
MULTIDRUG RESISTANCE AMONG VARIOUS CLINICAL BACTERIAL ISOLATES AND PRODUCTION OF DIFFERENT TYPES OF -LACTAMASES WITH SUBSEQUENT TRANSFER MECHANISM BY PLASMID DNA ANALYSIS

Presented to the Central Department of Microbiology Tribhuvan University

In Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science in Microbiology (Medical)

> by Pankaj Baral

Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal 2008

RECOMMENDATION

This is to certify that **Mr. Pankaj Baral** has completed this dissertation work entitled "**MULTIDRUG RESISTANCE AMONG VARIOUS CLINICAL BACTERIAL ISOLATES AND PRODUCTION OF DIFFERENT TYPES OF -LACTAMASES WITH SUBSEQUENT TRANSFER MECHANISM BY PLASMID DNA ANALYSIS**" as a partial fulfillment of M. Sc. Degree in Microbiology under our supervision. To our knowledge this thesis work has not been submitted for any other degree.

Mr. Binod Lekhak Asst. Professor Central Department of Microbiology,Tribhuvan University, Kathmandu, Nepal

Mrs. Basudha Shrestha

Microbiologist Pathology Department, Kathmandu Model Hospital Pradarshani Marg, Kathmandu, Nepal

Date:

Date:

CERTIFICATE OF APPROVAL

On the recommendation of **Mr. Binod Lekhak** and **Mrs.Basudha Shrestha** this dissertation work by **Mr. Pankaj Baral**, entitled "**MULTIDRUG RESISTANCE AMONG VARIOUS CLINICAL BACTERIAL ISOLATES AND PRODUCTION OF DIFFERENT TYPES OF -LACTAMASES WITH SUBSEQUENT TRANSFER MECHANISM BY PLASMID DNA ANALYSIS**" has been approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of the requirement for M. Sc. Degree in Microbiology.

Dr. Anjana Singh, Ph. D. Head of the Department Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu.

Date:-

BOARD OF EXAMINERS

Recommended by:

Mr. Binod Lekhak Supervisor

Mrs. Basudha Shrestha Supervisor

Approved by:

Dr. Anjana Singh Head of the Department

Examined by:

Prof. Nuchhe Ratna Tuladhar, TUTH External Examiner

Dr. Dwij Raj Bhatta Internal Examiner

Date:

ACKNOWLEDGEMENT

I would like to express my heartfelt appreciation and profound gratitude to all the people who helped me in one way or another to complete this dissertation.

Respectfully, I would like to express my sincere gratefulness to my supervisor **Mr.Binod Lekhak**, Asst.Prof, Central Department of Microbiology, Trhibhuvan University, Kirtipur for his superb guidance, generosity, encouragements, invaluable suggestions and enlightenment during whole of this research work.

I am indebted to my supervisor, **Mrs.Basudha Shrestha**, microbiologist, Kathmandu Model Hospital, Kathmandu for her meticulous guidance and tremendous support for accomplishment of this work. My special gratefulness also goes to Mr.Kiran Babu Tiwari, Asst. Prof. Pokhara University for his expert guidance, moral support and encouragement for doing and accomplishment of this work.

I am much obliged to honorable Head of Department **Dr. Anjana Singh**, Central Department of Microbiology, Mr. Megha Raj Banjara and all the teachers and staffs of Central Department of Microbiology, Tribhuvan University.

I am thankful to Dr.Dwij Raj Bhatta, Dr.Prakash Ghimire, Dr.Shreekant Adhikari, Ms. Shaila Basnyat and all the teachers and staffs of Central Department of Microbiology for their valuable idea, moral support, and kind cooperation during this study. I acknowledge profound gratitude to Prof.Dr.Ronald H.Baeurle, Senior Fulbright professor for his scrupulous guidance, moral support and kind cooperation.

My special thanks goes to colleagues Mr. Sanjiv Neupane, Mr. Kashi Ram Ghimire, Mr.Bishnu prasad Marasini, Mr.Navaraj Dahal and Mr.Girdhari Rijal for their support and cooperation for completion of this work.

I wish to extend my sincere gratitude to all participating patients during the study for their good cooperation and response during the study and my family for their moral support, patience and encouragement.

Pankaj Baral

ABSTRACT

In the present study 710 urine, 551 blood, 91 pus, 28 fluid, 59 sputum, 13 CSF, 2 tissue, 16 stool, 30 throat swab and 3 perianal swab samples were collected from symptomatic patients visiting Kathmandu Model Hospital from May 2007 to August 2007. The samples were processed for routine culture. The isolated bacteria were subjected for antimicrobial susceptibility testing by modified Kirby-Bauer method. The production of extended-spectrum -lactamases (ESBLs), AmpC -lactamases (ABLs) and metallo- -lactamases (MBLs) in the multidrug resistant isolates likely to produce these –lactamases were determined by Double Disk Synergy test (DDST), AmpC Disk test (ADT) and EDTA-Disk Synergy test (EDST) methods respectively.

Plasmid DNA anlysis of the multidrug resiatant ESBL, ABL and MBL producing isolates of the bacteria were performed. The plasmid encoded –lactamases and multidrug resistance transfer mechanism/s were also studied by conjugation and transformation method. The work was carried out at the laboratory of Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.

All together, 1503 samples were received in the laboratory, of which predominant were urine 710 (47.24%) samples. Out of 1503 samples, 336 (22.35%) showed bacterial growth (urine -30.84 %, blood-9.25 %, pus-61.53 %, fluid-7.14 %, sputum-1.69 %, CSF-7.69 %, tissue-100.0 %, stool-0.0 %, throat swab-3.34 % and perianal swab-100.0 %). The most predominant bacterial pathogen among all these samples was *E. coli* with 193/336 (57.44 %) isolates.

Imipenem was the drug of choice with a susceptibility of 98.43% for all Gram negative isolates, whereas amikacin and vancomycin were the drugs of choice with susceptibility 100.0% each for Gram positive isolates. Out of 336 isolates, 41.07 % (138/336) MDR isolates were found. *E. coli* was found most predominant MDR isolates with 46.12% (89/193) MDR strains among all samples. *E. coli* was found most predominant ESBL producers with 100.0% (27/27) ESBL producing MDR strains, ABL producers with 81.03 % (47/58) ABL producing MDR strains and MBL producers with 75.75% (25/33) MBL producing MDR strains.

All MDR -lactamase producing isolates of *E. coli* (30) and *C. freundii* (3) selected for plasmid DNA analysis harbored megaplasmid with other small size plasmids. Most of them were found responsible for the transfer of plasmid mediated -lactamase production with MDR traits frequently via conjugation. The most common plasmid type responsible for different -lactamase production and mutidrug resistance was 32.5 kb.

Key Words: Double Disk Synergy test, AmpC Disk test, EDTA Disk Synergy test, Plasmid, Conjugation

TABLE OF CONTENTS

			Page No.
Title Pa	Øe		i
	nendation		ii
	ate of Appro	oval	iii
	ledgement		V
Abstrac	U		vi
Table of	f Contents		vii-xi
List of A	Abbreviatio	ns	xii-xiii
List of 7	Fables		xiv
List of I	Figures		XV
	Photographs	5	xvi
List of A	Appendices		xvii-xviii
СНАРТ	ER I: INTF	RODUCTION	1-4
СНРАТ	ER II: OBJ	ECTIVES	5
СНРАТ	ER III: LII	TERATURE REVIEW	6-43
3.1 Bact	erial infectio	ns and multidrug resistance	6-15
		ract infection (UTI)	6-8
3.1.2 Skin, soft tissue, and wound infections			8-11
a. Infections in or around hair follicles			8
b. Infections in the deeper layers of the epidermis and the dermis			8
c. Postoperative infections			9-10
d. Bites and burns			10
3.1.3 Upper respiratory tract infection (URTI)			11-12
3.1.4 Lower respiratory tract infection (LRTI)			12-13
3.1.5 Bloodstream Infection			13-14
3.1	.6 Other bac	eterial infections	14-15
	biotic resista		16-23
	2.1 Definitio		16
		ors for the development of antibiotic resistance	16
3.2.3 History of antibiotic resistance			17
3.2		sms of Antibiotic Resistance	17-23
	3.2.4.1	Clinical resistance	18
	3.2.4.2	Environmentally mediated antimicrobial resistance	18
	3.2.4.3		18
		Microorganism-mediated antimicrobial resistance	18 19-23
	А, В.	Intrinsic resistance (inherent; natural)	19-23 19-23
	D.	Acquired resistance	17-23

3.3 Multidrug resistance		
3.3.1 Definition		
3.3.2 Mechanisms of multidrug resistance	24-26	
3.3.2.1 Genetic acquisition of MDR genes	24-25	
3.3.2.2 Chromosomal multiple-antibiotic resistance (Mar) locus	25	
3.3.2.3 Reduced cellular uptake	25	
3.3.3.4 Multidrug efflux pumps	25-26	
3.3.3 Multidrug resistance in global context	27-28	
3.3.4 Multidrug resistance trend in Nepal	29-30	
3.4 Plasmid and multidrug resistance	30-33	
3.4.1 Host range and plasmid epidemics	30=31	
3.4.2 Types of plasmids from MDR strains	31-32	
3.4.3 Multidrug resistance mediated by plasmid	32-33	
3.5 -lactams	33-35	
3.5.1 Types of -lactams	33	
3.5.2 Mode of action	33-34	
3.5.3 Applications	34-35	
3.6 -lactamases	35-41	
3.6.1Classification of ß-lactamases	36	
3.6.2 Action of ß-lactamase	36	
3.6.3 Extended Spectrum of Beta-Lactamase (ESBL)	37-38	
3.6.4 AmpC -lactamase (ABL)	39-40	
3.6.5 Metallo -lactamase (MBL)	40-41	
3.7 Approaches to analyse R-plasmid of bacterial strains	41-43	
3.7.1 Analysis of intact and digested fragments of R-plasmid	41-42	
3.7.2 Polymerase chain reaction (PCR) and DNA sequencing	42	
3.7.3 Pulsed field gel electrophoresis (PFGE)	42-43	
3.7.4 Isoelectric focusing (IEF)	43	
3.7.5 Southern hybridization analysis	43	
3.7.6 Electron microscopy	43	
CHAPTER IV: MATERIALS AND METHODS	48-59	
4.1 Materials	44	
4.2 Methods	44-55	
4.2.1 Data collection	44	
4.2.2 Sample collection	44-47	
4.2.2.1 Collection of urine sample	45	
4.2.2.2 Collection of sputum	45	
4.2.2.3 Collection of throat swab	45	
4.2.2.4 Collection of pus sample	45-46	
4.2.2.5 Collection of CSF	46	
4.2.2.6 Collection of blood	46	
4.2.2.7 Collection of stool sample	46	
4.2.2.8 Collection of perianal swab	47	

4.2.2.9 Collection of tissue sample	47	
4.2.2.10 Collection of fluid sample	47	
4.2.3 Sample evaluation	47	
4.2.4 Macroscopic examination	47-48	
4.2.5 Homogenization of Sample	48	
4.2.6 Microscopic examination	48	
4.2.7 Culture of specimen	48-50	
4.2.8 Identification of isolates	50	
4.2.9 Antibiotic susceptibility testing	50-51	
4.2.10 Screening and confirmation of ESBL producers	51	
4.2.11 Screening and confirmation of ABL producers	51-52	
4.2.12 Screening and confirmation of MBL producers	52	
4.2.13 Purity Plate	52	
4.2.14 Quality control	53	
4.2.15 Preservation of ESBL, ABL and MBL		
producing isolates	53	
4.2.16 Plasmid DNA analysis	53-55	
4.2.16.1Extraction of plasmids DNA from ESBL, ABL		
and MBL producing MDR E. coli and C. f reundii	53	
4.2.16.2 Conjugation between MDR E. coli (donor)		
and <i>E. coli</i> HB101	53-54	
4.2.16.3 Transformation of plasmid DNA		
in Recipient E. coli (TB1)	54	
4.2.16.4 Extraction of plasmids DNA from		
transconjugant and transformant	54	
4.2.16.5Determination of minimum inhibitory		
concentration (MIC) of Donors transconjugants		
and transformants	54	
4.2.16.6 Electrophoresis of plasmid DNA from MDR		
E. coli, transconjugant and transformant	54	
4.2.16.7 Decontamination of ethidium bromide	54	
4.2.16.8 Making standard curve	54-55	
4.2.16.9 Determination of size of DNA by semi log plot	55	
4.2.16.10 Data analysis	55	
	51	
CHAPTER V: RESULTS	56-	
5.1 Clinical pattern of results	56-57	
5.1.1 Number of samples, pattern of growth, MDR, ESBL, ABL	50 57	
and MBL producing strains	56	
5.1.2 Pattern of type of patients, isolates and MDR		
strains in different samples		
5.1.3 Gender and age wise distribution of patients	56	
requesting for culture and their growth pattern	57	
5.2. Pattern of bacterial isolates		
	57-59	

	5.2.1 Pattern of bacterial growth according to Gram's stain5.2.2 Pattern of bacterial isolates from different samples	57 57-58
	5.2.3 Age wise distribution of pathogens and MDR strains from	57-58
	different samples	59
	5.2.4 Pattern of isolates and MDR in outdoor and	57
	indoor Patients from different samples	59
5.3	Antibiotic susceptibility pattern of the isolalates	60-63
5.5	5.3.1 Antibiotic susceptibility pattern of Gram-negative isolates	00 05
	from different samples	60-61
	5.3.2 Antibiotic sensitivity pattern of Gram-positive isolates	00 01
	from different samples	61-62
	5.3.1 Antibiotic susceptibility pattern of <i>E. coli</i> isolated	01 02
	from different samples	62
	5.3.2 Antibiotic susceptibility pattern of <i>S. aureus</i>	02
	isolated from different samples	63
5.4	Antibiotic resistance pattern of the isolates	63-65
Ј.т	5.4.1 Antibiotics Resistance pattern of the isolates	05-05
	from different samples	63
	5.4.2 Distribution of MDR among gender and type of patients	63
	5.4.3 Pattern of MDR strains and non-MDR strains	05
	among age of patients	65
5.5	Pattern of ESBL producing strains from different samples	65-66
5.6	Pattern of ABL producing strains from different samples	66
5.7	Pattern of MBL producing strains from different samples	67-68
5.8	Pattern of spectrum of MDR among ESBL, ABL and MBL	0, 00
0.0	producing isolates	68-69
5.9	Pattern of MDR isolates resistant to carbapenems	00 07
0.17	among different samples	69
5.10	Plasmid DNA analysis	70-72
0.110	5.10.1 Plasmid DNA profiles from ESBL, ABL and	
	MBL producing MDR <i>E. coli</i> and <i>C. reundii</i>	70
	5.10.2 Plasmid DNA profiles and resistance patterns of	
	donors and transconjugants	70
	5.10.3 Conjugation frequency	72
	5.10.4 Transformation	72
	5.10.5Minimum Inhibitory Concentration (MIC) of	12
	donors, transconjugants and transformants	74
	donoro, d'anoconjuganto ana d'anoconnanto	, ,
6.	Statistical pattern of results	74
CHA	APTER VI: DISSCUSSION AND CONCLUSION	76-89
6.1 I	Discussion	76-88
6.2 Conclusion		88-89

CHAPTER VII: SUMMARY AND RECOMMENDATIONS	90-93
7.1 Summary7.2 Recommendations	90-92 92-93
CHAPTER VIII: REFERENCES	94-114
APPENDICES I-XI	i-xlv

LIST OF TABLES

Table 1:	Common infections of epidermis and dermis and their aetiologies
Table 2:	General characteristics of multidrug-resistant organisms
Table 3:	MDR Efflux systems of clinically important bacteria
Table 4:	Reference plasmids of different Inc. groups from E. coli
Table 5:	Classification schemes for bacterial -lactamases
Table 6:	Pattern of different clinical samples, status of growth, MDR strains and status of - lactamase producers
Table 7:	Pattern of isolates and MDR in outdoor and indoor patients from different samples
Table 8:	Antibiotic susceptibility pattern of Gram-negative isolates from different samples
Table 9:	Antibiotic susceptibility pattern of Gram-positive isolates from different samples
Table 10:	Antibiotic resistance pattern of the organisms
Table 11:	Distribution of MDR strains among gender and type of patients
Table 12:	Pattern of ESBL producing, suspected and confirmed cases of ESBL producing strains from different samples
Table 13:	Pattern of ABL producing, suspected and confirmed cases of ABL producing strains from different samples
Table 14:	Pattern of MBL producing strains and carbapenem resistant strains
Table 15:	Pattern of spectrum of MDR among ESBL, ABL and MBL producing isolates
Table 16:	Pattern of MDR isolates resistant to carbapenem
Table 17:	Plasmid DNA profiles and resistance patterns of donors and transconjugants
Table 18:	Transformation study with E. coli TB1 using supercoiled plasmid DNA
Table 19:	Conjugation Frequency of transconjugants on different selective media
Table 20:	Statistical pattern of the results

LIST OF FIGURES

Figure 1:	Action of a serine ß-lactamase (classes A, C, and D)
Figure 1:	Flow chart of processing of different specimens and identification of ESBL ABL and MBL
Figure 3:	Plasmid DNA analysis from ESBL, ABL and MBL producing strains
Figure 4:	Percentage pattern of pathogens isolated from diffeent samples

LIST OF PHOTOGRAPHS

- Photograph 1 Significant Growth of *Escherichia coli* isolated from urine sample on Blood agar
- Photograph 2 Biochemical tests of *E. coli*
- Photograph 3 Antibiotic susceptibility test of *E. coli*: MDR strain
- Photograph 4 Positive ESBL-confirmation and suspected ABL production test on Mueller-Hinton agar
- Photograph 5 Positive hyper AmpC and AmpC -lactamase production test on Mueller-Hinton agar
- Photograph 6 Positive weak and non AmpC -lactamase production test on MHA
- Photograph 7 Positive MBL producing MRSA isolate resistant to carbapenem
- Photograph 8 Plasmid DNA profiles from different -lactamase producing MDR isolates
- Photograph 9 Plasmid profiles of MDR E. coli and their transconjugants

LIST OF APPENDICES

APPENDIX-I: Questionnaire

APPENDIX-II:

- A. List of Equipments and Materials used during the Study
- B. Microbiological Media
- C. Chemicals and Reagents
- D. Antibiotics Discs
- E. Antibiotics powder
- F. Miscellaneous

APPENDIX-III:

- I. Composition and Preparation of Different Culture Media
- II. Biochemical Test Media
- III. Staining and Test Reagents

APPENDIX-IV:

A. Gram-staining Procedure

APPENDIX-V:

1. Biochemical tests for Identification of bacteria

APPENDIX-VI:

Distinguishing reactions of the commoner and pathogenic Enterobacteriaceae

APPENDIX-VII: Zone Size Interpretative Chart

APPENDIX-VIII:

- A. Doubel Disc Synergy Test (DDST) for ESBL confirmation
- B. AmpC Disc test for Confirmation of ABL
- C. Resut Interpretation
- D. Preparation of AmpC disc
- E. EDTA Disc Synergy Test (EDST) for MBL confirmation
- F. Result interpretation

APPENDIX-IX:

- A. Extraction of plasmid DNA
- B. Agarose gel electrophoresis:
- C. Transformation
- D. Conjugation
- E. Determination of Miniumum Inhibitory Concentration (MIC)

APPENDIX-X:

- Table 1:
 Pattern of type of patients, isolates and MDR strains in different samples
- Table 2: Age and gender wise distribution of patients requesting for culture and their growth pattern
- Table 3:
 Pattern of bacterial isolates from different samples
- Table 4: Pattern of bacterial growth according to Gram's stain
- Table 5: Age wise distribution of pathogens and MDR strains from different samples
- Table 6:
 Antibiotic susceptibility pattern of Gram-negative bacterial pathogens
- Table 7: Antibiotic susceptibility pattern of *E. coli* isolated from different samples
- Table 8:
 Antibiotic susceptibility pattern of Gram-positive bacterial pathogens
- Table 9:
 Pattern of MDR strains from different samples among different age groups of patients
- Table 10: Plasmid DNA profiles of ESBL, ABL and MBL producing MDR E. coli and C. freundii
- Table 11: Minimum inhibitory concentration (µg/ ml) of donors, transconjugants and transformants

APPENDIX-XI:

Chi –square test Odds ratio

LIST OF ABBREVIATIONS

ABL ATCC	AmpC -l.aactamase American Type Culture Collection
BA	Blood Agar
СА	Chocolate Agar
CAT	Chloramphenicol Acetyltransferase
CFU	Colony Forming Units
CLSI	Clinical and Laboratory Standards Institute
CONS	Coagulase Negative Staphylococci
CRF	Coagulase Reacting Factor
DDST	Double Disk Synergy Test
DNA	Deoxyribonucleic Acid
EDTA	Ethylene Diamine Tetra-acetic acid
ESBL	Extended Spectrum of Beta Lactamase
IS	Insertion Sequence
LRTI	Lower Respiratory Tract Infection
MA	MacConkey Agar
MBC	Minimum Bactericidal Concentration
MBL	Metallo -lactamase
MDR	Multi-drug Resistant
MHA	Mueller Hinton Agar
MIC	Minimum Inhibitory Concentration
MRSA	Methicillin Resistant Staphylococcus aureus
MRVP	Methyl Red Voges Proskauer
NA	Nutrient Agar
NB	Nutrient Broth
NCCLS	National Committee for Clinical Laboratory Standards
NCTC	National Collection of Type Cultures
PBP	Penicillin Binding Protein

RAPD	Randomely amplitfied polymorphic DNA
RNA	Ribonucleic Acid
SDS	Sodium dodecyl sulfonate
SIM	Sulfide Indole Motility
TPD	Tetramethyl <i>p</i> -phenylene diamine dihydrochloride
TSIA	Triple Sugar Iron Agar
TCBS	Thiosulfate Citrate Bile salt Sucrose
TUTH	Tribhuvan University Teaching Hospital
UTI	Urinary Tract Infection
VRE	Vancomycin Resistant enterococci
VRSA	Vancomycin Resistant Staphylococcus aureus