

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

THESIS NO.: 072MSCS651

An Assessment for Predicting Stroke Patients using Bidirectional LSTM

by

Ajaya Puri

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND

COMPUTER ENGINEERING IN PARTIAL FULFILLMENT OF THE

REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE IN

COMPUTER SCIENCE AND KNOWLEDGE ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

LALITPUR, NEPAL

NOVEMBER, 2019

Copyright

The author has agreed that the library, Department of Electronics and Computer Engineering,

Institute of Engineering, Pulchowk Campus, may make this thesis freely available for

inspection. Moreover, the author has agreed that the permission for extensive copying of this

thesis work for scholarly purpose may be granted by the professor(s), who supervised the

thesis work recorded herein or, in their absence, by the Head of the Department, wherein this

thesis was done. It is understood that the recognition will be given to the author of this thesis

and to the Department of Electronics and Computer Engineering, Pulchowk Campus in any

use of the material of this thesis. Copying of publication or other use of this thesis for

financial gain without approval of the Department of Electronics and Computer Engineering,

Institute of Engineering, Pulchowk Campus and author’s written permission is prohibited.

Request for permission to copy or to make any use of the material in this thesis in whole or

part should be addressed to:

Head

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Pulchowk, Lalitpur, Nepal

ii

Recommendation

The undersigned certify that they have read and recommended to the Department of

Electronics and Computer Engineering for acceptance, a thesis entitled “An Assessment for

Predicting Stroke Patients Using Bidirectional LSTM”, submitted by AjayaPuri in partial

fulfillment of the requirement for the award of the degree of “Master of Science in Computer

System and Knowledge Engineering.

..

Supervisor

Prof. Dr. Shashidhar Ram Joshi (PhD)

..

External Examiner

Mr. Bikash Bahadur Shrestha

..

Committee Chairperson

Dr. Aman Shakya

Program Coordinator

Department of Electronics and Computer Engineering

iii

Departmental Acceptance

The thesis entitled “An Assessment For Predicting Stroke Patients Using Bidirectional

LSTM”, submitted by Mr. Ajaya Puri in partial fulfillment of the requirement for the award

of the degree of “Master of Science in Computer System and Knowledge Engineering”

has been accepted as a bonafide record of work independently carried out by him in the

department.

.

Dr. Surendra Shrestha (PhD)

Head of the Department

Department of Electronics and Computer Engineering,

Pulchowk Campus,

Institute of Engineering,

Tribhuvan University,

Nepal.

iv

Acknowledgement

I would like to express my sincere gratitude to the Electronics and Computer Engineering,

Pulchowk Campus for accepting my thesis on “An Assessment for Predicting Stroke

Patients Using Bidirectional LSTM”. I would like to extend my sincere thanks for

providing me with all the essential co-operation, valuable suggestions for choosing this thesis

work.

I am grateful to my supervisor Prof. Dr. Shashidhar Ram Joshi for providing useful

information and guidance regarding this thesis. He consistently allowed this research to be

my own work, steered me in the right direction whenever he thought I needed it.

I would like to thank Prof. Dr. Subarna Shakya for his encouragement to this work.

I am grateful to Dr. Divakar Raj Pant, Dr. Sanjeeb Panday, Dr. Basanta Joshi and Dr.

Surendra Shrestha for continuous positive feedback supports for the work.

I am also grateful to our program coordinator Dr. Aman Shakya for providing coordination

and support related to this thesis.

I would also like to express my heartfelt thanks to respected teachers, my families and friends

who have helped and supported me directly and indirectly during the thesis.

v

Abstract

Stroke is the medical condition when the supply of blood to the brain is either interrupted

or reduced for very certain duration of time. When this happens, the brain does not get

enough oxygen or nutrients, and brain cells start to die.

This thesis presents the development and evaluation of a machine learning model using deep

learning techniques. The improved, memory based Bidirectional recurrent neural called

Bidirectional Long short-term memory (BLSTM RNN) is used for the research work. The

model thus developed predict whether a patient will experience stroke or not based on a time

series input data computation. A 3-layer architecture having single BLSTM unit, Adam as

model optimizer and dropout regularization of 0.42 achieves accuracy of 91%.

The model is developed by processing patient time series information which includes

demographic and medical historical data. It includes age, gender, hypertension, heart

diseases, and altogether ten biometric information. This work contributes for decision

support for individuals and medical persons on their future stroke possibility.

Keywords:

Stroke Detection, Deep Learning, Recurrent Neural Network, BLSTM, LSTM, GRU

vi

Contents
Copyright .. i

Recommendation.. ii

Acknowledgement ... iv

Abstract .. v

Chapter 1: Introduction ... 1

1.1 Background ... 1

1.2 Statement of Problem .. 3

1.3 Research Objective ... 3

Chapter 2: Literature Review .. 4

2.1 Related Work .. 4

Chapter 3: Recurrent Neural Networks ... 6

3.1 Recurrent Neural Units.. 6

3.2 Bidirectional Long Short-term Memory .. 8

3.2.1 Activation Function .. 9

3.2.2 Optimizer ... 13

3.2.3 Loss Functions.. 15

3.2.4 Batch Normalization ... 16

3.2.5 Dropout Regularization... 16

Chapter 4: Research Methodology .. 17

4.1 System Design and Development .. 17

4.1.1 Functional block diagram ... 17

4.1.2 Flow Chart.. 18

4.2 Datasets .. 19

4.3 Data Preparation ... 20

4.4 Model Design ... 22

4.5 Tools and Environments.. 24

4.5.1 Python, Keras and Tensorflow .. 24

4.5.2 Environments ... 24

Chapter 5: Result and Analysis ... 25

5.1 Experiment on stochastic gradient descent (SGD) optimizer.................................... 25

5.2 Experiment on RMSProp Optimizer .. 26

5.3 Experiment on Adam Optimizer .. 27

5.4 Experiment on Nadam Optimizer .. 28

vii

5.5 Learning with high volume dataset .. 29

5.6 Learning without data normalization ... 30

5.7 Dropout Analysis .. 31

5.8 Activation Function Analysis .. 33

5.8.1 Observation with SoftMax function .. 33

5.8.2 Observation with sigmoid function ... 34

5.8.3 Observation with exponential function .. 34

5.9 Validation data ratio analysis .. 35

5.10 Comparative Analysis ... 37

5.10.1 10K Training Set .. 37

5.10.2 42K Training Set .. 39

5.10.3 Confusion matrix analysis ... 40

Chapter 6: Conclusion .. 41

Chapter 7: Further Enhancement .. 42

References .. 43

Bibliography .. 45

viii

List of Figures

Figure 3. 1 Unfolded Recurrent Unit... 6

Figure 3. 2 Bidirectional Long Short-term Memory .. 8
Figure 3. 3 Sigmoid Plot ... 10

Figure 3. 4 Tanh Plot .. 11
Figure 3. 5 ReLU Plot .. 12

Figure 3. 6 Leaky ReLU Plot .. 13

Figure 4. 1 Functional block diagram ... 17
Figure 4. 2 Flow Chart.. 18

Figure 4. 3 BLSTM Design in Keras .. 23

Figure 5. 1 Experiment on SGD Optimizer ... 25
Figure 5. 2 Experiment on RMSProp Optimizer ... 26

Figure 5. 3 Experiment on Adam Optimizer ... 27
Figure 5. 4 Experiment on Nadam Optimizer .. 28

Figure 5. 5 Learning with high volume dataset ... 29

Figure 5.6. 1 Learning without data normalization .. 30

Figure 5.6. 2 Learning with data normalization ... 30

Figure 5.7. 1 Dropout ratio=0.2 .. 31
Figure 5.7. 2 Dropout ratio=0.3 .. 31

Figure 5.7. 3 Dropout ratio=0.40 .. 32
Figure 5.7. 4 Dropout ratio=0.42 .. 32

Figure 5.8. 1 Experiment on softmax function .. 33

Figure 5.8. 2 Experiment on sigmoid function .. 34
Figure 5.8. 3 Experiment on exponential function ... 34

Figure 5.9. 1 Validation ratio 6:4 .. 35
Figure 5.9. 2 Validation ratio 7:3 .. 35

Figure 5.9. 3 Validation ratio 8:2 .. 36
Figure 5.9. 4 Validation ratio 9:1 .. 36

Figure 5.10. 1 ROC analysis for BLSTM with Adam Optimizer 37

Figure 5.10. 2 ROC analysis for BLSTM with Adam Optimizer 39

file:///C:/Users/Inspiron/Documents/Docx%20V3.docx%23_Toc24877409

ix

List of Tables

Table 4. 1 Feature Set ... 19
Table 4. 2 Raw data .. 20

Table 4. 3 Development Environment .. 24

Table 5.10. 1 Performance on 10K dataset .. 37

Table 5.10. 2 Performance on 42K dataset .. 39

Table 5.10. 3 Confusion matrix ……………………………………………………............40

x

List of Abbreviations

ANN = Artificial Neural Network

AUC = Area Under the Curve

BLSTM = Bidirectional Short-Term Memory

BP = Back propagation

DNN = Deep Neural Network

ELU = Exponential Rectified Linear Unit

FP = False Positive

FN = False Negative

GPU = Graphics Processing Unit

GRU = Gated Recurrent Units

LSTM = Long Short-Term Memory

ML = Machine Learning

ReLU = Rectified Linear Unit

ROC = Receiver Operating Characteristics

RNN = Recurrent Neural Network

SGD = Stochastic Gradient Descent

TP = True Positive

TN = True Negative

Chapter 1: Introduction

1.1 Background

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired

by the way biological nervous systems, such as the human brain, process information. It is

composed of a large number of highly interconnected processing elements (neurons) working

in union to solve specific problems. Previously it was believed that machines are only for

arithmetic operations but not for complex tasks that requires some intelligence like

fingerprint recognition, image captioning, speech recognition, facial classification, object

detection, image classification etc. This possibility is made through learning process or

learning algorithm and availability of data. A huge dataset is required for training the model.

Training is followed by testing to verify whether the system is working as desired or not.

Neural networks are sometimes described in terms of their depth, including how many layers

they have between input and output, or the model’s so-called hidden layers. It was believed

that only 2 to 3 hidden layers are sufficient for Neural Network to work properly but later on

it is observed that even more layers can represent high dimensional features of the input

signals. Such neural networks are referred to as Deep Neural Networks (DNN). The common

approach to ANNs is to use a single network and train it with labelled training data. This is

called supervised learning as the model is explicitly told what output is correct for a given

input. A drawback to supervised learning is that it requires data with labeled output, often

created by human labor. Neural networks require thousands or even millions of elements for

training, and supervised learning requires human labelling of each element. These labels may

not always be available or even feasible. Unsupervised learning, on the other hand, is training

without labels, which forces the learner to make its own generalizations about the data.

Training a network to generate more natural looking images is certainly possible but would

be a hard problem to solve with conventional supervised learning, requiring either a human

to evaluate every generated target or creating a large dataset with examples of good and bad

categories.

2

Large number of casualties have been reported with the stroke attack. It has been stated that

in every 4 minutes one casualties occurs due to stroke attack and up to 80% of strokes can be

prevented if we can apply a predictive model in its early age [1].

Healthcare domain is a recent research area for predictive and prescriptive analytics. Medical

data comes from hospital in the form of patient records [2]. Such record contains data that

categories the medical diagnosis and procedure done earlier. This is the baseline information

for my research work. Such diagnosis and procedure done during the medical treatment bear

the underlying knowledge of stroke risk.

Recently, a branch of Machine Learning (ML) techniques based on deep learning approaches,

such as deep neural networks (DNN), has achieved impressive and sometimes, breakthrough,

results across a variety of artificial intelligence tasks. The approach of deep learning is

inspired by the ability of human brain to abstract high-level representations from low-level

sensory stimuli; these multi-leveled representations can be casted mathematically as multi-

layered neural networks, and only recently, it is being able to be trained via layer-wise back-

propagation to obtain tractable optimization [3].

3

1.2 Statement of Problem

In traditional Machine learning techniques, most of the applied features need to be identified

by a domain expert in order to reduce the complexity of the data and make patterns more

visible to learning algorithms to work. The biggest advantage Deep Learning algorithms are

that they try to learn high-level features from data in an incremental manner. This eliminates

the need for domain expertise and hard-core feature extraction.

As, vanilla RNN suffer from vanishing and exploding problem, there has been done so-

sophisticated enhancement on the algorithm. Namely, LSTM and GRU has shown their

performance in different applied domains. Such researches are well published and described

in the predictive model field like pattern recognition, sequence learning, stoke analysis,

trend analysis etc. But there are very few works on medical predictive domains. After this

research work, a conclusive and novel model will be proposed for stroke patient prediction

using BLSTM network.

1.3 Research Objective

The objectives of this thesis are as follows.

1. To develop a stable model for stroke prediction problems.

2. To analyze the parameters like accuracy, training time, activation function,

optimization function, objective function, training accelerator on different RNNs

architectures.

4

Chapter 2: Literature Review

2.1 Related Work

Data driven approach is widely accepted model in predictive analytics. The success of

machine learning algorithm in other active research domain pull scholar attraction day by

day. A well and accurate machine learning algorithm can take a great role to increase the

efficiency of disease prevention and improve patient outcomes through early detection and

treatment. Huge number of success stories has been proposed and concluded in stroke

prediction using both classical and advanced machine learning algorithm.

The Back-propagation algorithm was used to train the ANN architecture, and the same has

been tested for the various categories of stroke disease. This research work demonstrates that

the ANN based prediction of stroke disease improves the diagnosis accuracy of 89% [1].

Research work by Aditya and et al. [2] performed stroke analysis using classical machine

learning algorithm for automatic feature extraction using Support Vector Machines, Margin-

based Censored Regression and logistic regression. Research group use three different

version on automatic feature extraction. Forward feature selection, L1 regularized logistic

regression, Conservative mean selection. They came with the conclusion; the conservative

mean feature selection performs very well in CHS dataset. How-ever, they are not sure in

other datasets with highly correlated features as it evaluates the performance of each feature

individually. To address this problem, they tested with an L1 regularized feature selection

algorithm to prune the features before applying conservative mean feature selection for fine-

tuning.

Hung and et al. [3] proposed model to utilize DNN on a large-scale EMCs to predict stroke

with high UAR and accuracy. In this study, an encouraging AUC of 86% is achieved by both

the DNN and GBDT algorithm while DNN requires lesser amount of training data. Their

results show performances of DNN and GBDT are superior to that of LR and SVM, both in

terms of predictive performance as well as predictive stability.

A. Sudha and et al. [4] proposed a model to predict stroke disease using classification

algorithms like a Decision Tree, Naïve Bayes and neural networks for predicting the presence

of stroke disease and Principal Component Analysis algorithm for dimensionality reduction.

5

The stroke dataset is collected from the medical institute. The dataset consists of patient

information, patient history, Gene diagnosis disease database which contains the symptoms

of stroke disease.

A model for the Prediction of Thrombo-Embolic Stroke in which Artificial Neural Network

is proposed to aid existing diagnosis methods. The dataset is collected from 50 patients who

have symptoms of stroke disease. All the fifty cases are analyzed after scrutiny with the help

of the Physicians and 25 parameters are selected. Further, a backward stepwise method is

applied to remove the insignificant inputs from the selected 25 parameters and 20 parameters

are finalized.

T. Kansadub and et al. [5] proposed a model in which demographic data is used as a dataset

for stroke risk prediction. Firstly, the demographic information was initiated and collected

from Faculty of Physical Therapy, Mahidol University, Thailand. Identifying stroke is

tedious and time-consuming for medical practitioners. Therefore, automated system for

predicting symptoms of stroke from demographic data of patients is needed. The

demographic data of patients consisting of gender, age, and education. Thus, according to

the 250 stroke patients and 67,897 non-stroke patients, the re-sampling was executed.

Consequently, the data of non-stroke were reduced; stroke consisted 250 and non-stroke 500.

The nine randomized datasets were created and selected for the best one in terms of similarity

to the original data by comparing the difference of normalized attribute values. After the data

were ready, three classification algorithms: Decision Tree, Naive Bayes and Neural Network

are used for predicting stroke, and the results were compared. In this study, aspect of

accuracy, Decision Tree was the best method, but in the aspect of safety of life, Neural

Network was the best method because of the highest in FP value and the lowest in FN value.

Two independent research team [6,7] evaluated the RNN in two domain, Energy Load

Forecasting and acoustic model. Their work concludes GRU has better performance in time

domain than LSTM and RNN. In terms of accuracy, GRU and LSTM beat the RNN. For

energy load forecasting GRU has RMSE of 0.58 whereas LSTM has 0.61. On Acoustic

Modeling, GRU offered 0.05 to 0.13 benefit in performance.

6

Chapter 3: Recurrent Neural Networks

3.1 Recurrent Neural Units

The deep learning has transformed the field of machine learning. One of the neural network

architecture paradigms that has driven breakthroughs in this field is recurrent neural networks

(RNNs). RNNs are a kind of neural network that takes sequential input and produces

sequential output by sharing parameters between time steps. RNNs have led to breakthrough

results in natural language processing, image captioning, and speech recognition. Though

RNNs have proven useful in many sequence and series-based learning tasks, their application

to raw time series prediction is still relatively unexplored.

This thesis thus applies established neural network techniques to the stroke prediction

problem to produce novel results. Traditional RNNs consists of an input layer, an output

layer, and a recurrent layer, as depicted in figure 3.1. They are comprised of a series of weight

matrices and activation functions. Explicitly, the set of equations that maps a set of inputs,

outputs.

Figure 3. 1 Unfolded Recurrent Unit

y(t)

x(t)

h(t)

7

Here, new state ht is derived from previous state ht−1 as

 ht=f(ht−1 + xt)……………………………..……… (3.1)

Where, f(.) is activation function. Hence, RNN is capable to make a prediction based on the

hidden state in the previous timestamp and current input. The use case of RNN is nowadays

limited as it suffers from vanishing and exploding gradient problem. Error being propagated

in RNN at time t is defined as,

dE

dW
= ∑

dEt

dw
T
t=1 ………………………………….… (3.2)

The error for each time-step is computed through applying the chain rule differentiation as,

dEt

dW
= ∑

dEt

dyt
.

dyt

dht
.

dht

dhk
.

dhk

dW

t
k=1 …………….……….. (3.3)

Here, term
dht

dhk
 refers to the partial derivative of ht with respect to all previous k time-steps.

When such terms become very large then the overall multiplicative values go higher and

resulting exploding problem. To minimize this problem, we can set threshold value, and

when it reaches the point, we then clip it to some small value. This process is called gradient

clipping. In the opposite case, when individual gradient become small, the resulting value

goes to zero thus gradient vanishing. To minimize this problem, we use some random

initialization of weight and use ReLU activation.

The parameter ht in RNN serves two purposes.

1. Make an output prediction

2. A hidden state representing the data sequence processed so far.

8

3.2 Bidirectional Long Short-term Memory

The idea of BLSTMs comes from bidirectional RNN, which processes sequence data in both

forward and backward directions with two separate hidden layers [7]. It has been proved that

the bidirectional networks are substantially better than unidirectional ones in many fields like

phoneme classification and speech recognition. Inspired from the success history of different

domain, bidirectional LSTMs is used in stroke prediction problem.

Figure 3. 2 Bidirectional Long Short-term Memory

The LSTM with input, forget and output gate is capability with long time lag, state reset and

resolve temporal distance. But all states are accumulated forward. In real task, the system is

usually requested to take backward information into consideration.

g(t-1) g(t)

h(t-1) h(t)

g(t+1)

h(t+1)

y(t)

Forward layer

Backward layer

Output y(t-1)

x(t+1) x(t) x(t-1)

y(t-1)

Input

9

Mathematically,

ht = forward pass = σ(Wxh. xt + Whh. ht−1 + bh)…….…..…….….. (3.4)

gt = backward pass = σ(Wxg. xt + Wgg. gt+1 + bg)………….…...... (3.5)

yt = Why. ht + Wgy. gt + by … ..……….………………………....... (3.6)

Supposed the one piece of sequence is from time 0 to time T, the forward and backward pass

algorithm is followed by:

Forward Pass feed all input data for the sequence into BDLSTM and calculate all predict

output.

1. Do forward pass for forward states (from time 0 to time T), save all the cell output

through time.

2. Do forward pass for backward states (from time T to 0), save all the cell output

through time.

3. Do forward pass for output layer by adding two saving results.

Backward Pass Calculate the error function derivation for the sequence used in the forward

pass

1. Do backward pass for output neuron

2. Do backward pass for forward states (from time T to time 0). Then do backward pass

for backward states (from time 0 to T)

3.2.1 Activation Function

Neural network contains three element, input, node and output. Information is processed

from one node to another node based on input values. The node will pass the information

only when it gets triggered (cross the threshold value). Such controlling of passing

10

information from one node to another node is accomplished by activation function.

Activation function holds two properties- Linearity and Differentiability. Linearity properties

defines how input computation will map to output values. Differentiability properties define

how its first derivative works. Differentiability also defines the gradient based learning

phenomenon.

If an activation function is linear(say, y = mx + c), its first derivative will be always 1 thus,

less opportunity for learning. Whereas, if activation function is nonlinear (say, f(x)=1/(1 +

e−x)), there will be a higher degree of learning opportunity as it provide same order of first

differential value.

Hence, this function is divided into two groups,

1. Linear activation functions, thus gradient based learning is not possible.

2. Non-linear activation functions, thus gradient based learning is possible.

Four activation functions, Sigmoid, Tanh, ReLU and Leaky ReLU are described below.

a. Sigmoid

A sigmoid function is nonlinear function and produces a curve with an “S” shape. This

function is well known for binary classifier. It is defined as,

f(x)=1/(1 + e−x)…………………………….………....... (3.7)

Figure 3. 3 Sigmoid Plot

11

Figure 3.3 shows, sigmoid activated output limits on (0,1). One serious problem with sigmoid

function is it suffers from vanishing gradient, means, when output value of sigmoid become

very high (almost 1) or very low (near 0), its first derivative will be very low (<<1). This

causes vanishing gradients and poor learning for deep networks

b. Hyperbolic Tangent

The hyperbolic tangent (tanh) non-linearity is defined by the formula,

f(x) = (e−x − ex)/(e−x + ex)……………………..…………....... (3.8)

Figure 3. 4 Tanh Plot

The tanh(x) function can be viewed as a rescaled version of the sigmoid, and its

Output falls in the interval of (−1, 1), as illustrated in Figure 3.4.

12

c. Rectified Linear Unit

The Rectified Linear Unit (ReLU) is defined as

y = 0, when x ≤ 0

= x, when x > 0 ………………………………………………….. (3.9)

Figure 3. 5 ReLU Plot

The output from ReLU bounds to (0, ∞). The first derivative is 0 for all negative inputs and

1 for all positive. So whenever input values fall in negative range, back propagation is zero,

thus certain weights become dead.

d. Leaky ReLU

Leaky ReLUs are one attempt to fix the dying ReLU problem. Instead of the function being

zero when x < 0, a Leaky ReLU have a small positive gradient for negative inputs. Leaky

ReLU has the following mathematical form:

y = 0.01 ∗ x, when x < 0

13

= x, when x ≥ 0 ……..…………………........... (3.10)

Figure 3. 6 Leaky ReLU Plot

3.2.2 Optimizer

3.2.2.1 Stochastic Gradient Descent

Generally speaking, neural networks employ some form of minibatch stochastic gradient

descent (SGD) to learn an appropriately good setting of the weight matrices with respect to

some loss function, L(x). The mini batch SGD update with respect to θ [8].

θt+1 = θt − α. ∑
δL(x)

δθ st∈X ………………………...……....... (3.11)

3.2.2.2 RMSProp

Minibatch SGD by itself is poorly suited for training Neural Network. The method is

extremely sensitive to the choice of learning rate. If too large learning rate is chosen, the

learning is unstable with parameters oscillating wildly around a local optimum. If the learning

rate is set too small, and learning becomes intolerably slow. Furthermore, a single learning

rate that was well suited early in optimization may end up non-ideal somewhere else in the

parameter space. There are numerous adjustments to mini batch SGD that seek to remedy

these issues.

14

RMSprop [11], update consists of the following two steps:

E[g2]t = 0.9 ∗ E[g2]t−1 + 0.1 gt
2

θt+1 = θt −
η

√(E[g2]t+ ε)
gt ……...……....... (3.12)

Where,

 gt is the minibatch gradient calculated at iteration respect to parameter η, θt, E[g2]
t
 is an

approximation to the running average of squared gradients, and η is user-set hyperparameter

that adjusts the rate of learning.

In order to keep the parameter, update roughly consistent, the algorithm scales the learned

gradient by the square root of a running average of squared gradients √ E[g2]t

The running average as defined here gives much higher weight to recently calculated

gradients which are more likely to have a magnitude similar to the one at the current time

step, and thus better ensures that the parameter is updated by a consistent amount. By

ensuring the size of the actual parameter update is consistent, learning will be more stable

without the need for a cripplingly slow learning rate, and thus more rapid.

3.2.2.3 Adaptive Moment Estimation (Adam)

Adam, a method for efficient stochastic optimization that only requires first-order gradients

with little memory requirements. The method computes individual adaptive learning rates for

different parameters from estimates of first and second moments of the gradients [9]. It

combines the advantages of two recently popular methods: AdaGrad (Duchi et al., 2011),

which works well with sparse gradients, and RMSProp (Tieleman & Hinton, 2012), which

works well in on-line and non-stationary settings. Good default settings for the tested

machine learning problems are α = 0.001, β
1

= 0.9, β
2

= 0.999, e = 10e − 8

Algorithm run as, Initialize m0, v0 and t = 0, α, β1 , β2,

 gt = df/dt

mt = [β1 mt−1 + (1 − β1). gt]/[1 − β1]

15

vt = [β2 vt−1 + (1 − β2). gt]/[1 − β2]

And finally, weight updates as

wt = wt−1 − α. mt/(ϵ + √vt) ……………...……....... (3.13)

3.2.2.4 Adaptive Moment Estimation (Nadam)

Nadam [10], is an acronym for Nesterov and Adam optimizer. Nesterov factor has been

added in Adam optimizer. The momentum, m contains the gradient update for the current

timestamp gtin addition to the momentum vector update for the next timestamp t + 1 , which

needs to be applied before taking the gradient at the next timestamp.

3.2.3 Loss Functions

A loss function is minimized as the objective to measure the compatibility between a

prediction and the ground truth labels.

3.2.3.1 Quadratic Cost

Quadratic cost is also known as the Mean Squared Error (MSE). It is defined by the formula

Loss (x, y) =
1

n
 ∑ |xi − yi|² n

i=1 ………………….………....... (3.14)

Where x represents n predictions of neural networks, and y represents the real classes of the

input data.

16

3.2.3.1 Cross Entropy

The cross entropy of a distribution P with respect to a distribution Q measures how many bits

are needed on average to encode data from P with the code that is optimal for Q. It is defined

as,

Loss (x, y) = − ∑ yi
n
i=1 ∗ log

exp(xi)

∑ exp(xi
n
j=0)

 ……………...…....... (3.15)

Where x is a vector of n predictions of neural networks, and y is a binary vector full of 0s

and 1s representing the real classes of the input data.

3.2.4 Batch Normalization

Batch normalization potentially helps neural network to converge faster and get higher

overall accuracy. Batch Normalization shifts inputs to zero-mean and unit variance, which

makes the inputs of each trainable layer comparable across features. It allows singular

functions such as TanH and Sigmoid to not get stuck in the saturation mode, where the

gradient is almost 0. In practice, networks that use batch normalization are more robust to

bad initialization.

3.2.5 Dropout Regularization

Large neural network models consist of many parameters and perform extremely complex

manipulation. Model will often overfit on the training set and lose generalizability and

accuracy on the test set. In this work, dropout regularization with a dropout probability of

p = 0.42 has been employed to address the problem of over fitting. Dropout regularization

independently sets each weight in consideration to zero with probability p in response to this,

the network cannot rely on a few weights per-example to predict an outcome, lest those

weights get pruned in a training step. The model is thus forced to employ many weights to

process and predict each example, reducing over fitting. We deliberately avoid dropout on

weights between time steps, as doing so effectively eliminates long-range memory.

17

Chapter 4: Research Methodology

4.1 System Design and Development

4.1.1 Functional block diagram

The Overall research methodology involves the following steps. The workflow follows from

data collection, data preprocessing, model implementation and results and analysis. The

methods and process followed in each step are described in preceding sections.

Figure 4. 1 Functional block diagram

DATA COLLECTION
DATA

PREPROCESSING

RESULT AND

ANALYSIS
MODEL DESIGN

18

Y N

4.1.2 Flow Chart

Research workflow diagram is shown in figure 4.2. The flow diagram incudes raw data

feeding from CSV, pre-processing of data, Model validation, and result and graphing.

Start

 CSV Pre-processing

Train/Validation

Data Test Data

BLSTM Network

Valid

Model? Save Model

Stop

Test

Accuracy/

ROC/AUC

Figure 4. 2 Flow Chart

19

4.2 Datasets

In machine learning and Deep learning algorithms for classifying and recognizing, data plays

a vital role. Having too many data is always recommended to avoid the underlying problem

associated with machine learning. Training with low volume of data is always susceptible to

under fitting the model we will use.

Overall experiment has been carried out in openly available data set, Kaggle Open Stroke

Data Set. Data has been divided into two sections, training and testing set. Each set has data

record of counts 42000 and 18000 accordingly. Training set has 10 features set as,

Table 4. 1 Feature Set

1 id

2 gender

3 age

4 hypertension

5 heart_disease

6 ever_married

7 work_type

8 residence_type

9 avg_glucose_level

10 bmi

11 smoking_status

Two row extracted from dataset.

[5374,Male,23,0,0,No,Private,Rural,93.74,31.2,never smoked,0]

[56669,Male,81,0,0,Yes,Private,Urban,186.21,29,formerly smoked,1]

20

4.3 Data Preparation

Data preparation refers to the process of transformations on source data before feeding it to

the algorithm. We should ensure data preprocessing for achieving better results from the

applied model in Machine Learning the format of the data has to be in a proper manner. Data

process goes through following phase.

1. Feature Representation

The neural network takes numeric data as input, performs complex computation and

generate numeric output. The dataset in this research work is not what is expected for

the neural network input feeds. Thus, proper data representation is done here. Let's

take two rows from the original dataset.

[5374,Male,23,0,0,No,Private,Rural,93.74,31.2,never smoked,0]

[56669,Male,81,0,0,Yes,Private,Urban,186.21,29,formerly smoked,1]

After feature representation, this looks like,

[5374,1,23,0,0,0,1,0,93.74,31.2,0,0]

[56669,1,81,0,0,1,1,1,186.21,29,1,1]

2. Data cleaning

The purpose of data cleaning is to fill in missing values, smooth noisy data, identify

or remove outliers, and resolve inconsistencies. The dataset here used is comprised

of attributes with some missing in attribute, it is required to remove such data from

dataset before model is trained. Take one row extracted from dataset after feature

representation.

Table 4. 2 Raw data

id gender age

hypertensi

on

heart_di

sease

ever_ma

rried

work

_type

residence

_type

avg_gluc

ose_level bmi

smoking

_status stroke

310

91 1 34 0 1 1 1 1 106.23 1 0

21

The row with BMI missing data should be removed during data cleaning process. If

this row is fed for neural network, it will start to learn from noisy data as well.

3. Data Normalization

Normalizing refers to rescaling each observation (row) to have a length of 1 (called a

unit norm in linear algebra). One experiment is done to demonstration the learning

behaviors without data normalization later in below result and analysis section. The

single row after data-normalization looks like

[3.92900000e+04 5.00000000e-01 1.21093750e-01 0.00000000e+00

 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

 2.72061004e-01 1.13142857e-01 1.00000000e+00 0.00000000e+00]

Here, min-max normalization technique is used to preserve the originality of dataset.

22

4.4 Model Design

The proposed model for the research work used bidirectional long short-term memory

recurrent network. BLSTM model in the research work has a series of layers. Architectural

contains three layers.

1. Embedding Layer

2. BLSTM Layer

3. Dense Output Layer

__

Layer (type) Output Shape Param #

==

embedding_5 (Embedding) (None, None, 256) 256000

__

bidirectional_5 (Bidirectional) (None, 256) 394240

__

dropout_5 (Dropout) (None, 256) 0

__

dense_5 (Dense) (None, 1) 257

==

23

Figure 4. 3 BLSTM Design in Keras

Each layer works as,

1. Embedding layer

The Embedding layer is used to create input vectors for incoming data. It sits between

the input and the BLSTM layer, i.e. the output of the Embedding layer is the input to

the LSTM layer.

2. BLSTM Layer

This is a single unit of BLSTM with configuration of 256 output vector. This output

goes to densely connected layer which is our final layer.

3. Dense Output Layer

This is our final layer which takes input vector of 256 size and result as output data.

24

4.5 Tools and Environments

4.5.1 Python, Keras and Tensorflow

Python is an interpreter, high-level, general-purpose programming language. This language

has been proved as first research language as of large number of in-built and open sourced

libraries. General syntax of this language is based on indentation with high user-friendly

keywords.

Keras is a high-level neural networks API, written in Python and capable of running on top

of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast

experimentation for deep learning. It supports both convolutional networks and recurrent

networks, as well as combinations of the two and seamlessly run on CPU and GPU.

4.5.2 Environments

The system configuration of the overall research work is carried under following test bed.

Table 4. 3 Development Environment

Platform Google Colab

Operating System Ubuntu 18.04.2 LTS

Memory 12 GB

GPU NVIDIA® Tesla® K80

25

Chapter 5: Result and Analysis

The different version of recurrent neural network is trained in 8:2 data set ratio. Series of

experiments conducted under different optimizer and activation function. In all experiment

dropout of 0.42 is implemented.

5.1 Experiment on stochastic gradient descent (SGD) optimizer

Figure 5. 1 Experiment on SGD Optimizer

26

The BLSTM network is trained with SGD, stochastic gradient descent optimizer. The loss

curve shows it has reached optimal state in around 30 epoch. The learning rate for the

optimizer is set on 0.001 with momentum 0.95.

5.2 Experiment on RMSProp Optimizer

Figure 5. 2 Experiment on RMSProp Optimizer

The experiment is done with RMSprop Optimizer for runtime parameter, learning rate 0.001.

The model reached optimal state in around 15 epochs.

27

5.3 Experiment on Adam Optimizer

Figure 5. 3 Experiment on Adam Optimizer

The experiment with Adam optimizer under runtime parameter as Learning rate=0.001,

beta_1=0.9 and beta_2=0.999 reached the optimum state around 10 epochs.

28

5.4 Experiment on Nadam Optimizer

Figure 5. 4 Experiment on Nadam Optimizer

The network is now fed with Nadam as optimizer under parameter, learning rate=0.002,

β
1
=0.9, β

2
=0.999. The model gets optimized under 10 epochs similar to Adam optimizer.

29

5.5 Learning with high volume dataset

The experiment now run for 42K training dataset. The experiment is done with the Adam

optimizer with learning rate 0.001. It shows with higher volume of dataset, model reached

its optimized state in 3rd epoch with validation accuracy of 98%.

Figure 5. 5 Learning with high volume dataset

30

5.6 Learning without data normalization

The experiment conducted in un-normalized dataset with Adam optimizer. The validation

vales on loss curve starts to rise after 4 epochs as shown in figure 5.6.1, thus data

normalization needs to be done for the model to learn faster and smoother. The loss graph

for normalized dataset is shown in figure 5.6.2. Data normalization makes sure different

features range in same values (0,1), hence model gradient reach global minima quickly.

Figure 5.6. 1 Learning without data normalization

Figure 5.6. 2 Learning with data normalization

31

5.7 Dropout Analysis

This analysis figures out the drop ratio of network during model training. Setting too low

drop-out will cause model to overfit on training data and too high cause the low learning

ability. This experiment concludes our model has reached optimal state in drop-out ratio in

the range 0.4 to 0.45. Following graph illustrate their loss behavior on training and validation

data.

Figure 5.7. 1 Dropout ratio=0.2

Figure 5.7. 2 Dropout ratio=0.3

32

Figure 5.7. 3 Dropout ratio=0.40

Figure 5.7. 4 Dropout ratio=0.42

33

5.8 Activation Function Analysis

Number of experiments are carried out with different activation function. The following

section list out the respective results.

5.8.1 Observation with SoftMax function

The experiment with SoftMax has not gain any learning curves. The experiment is run for 5

epochs, but model’s performance is not improving.

Figure 5.8. 1 Experiment on SoftMax function

34

5.8.2 Observation with sigmoid function

Under the sigmoid function model has reached 98% of training accuracy.

Figure 5.8. 2 Experiment on sigmoid function

5.8.3 Observation with exponential function

Model has pretty well performance on exponential functions as well. Training accuracy is a

little bit low from sigmoid activation function.

Figure 5.8. 3 Experiment on exponential function

35

By analyzing experiment 5.8.1, 5.8.2 and 5.8.3, it has been noticed that sigmoid activation

has best performance over exponential and SoftMax.

5.9 Validation data ratio analysis

Four experiment is done to perform validation data analysis. Experiment is conducted on 6:4,

7:3, 8:2 and 9:1 data ratio. Figure below shows the respective loss graph. On the experiment

it has concluded that optimum model is achieved at validation ratio 8:2.

Figure 5.9. 1 Validation ratio 6:4

Figure 5.9. 2 Validation ratio 7:3

36

Figure 5.9. 3 Validation ratio 8:2

Figure 5.9. 4 Validation ratio 9:1

Looking into validation ratio loss curve of 6:4 in figure 5.9.1, 7:3 in figure 5.9.2 and 9:1 in

figure 5.9.4, validation loss is higher and is not steady as seen for validation ratio 8:2 in figure

5.9.3.

37

5.10 Comparative Analysis

5.10.1 10K Training Set

The experiment has been conducted in 10K dataset. Overall performance on different

algorithms are summarized below.

Table 5.10. 1 Performance on 10K dataset

Algorithm BLSTM LSTM GRU

Optimizer

Train

Accuracy

Test

Accuracy

Train

Accuracy

Test

Accuracy

Train

Accuracy

Test

Accuracy

Adam 0.9353 0.80266 0.93237 0.8 0.930807 0.8

RMSProp 0.9249 0.79801 0.93059 0.7986 0.93255 0.799

Nadam 0.9346 0.80024 0.931487 0.8101 0.93284 0.8003

SGD 0.9144 0.7921 0.931254 0.7913 0.9083 0.7944

The table above shows, under the dataset training accuracy has reached about 93% and testing

in a range of 81%. The testing is performed with different optimizer and Adam showed it as

best of all. Following ROC curve shows the marginal region for true positive rate and false

positive rate.

Figure 5.10. 1 ROC analysis for BLSTM with Adam Optimizer

38

The curve nature shows model has classified the problem pretty well. It has reached nearly

80% of the area under the curve.

39

5.10.2 42K Training Set

The experiment now conducted for 42K dataset. All of the training algorithm has reached its

saturation state under 4 epochs. Table below summarizes the overall performance.

Table 5.10. 2 Performance on 42K dataset

Algorithm BLSTM LSTM GRU

Optimizer

Train

Accuracy

Test

Accuracy

Train

Accuracy

Test

Accuracy

Train

Accuracy

Test

Accuracy

Adam 0.98439 0.91233 0.98287 0.91173 0.98369 0.91224

RMSProp 0.98296 0.91102 0.983105 0.9105 0.98366 0.9102

Nadam 0.983118 0.91152 0.98395 0.9101 0.98399 0.9113

SGD 0.97955 0.90511 0.976177 0.9011 0.972289 0.9061

Figure 5.10. 2 ROC analysis for BLSTM with Adam Optimizer

On larger dataset, BLSTM with Adam as optimizer has won the competition with training

accuracy of 98%. The test accuracy also reached 91%. ROC curve for the BLSTM with Adam

40

as optimizer is shown in figure 5.9.2. The ROC curve has supported the classifier is able to

reach nearly 90% of the area under the curve. The AUC is little smaller or larger than test

accuracy score as AUC is based on multiple threshold calculations.

5.10.3 Confusion matrix analysis

Confusion matrix analysis gives the measurement of how truly or badly classified the

predictive problem. This research work is validated with confusion matrix on test data for its

accuracy output. For this unseen test data with 143 positive class and 357 negative class are

fed to models’ output. Table 5.10.3 summarize the model accuracy. Model has reached true

positive rate of 0.8 and true negative of 0.95. The slight variation of accuracy is due to

imbalanced training dataset, where major of dataset are in negative class. Out of 42K dataset

only 783 sample are in positive class.

Table 5.10. 3 Confusion matrix

 Stroke (Predicted) Non-Stroke (Predicted)

Stroke (Actual) 114 29

Non-Stroke (Actual) 16 341

41

Chapter 6: Conclusion

This research conducted for series of experiments using different optimizer and three kinds

of recurrent neural network. List of experiment shows that, BLSTM networks has best

performance over all other RNN variant network. In 42K dataset, BLSTM reach 98% of

validation accuracy.

This work points that model has reached optimum state trained with Adam as optimizer in

0.001 learning rate with sigmoid activation function in final layer. Data set partition of 8:2

from training to validation and use of 0.42 drop-out gives the best performance. This work

suggests increasing training dataset to achieve higher accuracy.

This research work shows, it is the best model design among task done by other researchers.

Researcher Hung and et al. [2] designed model using DNN which achieved the accuracy of

86%. The work done by M. Singh and P. Choudhary [1] was used ANN architecture and

achieved the accuracy of 89%. Result comparison shows this work gained better performance

over those ones.

42

Chapter 7: Further Enhancement

This research work is based on very few feature vectors, all together it has included eleven

features. Biologically these feature set could not be sufficient to determine the actual stroke

condition. It has been advised that this model could solve the real time problem if those more

correlated feature vectors is available in training data set.

Relatively, 42K dataset is not enough for the real time problems using machine learning

model. Future research with high volume of dataset lead high accuracy even.

Looking into the current data ratio only 2% fall under stroke patient case. This thesis work

has not addressed any solution to mitigate the imbalanced data. So, machine learning model

could achieve more if the work can stir on fact.

This research is done on single BLSTM with 128 timestamps. Next research could be done

on stacked BLSTM networks.

43

References

1. [M. S. Singh and P. Choudhary, "Stroke prediction using artificial intelligence," 2017 8th

Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON),

Bangkok, 2017, pp. 158-161]

2. [Khosla, Aditya & Cao, Yu & Lin, Cliff & Chiu, Hsu-Kuang & Hu, Junling & Lee,

Honglak. (2010). An integrated machine learning approach to stroke prediction. Proceedings

of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

183-192. 10.1145/1835804.1835830]

3. [C. Hung, W. Chen, P. Lai, C. Lin and C. Lee, "Comparing deep neural network and other

machine learning algorithms for stroke prediction in a large-scale population-based

electronic medical claims database," 2017 39th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), Seogwipo, 2017, pp. 3110-3113.

doi: 10.1109/EMBC.2017.8037515]

4. [Sudha, A. & Gayathri, P. & Jaisankar, N. (2012). Effective Analysis and Predictive Model

of Stroke Disease using Classification Methods. International Journal of Computer

Applications. 43. 26-31. 10.5120/6172-8599.]

5. [T. Kansadub, S. Thammaboosadee, S. Kiattisin, and C. Jalayondeja, “Classification of

brain cancer using artificial neural network,” The 2015 Biomedical Engineering

International Conference (BMEiCON2015), 2015]

6. [S. Kumar, L. Hussain, S. Banarjee and M. Reza, "Energy Load Forecasting using Deep

Learning Approach-LSTM and GRU in Spark Cluster," 2018 Fifth International Conference

on Emerging Applications of Information Technology (EAIT), Kolkata, 2018, pp. 1-4. doi:

10.1109/EAIT.2018.8470406]

7. [Zhiyong Cui, et al., "Deep Stacked Bidirectional and Unidirectional LSTM Recurrent

Neural Network for Network-wide Traffic Speed Prediction" International Workshop on

Urban Computing (UrbComp) 2017, Held in conjunction with the ACM SIGKDD 2017]

8.[Ruder. S, "An overview of gradient descent optimization algorithms,"

arXiv:1609.04747v2 [cs.LG], p. 14, Jun 2017]

https://arxiv.org/search/cs?searchtype=author&query=Cui%2C+Z

44

9. [Kingma, D.P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. CoRR,

abs/1412.6980.]

10. [Timothy Dozat(2015), Incorporating Nesterov Momentum into Adam]

45

Bibliography

1. https://www.medicalnewstoday.com/articles/7624.php

2. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

3. https://jhui.github.io/2017/03/15/RNN-LSTM-GRU/

4. https://www.kaggle.com/asaumya/healthcare-dataset-stroke-data

5. https://tensorflow.org/

6. https://keras.io/

7. http://mlwiki.org/index.php/ROC_Analysis

https://www.medicalnewstoday.com/articles/7624.php
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.kaggle.com/asaumya/healthcare-dataset-stroke-data
https://tensorflow.org/
https://keras.io/

