

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

THESIS NO: 073/MSCS/651

Integrating Message Queuing Telemetry Transport (MQTT)with Kafka Connect

for Processing IOT data

by

Anila Kansakar

A THESIS

SUBMITTED TO

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE IN COMPUTER SYSTEM AND KNOWLEDGE

ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

LALITPUR, NEPAL

November, 2019

Integrating Message Queuing Telemetry Transport (MQTT)with Kafka Connect

for Processing IOT data

by

Anila Kansakar

073/MSCS/651

Thesis Supervisor:

Prof. Dr. Subarna Shakya

A thesis submitted in partial fulfillment of the requirement for

the degree of Master of Science in Computer System and Knowledge Engineering.

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Tribhuvan University

Lalitpur, Nepal

November, 2019

i

COPYRIGHT©

The author has agreed that the library, Department of Electronics and Computer

Engineering, Pulchowk Campus, Institute of Engineering, may make this thesis freely

available for inspection. Moreover, the author has agreed that the permission for extensive

copying of this thesis work for scholarly purpose may be granted by the professor(s), who

supervised the thesis work recorded herein or, in their absence, by the Head of the

Department, wherein this thesis was done. It is understood that the recognition will be

given to the author of this thesis and to the Department of Electronics and Computer

Engineering, Pulchowk Campus, Institute of Engineering in any use of the material of this

thesis. Copying of publication or other use of this thesis for financial gain without approval

of the Department of Electronics and Computer Engineering, Pulchowk Campus, Institute

of Engineering and author’s written permission is prohibited.

Request for permission to copy or to make any use of the material in this thesis in whole

or part should be addressed to:

Head

Department of Electronics and Computer Engineering

Pulchowk Campus, Institute of Engineering,

Lalitpur, Kathmandu

Nepal

ii

iii

iv

v

ACKNOWLEDGEMENT

I would like to express the deepest appreciation to my supervisor Prof. Dr. Subarna Shakya

for his guidance throughout the period of this work. His invaluable support, understanding

and expertise have been very important in completing this work. It was a great honor for

me to pursue my thesis under his supervision.

I am grateful to Dr. Surendra Shrestha our Head of Department of Electronics and

Computer Engineering, Pulchowk Campus for his support.

I pay my sincere gratitude Dr. Aman Shakya, to MSCSKE Coordinator for his supervision

and help during this research work.

I am highly grateful to Prof. Dr. Shashidhar Ram Joshi, Dr. Dibakar Raj Pant , Dr. Sanjeeb

Prasad Pandey, and Dr. Basanta Joshi for their encouragement and guidance.

I would like to express my heartily gratitude towards the Institute of Engineering,

Pulchowk Campus along with all my respected teachers, my friends, my family for giving

me continuous support for their invaluable help.

Anila Kansakar

073/MSCS/651

vi

ABSTRACT

The Internet of Things (IoT) architecture is defined as a layered structure in which each

layer represents a coherent set of services. For supporting the communication among the

different IoT entities many different communication protocols are now available in

practice. For practitioners, it is often not clear which communication protocol is suitable

for the various conditions in which the IoT systems need to be operated. The backbone of

Internet of Things (IoT) is the communication protocols which seamlessly integrate

thousands of nodes and enable a light weight data transfer process. This research is to

analyze the efficiency and applicability of different Machine to Machine (M2M) protocols

that are available for IoT communication. This thesis aims at exploring the capabilities of

such middleware and how they can be integrated in real world application need to

aggregate data on a large scale. MQTT and Kafka are two complementary technologies.

Together they allow to build IoT end to end integration from the edge to the data center.

Kafka Connect is a part of Apache Kafka and provides a scalable and reliable way to move

data between Kafka and other datastores.

Keywords: IOT, REST API, MQTT, Kafka Connect, Source Connector, Sink Connector

vii

TABLE OF CONTENTS

COPYRIGHT© .. i

DEPARTMENTAL ACCEPTANCE .. iv

ACKNOWLEDGEMENT..v

ABSTRACT ... vi

CHAPTER 1: Introduction ...1

1.1 Background ..1

1.2 Problem Statement ...2

1.3 Objectives ...3

CHAPTER 2: Literature Review ..4

CHAPTER 3: Related theory ...7

3.1 Message Queuing Telemetry Transport (MQTT) ..7

3.2 Apache Kafka ...9

CHAPTER 4: Research Methodology ...11

4.1 System Design ..11

4.2 Source connector and Sink connector mechanism ...13

4.3 Code Architecture...16

4.4 Flowchart of Source and Sink Connector Mechanism ...18

4.5 Request Processing ...18

4.5 Tools ...20

4.4.1 Mosquitto Broker ..20

4.4.2 Apache Kafka ..20

4.4.3 Wireshark ..20

4.4.4 Java and Scala Programming Language ..21

4.4.5 Oracle Virtual Box ..21

4.4.6 Confluent Control Box ..21

viii

CHAPTER 5: Experimental Outputs ...22

5.1 MQTT Broker and Kafka Connect Setup...22

5.2 Starting a Kafka ..22

5.3 Kafka Connect setup ..23

5.4 Topics and Consumer setup ...23

CHAPTER 6: Results, Analysis and Comparison...26

6.1 Latency Test Analysis ..26

CHAPTER 7: CONCLUSION AND LIMITATIONS ..39

References ..40

ix

LIST OF FIGURES

Figure 1. 1: Edge to Edge integration………………………………………………………9

Figure 2.1: Feature Diagram of Session Level Communication Protocols of IoT………..12

Figure 3.2 :MQTT Broker process………………………………………………………..14

Figure 3. 1: Three different level of QoS of MQTT………………………………………15

Figure 4. 1: System Architecture of MQTT with Kafka connect…………………………18

Figure 4. 2: System Architecture of Kafka connect……………………………………….19

Figure 4. 3: Source Connector which has created two tasks which copy data from input

partition and write record to Kafka……………………………………………………….21

Figure 4. 2: Representation of data passing through a connector source task into Kafka…21

Figure 4. 4: Process of converting JSON data type to Avro data type…………………….22

Figure 4. 4: Process of Kafka Connect- Connector and Tasks lifecycles…………………23

Figure 4. 5: Class diagram of Kafka Connect……………………………………………..24

Figure 4. 6: Flowchart of Source and Sink Connector Mechanism……………………….25

Figure 4. 7: Request Processing inside Apache Kafka……………………………………26

Figure 5. 1: Starting Mosquitto MQTT Broker…………………………………………...29

Figure 5. 2: Starting Kafka………………………………………………………………..29

Figure 5. 3: Creating five different sensor value topics…………………………………...30

Figure 5. 4: Creating five different sensor value topics…………………………………...31

Figure 5. 5: Measuring latency using confluent control hub……………………………...32

Figure 5. 6: Wire-shark capture in network……………………………………………….32

x

Figure 6. 1: Graph plot between Data Size and Produce/Fetch latency using 1 topic with 1

partition and 4 partition…………………………………………………………………..42

Figure 6. 2: Graph plot between Data Size and Produce/Fetch latency using 2 topics with

1 partition and 4 partition…………………………………………………………………42

Figure 6. 3: Graph plot between Data Size and Produce/Fetch latency using 3 topics with 1

partition and 4 partition…………………………………………………………………...43

Figure 6. 4: Graph plot between Data Size and Produce/Fetch latency using 4 topics with

1 partition and 4 partition…………………………………………………………………43

Figure 6. 5: Latency measurement for MQTT Broker and Kafka connected with one and

four partition for one topic………………………………………………………………..44

Figure 6. 6: Latency measurement for MQTT Broker and Kafka connected with one and

four partition for one topic………………………………………………………………..44

Figure 6. 7: Latency measurement for MQTT Broker and Kafka with one and four partition

connected for two topics………………………………………………………………….44

Figure 6. 8: Latency measurement for MQTT Broker and Kafka connected with one and

four partition for three topics……………………………………………………………..44

Figure 6. 9: Latency measurement for MQTT Broker and Kafka connected with one and

four partition for four topics……………………………………………………………...45

Figure 6. 10: Latency measurement for MQTT Broker and Kafka connected with one and

four partition for five topics………………………………………………………………45

xi

LIST OF TABLES

Table 3.1: Description of MQTT Message……………………………………………….17

Table 6.1: Latency Measurement using one topic with one partition and four partition…..35

Table 6.2: Latency Measurement using two topics with one partition and four partition…36

Table 6.3: Latency Measurement using three topics with one partition and four partition..37

Table 6.4: Latency Measurement using four topics with one partition and four partition...38

Table 6.5: Latency Measurement using five topics with one partition and four partition…39

Table 6.6: Throughputs Measurement using different topics with different partition……40

Table 6. 7: Latency Measurement using MQTT Broker using different topics…………...40

xii

List of Abbreviations

ETL Extract, Transform and Load

ICT Information and Communication Technology

IOT Internet of Thing

HTTP Hypertext Transport Protocol

M2M Machine to Machine

MQTT Message Queuing Telemetry Transport

1

CHAPTER 1: Introduction

1.1 Background

Over the past decades, an effort has been made by the information and communications

technology industries to continuously increase the number of Internet enabled devices.

These devices, besides the traditional computers and mobile devices, are devices that

ranges from home or domestic appliances, industrial machinery and automation,

healthcare, transport, energy, buildings, cities and people are been connected to the

Internet. Adding more devices, which were traditionally offline to the Internet, has

become possible or feasible due to the technological advancement with the hardware,

software developments and the idea of network convergence known as the Internet

Protocol (IP) convergence. This avalanche of many new devices and other things being

connected to the Internet was known as the evolution of the Internet, which is nowadays

termed as the Internet of Things (IoT).

The main idea of Next generation internet devices is to connect things that are not yet

connected to the Internet and to provide interconnectivity between other devices and

the things to the global information and communications infrastructure. This

interconnectivity of things will allow not only communication between devices and

things, but it will offer intelligence to the things being connected and makes their data

available to other network systems to utilize.

However, different devices from different manufacturers having different hardware

platforms and networking protocols exist within the IoT, which makes it heterogeneous

network of things. The interaction or interoperability with diverse devices from

different manufacturers with different service platforms and networks need to be

adapted to realize IoT applications. Moreover, the IoT networks could be complex due

to the dynamic state of some devices and the things within the IoT. This means that

some connected devices can change their states from, for example, sleeping to waking

up, connected to disconnected as well as in the context of a device location and speed.

The number of connected devices can change dynamically at any particular time which

means that the number of devices that need to be managed will be of enormously high

scale. Data collection and management from different sources is also critical to IoT

applications [1].

2

1.2 Problem Statement

There are different number of protocols that could be used to communicate between a

internet devices. Fundamental challenges is to choose the appropriate protocol for their

specific IoT system requirements to address real-time processing, fast data response,

and latency issues.

On technical perspective, how to connect the edge i.e. IOT devices and there may be

gateway in the middle. On another hand, choosing the streaming platform i.e. Apache

Kafka deployment. One of the most important factors is how to integrate end to end

IOT data integration and processing in scalable manner.

Figure 1. 2: Edge to Edge integration

IOT standard protocol MQTT architecture doesn’t support scale. It is not distributed

system It is just a queuing system. it doesn’t handle streaming processing. It is not built

for high scalability and reliability system for 24*7 transaction system. From IOT

perspective, we need stream processing platform which give high throughput, large

scale and high availability.

3

1.3 Objectives

The main objectives of this thesis are

 To designed Kafka Connect system to handle IOT data from MQTT broker

Kafka broker.

 To implement Source and Sink Connector for Kafka Connect.

 To compare latency between traditional method i.e. using MQTT broker and

new approach method i.e. using MQTT broker with Kafka Connect.

4

CHAPTER 2: Literature Review

Many researches have been proposed on Internet of Things.

There are many studies on using publish-subscribe messaging as means of

communication for resource constrained devices [1] discusses on the use of publish

subscribe as communication protocol for Wireless Sensor Networks (WSN). In WSN,

sensors and actuators may change network address at any time, network links are likely

to fail, and failed WSN nodes are replaced by new nodes. As Publish-subscribe is

asynchronous and it does not need to know about the existence of other endpoints in

the network, it is best suited for WSNs. It is common and widely used variant of data-

centric communication

 C. Rodríguez-Domínguez [2] analyzes both request-response and publish-subscribe as

communication model in ubiquitous systems. The integration of request-response and

publish subscribe communication model is discussed to fulfill the need for the system

that requires features of both. The simultaneous use of request-response and publish

subscribe is proposed for easy development of software solutions that required both

synchronous and asynchronous communications. This paper brings the concept of using

both request response and publish-subscribe as a solution to implement benefits of both

approaches, with higher abstraction level which is technology independent.

The author comparing two different protocols, but comparing two different message

passing mechanisms, one is MQTT publish-subscribe protocol and other is the REST

architectural style. This paper discusses how to use MQTT as the protocol for IoT

application deployment and remote management of those applications, such that it can

work in all network conditions [3].

Different protocols may be appropriate for different situations regarding the necessities

of the IoT system. D. Thangavel [4] discusses on the comparison of different

lightweight protocols regarding the data transmission time from endpoints and the

bandwidth consumption in the IoT system.

Omer Koksal,Bedir Tekinerdogam [5] focus on the session layer which is responsible

for setting up and taking down of the association between the IoT connection points.

The session layer provides services related issues of the session such as initiation,

5

maintenance, and disconnection. As such, frequency and duration of various types of

sessions are related with the session layer. Also, session information might enforce

encryption and other security measures. They adopt a feature-driven domain analysis

whereby they have identified the important knowledge sources and extracted and

modeled the important features of the session layer communication protocols. The

result of the domain analysis process, as such, is a feature model that defines the

common and variant properties of the session layer communication protocols.

Figure 2.3: Feature Diagram of Session Level Communication Protocols of IoT

Rishika Shree [6], comparison between Apache Flume and Apache Kafka. Kafka can

be used when you particularly need a highly reliable and expandable enterprise

messaging system to connect many multiple systems. Kafka is capable to make pipeline

for activities like a set or group for publish/subscribe which is actually real time which

consequently means that whatever activities going on the site is published to topics

which is central that includes for each activity there is one topic. Kafka is capable to

serve and can be used for external commit-log for a system which is distributed.

The writer develops Dual Streaming Model. The idea of this paper is to specify the

result of a stream processing operator as successive updates to a table so that latency of

streaming processing is not compromised. To handle of out -of-order data directly in

the stream processing model has further advantages. This paper discussed how model

makes explicit the trades-off between result completeness, processing cost and latency

in data stream processing environment. Finally, they presented an implementation of

6

the Dual Streaming Model in Apache Kafka, a widely adopted open source stream

processing platform [7].

 Kafka’s Origin- Kafka was created to address the data pipeline problem at LinkedIn. It

was designed to provide a high-performance messaging system that can handle many

types of data and provide clean, structured data about user activity and system metrics

in real time[8].

Anindya Dey [9], explored the impact of alternative real time streaming topologies

within the edge server of IoT analytical systems. The author evaluated these topologies

in terms of the time to insight from our machine learning models as well as the quality

of predictions. There results show that topology impacts stream processing in multiple

ways and real-world parameters like missing values, out of order arrivals, varying

sparsity have a significant impact as we scale up the density of sensor deployments

7

CHAPTER 3: Related theory

3.1 Message Queuing Telemetry Transport (MQTT)

MQTT is a machine-to-machine (M2M)/"Internet of Things" connectivity protocol. It

was designed as an extremely lightweight messaging protocol that provides resource

constrained network clients with a simple way to distribute telemetry information. The

protocol, which uses a publish/subscribe communication pattern, is used for machine-

to machine (M2M) communication and plays an important role in the internet of things

(IoT). MQTT enables resource-constrained IoT devices to send, or publish, information

about a given topic to a server that functions as an MQTT message broker. The broker

then pushes the information out to those clients that have previously subscribed to the

client's topic. To a human, a topic looks like a hierarchical file path. Clients can

subscribe to a specific level of a topic's hierarchy.

Figure 3.4 :MQTT Broker process

How MQTT works

An MQTT session is divided into four stages: connection, authentication,

communication and termination. A client starts by creating a TCP/IP connection to the

broker by using either a standard port or a custom port defined by the broker's operators.

When creating the connection, it is important to recognize that the server might

continue an old session if it is provided with a reused client identity.

Because the MQTT protocol aims to be a protocol for resource-constrained and IoT

devices, SSL/TLS might not always be an option and, in some cases, might not be

desired. In such cases, authentication is presented as a clear-text username and

https://whatis.techtarget.com/definition/telemetry
https://whatis.techtarget.com/definition/telemetry
https://whatis.techtarget.com/definition/telemetry
https://whatis.techtarget.com/definition/telemetry
https://internetofthingsagenda.techtarget.com/definition/machine-to-machine-M2M
https://internetofthingsagenda.techtarget.com/definition/machine-to-machine-M2M
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://whatis.techtarget.com/definition/message-broker
https://whatis.techtarget.com/definition/message-broker
https://whatis.techtarget.com/definition/push-or-server-push
https://whatis.techtarget.com/definition/push-or-server-push
https://whatis.techtarget.com/definition/push-or-server-push
https://searchnetworking.techtarget.com/definition/port-number
https://searchnetworking.techtarget.com/definition/port-number
https://searchnetworking.techtarget.com/definition/port-number

8

password that is sent by the client to the server as part of the CONNECT/CONNACK

packet sequence. Some brokers, especially open brokers published on the internet, will

accept anonymous clients.

In such cases, the username and password are simply left blank.

MQTT is called a lightweight protocol because all its messages have a small code

footprint. Each message consists of a fixed header 2 bytes an optional variable header,

a message payload that is limited to 256 MB of information and a quality of service

(QoS) level.

The three different quality of service levels determine how the content is managed by

the MQTT protocol. Although higher levels of QoS are more reliable, they have more

latency and bandwidth requirements, so subscribing clients can specify the highest QoS

level they would like to receive.

Figure 3. 2: Three different level of QoS of MQTT

The simplest QoS level is unacknowledged service. This QoS level uses a PUBLISH

packet sequence; the publisher sends a message to the broker one time and the broker

passes the message to subscribers one time. There is no mechanism in place to make

sure the message has been received correctly, and the broker does not save the message.

This QoS level may also be referred to as at most once, QoS0, or fire and forget.

The second QoS level is acknowledged service. This QoS level uses a

PUBLISH/PUBACK packet sequence between the publisher and its broker, as well as

https://searchstorage.techtarget.com/definition/byte
https://searchstorage.techtarget.com/definition/byte
https://searchstorage.techtarget.com/definition/byte
https://searchunifiedcommunications.techtarget.com/definition/QoS-Quality-of-Service
https://searchunifiedcommunications.techtarget.com/definition/QoS-Quality-of-Service

9

between the broker and subscribers. An acknowledgement packet verifies that content

has been received and a retry mechanism will send the original content again if an

acknowledgement is not received in a timely manner. This may result in the subscriber

receiving multiple copies of the same message. This QoS level may also be referred to

as at least once or QoS1

The third QoS level is assured service. This QoS level delivers the message with two

pairs of packets. The first pair is called PUBLISH/PUBREC, and the second pair is

called PUBREL/PUBCOMP. The two pairs ensure that, regardless of the number of

retries, the message will only be delivered once. This QoS level may also be referred to

as exactly once or QoS2[10].

Table 3.1: Description of MQTT Message

3.2 Apache Kafka

Apache Kafka is a publish/subscribe messaging system. It is often described as a

“distributed commit log” or more recently as a “distributing streaming platform.” A

filesystem or database commit log is designed to provide a durable record of all

transactions so that they can be replayed to consistently build the state of a system.

Similarly, data within Kafka is stored durably, in order, and can be read

deterministically. In addition, the data can be distributed within the system to provide

10

additional protections against failures, as well as significant opportunities for scaling

performance.

Messages in Kafka are categorized into topics. Topics are additionally broken down

into a number of partitions. Partitions are also the way that Kafka provides redundancy

and scalability. Each partition can be hosted on a different server, which means that a

single topic can be scaled horizontally across multiple servers to provide performance

far beyond the ability of a single server.

A single Kafka server is called a broker. The broker receives messages from producers,

assigns offsets to them, and commits the messages to storage on disk. It also services

consumers, responding to fetch requests for partitions and responding with the

messages that have been committed to disk. Depending on the specific hardware and

its performance characteristics, a single broker can easily handle thousands of partitions

and millions of messages per second.

Kafka Connect is a part of Apache Kafka and provides a scalable and reliable way to

move data between Kafka and other datastores. It provides APIs and a runtime to

develop and run connector plugins libraries that Kafka Connect executes and which are

responsible for moving the data. Connectors start additional tasks to move large

amounts of data in parallel and use the available resources on the worker nodes more

efficiently. Source connector tasks just need to read data from the source system and

provide Connect data objects to the worker processes. Sink connector tasks get

connector data objects from the workers and are responsible for writing them to the

target data system [8].

11

CHAPTER 4: Research Methodology

4.1 System Design

In this system design, MQTT and Kafka are two complementary technologies. Together

they allow to build IoT end to end integration from the edge to the data center.

Therefore, MQTT and Kafka are a perfect combination for end to end IoT integration

from edge to data center. As shown in Figure 4.1, different sensor data like temperature,

pressure, CO2, humidity and location are taken. these IoT data are passed through

MQTT protocol. MQTT protocol used different types of broker. In this system

Mosquitto broker is used. A MQTT connector to read the data from MQTT and push

them to Kafka. In Kafka connect, connector implementation for data sources and sinks

to move data into and out of Kafka. A source connector ingests entire databases and

stream tables update to Kafka topics. It can also collect data from our servers into Kafka

topics, making the data available for stream processing with low latency. A sink

Connector deliver data from Kafka topic into Kafka consumer. Kafka connect is

focused on streaming data to and from Kafka, making it simpler for high quality,

reliable and high-performance connector plugin. Kafka Connect is integral component

of an ETL pipeline when combined with Kafka and streaming framework.

Figure 4. 3: System Architecture of MQTT with Kafka connect

12

Figure 4. 2: System Architecture of Kafka connect

Sensors Requirements:

Detail Technical Specification

 WIND SPEED SENSOR:

 3 Levels – l sensor (primary and redundant at each)

 30m and 50 m level and primary sensor at 20 m height)

 Sensor: 3 cup rotor polycarbonate

 Range: up to 75 m/sec

 Accuracy: ±0.3m/sec (= 10m/sec)

 Resolution: 0.8 m/s or better

 Distance constant: ∼0.3 m/sec

 Cup diameter (approx.): 60 mm or less

 Power supply: 1.5-5V DC

 Sensor Type: Hall Effect sensor(A3141) with 3 cup rotor

 AIR TEMPERATURE SENSOR:

 Range: -20 C to + 60 C

 Accuracy: ±0.2 C

 Radiation Shield: Non-Aspirated Radiation

 Resolution in degree: 0.1 C

 Power supply: 1.5-5V DC

 Material: Conducting epoxy casing

13

 Sensor Type: DHT 11 Humidity & Temperature sensor

 AIR PRESSURE SENSOR:

 Sensor: Absolute Pressure Sensor

 Range: 15 kPa – 115 kPa

 Output: Analog (or Digital with SCM)

 Resolution: Absolute Pressure in kPa = (Voltage x 21.79) + 10.55 typical

 Accuracy: 1.5 kPa (15 mb) max.

 Uncorrected offset (+/- 0.443 inches Hg)

 Power Supply: 3 V to 35 V

 Enclosure: Weather Proof

 Sensor type: absolute pressure sensor BP-20

 RELATIVE HUMIDITY SENSOR:

 Relative/Absolute Humidity Range: 0 to 100 %

 Accuracy: ±2 % (0 – 90%)

 Resolution: 0.7% Radiation Shield: Non-Aspirated Radiation Shield

 Output: Analog (or Digital with SCM)

 Power supply: 3 – 35 5 V DC

 Sensor Type: DHT 11Humidity & Temperature sensor

 SOLARRADIATION:

 Sensor: Solar Radiation Spectral response: 0.3 - 3 microns

 Operating temperature: - 10 - 50o C

 Shield: Weatherproof

 Sensitivity/output: ∼0.1 m/mw/cm2

 Range: 0 - 2 kW/m2

 Wave Length: 0.3–2.9µm

 Resolution:0.1W/m2

 Sensor type: High-stability silicon photovoltaic detector (blue enhanced).

4.2 Source connector and Sink connector mechanism

In this system, the data from MQTT can’t communicated with Kafka server. So, a Kafka

connected with all the modification to build a connector which can communicated with

both the system. A Kafka connected come in two flavors. One for input and another for

14

output. So, source connectors are built for handling input data, and sink connectors for

output. For example, and “Mqtt91.sourceconnector” would import a data into Kafka

server and “Mqtt91.sinkconnector” would export the data of Kafka topic to consumer.

A connector is responsible for breaking the job into a set of Tasks that can be distributed

to Kafka connect works. Tasks also come into two type Source task and Sink task. A

task must copy its subset of the data to or from Kafka. The data that a connector copies

must be represented as a partitioned stream, and to each Kafka topic.

Figure 4. 3: Source Connector which has created two tasks which copy data from

input partition and write record to Kafka

Task

It’s is the main component for our connector. Each connector instance coordinates a set

of tasks that actually copy the data. This breaking of jobs allows the Kafka to support

for parallelism and scalable data copying with little configuration. The tasks state is

stored in specify topics i.e. “config.storage.topic”.”

Figure 4. 4: Representation of data passing through a connector source task into

Kafka

15

Converter

• Converters are necessary to have a Kafka Connect deployment support a data

format when writing to or reading from Kafka.

• Tasks use converters to change the format of data from bytes to Connect internal

data format and vice versa.

Figure 4. 4: Process of converting JSON data type to Avro data type

Kafka Connect- Connector and Tasks lifecycles

• Validate configuration

• Completely configure driven

• Deploy the connector & run code start (…)

• Poll(..) function read the data

16

Figure 4. 4: Process of Kafka Connect- Connector and Tasks lifecycles

4.3 Code Architecture

Taking advantage of Java’s feature like interfaces, the implementation has been

developed in modular way to generic cod processing from broker-specific operations.

• BusConfig

Singleton class used to load and provide other class setting read from the configuration

file.

• MessagePusher

Interface that provides a line to the configuration singleton and defines the two primary

method that all message pusher should implement: pushmessage(Message) and

shutdown().Wherever there is need to open a connection toward a message broker, it

should have to reference to MessagePusher object ie KakfaPusher or MQTTPusher.

• KafkaPusher

Class that has all the logic to push message to a Kafka broker. Each instantiation results

in the creation of a new TCP connection to the broker that will push messages to the

specified topic name and using the KafkaMessagePartitioner partition chooser.

• KafkaMessagePartitioner

17

Class used by KafkaPusher to decide to which partition of a topic should a message be

sent.

• MQTTPusher

Class that has all the logic to push message to Mosquitto MQTT broker. Each

instantiation results in the creation of a new TCP connection to the broker, dedicated to

the queue whose name is given as argument when the object is constructed. • Message

Model class that defines the structure of message’s content.

Figure 4. 5: Class diagram of Kafka Connect

18

4.4 Flowchart of Source and Sink Connector Mechanism

Figure 4. 6: Flowchart of Source and Sink Connector Mechanism

4.5 Request Processing

Most of what a Kafka broker does is process requests sent to the partition leaders from

clients, partition replicas, and the controller. Kafka has a binary protocol that specifies

the format of the requests and how brokers respond to them both when the request is

processed successfully or when the broker encounters errors while processing the

request. Clients always initiate connections and send requests, and the broker processes

the requests and responds to them. All requests sent to the broker from a specific client

will be processed in the order in which they were received this guarantee is what allows

Kafka to behave as a message queue and provide ordering guarantees on the messages

it stores.

All requests have a standard header that includes:

19

 • Request type (also called API key)

• Request version (so the brokers can handle clients of different versions and respond

accordingly)

• Correlation ID: a number that uniquely identifies the request and also appears in the

response and in the error logs (the ID is used for troubleshooting)

 • Client ID: used to identify the application that sent the request

The network threads are responsible for taking requests from client connections, placing

them in a request queue, and picking up responses from a response queue and sending

them back to clients. Figure 4.5 for a visual of this process [8].

Figure 4. 7: Request Processing inside Apache Kafka

Produce requests

Sent by producers and contain messages the clients write to Kafka brokers.

Fetch requests

Sent by consumers and follower replicas when they read messages from Kafka brokers.

Both produce requests and fetch requests must be sent to the leader replica of a partition.

If a broker receives a produce request for a specific partition and the leader for this

partition is on a different broker, the client that sent the produce request will get an error

response of “Not a Leader for Partition.” The same error will occur if a fetch request

for a specific partition arrives at a broker that does not have the leader for that partition.

20

Kafka’s clients are responsible for sending produce and fetch requests to the broker that

contains the leader for the relevant partition for the request.

4.5 Tools

Different tools and languages to be used for this thesis are discussed in this section.

4.4.1 Mosquitto Broker

Eclipse Mosquitto is an open source message broker that implements the MQTT

protocol versions 5.0, 3.1.1 and 3.1. Mosquitto is lightweight and is suitable for use on

all devices from low power single board computers to full servers. The MQTT protocol

provides a lightweight method of carrying out messaging using a publish/subscribe

model. This makes it suitable for Internet of Things messaging such as with low power

sensors or mobile devices such as phones, embedded computers or microcontrollers

[16].

4.4.2 Apache Kafka

Apache Kafka is an open-source stream-processing software platform developed by

LinkedIn and donated to the Apache Software Foundation, written in Scala and Java.

The project aims to provide a unified, high-throughput, low-latency platform for

handling real-time data feeds. Its storage layer is essentially a "massively scalable

pub/sub message queue designed as a distributed transaction log, making it highly

valuable for enterprise infrastructures to process streaming data. Kafka can also connect

to external systems (for data import/export) via Kafka Connect [17].

4.4.3 Wireshark

Wireshark is a Free and open source packet analyzer. It is used for network

troubleshooting, analysis, software and communications protocol development, and

education. Wireshark lets the user put network interface controllers that support

promiscuous mode into that mode, so they can see all traffic visible on that interface,

not just traffic addressed to one of the interface's configured addresses and

broadcast/multicast traffic. However, when capturing with a packet analyzer in

promiscuous mode on a port on a network switch, not all traffic through the switch is

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Stream_processing
https://en.wikipedia.org/wiki/Stream_processing
https://en.wikipedia.org/wiki/Stream_processing
https://en.wikipedia.org/wiki/Stream_processing
https://en.wikipedia.org/wiki/Stream_processing
https://en.wikipedia.org/wiki/LinkedIn
https://en.wikipedia.org/wiki/LinkedIn
https://en.wikipedia.org/wiki/LinkedIn
https://en.wikipedia.org/wiki/LinkedIn
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)

21

necessarily sent to the port where the capture is done, so capturing in promiscuous mode

is not necessarily enough to see all network traffic [18].

4.4.4 Java and Scala Programming Language

Java is a general-purpose computer programming language that is concurrent, class-

based, object-oriented, and specifically designed to have as few implementation

dependencies as possible. It is intended to let application developers "write once, run

anywhere" (WORA), meaning that compiled Java code can run on all platforms that

support Java without the need for recompilation. Java applications are typically

compiled to bytecode that can run on any Java virtual machine (JVM) regardless of

computer architecture [19].

Scala combines object-oriented and functional programming in one concise, high-level

language. Scala's static types help avoid bugs in complex applications, and its JVM and

JavaScript runtimes and build high-performance systems with easy access to huge

ecosystems of libraries [20].

4.4.5 Oracle Virtual Box

VirtualBox is a cross-platform virtualization application. It extends the capabilities of

existing computer so that it can run multiple operating systems (inside multiple virtual

machines) at the same time. It allows to run more than one operating system at a time.

Virtual machine (VM) is the special environment that VirtualBox creates for guest

operating system while it is running. The key features of oracle virtual box are

portability, no hardware virtualization required and guest additions.

4.4.6 Confluent Control Box

Confluent Control Center is a web-based tool for managing and monitoring Apache

Kafka®. Control Center facilitates building and monitoring production data pipelines

and streaming applications. The use Control Center to manage and monitor Kafka

Connect, the toolkit for connecting external systems to Kafka. We can easily add new

sources to load data from external data systems and new sinks to write data into external

data systems. Additionally, we can manage, monitor, and configure connectors with

Control Center. And view the status of each connector and its tasks.

https://docs.confluent.io/current/connect/index.html#kafka-connect
https://docs.confluent.io/current/connect/index.html#kafka-connect
https://docs.confluent.io/current/connect/index.html#kafka-connect

22

CHAPTER 5: Experimental Outputs

5.1 MQTT Broker and Kafka Connect Setup

Firstly, I setup MQTT Broker by installing Mosquitto broker. Now setting the Mosquito

internet protocol 192.168.10.26 is the host internet protocol of operating system and

setting the client internet protocol 127.0.0.1 of mosquito broker. The Figure 5.1 shows

MQTT Broker creation.

Start the MQTT Broker and test publish / subscribe with 'dummy' topic:

Figure 5. 7: Starting Mosquitto MQTT Broker

5.2 Starting a Kafka

After Connecting MQTT broker, starting Kafka for further processing.

Figure 5. 8: Starting Kafka

23

5.3 Kafka Connect setup

Building Source connector

To create a custom connector, we need to implement two classes provided by the Kafka

connector API connector and task. Our implementation of connector will provide some

configuration that describes the data to be ingested. The connector itself will divide the

job of ingesting data into a set of tasks and sending those tasks to Kafka Connect

workers.

5.4 Topics and Consumer setup

Figure 5. 9: Creating five different sensor value topics

24

Messages in Kafka are categorized into topics. For experiment, five different sensors

are taken so five topics are created as shown in Figure 5.3. Producers create new

messages. In other publish/subscribe systems, these may be called publishers or writers.

In general, a message will be produced to a specific topic. Consumers read messages.

In other publish/subscribe systems, these clients may be called subscribers or readers.

The consumer subscribes to one or more topics and reads the messages in the order in

which they were produced. As shown in Figure 5.4 consumers are creating as per topics.

This is different command line and setup process for creating different topics and

consumer for each source.

Figure 5. 10: Creating five different sensor value topics

With the help of Confluent Control Box latency can be measured. As shown in Figure

5.5, there is message flow graph with respect to latency graph.

25

Figure 5. 11: Measuring latency using confluent control hub

Figure 5. 12: Wire-shark capture in network

26

CHAPTER 6: Results, Analysis and Comparison

The deployment of Kafka connect- Source and Sink Connector results in latency of data

to reach from source to destination. It is due to proper partition of task for data to travel

from source to destination. The latency and throughput measurement of the path is done

in traditional method i.e. using MQTT broker and new approach method i.e. using

MQTT broker with Kafka Connect. Along with that, test is done traditional method and

new approach method to find latency improvement in our custom network.

6.1 Latency Test Analysis

Latency is the amount of time it takes for the data that enters the channel or links at one

end to exit at the other. If the link is short and not so congested, then the packets exits

the bottom of the link almost as quickly. All latency measurements necessarily include

the network latency between the application and the messaging system. Assuming all

tests are performed in the same network configuration and that network provides

consistent latency, then the network latency is a constant that affects all tests equally.

When comparing latency measurements, then, it is important the network is held

constant when making comparisons. Publishing latency is the amount of time that passes

from when the message is sent until the time an acknowledgment is received from the

messaging system. The acknowledgment indicates that the messaging system has

persisted the message and will guarantee its delivery. Fetch latency is simply the time

from when the message is sent by the producer to when it received by the consumer.

27

Table 6.1: Latency Measurement using one topic with one partition and four

partition

In our first observation, we create one topic with one partition and one topic with four

partitions. From observed data we collected Produce latency and fetch latency on

different data size as shown table 6.1. In the case of one topic and one partition , latency

increase as increase the byte size of data and same data is pass to 4 partition system

result see that our Average produce latency decrease from 40.927ms to 18.6562ms and

Average fetch latency decrease from 46.3478ms to 17.8412ms.CPU Usage percentage

is also calculate from same data size and result see that CPU Usage percentage increase

from 17.42% to 25.475% by one partition to 4 partition.

28

Table 6.2 Latency Measurement using one topic with one partition and four

partition

Now, creating three topics with one partition and three topics with four partitions. From

observed data we collected Produce latency and fetch latency on different data size as

shown table 6.2. In the case of three topics and one partition, latency increase as

increase the byte size of data and same data is pass to four partitions system result see

that our Average produce latency decrease from 74.758ms to 27.485ms and Average

fetch latency decrease from 84.495ms to 31.227ms. CPU Usage percentage is also

calculated from same data size and result see that CPU Usage percentage increase from

19.71% to 31.227% by one partition to 4 partition

29

Table 6.3: Latency Measurement using three topics with one partition and four

partition

Now, creating three topics with one partition and three topics with four partitions. From

observed data we collected Produce latency and fetch latency on different data size as

shown table 6.3. In the case of three topics and one partition, latency increase as

increase the byte size of data and same data is pass to four partitions system result see

that our Average produce latency decrease from 90.878ms to 47.668ms and Average

fetch latency decrease from 104.77ms to 51.485ms. CPU Usage percentage is also

calculated from same data size and result see that CPU Usage percentage increase from

23.143% to 37.714% by one partition to 4 partition.

30

Table 6.4: Latency Measurement using four topics with one partition and four

partition

Now, creating four topics with one partition and four topics with four partitions. From

observed data we collected Produce latency and fetch latency on different data size as

shown table 6.4. In the case of four topics and one partition, latency increase as increase

the byte size of data and same data is pass to four partitions system result see that our

Average produce latency decrease from 110.137ms to 96.241ms and Average fetch

latency decrease from 122.75ms to 17.8412ms. CPU Usage percentage is also

calculated from same data size and result see that CPU Usage percentage increase from

30.42% to 49.76% by one partition to 4 partition.

31

Table 6.5: Latency Measurement using five topics with one partition and four

partition

Now, creating five topics with one partition and five topics with four partitions. From

observed data we collected Produce latency and fetch latency on different data size as

shown table 6.5. In the case of five topics and one partition, latency increase as increase

the byte size of data and same data is pass to four partitions system result see that our

Average produce latency decrease from 115.205ms to 90.567ms and Average fetch

latency decrease from 135.96ms to 104.87ms. CPU Usage percentage is also calculated

from same data size and result see that CPU Usage percentage increase from 34.85%

to 50.714% by one partition to 4 partition.

32

Table 6.6: Throughputs Measurement using different topics with different

partition

From the observation, throughput is inversely proportion to number of topics. As

increase the number of topics throughput decrease. And throughput is directly

proportion to number of partitions as increase the number of partition throughput

increase shown in table 6.6.

To check the system performance same set of data are tested to traditional method i.e.

using MQTT Broker from transfer data from source to destination. In this case, produce

latency, fetch latency and CPU usage are calculated as show in table 6.5.

Table 6. 7: Latency Measurement using MQTT Broker using different topics

33

34

By integrating Kafka connect between MQTT and Kafka broker we maintain

performance and reduce latency in server. As we can see from the table, by increasing

of number topics i.e. data of different sensor, Latency is doesn’t increase because of

distributed processing of Kafka Connect. From the Figure 6.1, from our custom Kafka

connect configuration we can maintain the latency in design system even if number of

source and message increase in system.

The Figure 6.1, Figure 6.2, Figure 6.3, Figure 6.4 and Figure 6.5 show the graph plot

between Data Size and Latency measure in different scenario. The Figure 6.1 show the

plot between Data Size and Produce/Fetch latency using 1 topic with 1 partition and 4

partition. The Figure 6.2 show the plot between Data Size and Produce/Fetch latency

using 2 topics with 1 partition and 4 partition. The Figure 6.3 show the plot between

Data Size and Produce/Fetch latency using 3 topics with 1 partition and 4 partition. The

Figure 6.4 show the plot between Data Size and Produce/Fetch latency using 4 topics

with 1 partition and 4 partition. The Figure 6.5 show the plot between Data Size and

Produce/Fetch latency using 5 topics with 1 partition and 4 partition. From the analysis

of graph plot the produce latency is always slightly lesser than fetch latency because

the latency measured is only between the client and server in produce latency, where as

in fetch latency server send the signal to client for acknowledgment after produce

latency, so latency is slightly higher.

35

Figure 6. 11: Graph plot between Data Size and Produce/Fetch latency using 1

topic with 1 partition and 4 partition

Figure 6. 12: Graph plot between Data Size and Produce/Fetch latency using 2

topics with 1 partition and 4 partition

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000

L
a

te
n

cy
(m

s)

Data Size (Bytes)
Produce latency(ms) 1 partition Fetch latency(ms) 1 partition

Produce latency(ms) 4 partition Fetch latency(ms) 4 partition

0

50

100

150

0 1000 2000 3000 4000 5000 6000

La
te

n
cy

(m
s)

Data Size (Bytes)

Produce latency(ms) 1 partition Fetch latency(ms) 1 partition

Produce latency(ms) 4 partition Fetch latency(ms) 4 partition

36

Figure 6. 13: Graph plot between Data Size and Produce/Fetch latency using 3

topics with 1 partition and 4 partition

Figure 6. 14: Graph plot between Data Size and Produce/Fetch latency using 4

topics with 1 partition and 4 partition

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000

La
te

n
cy

(m
s)

Data Size (Bytes)

Produce latency(ms) 1 partition Fetch latency(ms) 1 partition

Produce latency(ms) 4 partition Fetch latency(ms) 4 partition

0

50

100

150

200

0 1000 2000 3000 4000 5000 6000La
te

n
cy

(m
s)

Data Size (Bytes)

Produce latency(ms) 1 partition Fetch latency(ms) 1 partition

Produce latency(ms) 4 partition Fetch latency(ms) 4 partition

37

Figure 6. 15: Latency measurement for MQTT Broker and Kafka connected

with one and four partition for one topic

Figure 6. 16: Latency measurement for MQTT Broker and Kafka with one and

four partition connected for two topics

Figure 6. 17: Latency measurement for MQTT Broker and Kafka connected

with one and four partition for three topics

38

Figure 6. 18: Latency measurement for MQTT Broker and Kafka connected

with one and four partition for four topics

Figure 6. 19: Latency measurement for MQTT Broker and Kafka connected with

one and four partition for five topics

39

CHAPTER 7: CONCLUSION AND LIMITATIONS

The MQTT Broker with Kafka Connect is successfully implemented. As we compared

the traditional method i.e. MQTT Broker and new approach method i.e. MQTT Broker

with Kafka connect we can conclude from output that from new approach method we

can reduce the latency and increase the throughputs. We can scale our network of

connected IOT devices according to our need with maintaining low latency and high

throughputs. These results show that latency reduces as we increase the number of

partitions, since partitions are a unit of parallelism. Across the board, as the number of

partitions increases both the publish and the fetch latency decreases.

In future, the thesis work can be extended by investigating machine learning approach

for topics and partitions management with our server. We can optimize our framework

to use less CPU resources.

Limitation

Integrating MQTT with Kafka Connect for processing IOT data is carried out

considering latency, throughputs and CPU consumption. This thesis does not consider

the more parameters like response time of server and high availability of computing

system.

40

References

1. B. Weiss, U. Hunkeler, A. Munari, W. Schott, and L. Truong, “A

publish/subscribe messaging system for wireless sensor communication.” 2016

IEEE Ninth International Conference on. IEEE, 2014.

2. C. Rodríguez-Domínguez, K. Benghazi, M. Noguera, J. L. Garrido, M. L.

3. Rodríguez, and T. Ruiz-López, “A communication model to integrate the

request response and the publish-subscribe paradigms into ubiquitous systems,”

4. D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan, “Performance

evaluation of mqtt and coap via a common middleware,” in Intelligent Sensors,

Sensor Networks and Information Processing (ISSNIP), 2014 IEEE Ninth

International Conference on. IEEE, 2014.

5. Omer Koksal,Bedir Tekinerdogam, “Feature-Driven Domain Analysis of

Session Layer Protocols of Internet of Things” in 2017 IEEE International

Congress on Internet of Things.

6. Rishika Shree, Tanupriya Choudhury, Subhash Chand Gupta, Praveen Kumar,

7. “KAFKA: The Modern Platform for Data Management and Analysis in Big

Data Domain” in 2017 2nd International Conference on Telecommunication

and Networks (TEL-NET 2017)

8. MatthiasJ.Sax, MatthiasWeidlich, Johann-ChristophFreytag, “Streams and

Tables:

9. Two side of same coin”. in 2017 IEEE International Congress on Internet of

Things.

10. Anindya Dey, Matthew Tolentino, “Characterizing the Impact of Topology on

IoT Stream Processing”

11. “Kafka The Definitive Guide REAL-TIME DATA AND STREAM

PROCESSING AT SCALE” by Neha Narkhede , Gwen Shapira & Todd Palino.

41

12. Godson Michael D’silva, Siddhesh Bari, “Real-time Processing of IoT Events

with Historic data using Apache Kafka and Apache Spark with Dashing

framework” in2017 2nd IEEE International Conference On Recent Trends in

Electronics Information & Communication Technology (RTEICT), May 19-20,

2017, India

13. Priyanka Thota, Yoohwan Kim, “Implementation and Comparison of M2M

Protocols for Internet of Things” in 2017 4th Intl Conf on Applied Computing

and Information Technology

14. NICOLAS NANNONI, “Message-oriented Middleware for Scalable Data

15. Analytics Architectures”

16. Yeva Byzek, “Optimizing Your Apache Kafka Deployment” , 2019 Confluent,

Inc.

17. Internet Engineering Task Force (IETF), Mar 2017 [Online]. Available:

18. www.ietf.org.

19. https://mosquitto.org[Accessed on 1/06/2019]

20. https://kafka.apache.org[Accessed on 15/07/2019]

21. https://www.wireshark.org/ [Accessed on 22/08/2019]

22. https://www.java.com/ [Accessed on 27/08/2019]

23. https://www.scala-lang.org[Accessed on 28/08/2019]

http://www.ietf.org/
http://www.ietf.org/
https://mosquitto.org/
https://kafka.apache.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/

