoek and Marinos (2000) methods were applied for the prediction of squeezing at the study section. This method was widely used for estimation of the deformation caused by squeezing and estimation of support pressure required in the squeezing tunnel. The strain in percentage at every section that lies in the < 1 %. That indicate the minor support problem not the squeezing problem. So, the alignment of 400m was safe against the squeezing problem.

Therefore, the research shows that the different method of estimating rock support may provide different support system. By the analysis using finite element approach the supports are optimized for the economic project completion. The many section has overestimated support from the chart approach which were reduced in the analytical as well as finite element methods. These supports can withstand the block stability and squeezing problems at the weakest part of the tunnel. The Total displacements and stress related problems are very less in all sections. It may be due to limitation to account the effect of discontinuities. Therefore, the deformation may be higher in actual case than the computed values. Lack of consideration of all the minor joint sets that prevails in the rock mass may be one of major cause of error in the analysis. Effect of ground water was not considered as it may create problem during excavation. Therefore, it is suggested to make drain holes to pass out the possible water.

Wedge failure analysis shows that the alignment of tunnel was good for block stability. All the detach blocks have factor of safety more than one except roof wedge at some section, which means the tunnel is stable without support system as well. The squeezing problem was not actually identified along the headrace tunnel. The empirical method suggests same type of support if they fall under same category but geological condition has to be verified. Therefore, the rock support suggested by empirical relation only is not adequate for apply. Numerical analysis gives better result on that.

6 CONCLUSION AND RECOMMENDATION

6.1 Conclusions

In this study, rock mass classification is carried out in conjunction with numerical analysis to study the support requirement of the headrace tunnel of Super-Madi Hydroelectric Project, located in the Himalayan Region of Nepal. These simulated models were developed based on the following assumptions: Supports were installed instantly after excavation, Elastoplastic behavioral model using generalized Hoek–Brown criterion is used to simulate the models and Tunnel model is 2D considering plane strain problem.

The study explored the design of a support system for an underground Inverted Dshaped tunnel. Overall this study found that a comprehensive design of an adequate tunnel support system cannot be accomplished using only one approach. The required support selected should be the minimum supports results of the different solutions. Through rigorous designs, underground geotechnical engineering instability problems causing tunnel failure can be minimized. The stability analysis of models developed for each geotechnical unit in RS² was carried out after installment of support estimation from rock mass classification (Q & RMR system), Analytical Method (using critical pressure criteria) and support used by the project. From all the result and discussion of that, this research concludes as following:

- The empirical method gives very first estimate for the support analysis. The Q and RMR method also help in rock mass classification which was helpful in further design.
- The empirical method suggests same type of support if they fall under same category but geological condition has to be verified.
- Some input parameter for the numerical analysis were calculated form empirical relations.
- The support capacity plot was very useful for the analysis of rock support estimation. That can be used for the optimizing supports.
- Therefore, rock mass classification approach only is not adequate to design and estimation of tunnel support. Numerical analysis was very helpful to estimate

the tunnel support in such geological region where rock masses are very poor with high rock cover.

- These revised estimated supports are further analyzed for the wedge failure using UNWEDGE programming. This must helpful for the verification of these support can stand for possible wedge failure.
- Block failure analysis shows that the alignment of the Headrace Tunnel is good. Most of the detach wedges have factor of safety more than one, some have lesser than that but all the wedge is safe after applying revised support, which means the headrace tunnel section is stable from the block failure.
- The tunnel section is analyzed for the squeezing problem using various empirical, semi empirical and finite element modelling. No any serious squeezing problem was found.
- Effect of ground water is not considered as it may create problem during excavation. Therefore, it is suggested to make drain holes to pass out the possible water.

6.2 Recommendations

- The effect of water has not been considered in the analysis of the thesis. The result can be improved by considering the water effect in the analysis.
- The seismic effect in the tunnel is not considered in this research. The result can be improved by applying the seismic effect.

REFERENCE

Balasubramanian, A. (2017). Tunnel Types and Important. Research gate.

- Basnet, C. et. al. (2013). Analysis of Squeezing Phenomenon in the Headrace Tunnel of Chameliya Project, Nepal. *Hydro Nepal: Journal of Water, Energy & Environment*, 44-51.
- Brown, H. (1997). Practical Estimates of rock mass strength. *International Journal of Rock Mechanics, Mineral Science adn Geomechanics.*
- Brown, H. et. al. (1980). *Underground Excavation in Rock*. Institution of Mining and Metallurgy.
- Carranza, T. et. al. (2000). Application of Convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion. *Tunneling adn Underground Spacce Technology*, 187-213.
- Dhital, M. (2014). Geology of the Nepal Himalaya. Springer.
- Duncan, M. (1993). Numerical Modelling of Yield zones in weak rocks. 49-75.
- Hoek, E. (1995). Support of Underground excavatin in hard rock. Balkema, Rotterdam.
- Gautam, U. (2012). Stability Assessment of Underground Settling Basin Cavern of Super Madi Hydroelectric Project, Nepal. Trondheim, Norway: MSc Thesis.
- Goal, R. (1994). *Correlation for predicting support pressure and closure in tunnel.* Nagpur University, India: Phd Thesis.
- GoN. (2011). Geological Baseline Report. Lalitpur Nepal: Department of Irrigation.
- Jethwa, L. (1984). Estimation of Ultimate rock pressure for tunnel lining under squeezing rock conditions. *8*, 231.
- Kaiser, E. (1986). Evaluation of rock classification at B.C Rail tumbler ridge tunnels. *Rock Mechincs and Rock Engineering.*
- Panthee, S. et. al. (2016a). Control of rock joint parameters on deformation of tunnel opening. *Journal of Rock Mechanics*, 489-498.
- Panthee, S. et. al. (2016b). Comparative study of the deformation modulus of rock mass. Bulletin of Engineering GEology and the Environment, 1-12.
- Panthi, K. (2006). Analysis of engineering geological uncertainties related to tunneling in Himalayan rock mass conditions. *NTNU*, *Norway*.
- Panthi, K. (2012). Evaluation of rock brusting phenomena in a tunnel in the Himalayas. Bulletin of Engineering Geology and the environment, 761-769.
- Powderham, A. (1994). An overview of the observational method: development in cut and cover and bored tunnelling project. *Geotechnique*, 18.

- Goel, R et. al. (1995). Indian experience with Q and RMR system. *Tunnelling and Underground Space Technology*.
- Ramamurthy, T. (2021). *Engineering in rock for Slopes, Foundation and Tunnels*. New Delhi: PHI Learning Private Limited.
- Shrestha, G. (2006). *Stress induced problem in Himalayan Tunnels with Special reference to Squeezing*. Trondheim, Norway: Doctoral Thesis, NTNU.
- Shrestha, P. & Panthi, K.K. (2014). Analysis of the plastic deformation behavior of schist and schistose mica gneiss at Khimti headrace tunnel, Nepal. Bulletin of Engineering Geology and the Environment, 759-773.
- Shrestha, P. & Panthi, K.K. (2015). Assessment of the effect of stress anisotropy on tunnel deformation in the Kaligandaki Project in Nepal Himalayas. Bulletin of Engineering Geology and the Environment, 815-826.
- Shrestha, P. & Panthi, K.K. (2018). Estimating Tunnel Strain in the Weak and Schistose Rock Mass Influenced by Stress Anisotropy: An Evaluation Based on Three Tunnel Cases from Nepal. *Rock Mechanics and Rock Engineering*, 1823-1838.
- Singh, B. et. al. (1997). Rock Mass Strength parameter mobilised in Tunnels. *Tunneling and Underground Space Technology*.
- Singh, B. et. al. (2006). *Tunneling in Weak Rocks*. Book Series Volume 5: Elsevier Geo-Engineering.
- Tshering, K. (2012). Stability assessment of headrace tunnel for Punatsangchhu II Hydropower Project, Bhutan. NTNU Norway 150: MSc Thesis.
- Upreti, B. et. al. (1999). Lesse Himalaya Crystallinenappes of Nepal: Problem of their origin. *Geological Society of America Special Paper*, 225-238.
- Vasarhelyi, B. (2009). A possible method for estimating the poisson's ratio values of rock masses. *Acta Geodaetica et Geophysica Hungarica*, 313-322.
- Vlachopoulos, N. & Diederichs, M. (2009). Improved Longitudinal Displacement Profile for Convergence Confinment Analysis of Deep Tunnels. *Rock Mechanics and Rock Engineering*.

ANNEX A: DETAILS OF CALCULATIONS

Calculation of Closure and Tunnel Relaxation Stage using Vlachopoulos and Diederichs (2009)

Chainage	Distance from Tunel Face	Tunel Radius	Plastic Zone Radius	Dis. From Tunnel face/Tunnel radius	Plastic zone radius/Tunnel Radius	Closure/Max. Closer	Max Displacement	So, Closure	Tunnel Relaxation Stage
1+000	2.5	2.100	3.684	1.190	1.754	0.740	0.00271012	0.002005	Stage 7
1+050	2.5	2.100	3.058	1.190	1.456	0.780	0.00226542	0.001767	Stage 5
1+100	2.5	2.100	3.656	1.190	1.741	0.730	0.00259994	0.001898	Stage 6
1+150	25	2 100	4 849	1 190	2,309	0.640	0.00437814	0.002802	Stage 8
1+200	2.5	2 100	9.125	1 190	4 345	0.440	0.01271910	0.005596	Stage 6
1+250	2.5	2.100	5.041	1 100	2 820	0.580	0.00604210	0.003504	Stage 7
1+200	2.5	2.100	2 210	1.100	1.520	0.360	0.00177559	0.001240	Stage 7
1+300	2.5	2.100	5.210	1.190	1.529	0.760	0.00177558	0.001349	Stage 5
1+350	2.5	2.100	3.577	1.190	1.703	0.820	0.00188657	0.001547	Stage 8
1+400	2.5	2.100	3.567	1.190	1.699	0.730	0.00158035	0.001154	Stage 5

Chainage	Overburden (m)	Q- Value	GSI	σ_{h}	σν	σz	Remarks
1+000	306.42	0.344	34	2.053	8.212	8.212	
1+050	292.61	0.583	39	1.960	7.842	7.842	
1+100	285.26	0.229	31	1.911	7.645	7.645	
1+150	275.37	0.075	21	1.845	7.380	7.380	
1+200	274.05	0.038	14	1.836	7.345	7.345	
1+250	253.04	0.070	20	1.695	6.781	6.781	
1+300	219.05	1.250	46	1.468	5.871	5.871	
1+350	186.85	1.083	45	1.252	5.008	5.008	
1+400	167.63	0.271	32	1.123	4.492	4.492	

Calculation of Field Stress for Numerical Modeling

ANNEX B: PHASE MODELLING & RESULT

Chainage 1+000

.

108

Chainage 1+050

(c)

Chainage 1+150

(c)

(d)

(c)

Chainage 1+250

(b)

(c)

Chainage 1+300

(b)

(d)

(c)

Total Displacement

Chainage 1+350

(c)

1441

(c)

unbounded

(d)

ANNEX C: STANDARD TABLES, CHARTS & FUGURES

Vlachopoulos and Diederichs (2009) Diagram

General chart for GSI estimates from the geological observations

Rock	Class	Crosse	Texture			
Туре	Class	Group	Coarse	Medium	Fine	Very Fine
			Conglomerates	Sandstones	Siltstones	Claystones
	Clastia		(22)	19	9	4
×	Clasue		Breccias		Greywackes	
AR			(10)		(18)	
L	Non-Clastic	Organic				Chalk
IEI						7
				Sparitic	Micritic	
E		Carbonates		Limestone	Limestone	
				8	20	
		Evaporites		Gypstone	Anhydrite	
				16	13	
E	Non-Foliated		Marble	Hornfels	Quartzites	
RP			9	(19)	(24)	
MO I	Slightly foliated		Migmatite	Amphobolites		
IAI			(30)	31		
	Foliated*		Gneiss	Schist	Phyllites	Slate
Σ			33	(10)	(10)	9
	Phtonic	Light	Granite	Diorite		
			33	(28)		
			Granodiorite			
			(30)			
		Dark	Gabbro	Dolerite		
S D			27	(19)		
E O			Norite			
N S			22			
×	Volcanic	Lava		Rhyolite	Dacite	Obsidian
				(16)	(17)	(19)
				Andesite	Basalt	
				19	(17)	
		Pyroclastic	Agglomerates	Breccia	Tuff	
			(20)	(18)	(15)	

Values of constant mi given by intact rock (Hoek & Brown, 1997)

Appearance of rock mass	Description of rock mass	Suggested value of D
	Excellent quality controlled blasting or excavation by Tunnel Boring Machine results in minimal disturbance to the confined rock mass surrounding a tunnel.	<i>D</i> = 0
	Mechanical or hand excavation in poor quality rock masses (no blasting) results in minimal disturbance to the surrounding rock mass. Where squeezing problems result in significant floor heave, disturbance can be severe unless a temporary invert, as shown in the photograph, is placed.	D = 0 D = 0.5 No invert
	Very poor quality blasting in a hard rock tunnel results in severe local damage, extending 2 or 3 m, in the surrounding rock mass.	D = 0.8
A CAR	Small scale blasting in civil engineering slopes results in modest rock mass damage, particularly if controlled blasting is used as shown on the left hand side of the photograph. However, stress relief results in some disturbance.	D = 0.7 Good blasting D = 1.0 Poor blasting
A Contraction	Very large open pit mine slopes suffer significant disturbance due to heavy production blasting and also due to stress relief from overburden removal. In some softer rocks excavation can be carried out by ripping and dozing and the degree of damage to the slopes is less.	D = 1.0 Production blasting D = 0.7 Mechanical excavation

Guidelines for estimating disturbance factor D

1.0	Rock Quality Designation	RQD	Notes
a.	Very Poor (Completely weathered rock)	0 - 25	1. Where ROD is reported or
b.	Poor (weathered rocks)	25 - 50	measured as <10 (including 0)
с.	Fair (Moderately weathered rocks)	50 - 75	to evaluate Q.
d.	Good (Hard Rock)	75 - 90	2. RQD intervals of 5 i.e. 100,
e.	Excellent (Fresh rocks)	90 - 100	ys etc. are sufficiently accurate

Rock Quality Designation (RQD) Values

Joint Set Number Values

2.0	Joint Set Number	Jn	Notes
a.	Massive, no or few Joints	0.5 - 1.0	
b.	One Joint Set	2	
с.	One Joint Set Plus Random	3	
d.	Two Joint Set	4	1. For Intersections use
e.	Two Joint Set Plus Random	6	(3.0*Jn).
f.	Three Joint Sets	9	2. For Portal use
g.	Three Joint Set Plus Random	12	(2.0*Jn)
h	Four or More Joint Set, Random,	15	
11.	Heavily Jointed, 'Sugar Cube' etc.	13	
i.	Crushed Rock, Earthlike	20	

Joint Roughness Values

3.0	Joint Roughness Number	Jr	Notes
a.	Rock Wall Contact		
	Rock Wall Contact before 10		
b.	cm shear		
i)	Discontinuous Joint	4	
	Rough and Irregular,	3	
ii)	Undulating	5	1 Add 1 0 if the mean maxima of
iii)	Smooth Undulating	2	1. Add 1.0 If the mean spacing of
iv)	Slickensided Undulating	1.5	then 3m
v)	Rough or Irregular, Planar	1.5	2 Ir = 0.5 can be used for planar
vi)	Smooth, Planar	1	slikensided joints having
vii)	Slickensided Planar	0.5	lineations proveded that the
	No Rock Wall Contact When		lineactions are oriented for
с.	Sheared		minimum strength
	Zones containing Clay	1.0	
i)	mineral thick enough to	(nominal)	
	prevent rock wall contact	(nonnar)	
	Sandy, Gravely or Crushed	1.0	
ii)	zone thick enough to prevent	(nominal)	
	rock wall contact	(noninal)	

4.0	Joint Alteration Number	Ja	Φ_r degree
a.	Rock Wall Contact		
i)	Tightly healed, hard, non-softening, impermeable filling	0.75	
ii)	Unaltered joint walls, surface staining only	1.0	25-35
iii)	Slightly altered joint walls, non softening mineral coatings, sandy particles, clasy-free disintegrated rock etc.	2.0	35-30
iv)	Silty- or Sandy-Clay coatings, small clay-fraction (non-softening)	3.0	20-25
v)	Softening or low-friction clay mineral coatings, i.e. kaolinite, mica. Also chlorite, talc, gypsum and graphite etc. and small quantities of swelling clays (Discontinuous coating, 1-3 mm or less	4.0	8-16
b.	Rock Wall Contact before 10 cm Shear		
i)	Sandy particles, clay-free, disintegrating rock etc.	4	25-00
ii)	Strongly over-consolidated, non-softening clay mineral filling (Continuous<5mm thick	6	16-24
iii)	Medium or low over-consolidation, softening clay mineral filling(Continuous<5mm thick)	0	12-10
iv)	Swelling clay filling, i.e. montmorillonite,(Continuous<5mm thick). Value of Ja depend on percent of swelling clay size particles and access to water.	8.0 - 12.0	6-12
с.	No rock Wall Contact when Sheared		
i)	Zones or bands of disintegrated or crushed	6	
ii)	Rock and Clay (see b-ii,iii,iv) for Clay	8	
iii)	Conditions	8.0-12.0	
iv)	Zones or bands of silty- or sandy-clay, small clay fraction, non-softening	5	
v)	Thick Continuous Zones or Band of Clay	10.0-13.0	
vi)	See b-ii,iii,iv for Clay Conditions	6.0-24.0	

Joint Alteration Values

Joint Water Reduction Values

5.0	Joint Water Reduction	Jw	Approx. Water pressure (kgf/cm2)
i)	Dry Excavation or Minor Inflow i.e. <5 l/m locally	1	<1.0
ii)	Medium inflow or Pressure, occasional outwash of joint fillings	0.66	1.0-2.5
iii)	Large inflow or high pressure in compelent rock with unfillied joints	0.5	2.5-10.0
iv)	large inflow or high pressure	0.333	2.5-10.0
v)	Exceptionally high infow or pressure at blasing, decaying with time.	0.2-0.1	>10
vi)	Exceptionally high infow or pressure	0.1- 0.05	>10

6.0	Stress Reduction Factor SRF		Notes			
a.	Weakness zones intersecting excavat while may cause loosening of rock m when tunnel is excavated	tion, 1ass				
i)	Multiple Occurances of weakness zones containing clay or chemically disintegrated rock, very loose surrounding rock any depth)	10	1. Reduce these SRF by 25 - 50% the relevant sh influence do not in	values of but only if ear zones ntersect the		
ii)	Single Weakness zones containing clay, or chemically distegrated rock (excavation depth <50 m)	5	excavation			
iii)	Single Weakness zones containing clay, or chemically distegrated rock (excavation depth >50 m)	2.5	2. For strongly anisotro virgin stress field			
iv)	Multiple Shear zone in competent rock (Clay free) loose surrounding rock (any Depth)	7.5	measured): when 3 10, reduce σc to 0 σt to 0.08σt. W	5 < σ1/σ3 < 0.08σc and hen σ1/σ3		
v)	Single Shear Zone in Competent rock (Clay free). Depth of excavation <50m.	5	>10 reduce σc and σt to 0.6σc and 0.6σt. Where σc unconfined compressive strength, σt tensile strength(point load) and σ1 and σ3 are the major and minor principal stresses			
vi)	Single Shear Zone in Competent rock (Clay free). Depth of excavation >50m.	2.5				
vii)	Loose open joints, heavily jointed or Sugar cube (any depth)	5				
b.	Competent rock, rock stress problem	σc/σ1	σt.σ1	SRF		
i)	Low Stress, near surface	>200	>13	2.5		
ii)	Medium Stress	200- 10	13-0.66	1		
iii)	high Stress, very tight Structure (Usually favorable to stability, may be unfavorable to wall stability)	10-5	0.66-0.33	0.5-2		
iv)	Mild rockbrust (massive rock)	5-2.5	0.33-0.16	5-10		
v)	Heavy rockbrust (massive rock)	<2.5	<0.16	10-20		
с.	Squeezing rock, plasitc flow of incor rock pressure	npetent r	ock under influence	e of high		
i)	Mild squeezing rock pressure			5-10		
ii)	Heavy squeezing rock pressure			10-20		
d.	Swelling rock, chemical swelling act	ivity dep	ending on pressence	e of water		
i)	Mild swelling rock pressure			5-10		
ii)	heavy swelling rock pressure			10-15		

SN	Type or use of Underground Opening	ESR
1.0	Temporary mine opening	3.5
2.0	Vertical Shaft, rectangular and Circular Respectively	2.0-2.5
3.0	Water Tunnels, Permanent mine openings, Adits, Drifts	1.6
4.0	Storage Caverns, road tunnels with little traffic, access tunnels etc.	1.3
5.0	Power stations, road and railways tunnels with heavy traffic, civil defence shelters etc.	1.0
6.0	Nuclear power plants, railroad stations, sport arenas etc.	0.8

Ratings of the excavation support ratio (ESR) (Barton et. al., 1974).

The Q system chart for rock support estimate, developed by the Norwegian Geotechnical Institute (NGI), (based on www.ngi.no, 2014).

Support categories

- Unsupported or spot bolting
- (2) Spot bolting (SB)
- (3) Systematic bolting, fibrecrete 5-6cm thick
- Bolting and fibrecrete 6-9cm thick (E500)
- Bolting and fibrecrete 9-12cm thick (E700)
- Bolting and fibrecrete 12-15cm + reinforced ribs of shotcrete (RRS I)
- ⑦ Bolting and fibrecrete (E1000) > 15cm thick + reiforced ribs of shotcrete (RRS II)
- Bolting + cast concrete lining (CCA) or fibrecrete (E1000)
- Special evaluations
- Bolt spacing is mainly based on bolt diam. Ø200mm
- Shotcrete = sprayed concrete (S)
- Fibrecrete = fibre reinforced sprayed concrete (Sfr) RRS = reinforced rib of shotcrete
- c/c = RRS spacing centre centre

RRS - spacing related to Q-value

Si30/6 Ø16-20 (span 10m) D40/6 + 2 Ø16-20 (span 20m) $\langle \mathbf{T} \rangle$

- Si35/6 Ø16-20 (span 5m) D45/6 + 2 Ø16-20 (span 10m) D55/6 + 4 Ø20 (span 20m) (11)
- D40/6 + 4 Ø16-20 (span 5m) D55/6 + 4 Ø20 (span 10m)
- (m)

Si30/6 = single layer of 6 rebars, 30cm thickness of shotcrete D = double layer of rebars Ø16 = rebar diameter (16mm)

E = energy adsorbtion on fibre reinforced shotcrete ESR = excavation support ratio

RMR classification of rock masses. (Contour lines indicate limits of applicability) (Bieniawski, 1989)

Strength of Intact Rock Material & Ranking

1.0 51	rengin oj Iniaci Kock Maieriai (j	Sources: Bieniawski, 1979)	
	Our alitations	Commagaina	D

SN	Qualitative Description	Compressive Strength (MPa)	Point Load Strength (MPa)	Rating
1	Extremely Strong*	> 250	8	15
2	Very Strong	100-250	4-8	12
3	Strong	50-100	2-4	7
4	Medium Strong	25-50	1-2	4
5	Weak	5-25	Use of UCS is preferred	2
6	Very Weak	1-5	-do-	1
7	Extremely Weak	< 1	-do-	0

At compressive strength of rock material less than 1.0 MPa, many rock materials would be regarded as soil.

*Term redefined according to ISO 14689

Rock Quality Designation & Ranking

2.0 Ro	ck Quality	Designation	(Bieniawski,	, 1979 ,)

SN	Qualitative Description	RQD (%)	Rating
1	Excellent	90-100	20
2	Good	75-90	17
3	Fair	50-75	13
4	Poor	25-50	8
5	Very Poor	<25	3

Spacing of Discontinuities & Ranking

3.0 Sp	3.0 Spacing of Discontinuities (Bieniawski, 1979)					
SN	Qualitative Description	Spacing (m)	Rating			
1	Very Wide	>2	20			
2	Wide	0.6-2	15			
3	Moderate	0.2-0.6	10			
4	Close	0.06-0.2	8			
5	Very Close	<0.06	5			

If more than one discontinuity set is present and the spacing of discontinuities of each set varies, consider the unfavorably oriented set with lowest rating. ISO 14689 uses the term "extremely close" for joint spacing less than 0.02m.

Condition of Discontinuities & Ranking

4.0 Condition of Discontinuities (Bieniawski, 1979)

~ • •		Joint Separation	
SN	Description	(<i>mm</i>)	Rating
1	Very rough and unweathered, wall rock	0	30
	light and discontinuous, no separation		
2	Rough and Slightly weathered, wall rock	<1	25
2	surface separation <1mm		20
	Slightly rough and moderately to highly		
3	weathered, wall rock surface separation	<1	20
	<1m		
	Slickenside wall rock surface or 1-5 mm		
4	thick gouge or 1-5 mm wide continuous	1-5	10
	discontinuity		
5	5mm thick soft gouge, 5mm wide	. 5	0
5	continuous discontinuity	>5	U

Ground Water Condition & Ranking

6.0 Groundwater Condition (Bieniawski, 1979)

	Inflow per 10 m tunnel length			10-		
1	(L/min)	None	<10	25	25-125	>125
	Ratio of Joint water pressure			0.1-		
2	to major principal Stress	0	0-0.1	0.2	0.2-0.5	>0.5
		Completel	Dam	We	Drippin	Flowin
3	General Description	y dry	р	t	g	g
4	Rating	15	10	7	4	0

Assessment of Joint Orientation Effect on Tunnels

8.0 Assessment of Joint Orientation effect on Tunnels (Source: Bieniawski, 1984)								
Strike perpendicular to tunnel axis					parallel to	Irrespective		
Drive v	vith dip	Drive a	ıgainst dip	tunnel axis		of Strike		
Dip	Dip	Dip	Dip	Dip	Dip	$Din 20^\circ 45^\circ$		
45°-90°	20°-45°	45°-90°	20°-45°	20°-45°	45 °-90°	Dip 20 -43		
Very Favorable	Favorable	Fair	Unfavorable	Fair	Very unfavorable	Fair		

The RMR Sys	tem: Guideline for	Classification of	Discontinuity	Condition

5.0 199	5.0 The RMR System: Guidelines for Classification of Discontinuity Conditions (Source: Bieniawski, 1993)						
S N	Parameter		Rating				
1	Discontinuity length (Persistence/Continuity)	<1 m	1-3 m	3-10 m	10-20 m	>20m	
	Rating	6	4	2	1	0	
2	Separation (Aperture)	None	<0.1 mm	0.1 - 1.0 mm	1-5 mm	>5mm	
	Rating	6	5	4	1	0	
3	Roughness of Discontinuity surface	Very Rough	Rough	Slightly rough	Smooth	Slickensided	
	Rating	6	5	3	1	0	
	Infilling (Gouge)	Infilling (Gouge) Hard Filling			Soft	filling	
		None	<5 mm	>5 mm	<5 mm	>5 mm	
4	Rating	6	4	2	2	0	
5	Weathering discontinuity surface	Unweathered	Slightly Weathered	Moderately Weathered	Highly Weathered	Decomposed	
	Rating	6	5	3	1	0	

*Some conditions are mutually exclusive. For example, if infilling is present, it is irrelevant what the roughness may be, since its effect will be overshadowed by the influence of the gouge. In such cases use Table 3-11 directly

Adjustment for Joint Orientation

9.0 Adjustment for Joint Orientation (Source: Bieniawski, 1979)							
Joint Orientation assessment for	Very favorable	Favorable	Fair	Unfavorable	Very unfavorable		
Tunnels	0	-2	-5	-10	-12		
Raft Foundation	0	-2	-7	-15	-25		
Slopes*	0	-5	-25	-50	-60		
*It is recommended to use slope mass rating							

		RMR (rock class)					
SN	Parameter/Properties	100-81	80-61	60-41	40-21	<20	
	OI KOCK WIASS	(I)	(II)	(III)	(IV)	(V)	
	Classification of	Very					
1	rock mass	Good	Good	Fair	Poor	Very Poor	
2	Average stand-up time	20 years for 15m span	1 year for 10 m span	1 week for 5m span	10 hours for 2.5m span	30 minutes for 1m span	
	Cohesion of rock					_	
3	mass (MPa)*	>0.4	0.3-0.4	0.2-0.3	0.1-0.2	< 0.1	
4	Angle of Internal friction of rock mass	>45°	35 -45°	25-35°	15-25°	<15°	
5	Allowable bearing pressure (T/m2)	600-440	440-280	280-135	135-45	45-30	
6	Safe cut Slope () (Waltham, 2002)	>70	65	55	45	<40	

Design Parameter & Engineering Properties of Rock

10.0 Design Parameter & Engineering Properties of Rock (Bieniawski, 1993)

During earthquake loading, the above values of allowable bearing pressure may be increased by 50% in view of rheological behavior of rock masses. *These values are applicable to slopes only in saturated and weathered rock mass.

RMR classification guide for excavation and support in rock tunnels (Bieniawski, 1989).

		Supports				
Rock mass class	Excavation	Rock bolts (20 mm diameter, fully grouted)	Conventional shotcrete	Steel sets		
Very good rock RMR = 81–100	Full face; 3 m advance	Generally, no support required except for occasional spot bolting				
Good rock RMR = 61–80	Full face; 1.0–1.5 m advance; complete support 20 m from face	Locally, bolts in crown 3 m long, spaced 2.5 m, with occasional wire mesh	50 mm in crown where required	None		
Fair rock RMR = 41–60	Heading and bench; 1.5–3 m advance in heading; commence support after each blast; complete support 10 m from face	Systematic bolts 4 m long, spaced 1.5–2 m in crown and walls with wire mesh in crown	50–100 mm in crown and 30 mm in sides	None		
Poor rock RMR = 21-40	Top heading and bench; 1.0– 1.5 m advance in top heading; install support concurrently with excavation 10 m from face	Systematic bolts 4–5 m long, spaced 1–1.5 m in crown and wall with wire mesh	100–150 mm in crown and 100 mm in sides	Light to medium ribs spaced 1.5 m where required		
Very poor rock RMR <20	Multiple drifts; 0.5–1.5 m advance in top heading; install support concurrently with excavation; shotcrete as soon as possible after blasting	Systematic bolts 5–6 m long, spaced 1–1.5 m in crown and walls with wire mesh; bolt invert	150–200 mm in crown, 150 mm in sides, and 50 mm on face	Medium to heavy ribs spaced 0.75 m with steel lagging and forepoling if required; close invert		

Shape: Horseshoe; width: 10 m; vertical stress <25 MPa; construction: drilling and blasting. Source: Bieniawski, 1984.

 $\sigma_{\rm cm}/p_{\rm o}$ = rock mass strength / in situ stress

ANNEX D: PROJECT SITE PHOTOGRAPHS

Measuring Joint Properties at the Tunnel Face

Drilling Pattern in face of Tunnel

Portal of The Headrace Tunnel

Shotcreting and finishing the excavated face

Support Installed in Headrace Tunnel

Sample of Rock Bolt used in the Site

Prepared for the Collection of Geological Data

I-Beam Used as the Rock Support Sample from Site

ANNEX E: STEREONET & UNWEDGE ANALYSIS

Stereonet Plot at each section using Dip 7.0 software.
Input Data and Unwedge Analysis pictures at each section using UNWEDGE Software.

Chainage 1+050m

Der Converdge [3] Converdge [3] Floor wedge [3] Converdge [4] Fis tisl.210 Upper Kight wedge [5] Weight: 9.486 tonnes, Support Pressure 0 Weight: 13.321 tonnes, Support Pressure Upper Left wedge [8] Fis tisl.256 Fis 327.520 Weight: 3.893 tonnes, Support Pressure 0 Weight: 0.491 tonnes, Support Pressure 0 Weight: 3.893 tonnes, Support Pressure 0 Weight: 0.491 tonnes, Support Pressure 0 Weight: 3.893 tonnes, Support Pressure 0 Weight: 0.491 tonnes, Support Pressure 0 Weight: 3.893 tonnes, Support Pressure 0 Weight: 0.491 tonnes, Support Pressure 0 Weight: 3.893 tonnes, Support Pressure 0 Weight: 0.491 tonnes, Support Pressure 0 Weight: 3.893 tonnes, Support Pressure 0 Weight: 0.491 tonnes, Support Pressure 0 Weight: 3.893 tonnes, Support Pressure 0	Multi Perspective*]	upport Window Help			- o ×
Flor wedge [3] Lower Left wedge [4] FS: 151.218 Upper Fight wedge [5] FS: 151.218 Weight: 9.436 Ionnes, Support Pressure: 0 Weight: 13.221 Ionnes, Support Pressure: 0 Weight: 13.321 Ionnes, Support Pressure: 0 Weight: 13.321 Ionnes, Support Pressure: 0 Upper Left wedge [8] FS: 151.686 FS: 151.218 FS: 151.218 Weight: 9.436 Ionnes, Support Pressure: 0 Weight: 13.321 Ionnes, Support Pressure: 0 Weight: 0.042 Ionnes, Support Pressure: 0 Upper Left wedge [8] FS: 15.666 FS: 15.666 FS: 15.666 Weight: 0.491 Ionnes, Support Pressure: 0 Weight: 3.809 Ionnes, Support Pressure: 0 Weight: 3.809 Ionnes, Support Pressure: 0 Weight: 0.491 Ionnes, Support Pressure: 0 Weight: 3.809 Ionnes, Support Pressure: 0 Weight: 3.809 Ionnes, Support Pressure: 0 Weight: 0.491 Ionnes, Support Pressure: 0 Weight: 3.809 Ionnes, Support Pressure: 0 Weight: 3.809 Ionnes, Support Pressure: 0	🗅 🚔 🕶 🔛 🔂 🖨 🗠 👻 🗠 🕫	💐 💵 🔍 🔍 🛫 🖪 🕄 🕲 🛍	l 🛸 🗃 💅 🏥 🛛 🗞 🔳 🏷 🗸		
Weight: 9.486 tomes, Support Pressure: 0 Weight: 13.321 tomes, Support Pressure: 0 Weight: 13.321 tomes, Support Pressure: 0 Weight: 0.421 tomes, Support Pressure: 0 Weight: 9.486 tomes, Support Pressure: 0 Weight: 13.321 tomes, Support Pressure: 0 Weight: 13.321 tomes, Support Pressure: 0 Weight: 0.421 tomes, Support Pressure: 0 Weight: 9.486 tomes, Support Pressure: 0 Weight: 13.321 tomes, Support Pressure: 0 Weight: 0.421 tomes, Support Pressure: 0 Weight: 0.421 tomes, Support Pressure: 0 Upper Left wedge [8] Near End wedge [10] Far End wedge [10] Far End wedge [10] Far End wedge [10] FS: 1566 Far End wedge [10] Far End wedge [10] Far End wedge [10] Far End wedge [10] Weight: 2.491 tomes, Support Pressure: 0 Weight: 3.802 tomes, Support Pressure: 0.00 tomes/m2 Support Pressure: 0.00 tomes/m2 Weight: 3.491 tomes, Support Pressure: 0 Weight: 3.802 tomes, Support Pressure: 0 Weight: 3.802 tomes, Support Pressure: 0.00 tomes/m2 Weight: 0.491 tomes, Support Pressure: 0 Weight: 3.802 tomes, Support Pressure: 0 Weight: 3.802 tomes, Support Pressure: 0 Weight: 3.802 tomes, Support Pressure: 0.00 tomes/m2	Floor wedge [3] FS: stable	Lower Left wedge [4] FS: 151.218	Upper Right wedge [5] FS: 49.459	Roof wedge [6] FS: 1113.255	
Weight: 9.486 tonnes, Support Pressure: 0 Weight: 2.239 tonnes, Support Pressure: 0 Weight: 13.321 tonnes, Support Pressure: 0.042 tonnes, Support Pressure: 0.044 tonnes/m2 Weight: 0.491 tonnes, Support Pressure: 0 Weight: 3.809 tonnes, Support Pressure: 0 Weight: 3.809 tonnes, Support Pressure: 0 Weight: 3.809 tonnes, Support Pressure: 0					Bot Vaibily: Interscring Wedges
Weight: 9.486 tonnes, Support Pressure: 0 Weight: 3.321 tonnes, Support Pressure: 0.00 tonnes/m2 Upper Left wedge [8] Naar End wedge [9] FS: 327.520 Far End wedge [9] FS: 1596 Far End wedge [10] FS: stable 10 Upper Left wedge [8] FS: 1596 Weight: 0.491 tonnes, Support Pressure: 0 Weight: 3809 tonnes, Support Pressure: 0 Weight: 0.491 tonnes, Support Pressure: 0 Weight: 3809 tonnes, Support Pressure: 0 Weight: 0.491 tonnes, Support Pressure: 0 Weight: 3809 tonnes, Support Pressure: 0					Fibor wedge [5] FS: stable Weight: 9.486 tonnes
Upper Lett wedge [8] Near End wedge [9] Far End wedge [10] FS: 327.920 FS: 15.06 Image: Statute in the image	Weight: 9.486 tonnes, Support Pressure: 0	Weight: 2.239 tonnes, Support Pressure: 0	Weight: 13.321 tonnes, Support Pressure:	Weight: 0.042 tonnes, Support Pre	SSUI, Support Pressure: 0.00 tonnes/m2
Weight: 0.491 tonnes, Support Pressure: 0 Weight: 3.809 tonnes, Support Pressure: 0 Weight: 3.809 tonnes, Support Pressure: 0 Weight: 3.809 tonnes, Support Pressure: 0	Upper Left wedge [8] FS: 327.920	Near End wedge [9] FS: 1.586	Far End wedge [10] FS: stable		Lower Left wedge [4] FS: 151.218 Weight: 2.239 tonnes Support Pressure: 0.00 tonnes/m2
Weight: 0.491 tonnes, Support Pressure: 0 Weight: 3.809 tonnes, Support			10		Upper Right wedge [5] 15: 4: 4: 4: 5: 2: 1: 1: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:
	Weight: 0.491 tonnes, Support Pressure: 0	Weight: 3.809 tonnes, Support Pressure: 0	Weight: 3.809 tonnes, Support Pressure: D		Upper Left wodge (8) PS: 327 920 Wegit: 0.491 tonnes Busport Pressure 800 tonnesimo Activate Windows Go to Settings to activate Mindows

Chainage 1+100m

D 🗃 🕶 🖬 🖪 🚳 🗠 👻 🖻	💐 🚛 🔍 Q 🛫 💎 📾 🗋 😳 🛍	l 🛸 🗃 💅 👛 💿 🍫 🗖 🐄 🗸		
Lower Left wedge [2] FS: 168.537	Floor wedge [3] FS: stable	Roof wedge [5] FS: 5321.130	Roof wedge [6] FS: 394.119	
2	3		-	Bolt Visbily: Interesting Wedges Wedge Translation Turnel Axis Dientiation Tend 17.745 * Purge 0 * Wedge Translation: Tend 17.745 * Purge 0 * Wedge Translation: Tend 16.557 Tris: 16.557 Tris: 16.557
Upper Right wedge [7]	Weight: 6.002 tonnes, Support Pressure: 0 Near End wedge [9]	Far End wedge [10]	Weight: 0.264 tonnes, Support Pressur,	Floor wedge [3]
FS: 224.739	FS: 1.586	FS: stable		Vegit 6.02 tones Boof vegit 51 75:521.130 Vegit 0.000 tones Mogent Pressure 6.00 tones/m2 Roof vegit 6.000 tones/m2 Roof vegit 6.000 tones/m2 Wegit 0.234 tones
Weight: 7.666 tonnes, Support Pressure: 0	Weight: 0.878 tonnes, Support Pressure: 0	Weight: 0.878 tonnes, Support Pressure: 0		Support Pressure: 0:00 tonnes/m2 Upper Right wedge (7) 5: 224:73 Support Pressure: 0:00 Support Pressure: 0:00 Activate Windows Go to Settings to activate Mindows

Chainage 1+200m

Chainage 1+250m

File Edit View Opening Analysis Su	apport Window Help			_ 8
Floor wedge (3) FS: stable	Upper Left wedge (6) FS: 2.608	Upper Right wedge [7] FS: 1.121	Near End wedge [9] FS: 7.355	Bolt Visibily: Interacting Wadges Wedge Translation:
з			-	Image: Solution of the soluti
Weight: 26.825 tonnes, Support Pressure: Far End wedge [10] FS: 1.586	Weight: 25.458 tonnes, Support Pressure:	Weight: 0.069 tonnes, Support Pressure: 0	Weight: 2.832 tonnes, Support Pressu,	Upper Laft resource. Colo tomesmic Upper Laft wedge (6) F52: 2606 Weight: 55: 458 tonnes Support Pressure: 0.00 tonnes/m2 Upper Right wedge (7) F5: 1.121
	No Wedge Formed			Weight 0.000 tennes Buppert Pressure: 0.1 tennes/n2 Hear fond worder (P) for 7.365 Weight 2.033 tennes Buppert Pressure: 0.00 tennes/n2 Par End worder (10) F3 1.569
Weight: 2.535 tonnes, Support Pressure: 0				Support 2:535 tonnes Support Pressure: 0.00 tonnes/m2 Activate Windows

Chainage 1+300m

Chainage 1+400m

ANNEX F: PROJECT RELATED DATA & DOCUMENTS

Facemap showing Geological Condition at every Chainage

	GEC	LOGICAL	AAP/TUN	NEL LOG	Incom	Photo-2022 11 10
Worksite: Kallis HRT U.S	ndi Face Chainage	17.46"	405	Pull: 1.40 m	Qig. (Kg) 68	Time: \$1(20 Am
Bavad	Julius			The start	Legen	B Foliation Gueiss Clay coatia
Geological Descrip The escave strong, handed Gnei RQD, have tight to and have medium to Attitude of Joint sets	tion: ted turnel face consi as with quartz veins few(1-3) mm aperta high persistency. So	nts gray colored, m parallel to the follia re with clay filling arface water conditi	edium grained, i tion plane. The s to some promit on of the area is	foliated, slight to m rough, planar, mod neat joints. Joints ar a damp.	oderately w lerately wes re closely to	eathered, medium athered joints with moderately space
Generative Description The research strong, based Green RQD, have right to and have mediants the P/11: B0*/20* 12: 310*/20* 12: 310*/20* 13: 200*/60* Ir: 150*/40* Parameter RQD Joint Set Number	(Jan) (Jan) (Jan) (Jan) (Jan) (Jan) (Jan) (Jan)	ats gray colored, m parallel to the folia urface water condition of the state of the state of the state of the state <u>Description</u> Fair Three plats 7	edium grained, i tion plane. The in some promis on of the area in the the area in the area	foliated, slight to m rough, planar, mod neet, joints, Joints ar damp. Rating 55 12 15	odenately we ierately we n closely to n closely to	enthered, medium ithered joints with moderately space tk Support Class III
Generative Description The reserve strong, banded Gree RQD, have regime to and have mediane to RQD, have regime to Animade of Joint set FJ1: 80°/20° 12: 310°/40° J3: 200°/40° I7: 150°/40° Data Set Number Joint Set Number Joint Adteration (Water Flow in Join Stress Reduction J Q-Value	(Jan)	ats gray colored, m parallel to the follo me with clap follow urfnee watter condition <u>Description</u> <u>Fair</u> <u>Three plas r.</u> <u>Rough , P</u> <u>Clay miner</u> <u>Damp</u> <u>Single weak</u> <u>RQD/Jn*Jr/Ja*JJa*J</u>	edium grained, i tios plane. The is some period on of the area b of the area b i andoon lanar d coating zones w/SRF	foliated, slight to m rough, planar, mod one joints. Joints ar damp. <u>Batting</u> <u>55</u> <u>12</u> <u>1.5</u> <u>4</u> <u>1</u> <u>5</u> <u>9</u> <u>4</u> <u>1</u> <u>5</u> <u>9</u> <u>343</u>	odenately were terately were a closely to Ros	nathered, medium ithered joints with moderately space its Support Class III

	HYDRO &Co Sug	GENERAL C instruction of HRT T per Madi Hydrogowr	CONSTRUCT russel, Kathundi er project(44 MW)	TON LIMIT	TED	HIM/	L HYDRO S	GENER/	AL CONSTI HIRT Tunnel, Kalls reporter projected	andi (MW)	LIMIT	
	GEOL	OGICAL MAR	P/TUNNEL L	OG			GEOL	OGICAL	MAP/TUNN	IEL LOG	Laura II	Date:2076-05-23
and the second	Face Chainage:	Tunnel Axis: May	pping No: Scale	Explosit	Bale 2076-09-29	1	Vary Chainage	Tunnel Axis	Mapping No.	Scale Lines	Qty. (Na)	Time: 9:10 Pm
RTUS	1.008 65	17.46*	325 Pull	1.20 m 79	Time: 3:45 per	Worksite: Kallor	100 100 65	17.46*	281	Full: 1.45 m	70	Manager and an and a second
rectorgent Descrip The could via a state of the could be state of the could be a state of the could be	ILS" gorzó-	terra in damp.	Spring Line Spring Line Starting Line Starting S	A highly weathered points with a moderately speec	2 gends: rgrods: Fuliation Geness Jaints Chy coating O, weak, banded Greens for Gen RQO, Since Light We of and have medium to high	Cecological Descrip The excave with quarts voins pu fillings can be seen on (3 a	220180	ts gray colored plane. The index	estimate and is do yo d	folianed, highly w	Legen Legen a 1+149.65 Legen a schered, wei a amount of bered joints moderately i	du: Faliation Gareits Joints Clay counting tay coatings and with poor RQD, b spaced and have
Anitude of Joint set (11, 90%20* 2, 20%40* 3, 340%45* 1, 35%65*	32					medium 30 Jun per Anitude of Joint sets F:/11:95°/20' J2: 185°/65° J3: 220°/80° Jr: 310°/65°	animy, sanas					
Nititude of Joint set (1) 407/207 2: 207/40 ⁴ 3: 3407/45 ⁴ 1: 357/45 ⁴	22			Rating		medium 10 olum Jern Aminade of Jointi sets F-31:95*200 J2:183*85* J3:220*80* Jr:310*85*	s	Descript	in	Ratios		
Volude of Joint set (1) 607/207 2: 207 607 3: 3407 457 5: 357 857 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2	Descriptie	ion.	Rating		medium to tum per Anizade of Joint sets F(J1) 95'-200' J2 183'-85'' J1: 220'/80'' Jr: 310''/65'' Parameter	s	Descript	im	Rating	L	
Initiale of loss set (1) 69720° 2: 207-69° 1: 3407-45° 7: 35°:85°	2	Descriptie Fair	ion	Rating 	Rock Support Class: 111	Antrade of Joint sets F-31:95*20° J2:183*85° J1:220*80° Jr:310*65° Parameter RQD	-	Descript Poor	ion r	Rating 45 15	5 Re	sek Support Cla
Initials of Joint Sci (1) 09720 - 2007 (2) 2007604 (2)	ser (Jm)	Descriptio Fair Three plus	ion random	Rating 55 12	Rock Support Class:	Anticade of Joint sets F-31:95*200 J2:183*85* J3:220*80* Jr:310*85* Jr:310*85* Parameter RQD Joint Set Number	(Ja)	Descript Poor Four plus	ion r random	Rating 45 15	5 — Ro	sek Support Cla
nitude of least set (1 - 607207 2 - 207-60 ² 1 - 3477-45 ² 357-85 ² Parameter RQD Joint Set Numb	ser (J#) os Number (Jr)	Descriptis Fair Three plus Rough :	on random	Rating 55 12 1.5 6	Rock Support Class:	Medium to dup peri Anizade of Joint sets F-71: 95-200 J2: 185-95 J1: 2207/807 Jr: 3107/807 Jr: 3107/807 Joint Set Number Joint Roughness N	(Ja) Sumber (Jr)	Descript Four Four plus Rough	ion random , Planar	Rating 45 15 1.5	6 — Re —	sek Support Ch
nitude of least set (1) 50720° 2:30°40° 1:340°45° 35°85° Parameter RQD Joint Set Namh Juint Roughney	ser (J#) ss Number (Jr)	Descriptic Fair Three plus Rough - Clay fills	on random , Pianar ngs	Rating 55 12 1.5 6 1	Rock Support Class:	Medium 30 fully jeff Anticade of Joint sets F-71: 95-200 J2: 185-957 J3: 2207/807 Ja: 3107/657 MOUTINN Joint Set Number Joint Roughness N Joint Alteration ((Ja) – tumber (Jr) – Ja) –	Descript Poor Four plus Rough Clay fills	ion r random . Planar ngs	Rating 45 15 1.5 6	6 	sek Support Ck <u>IV</u>
Parameter RQD Joint Set Numb Joint Roughnes Joint Alteration	ser (Jn) ss Number (Jr) n (Ja)	Descriptic Fair Three plus Rough - Clay fillin Damp	on random , Planar ngs	Rating 55 12 1.5 6 1	Rock Support Class:	Medium to tight period Antitude of Joint sets F:11: 95: 220' J2: 185' 95' J3: 220'980' Jr: 310'-65' Mar Alforeiter RQD Joint Set Number Joint Roughness ? Joint Alteration (Water Flow in Joi	(Jn) (Jn) Sumber (Jr) Ja)	Descript Four Four plus Rough Clay filli Damp	ion r random . Planar ngs	Rating 45 15 1.5 6 1	6 Re 	sek Support Ch
Parameter Boot Set Set Set Set Set Set Set Set Set Se	ser (Jn) ss Number (Jr) n (Ja) Joints (Jw)	Descriptic Fair Three plus Rough Clay fills Damp Sires	on random . Planar ngs weak zones	Rating 55 12 1.5 6 1 5	Rock Support Class:	Medium to dup peri Anticade of Joint sets F:/1:95/207 J2:185/857 J3: 2207/807 Jr: 3107/657	(Jn) Number (Jr) Ja) ts (Jw)	Descript Four plus Rough Clay filli Damp Multiple v	ion random , Planar ngs weak zone	Rating 45 15 1.5 6 1 10	6 Rd	sek Support Ck <u>IV</u>
Induct of loant set (1) 007202 2, 207-602 1) 3407-457 7 357-857 Parameter RQD Joint Set Numb Joint Roughnes Joint Alteration Water How in Stress Reductio	ser (JH) ss Number (Jr) n (Ja) Joints (Ju) on Factor (SRF)	Descriptio Fair Three plus Rough . Clay fillin Damp Siege .	on random , Planar ngs weak zones	Rating 55 12 1.5 6 1 5 0.22	Rock Support Class: III	Medium 30 oligi peri Anizade of Joint sets F:/11:957207 J2:1357837 J3: 2207807 J3: 31075657	(Jn) Ja) Factor (SRF)	Descript Poor Four plus Rough Clay filli Damp Multiple v	ion random , Pianar ngs erak zone	Rating 45 15 1.5 6 1 10 0.07	6	sek Support Cb <u>IV</u>
Visited of Joint Sc (1) 69720° (2) 207-60° (3) 3407-45° (3) 3407-45° (4) 35°-85° (4) Parameter RQD Joint Sct Namb Joint Alteration Water Flow in Stress Reductio Q-Value	ser (J#) ss Number (Jr) n (Ja) Joints (J#) on Factor (SRF)	Descriptic Fair Three plus Rough - Clay fills Damp Sieget v = RQD/Ja*Jr/Ja	ion candom , Planar ngs weak zongs a*Jw/SRF	Rating 55 12 1.5 6 1 5 0.22	Rock Support Class:	Medium to Sup peri Anizade of Joint sets F(J): 95-207 J2: 185-85 J3: 2207/807 Jr: 3107/65* Mar Alteration (Water Flow in Joi Stress Reduction) Q-Value	(Jn)	Descript Poor Four plus Rough Clay filli Damp Multiple s RQD/Jn*Jr/Ja	inn random . Flanar ngs weak zone "Jw/SRF	Rating 45 15 6 1 10 0.075	6 Re 	sek Support Cli <u>IV</u>

	O &GENER	HRT Tunnel, Kallo	andi		
	Construction of Super Madi Hydr	repower project(44	ISLLOC		
05	OLOGICAL	MAP/TUNN	IEL LOG	Taria and	Date:2076-07-26
GE	Tunnel Asis:	Mapping No:	SCAR LIVE	Qty. (hg)	Time: 11:30 Pm
Verksite: Kalbandi IET US 1+ 199.65	17.46*	246	Pull: 1.5 m	50	201000000000000000000000000000000000000
In 199.43	17.40 155/65 15 85/20 Balance Bala	3 vol 50 The series and the series of the series of the costing can be seen. The re-	Law gol 75	1+291.15 1+199.65 Lapor	Foliation Gnciss Juints Clay coating comm part and upp thered joins with part
e medium to high persistency. So bude of Joint sets:	rface water condition	n of the area is dan	np.		Inclusion of the second
on netering to high persistency. So tode of Joint sets: 1897-207 1807-755 557-657 Parameter QD	Descript	tongs on most of a n of the area is dan ion	Rating 	1 - R	ock Support Class
O, here tagen to high persistency. So tode of Joint sets: 187-207 1007/509 1007/50 1000 1007/50 1000 1000 1007/50 1000 1000 1000 1000 1000 10000 10000 1000 100	Descript Poor Heavily jo	tonge on most of a n of the area is dan ion r inted	Rating 30 15	1 R	ock Support Class
A three tupin to high persistency. So used of Joint sets: 857-207 007-507 N07-737 557:857 Parameter 2D int Set Number (Jit) ant Roughness Number (Jr)	Descript Poor Heavily jo Rough	ion r inted , Planar	Rating 30 15 1.5	I	ock Support Class
A three tight of high persistency. So one of Joint sets: 857-207 007-507 807/737 557-857 Parameter 2D int Set Number (Ju) int Roughness Number (Jr) int Alteration (Ja)	Descript Poor Heavily jo Rough Clay filli	ion r inted .Planar ngs	Rating 30 15 1.5 8	i - R -	ock Support Class
A there signs for the bigs persistency. So one of Joint sets: 857-207 007/507 107757 1577657 2arameter 2D ant Set Number (Jn) at Roughness Number (Jr) at Alteration (Ja)	Descript Pose Heavily jo Clay filis Damp	ion r inted , Planar ngs	Rating - 30 - 15 - 1.5 - 8 - 1	k - R 	ock Support Class
Context spin of high persistency. So node of Joints sets:	Descript Descript Poor Heavily jo Rough Clay filli Damp Multiple v	ion r inted , Planar ngs	Rating 30 15 1.5 8 1 10	R 	ock Support Class
On the second se	Descript Poor Heavily jo Rough Clay filli Damp Multiple v = RQD/Ja*Jr/Ja	ion r inted , Planar ing5 +JwSRF	Rating 30 15 1.5 1.0 10 0.037	k R	ock Support Class

	Construction of	Add Turninger 4	4 MW)		
a deservation of the second	Super Madi Hyd	MARTUNI	NEL LOG		Date:2076-05-14
GE	OLOGICAL	Mapping No:	Scale 1:100	OD.(%g)	Time: 4:30 Pm
- Face Chains	(pr) Tunnel Axin		Pull: 1.05 m	99.4	March March
Worksite Kaltande	17.46*	1.0	The second second		
580 580		1118°	30150 20150	1-300.45	b Foliation Gneiss Joints Clay coath
Geological Description:	naists gray colored.	medium grained,	foliated, low weath	ered, medi	um strong to stron. The rough, plana
The excavation function trained reads of the training of the t	diet to the folliation of RQO, tasse tight e medium persistent	plane. The individual to few mm(1 mm) cy. Surface water c	aperture with clay ondition of the are	coating in ra is dry to	few joints. Joints damp
The excavator harder and even pain moderately weathered point with got checks to moderately speed and have Annual of Joint sets: (711-110-707 7: 2807-1807 7: 2807 7: 2807	Descript Geos	plane. The motival too flow multi- cy. Surface water c surface water c	Aperture with class and then of the an Rating 	 coating in ca is dry to 	few joints. Joints damp. oek Support Cla
The excavable humer late ex- banded Greins with quark version part moderately usedhered joints with gost density usedhered joints with gost density usedhered by spaced and have translet of Joint sets: (11.1107/2007) 2.2807/4007 2.2807/4007 2.2807/4007 2.2707/5007 Parameter RQD Joint Set Namher (Jn)	Descript George Description e medium persistenc Descript George Three plas	plane. The motival too flow multi- cy. Surface water c som J random	Aperture with class andition of the an Rating 75 12	r coating in ca it dry to — R	iew joints, Joints damp. oek Support Cla II
The excavable humber are even pair moderately usedhered joints with goo donely usedhered joints with goo donely usedhered by spaced and have trained of Joint sets: //11.1107/20 2.307.40 3.957.30 5.257.50 2.2707.50 2.2707.50 2.2007.500.500.500.500.500.500.500.500.500.	Descript Good Three plan Descript Good Three plan Rough -	ion sources and so	Rating - 75 - 12 - 1.5	r coating in ca it dry to - R	ock Support Cla II
The excavable humber are even pairs handed Greice with quark version pairs moderately useathered joints with goo cheshy to moderately spaced and have humber of Joint sets: (11:1107/207 2:380°40° 3:98°30° c:270°30° Parameter RQD Joint Set Number (Jn) Joint Koughness Number (Jr) hum Ancesting (Ja)	Descript a ROD, have light a R	one of few multi-resolution of the matrixed sector of the multi-resolution of the matrixed sector of the matrixed	Rating - 75 - 12 - 1.5 - 3	r coating in ca is dry to - R -	oek Support Cla
The excavable humer are even par- humed Greice with quark version par- noderately usedhered joints with goo density unsaderably spaced and have tentude of Joint sets: (21:1107/207 2:380°40° 3:95°30° 6:270°30° 2:380°40° 3:95°30° 6:270°30° 7:270° 7:2700° 7:270° 7:2700° 7:270° 7:2700° 7:2700° 7:270° 7:2700° 7:2700°	Descript Geographics (Construction) Descript Geographics Three plas Rough Clay coat Damp	ion for marked and the marked and th	Rating Rating 12 1.5 3 1	- coating in ca is dry to - R	ock Support Cla
The excavator harder of the former of the excavator harder of the excavator of the part of the exceed and have harder of John sets: (11) 1197-207 (2) 2807-407 3) 955-3807 e 2707-507 Parameter RQD Joint Set Namber (Jn) Joint Roughness Namber (Jr) Joint Ahrration (Ja) Water Flow in Joints (Jw)	Descript a ROD, have light a modium perioden Descript Geos Three plas Rough Clay coat Damp	oon J random , Planar ings	Rating - 75 - 12 - 1.5 - 3 - 1 - 2.5	r coating in ca is dry to - R - -	oek Support Cla
The excavator harder and the set of the set	Descript a ROD, have light a modium persistence Descript Geos Three plus Rough - Clay cost Damp Low stress	of few multi mon) by Surface water of y Surface water of and the surface water of the surface water of the surface water of the surface water of the surface water of the surface	Rating 	r coating in ca is dry to R R	iew joints. Joints damp. oek Support Cla <u>II</u>
The excavator harder of the set o	Descript a ROD, have light e medium persistent Descript Geos Three plus Rough Clay coat Damp Low stress = RQD/Ja*Jz/Ja	oon J random , Planar ings	Rating Rating 75 12 1.5 3 1 2.5 1.25 1.25	- R	ock Support Cla II
The excession harder of the set o	Descript a noofium periodene a noofium periodene Descript Geos Three plus Rough Clay coat Damp Low stress = RQD/Ju ⁺ Jr/Ja * Ck S uffort	or fee marked and a second and	Rating 	- R - R R 	oek Support Cla

G	Name Statt Providence	requirer project	NELLOG		1074 01.17
0	FOLOGICAL	MAP/TUN	Sorke 1100	Explosion (Kal	Date:2076-04-1
Fary Chat	sage: Tuessel Axie:	Mapping	Pull 1m	91	Tume: Libban
Worksite: Kalbendi	17,46*	135	- Constant		
(Water Contraction					
28 01 44 28 01 44 1751 83 Credeniced Description The excavated turnel face a arror, burded Greets with quarts	consists gray colored, with fair ROD, have eed and have medium	medium grained, tation plane. The periatency Surf	SSI2S mg Linu 175155 foliated, mederatel individual beds are individual beds inter- tice water condition	y weathered	
111 95/252 2. 280/457 1. 175/359 1. 135/359					
Intense 60 June 866 1) 657-257 2:380'/45' 1:35'/55' Parameter	Descripti	08	Rating		
Parameter RQD	Descripti Fair	iot	Rating 65	- R	ock Support Class
Parameter RQD Joint Set Number (Jn)	Descripti Fair Three plus	ion random	Rating 65 12	R	ock Support Class 11
Parameter RQD Joint Set Number (Jn) Joint Roughness Number (Jr)	Descripti Fair Three plus Rough ,	ion random Planar	Rating 65 12 1.5	R	ock Support Class 11
Parameter RQD Joint Set Number (Jn) Joint Roughness Number (Jr)	Descripti Fair Three plus Rough , Clay coat	ion random Flanar ings	Rating 65 12 1.5 3	R	ock Support Class 11
Parameter RQD Joint Set Number (JR) Joint Roughness Namber (Jr) Joint Atteration (Jr)	Descripti Fair Three plus Rough Clay coat Damp	ion random Planar ings	Rating 65 12 1.5 3 1	R	ock Support Class
Parameter RQD Joint Set Number (Jn) Joint Set Number (Jn) Joint Alteration (Ja) Vater Flow in Joints (Jw) Stress Reduction Factor (SRF)	Descripti Fair Three plus Rough - Clay coat Damp Low stress	on random Planar ings	Rating 65 12 1.5 3 1 2.5	- R	ock Support Class
Parameter RQD Joint Set Number (Jn) Joint Set Number (Jn) Joint Alteration (Ja) Nater Flow in Joints (Jw) Stress Reduction Factor (SRF) Q-Value	Descripti Fair Three plas Rough , Clay coat Damp Low stress = RQD(Ja*Jr(Ja*	ion random Planar ings 'Jw/SRF	Rating 65 12 1.5 3 1 2.5 1.08	R	ock Support Class
Parameter RQD Joint Set Number (Jn) Joint Set Number (Jn) Joint Roughness Number (Jr) Joint Alteration (Ja) Nater Flow in Joints (Jw) Stress Reduction Factor (SRF) D Value incer's Comment: Roofd e	Descripti Fair Three plus Rough , Clay coat Damp Low stress = RQD(Ja*Jr/Ja* = RQD(Ja*Jr/Ja*	ion random Planar ings Jw/SRF + 05 Pet	Rating 65 12 1.5 3 1 2.5 1.08 70 UK SWPF	- R 	ock Support Class Pe_II

	RO & O Internetion of	Adix Tunnel, Bay	(44 MW)		
Interes	Super Madi Hyde	represer project	INFL LOG		201102076-3-20
G	FOLOGICAL	MAP/TUT	Scale 1:100	Kaphosive Oly, 1840	Time: 12:45 PM
Terr Che	image: Tunnel Axis:	Mapping	Pull: 1.00	UR.6	
forkaite Kalbande	17,46*	97			
	THE REAL PROPERTY OF	AUTINIA	TAN TOTS CO	1+ 401.90	al de la companya de
TANK A	ALLANAX	Kinne	ARTICA	1+ 400.90	
Standard States	1000	1		Leges	dsi Z
	AAA	23		1	Folliation
	ANT	1375	100120	120	Gneiss
220/65	ZIN	The son	ag Line		Joints .
	3741	1 az			a constitut
	I III	22	CIUS	/	Chry coatons
285180-	-ATER	X	tern	112	
eately weathered joints with fa , Joints are closely to moderal de of Joint sets: 100° 05° 1° 05° 1° 05° 1° 05°	or RQD , have tight to f	ew mmi 1-3mm diam persistenc) aperture with ciay y. Surface water con	dition of 1	he area is dry 10 dar
eately weathered joints with fa Joints are closely to moderati de of Joint sets: 100°-20° 9°86° 5°80° °(45°	er RQD , have tight to f	en mit 1-3mm diam persistene) aperture with ciay) y. Surface water con	dation of 1	he area is dry to dai
rately weathered joints with fa Joints are closely to moderati de of Joint sets: 100°-20° 9°85° 5°80° °45°	er RQD , have tight to f cly spaced and have me Description	en mit 1-3mit diam persistene) aperture with ciay) y. Surface water con Rating	dation of 1	be area is dry 10 dai
eately weathered joints with fa Joints are closely to moderali de of Joint sets: 100°-55° 5°-85° 5°-85° 5°-85° 5°-85°	er RQD , have tight to f cly spaced and have me Description Fair	ew mint 1-3mm diam persistens) aperture with city y y. Surface water con Rating 65	dation of 1	he area is dry 10 dai
eately weathered joints with fa Joints are closely to moderati de of Joint sets: 100°-20° 5°-85° 5°-55° 5°-85° 5°-	er RQD , have tight to f cly spaced and have me Description Fair Three plus ra	en mit 1-3mit diam persistene lang) aperture with city y y. Surface water con Rating 65 12	Roc	k Support Class;
eately weathered joints with fa Joints are closely to moderali de of Joint sets: 100°-85° 5°-85° *45° *45° Set Number (Ja) Roughness Number (Jr)	er RQD , have tight to f cly spaced and have me Description Fair Three plus ra Rough , P	ew mint 1-3min diwn persistens 2 indom lanar	Rating <u>Rating</u> <u>12</u> <u>1.5</u>	Res	k Support Class:
eately weathered joints with fa , Joints are closely to moderali de of Joint sets: 100°-20° 0°-85° 5'-80° 5'-85° 5'-45° Set Number (Ja) Roughness Number (Jr) Alteration (Ja)	er RQD , have tight to f cly spaced and have me Description Fair Three plus ra Rough , P Clay fillings	ew mint 1-3min diwn persistens limbom limbom	Rating 65 12 6	Rod	k Support Class:
eately weathered joiets with fa . Journs are closely to moderati de of Joint sets: 100°-20° 0°-85° 5°-80° °-45° Set Number (Ja) Roughness Number (Jr) Alteration (Ja) Flow in Joints (Jw)	er RQD , have tight to f cly spaced and have me Description Fair Three plus ra Rough , P Clay fillings Damp	en mit 1-3mit dium persistens limbom limbom	Rating 65 12 1.5 6 1	Rod	k Support Class:
extely weathered joints with fa , Joints are closely to moderali de of Joint sets: 100°-20° 0°-85° 5'-85° 5'-45° Set Number (Ja) Roughness Number (Jr) Alteration (Ja) Flow in Joints (Jw) Reduction Factor (SRE)	Description cly spaced and have me Description Fair Three plus ra Rough , P Clay fillings Damp Single weak a	en mit 1-3mit diam persistens lanar lanar	Rating 65 12 1.5 6 1 5	Roc	k Support Class:
extely weathered joints with fa Joints are closely to moderati de of Joint sets: 100°-20° 0°-85° 5°-	er RQD , have tight to f cly spaced and have me <u>Description</u> <u>Fair</u> Three plus ra Rough , P Clay fillings Damp Single weak a = RQD(Jn*Jr(Ja*Js	es mini 1-3min disen persistens limdom lanar cone s/SRF	Rating 	Rod	k Support Class:
extely weathered joints with fa Joints are closely to moderali de of Joint sets: 100°-20° 0°-85° 5'-85° 1'-45° Set Number (Ja) Roughness Number (Jr) Alteration (Ja) Flow in Joints (Jw) Reduction Factor (SRF) ne s Comment:	Description cly spaced and have me Pair Three plus ra Rough , P Clay fillings Damp Single weak a * RQD(Jn*Jr(Ja*Jv	es mini 1-3mini disen persistens lanar lanar sone s/SRF	Rating 65 12 1.5 6 1 5 0.27	Ros	k Support Class:
extely weathered joints with fa Joints are closely to moderati de of Joint sets: 100°-20° 0°-85° 5°-	er RQD , have tight to f cly spaced and have me <u>Pair</u> <u>Three plus ra</u> <u>Rough , P</u> <u>Clay fillings</u> <u>Damp</u> <u>Single weak a</u> <u>* RQD(Jn*Jr(Ja*Jv</u>)	en mit 1-3mit dium persistens lanar tanar tone s/SRF	Rating 65 12 1.5 6 1 1 5 0.27	ditio	Roc

Salient Features of Project

<u>GENERAL</u>	
Name of the Project	Super Madi Hydroelectric Project
Developer	Super Madi Hydropower Ltd.
Name of the River	Madi River
Type of Scheme	Run-of-River
Project Location	Madi Rural Municipality
District	Kaski
Province	Province-04
Latitude	28°19' 02" N to 28°21' 39" N
Longitude	84° 04' 45" E to 84° 08' 34" E
Nearest Town	Pokhara
Gross Head	295.76 m
Rated Net Head	278.59 m
Normal Operating Headwater Level	1344.00m amsl
Tailrace water level	1048.24 m amsl
WEIR	
Weir Crest Level	1344.00 m amsl
Type of Weir	Concrete ogee shaped weir
Length of overflow weir	44.00 m
Lowest River Bed Level at Weir Axis	1335.00 m amsl
100 Years Flood	1508 m ³ /s
INTAKE	
Catchment Area at Intake site	282.843 km ²
Design Flow	18.00 m ³ /s
Riparian Release	$1.52 \text{ m}^{3}/\text{s}$
Intake Type	Side intake
Intake orifice number/size	4 Nos./ 3.6 m wide x 2.0 m high
UNDERSLUICE	
No., Dimension (length x breadth)	2 nos., 4.0 x 4.0 m
Under-sluice Invert level at gate	EL 1336.00 m amsl
GRAVEL TRAP	
Length (effective)	20.0 m

Width	8.0 m
Height	9 m
Particle size to settle	5 mm (at 85% efficiency)
UNDERGROUND SETTLING BASIN	
Туре	Double Chamber, Intermittent Flushing Type
Settling Criteria	90%, ≥ 0.20 mm
Number of Chambers	2
Inlet Transition Length (m)	28.0 m
Settling Basin Size (uniform section)	124 m long x 12.30 m wide and 13.05 m high
Flushing System	each
Size of Flushing Channel	Intermittent
	1.00 m x 1.5 m (B x H), slope 1:50
Headrace Tunnel (HRT)	
Type of Flow	Low Pressure Tunnel
Shape of Tunnel	Inverted U
Length (excluding settling basin and Kalbandi Kholsi crossing)	5270.95 m
Excavation Size	4.2 m x 4.2 m (B x H)
Support Type	Concrete/ Shotcrete/Rockbolt
Tunnel inlet portal invert level before settling basin (finish)	1337 m amsl
Length of Kalbandi Level crossing	55.50 m
Diameter of Pipe in Crossing	2.7 m
<u>Adit-I (to HRT)</u>	
Туре	Inverted "U" Type, Shotcrete lined
Total length of Adit (excluding flushing	237.16 m
Excavation Size	4.2 m x 4.2 m (B x H)
Adit portal invert level (excavation)	1324.02 m amsl
Surge Shaft	
Туре	Cylindrical
Diameter - upper section	8.0 m
Height - upper section	45.60 m
Diameter (excavation) – bottom restricted section	4.0 m

Height – bottom restricted section	
	31.68 m
Total Height	77.28 m
Invert Level	EL 1287.72 m amsl
Penstock Pipe	
Туре	Exposed steel lined
Length (from HRT outlet portal)	562 m (center), 90 m (left branch), 66.7 m (right branch)
Diameter/Thickness	2.70 m dia. / 14-40 mm thick, 2.2 m dia 32 mm thick, 1.6 m dia 28 mm thick of E-350 Grade Steel or Equivalent
Adit-II (Bagalethar adit)	
Туре	Inverted "U" Type, Shotcrete lined
Total length of Adit	254.36 m
Excavation Size	4.2 m x 4.2 m (B x H)
Adit portal invert level (excavation)	1300 m amsl
Powerhouse	
PH dimension (L X B X H)	46.00 x 16.0 m x 28.5 m
Turbine Axis Level	EI 1045.65 m amsl
PH Access Floor Level	EL 1052.90 m amsl
<u>Tailrace</u>	
Туре	Concrete box culvert
Size	3.2 m x 3.0 m (B x H)
Length of Tailrace	195 m
Slope	1 in 500
Invert Level of Tailrace outlet	1045.43 m amsl
<u>Turbine</u>	
Туре	Vertical Axis Francis Turbine
Number of Unit	3 (Three)
Rated Capacity per Unit	15.28 MW
Discharge per Unit	6.0 m ³ /s
Turbine Axis Elevation	1045.65 m amsl
Tail water level	1048.24 m amsl
Turbine efficiency	93.5 %

<u>Generator</u>	
Type of Generators	Three phase, Synchronous, Brushless
Number of Unit	3 (Three)
Rated Output	17260 kVA
Generation Voltage	11.0 kV
Frequency	50 Hz
Power Factor	0.85
Generator efficiency	97 %
<u>Transformers</u>	
Туре	Three Phase, Oil immersed
Number of Units	3
Frequency	50 Hz
Transformer Efficiency	99.0%
Rated capacity per unit	17,500 kVA
Primary (LV Side)	11 kV
Secondary (HV Side)	132 kV
Transmission Line	
Transmission Voltage (kV)	132 kV
Length (km)	10 km Upto Upper Madi Powerhouse (under
Type of Circuit	study) Single Circuit
Line Conductor	ACSR (Bear)
Proposed Interconnection Point	132 kV NEA Substation at Lekhnath via Upper Madi Transmission line(Proposed)
Power and Energy	
Installed Capacity	44 MW
Deemed / Contract Energy	242.65 GWh
Wet Saleable Energy	204.893 GWh
Dry Saleable Energy	37.756 GWh

Geological Map along Headrace Tunnel

Geological Cross-Section along Headrace Tunnel