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Abstract 

Stroke is the medical condition when the supply of blood to the brain is either interrupted 

or reduced for very certain duration of time. When this happens, the brain does not get 

enough oxygen or nutrients, and brain cells start to die.  

This thesis presents the development and evaluation of a machine learning model using deep 

learning techniques. The improved, memory based Bidirectional recurrent neural called 

Bidirectional Long short-term memory (BLSTM RNN) is used for the research work.  The 

model thus developed predict whether a patient will experience stroke or not based on a time 

series input data computation. A 3-layer architecture having single BLSTM unit, Adam as 

model optimizer and dropout regularization of 0.42 achieves accuracy of 91%. 

The model is developed by processing patient time series information which includes 

demographic and medical historical data. It includes age, gender, hypertension, heart 

diseases, and altogether ten biometric information. This work contributes for decision 

support for individuals and medical persons on their future stroke possibility. 
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Chapter 1: Introduction 

1.1 Background 

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired 

by the way biological nervous systems, such as the human brain, process information. It is 

composed of a large number of highly interconnected processing elements (neurons) working 

in union to solve specific problems. Previously it was believed that machines are only for 

arithmetic operations but not for complex tasks that requires some intelligence like 

fingerprint recognition, image captioning, speech recognition, facial classification, object 

detection, image classification etc. This possibility is made through learning process or 

learning algorithm and availability of data. A huge dataset is required for training the model. 

Training is followed by testing to verify whether the system is working as desired or not.  

Neural networks are sometimes described in terms of their depth, including how many layers 

they have between input and output, or the model’s so-called hidden layers. It was believed 

that only 2 to 3 hidden layers are sufficient for Neural Network to work properly but later on 

it is observed that even more layers can represent high dimensional features of the input 

signals. Such neural networks are referred to as Deep Neural Networks (DNN). The common 

approach to ANNs is to use a single network and train it with labelled training data. This is 

called supervised learning as the model is explicitly told what output is correct for a given 

input. A drawback to supervised learning is that it requires data with labeled output, often 

created by human labor. Neural networks require thousands or even millions of elements for 

training, and supervised learning requires human labelling of each element. These labels may 

not always be available or even feasible. Unsupervised learning, on the other hand, is training 

without labels, which forces the learner to make its own generalizations about the data. 

Training a network to generate more natural looking images is certainly possible but would 

be a hard problem to solve with conventional supervised learning, requiring either a human 

to evaluate every generated target or creating a large dataset with examples of good and bad 

categories. 
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Large number of casualties have been reported with the stroke attack. It has been stated that 

in every 4 minutes one casualties occurs due to stroke attack and up to 80% of strokes can be 

prevented if we can apply a predictive model in its early age [1]. 

Healthcare domain is a recent research area for predictive and prescriptive analytics.  Medical 

data comes from hospital in the form of patient records [2]. Such record contains data that 

categories the medical diagnosis and procedure done earlier. This is the baseline information 

for my research work. Such diagnosis and procedure done during the medical treatment bear 

the underlying knowledge of stroke risk. 

Recently, a branch of Machine Learning (ML) techniques based on deep learning approaches, 

such as deep neural networks (DNN), has achieved impressive and sometimes, breakthrough, 

results across a variety of artificial intelligence tasks. The approach of deep learning is 

inspired by the ability of human brain to abstract high-level representations from low-level 

sensory stimuli; these multi-leveled representations can be casted mathematically as multi-

layered neural networks, and only recently, it is being able to be trained via layer-wise back-

propagation to obtain tractable optimization [3]. 
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1.2 Statement of Problem 

In traditional Machine learning techniques, most of the applied features need to be identified 

by a domain expert in order to reduce the complexity of the data and make patterns more 

visible to learning algorithms to work. The biggest advantage Deep Learning algorithms are 

that they try to learn high-level features from data in an incremental manner. This eliminates 

the need for domain expertise and hard-core feature extraction. 

As, vanilla RNN suffer from vanishing and exploding problem, there has been done so-

sophisticated enhancement on the algorithm. Namely, LSTM and GRU has shown their 

performance in different applied domains. Such researches are well published and described 

in   the predictive model field like pattern recognition, sequence learning, stoke analysis, 

trend analysis etc. But there are very few works on medical predictive domains. After this 

research work, a conclusive and novel model will be proposed for stroke patient prediction 

using BLSTM network. 

 

1.3 Research Objective 

The objectives of this thesis are as follows. 

1. To develop a stable model for stroke prediction problems. 

2. To analyze the parameters like accuracy, training time, activation function, 

optimization function, objective function, training accelerator on different RNNs 

architectures. 
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Chapter 2: Literature Review 

2.1 Related Work 

Data driven approach is widely accepted model in predictive analytics. The success of 

machine learning algorithm in other active research domain pull scholar attraction day by 

day. A well and accurate machine learning algorithm can take a great role to increase the 

efficiency of disease prevention and improve patient outcomes through early detection and 

treatment. Huge number of success stories has been proposed and concluded in stroke 

prediction using both classical and advanced machine learning algorithm. 

The Back-propagation algorithm was used to train the ANN architecture, and the same has 

been tested for the various categories of stroke disease. This research work demonstrates that 

the ANN based prediction of stroke disease improves the diagnosis accuracy of 89% [1].  

Research work by Aditya and et al. [2] performed stroke analysis using classical machine 

learning algorithm for automatic feature extraction using Support Vector Machines, Margin-

based Censored Regression and logistic regression. Research group use three different 

version on automatic feature extraction. Forward feature selection, L1 regularized logistic 

regression, Conservative mean selection. They came with the conclusion; the conservative 

mean feature selection performs very well in CHS dataset. How-ever, they are not sure in 

other datasets with highly correlated features as it evaluates the performance of each feature 

individually. To address this problem, they tested with an L1 regularized feature selection 

algorithm to prune the features before applying conservative mean feature selection for fine-

tuning. 

Hung and et al. [3] proposed model to utilize DNN on a large-scale EMCs to predict stroke 

with high UAR and accuracy. In this study, an encouraging AUC of 86% is achieved by both 

the DNN and GBDT algorithm while DNN requires lesser amount of training data. Their 

results show performances of DNN and GBDT are superior to that of LR and SVM, both in 

terms of predictive performance as well as predictive stability. 

A. Sudha and et al. [4] proposed a model to predict stroke disease using classification 

algorithms like a Decision Tree, Naïve Bayes and neural networks for predicting the presence 

of stroke disease and Principal Component Analysis algorithm for dimensionality reduction. 
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The stroke dataset is collected from the medical institute. The dataset consists of patient 

information, patient history, Gene diagnosis disease database which contains the symptoms 

of stroke disease. 

A model for the Prediction of Thrombo-Embolic Stroke in which Artificial Neural Network 

is proposed to aid existing diagnosis methods. The dataset is collected from 50 patients who 

have symptoms of stroke disease. All the fifty cases are analyzed after scrutiny with the help 

of the Physicians and 25 parameters are selected. Further, a backward stepwise method is 

applied to remove the insignificant inputs from the selected 25 parameters and 20 parameters 

are finalized.  

T. Kansadub and et al. [5] proposed a model in which demographic data is used as a dataset 

for stroke risk prediction. Firstly, the demographic information was initiated and collected 

from Faculty of Physical Therapy, Mahidol University, Thailand. Identifying stroke is 

tedious and time-consuming for medical practitioners. Therefore, automated system for 

predicting symptoms of stroke from demographic data of patients is needed. The 

demographic data of patients consisting of gender, age, and education. Thus, according to 

the 250 stroke patients and 67,897 non-stroke patients, the re-sampling was executed. 

Consequently, the data of non-stroke were reduced; stroke consisted 250 and non-stroke 500. 

The nine randomized datasets were created and selected for the best one in terms of similarity 

to the original data by comparing the difference of normalized attribute values. After the data 

were ready, three classification algorithms: Decision Tree, Naive Bayes and Neural Network 

are used for predicting stroke, and the results were compared. In this study, aspect of 

accuracy, Decision Tree was the best method, but in the aspect of safety of life, Neural 

Network was the best method because of the highest in FP value and the lowest in FN value.  

Two independent research team [6,7] evaluated the RNN in two domain, Energy Load 

Forecasting and acoustic model. Their work concludes GRU has better performance in time 

domain than LSTM and RNN. In terms of accuracy, GRU and LSTM beat the RNN. For 

energy load forecasting GRU has RMSE of 0.58 whereas LSTM has 0.61. On Acoustic 

Modeling, GRU offered 0.05 to 0.13 benefit in performance. 
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Chapter 3: Recurrent Neural Networks 

3.1 Recurrent Neural Units 

The deep learning has transformed the field of machine learning. One of the neural network 

architecture paradigms that has driven breakthroughs in this field is recurrent neural networks 

(RNNs). RNNs are a kind of neural network that takes sequential input and produces 

sequential output by sharing parameters between time steps. RNNs have led to breakthrough 

results in natural language processing, image captioning, and speech recognition. Though 

RNNs have proven useful in many sequence and series-based learning tasks, their application 

to raw time series prediction is still relatively unexplored. 

This thesis thus applies established neural network techniques to the stroke prediction 

problem to produce novel results. Traditional RNNs consists of an input layer, an output 

layer, and a recurrent layer, as depicted in figure 3.1. They are comprised of a series of weight 

matrices and activation functions. Explicitly, the set of equations that maps a set of inputs, 

outputs. 

 

 

 

 

Figure 3. 1 Unfolded Recurrent Unit 

 

y(t) 

x(t) 

h(t) 
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Here, new state ht is derived from previous state ht−1 as 

 

 ht=f(ht−1 + xt)……………………………..……… (3.1) 

 

Where, f(. ) is activation function. Hence, RNN is capable to make a prediction based on the 

hidden state in the previous timestamp and current input. The use case of RNN is nowadays 

limited as it suffers from vanishing and exploding gradient problem. Error being propagated 

in RNN at time t is defined as, 

 

dE

dW
= ∑

dEt

dw
T
t=1 ………………………………….… (3.2) 

 

The error for each time-step is computed through applying the chain rule differentiation as, 

 

dEt

dW
= ∑

dEt

dyt
.

dyt

dht
.

dht

dhk
.

dhk

dW

t
k=1  …………….……….. (3.3) 

 

 

Here, term 
dht

dhk
 refers to the partial derivative of  ht with respect to all previous k time-steps. 

When such terms become very large then the overall multiplicative values go higher and 

resulting exploding problem. To minimize this problem, we can set threshold value, and 

when it reaches the point, we then clip it to some small value. This process is called gradient 

clipping.  In the opposite case, when individual gradient become small, the resulting value 

goes to zero thus gradient vanishing. To minimize this problem, we use some random 

initialization of weight and use ReLU activation. 

The parameter ht in RNN serves two purposes. 

1. Make an output prediction 

2. A hidden state representing the data sequence processed so far. 
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3.2 Bidirectional Long Short-term Memory 

The idea of BLSTMs comes from bidirectional RNN, which processes sequence data in both 

forward and backward directions with two separate hidden layers [7]. It has been proved that 

the bidirectional networks are substantially better than unidirectional ones in many fields like 

phoneme classification and speech recognition. Inspired from the success history of different 

domain, bidirectional LSTMs is used in stroke prediction problem. 

 

 

  

Figure 3. 2 Bidirectional Long Short-term Memory 

 

The LSTM with input, forget and output gate is capability with long time lag, state reset and 

resolve temporal distance. But all states are accumulated forward. In real task, the system is 

usually requested to take backward information into consideration. 

g(t-1) g(t) 

h(t-1) h(t) 

g(t+1) 

h(t+1) 

y(t) 

Forward layer 

Backward layer 

Output y(t-1) 

x(t+1) x(t) x(t-1) 

y(t-1) 

Input 
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Mathematically, 

ht = forward pass = σ(Wxh. xt + Whh. ht−1 + bh)…….…..…….….. (3.4) 

gt = backward  pass = σ(Wxg. xt + Wgg. gt+1 + bg)………….…...... (3.5) 

yt = Why. ht + Wgy. gt + by … ..……….………………………....... (3.6) 

 

 

Supposed the one piece of sequence is from time 0 to time T, the forward and backward pass 

algorithm is followed by: 

 

Forward Pass feed all input data for the sequence into BDLSTM and calculate all predict 

output. 

1. Do forward pass for forward states (from time 0 to time T), save all the cell output 

through time. 

2. Do forward pass for backward states (from time T to 0), save all the cell output 

through time. 

3. Do forward pass for output layer by adding two saving results. 

 

Backward Pass Calculate the error function derivation for the sequence used in the forward 

pass 

1. Do backward pass for output neuron 

2. Do backward pass for forward states (from time T to time 0). Then do backward pass 

for backward states (from time 0 to T) 

 

 

3.2.1 Activation Function 

Neural network contains three element, input, node and output. Information is processed 

from one node to another node based on input values. The node will pass the information 

only when it gets triggered (cross the threshold value). Such controlling of passing 
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information from one node to another node is accomplished by activation function. 

Activation function holds two properties- Linearity and Differentiability. Linearity properties 

defines how input computation will map to output values.  Differentiability properties define 

how its first derivative works. Differentiability also defines the gradient based learning 

phenomenon.  

If an activation function is linear( say, y = mx + c), its first derivative will be always 1 thus, 

less opportunity for learning. Whereas, if activation function is nonlinear (say, f(x)=1/(1 +

e−x)), there will be a higher degree of learning opportunity as it provide same order of first 

differential value. 

Hence, this function is divided into two groups, 

1. Linear activation functions, thus gradient based learning is not possible. 

2. Non-linear activation functions, thus gradient based learning is possible. 

 

Four activation functions, Sigmoid, Tanh, ReLU and Leaky ReLU are described below. 

a. Sigmoid 

A sigmoid function is nonlinear function and produces a curve with an “S” shape. This 

function is well known for binary classifier. It is defined as, 

f(x)=1/(1 + e−x)…………………………….………....... (3.7) 

 

Figure 3. 3 Sigmoid Plot 
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Figure 3.3 shows, sigmoid activated output limits on (0,1). One serious problem with sigmoid 

function is it suffers from vanishing gradient, means, when output value of sigmoid become 

very high (almost 1) or very low (near 0), its first derivative will be very low (<<1). This 

causes vanishing gradients and poor learning for deep networks 

 

b. Hyperbolic Tangent 

The hyperbolic tangent (tanh) non-linearity is defined by the formula, 

f(x) = (e−x − ex)/(e−x + ex)……………………..…………....... (3.8) 

 

 

Figure 3. 4 Tanh Plot 

 

The tanh(x) function can be viewed as a rescaled version of the sigmoid, and its 

Output falls in the interval of (−1, 1), as illustrated in Figure 3.4. 

 

 

  



 

12 

 

c. Rectified Linear Unit 

The Rectified Linear Unit (ReLU) is defined as 

y =  0, when  x ≤  0 

=  x, when  x > 0 ………………………………………………….. (3.9) 

 

 

 

 

Figure 3. 5 ReLU Plot 

 

The output from ReLU bounds to (0, ∞). The first derivative is 0 for all negative inputs and 

1 for all positive. So whenever input values fall in negative range, back propagation is zero, 

thus certain weights become dead. 

 

d. Leaky ReLU 

Leaky ReLUs are one attempt to fix the dying ReLU problem. Instead of the function being 

zero when x < 0, a Leaky ReLU have a small positive gradient for negative inputs. Leaky 

ReLU has the following mathematical form: 

y =  0.01 ∗  x, when  x <  0 
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=  x, when  x ≥  0 ……..…………………........... (3.10) 

 

 

Figure 3. 6 Leaky ReLU Plot 

 

3.2.2 Optimizer 

3.2.2.1 Stochastic Gradient Descent 

Generally speaking, neural networks employ some form of minibatch stochastic gradient 

descent (SGD) to learn an appropriately good setting of the weight matrices with respect to 

some loss function, L(x). The mini batch SGD update with respect to θ [8]. 

θt+1  =  θt −  α. ∑
δL(x)

δθ st∈X            ………………………...……....... (3.11) 

3.2.2.2 RMSProp 

Minibatch SGD by itself is poorly suited for training Neural Network. The method is 

extremely sensitive to the choice of learning rate. If too large learning rate is chosen, the 

learning is unstable with parameters oscillating wildly around a local optimum. If the learning 

rate is set too small, and learning becomes intolerably slow. Furthermore, a single learning 

rate that was well suited early in optimization may end up non-ideal somewhere else in the 

parameter space. There are numerous adjustments to mini batch SGD that seek to remedy 

these issues. 
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RMSprop [11], update consists of the following two steps: 

E[g2]t =  0.9 ∗ E[g2]t−1 +  0.1 gt
2 

θt+1  =  θt  −
η

√(E[g2]t+ ε)
gt   ……...……....... (3.12) 

Where, 

 gt is the minibatch gradient calculated at iteration respect to parameter  η, θt, E[g2]
t
 is an 

approximation to the running average of squared gradients, and η is user-set hyperparameter 

that adjusts the rate of learning.  

In order to keep the parameter, update roughly consistent, the algorithm scales the learned 

gradient by the square root of a running average of squared gradients √ E[g2]t  

The running average as defined here gives much higher weight to recently calculated 

gradients which are more likely to have a magnitude similar to the one at the current time 

step, and thus better ensures that the parameter is updated by a consistent amount. By 

ensuring the size of the actual parameter update is consistent, learning will be more stable 

without the need for a cripplingly slow learning rate, and thus more rapid. 

 

3.2.2.3 Adaptive Moment Estimation (Adam) 

Adam, a method for efficient stochastic optimization that only requires first-order gradients 

with little memory requirements. The method computes individual adaptive learning rates for 

different parameters from estimates of first and second moments of the gradients [9]. It 

combines the advantages of two recently popular methods: AdaGrad (Duchi et al., 2011), 

which works well with sparse gradients, and RMSProp (Tieleman & Hinton, 2012), which 

works well in on-line and non-stationary settings.  Good default settings for the tested 

machine learning problems are α = 0.001, β
1

= 0.9, β
2

= 0.999, e = 10e − 8 

 

Algorithm run as, Initialize  m0, v0  and t = 0, α, β1 , β2,  

                                                    gt = df/dt    

mt = [β1 mt−1 + (1 − β1). gt]/[1 − β1] 
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vt = [β2 vt−1 + (1 − β2). gt]/[1 − β2] 

And finally, weight updates as 

wt = wt−1 − α. mt/(ϵ + √vt)     ……………...……....... (3.13) 

 

 

3.2.2.4 Adaptive Moment Estimation (Nadam) 

Nadam [10], is an acronym for Nesterov and Adam optimizer. Nesterov factor has been 

added in Adam optimizer. The momentum, m contains the gradient update for the current 

timestamp gtin addition to the momentum vector update for the next timestamp  t + 1 , which 

needs to be applied before taking the gradient at the next timestamp.  

 

3.2.3 Loss Functions 

A loss function is minimized as the objective to measure the compatibility between a 

prediction and the ground truth labels. 

3.2.3.1 Quadratic Cost 

Quadratic cost is also known as the Mean Squared Error (MSE). It is defined by the formula 

Loss (x, y)  =
1

n
 ∑ |xi − yi|² n

i=1 ………………….………....... (3.14) 

Where x represents n predictions of neural networks, and y represents the real classes of the 

input data.  
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3.2.3.1 Cross Entropy 

The cross entropy of a distribution P with respect to a distribution Q measures how many bits 

are needed on average to encode data from P with the code that is optimal for Q. It is defined 

as, 

Loss (x, y)  = − ∑ yi
n
i=1 ∗ log

exp(xi)

∑ exp(xi
n
j=0 )

 ……………...…....... (3.15) 

Where x is a vector of n predictions of neural networks, and y is a binary vector full of 0s 

and 1s representing the real classes of the input data. 

 

3.2.4 Batch Normalization 

Batch normalization potentially helps neural network to converge faster and get higher 

overall accuracy. Batch Normalization shifts inputs to zero-mean and unit variance, which 

makes the inputs of each trainable layer comparable across features. It allows singular 

functions such as TanH and Sigmoid to not get stuck in the saturation mode, where the 

gradient is almost 0. In practice, networks that use batch normalization are more robust to 

bad initialization. 

 

3.2.5 Dropout Regularization 

Large neural network models consist of many parameters and perform extremely complex 

manipulation. Model will often overfit on the training set and lose generalizability and 

accuracy on the test set. In this work, dropout regularization with a dropout probability of 

p = 0.42 has been employed to address the problem of over fitting. Dropout regularization 

independently sets each weight in consideration to zero with probability p in response to this, 

the network cannot rely on a few weights per-example to predict an outcome, lest those 

weights get pruned in a training step. The model is thus forced to employ many weights to 

process and predict each example, reducing over fitting. We deliberately avoid dropout on 

weights between time steps, as doing so effectively eliminates long-range memory. 
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Chapter 4: Research Methodology 

4.1 System Design and Development 

4.1.1 Functional block diagram 

The Overall research methodology involves the following steps. The workflow follows from 

data collection, data preprocessing, model implementation and results and analysis. The 

methods and process followed in each step are described in preceding sections. 

 

 

 

 

Figure 4. 1 Functional block diagram 
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Y N 

4.1.2 Flow Chart 

Research workflow diagram is shown in figure 4.2. The flow diagram incudes raw data 

feeding from CSV, pre-processing of data, Model validation, and result and graphing. 
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Figure 4. 2 Flow Chart 
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4.2 Datasets 

In machine learning and Deep learning algorithms for classifying and recognizing, data plays 

a vital role. Having too many data is always recommended to avoid the underlying problem 

associated with machine learning. Training with low volume of data is always susceptible to 

under fitting the model we will use.  

Overall experiment has been carried out in openly available data set, Kaggle Open Stroke 

Data Set. Data has been divided into two sections, training and testing set. Each set has data 

record of counts 42000 and 18000 accordingly. Training set has 10 features set as, 

 

 

Table 4. 1 Feature Set 

1 id 

2 gender 

3 age 

4 hypertension 

5 heart_disease 

6 ever_married 

7 work_type 

8 residence_type 

9 avg_glucose_level 

10 bmi 

11 smoking_status 

 

 

Two row extracted from dataset. 

[5374,Male,23,0,0,No,Private,Rural,93.74,31.2,never smoked,0] 

[56669,Male,81,0,0,Yes,Private,Urban,186.21,29,formerly smoked,1] 
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4.3 Data Preparation 

Data preparation refers to the process of transformations on source data before feeding it to 

the algorithm. We should ensure data preprocessing for achieving better results from the 

applied model in Machine Learning the format of the data has to be in a proper manner. Data 

process goes through following phase. 

 

1. Feature Representation 

The neural network takes numeric data as input, performs complex computation and 

generate numeric output. The dataset in this research work is not what is expected for 

the neural network input feeds. Thus, proper data representation is done here. Let's 

take two rows from the original dataset. 

[5374,Male,23,0,0,No,Private,Rural,93.74,31.2,never smoked,0] 

[56669,Male,81,0,0,Yes,Private,Urban,186.21,29,formerly smoked,1] 

 

After feature representation, this looks like, 

[5374,1,23,0,0,0,1,0,93.74,31.2,0,0] 

[56669,1,81,0,0,1,1,1,186.21,29,1,1] 

 

2. Data cleaning 

The purpose of data cleaning is to fill in missing values, smooth noisy data, identify 

or remove outliers, and resolve inconsistencies. The dataset here used is comprised 

of attributes with some missing in attribute, it is required to remove such data from 

dataset before model is trained. Take one row extracted from dataset after feature 

representation. 

Table 4. 2 Raw data 

id gender age 

hypertensi

on 

heart_di

sease 

ever_ma

rried 

work

_type 

residence

_type 

avg_gluc

ose_level bmi 

smoking

_status stroke 

310

91 1 34 0 1 1 1 1 106.23  1 0 
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The row with BMI missing data should be removed during data cleaning process. If 

this row is fed for neural network, it will start to learn from noisy data as well.  

 

3. Data Normalization 

Normalizing refers to rescaling each observation (row) to have a length of 1 (called a 

unit norm in linear algebra). One experiment is done to demonstration the learning 

behaviors without data normalization later in below result and analysis section. The 

single row after data-normalization looks like 

 

[3.92900000e+04 5.00000000e-01 1.21093750e-01 0.00000000e+00 

 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 

 2.72061004e-01 1.13142857e-01 1.00000000e+00 0.00000000e+00] 

 

Here, min-max normalization technique is used to preserve the originality of dataset. 
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4.4 Model Design 

The proposed model for the research work used bidirectional long short-term memory 

recurrent network. BLSTM model in the research work has a series of layers. Architectural 

contains three layers.  

1. Embedding Layer 

2. BLSTM Layer 

3. Dense Output Layer 

________________________________________________________________________ 

Layer (type)                         Output Shape                Param # 

================================================================ 

embedding_5 (Embedding)           (None, None, 256)                      256000 

________________________________________________________________________ 

bidirectional_5 (Bidirectional)        (None, 256)                394240 

________________________________________________________________________ 

dropout_5 (Dropout)                  (None, 256)                0 

________________________________________________________________________ 

dense_5 (Dense)                      (None, 1)                   257 

================================================================ 
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Figure 4. 3 BLSTM Design in Keras 

 

 

Each layer works as, 

1. Embedding layer 

The Embedding layer is used to create input vectors for incoming data. It sits between 

the input and the BLSTM layer, i.e. the output of the Embedding layer is the input to 

the LSTM layer. 

2. BLSTM Layer 

This is a single unit of BLSTM with configuration of 256 output vector. This output 

goes to densely connected layer which is our final layer. 

3. Dense Output Layer 

This is our final layer which takes input vector of 256 size and result as output data. 
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4.5 Tools and Environments 

4.5.1 Python, Keras and Tensorflow 

Python is an interpreter, high-level, general-purpose programming language. This language 

has been proved as first research language as of large number of in-built and open sourced 

libraries. General syntax of this language is based on indentation with high user-friendly 

keywords. 

Keras is a high-level neural networks API, written in Python and capable of running on top 

of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast 

experimentation for deep learning. It supports both convolutional networks and recurrent 

networks, as well as combinations of the two and seamlessly run on CPU and GPU. 

 

4.5.2 Environments 

The system configuration of the overall research work is carried under following test bed. 

 

Table 4. 3 Development Environment 

Platform Google Colab 

Operating System Ubuntu 18.04.2 LTS 

Memory 12 GB 

GPU NVIDIA® Tesla® K80 
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Chapter 5: Result and Analysis 

The different version of recurrent neural network is trained in 8:2 data set ratio. Series of 

experiments conducted under different optimizer and activation function. In all experiment 

dropout of 0.42 is implemented. 

5.1 Experiment on stochastic gradient descent (SGD) optimizer 

 

 

 

 

 

Figure 5. 1 Experiment on SGD Optimizer 
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The BLSTM network is trained with SGD, stochastic gradient descent optimizer. The loss 

curve shows it has reached optimal state in around 30 epoch. The learning rate for the 

optimizer is set on 0.001 with momentum 0.95. 

 

5.2 Experiment on RMSProp Optimizer 

 

Figure 5. 2 Experiment on RMSProp Optimizer 

The experiment is done with RMSprop Optimizer for runtime parameter, learning rate 0.001. 

The model reached optimal state in around 15 epochs.  
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5.3 Experiment on Adam Optimizer 

 

 

Figure 5. 3 Experiment on Adam Optimizer 

 

The experiment with Adam optimizer under runtime parameter as Learning rate=0.001, 

beta_1=0.9 and beta_2=0.999 reached the optimum state around 10 epochs. 
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5.4 Experiment on Nadam Optimizer 

 

 

Figure 5. 4 Experiment on Nadam Optimizer 

 

The network is now fed with Nadam as optimizer under parameter, learning rate=0.002, 

β
1
=0.9, β

2
=0.999. The model gets optimized under 10 epochs similar to Adam optimizer.  
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5.5 Learning with high volume dataset 

The experiment now run for 42K training dataset. The experiment is done with the Adam 

optimizer with learning rate 0.001.  It shows with higher volume of dataset, model reached 

its optimized state in 3rd epoch with validation accuracy of 98%.  

 

 

Figure 5. 5 Learning with high volume dataset  
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5.6 Learning without data normalization 

The experiment conducted in un-normalized dataset with Adam optimizer.  The validation 

vales on loss curve starts to rise after 4 epochs as shown in figure 5.6.1, thus data 

normalization needs to be done for the model to learn faster and smoother. The loss graph 

for normalized dataset is shown in figure 5.6.2. Data normalization makes sure different 

features range in same values (0,1), hence model gradient reach global minima quickly. 

 

Figure 5.6. 1 Learning without data normalization 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. 2 Learning with data normalization 
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5.7 Dropout Analysis 

This analysis figures out the drop ratio of network during model training. Setting too low 

drop-out will cause model to overfit on training data and too high cause the low learning 

ability. This experiment concludes our model has reached optimal state in drop-out ratio in 

the range 0.4 to 0.45. Following graph illustrate their loss behavior on training and validation 

data. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. 1 Dropout ratio=0.2 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 5.7. 2 Dropout ratio=0.3 
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Figure 5.7. 3 Dropout ratio=0.40 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. 4 Dropout ratio=0.42 
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5.8 Activation Function Analysis 

Number of experiments are carried out with different activation function. The following 

section list out the respective results. 

 

5.8.1 Observation with SoftMax function 

The experiment with SoftMax has not gain any learning curves. The experiment is run for 5 

epochs, but model’s performance is not improving. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. 1 Experiment on SoftMax function 
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5.8.2 Observation with sigmoid function 

Under the sigmoid function model has reached 98% of training accuracy. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. 2 Experiment on sigmoid function 

5.8.3 Observation with exponential function 

Model has pretty well performance on exponential functions as well. Training accuracy is a 

little bit low from sigmoid activation function. 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 5.8. 3 Experiment on exponential function 
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By analyzing experiment 5.8.1, 5.8.2 and 5.8.3, it has been noticed that sigmoid activation 

has best performance over exponential and SoftMax. 

 

5.9 Validation data ratio analysis 

Four experiment is done to perform validation data analysis. Experiment is conducted on 6:4, 

7:3, 8:2 and 9:1 data ratio. Figure below shows the respective loss graph. On the experiment 

it has concluded that optimum model is achieved at validation ratio 8:2.  

 

 
Figure 5.9. 1 Validation ratio 6:4 

 
Figure 5.9. 2 Validation ratio 7:3 
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Figure 5.9. 3 Validation ratio 8:2 

 

Figure 5.9. 4 Validation ratio 9:1 

 

Looking into validation ratio loss curve of 6:4 in figure 5.9.1, 7:3 in figure 5.9.2 and 9:1 in 

figure 5.9.4, validation loss is higher and is not steady as seen for validation ratio 8:2 in figure 

5.9.3.   
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5.10 Comparative Analysis 

5.10.1 10K Training Set 

The experiment has been conducted in 10K dataset. Overall performance on different 

algorithms are summarized below.  

Table 5.10. 1 Performance on 10K dataset 

Algorithm BLSTM LSTM GRU 

Optimizer 

Train 

Accuracy 

Test 

Accuracy 

Train 

Accuracy 

Test 

Accuracy 

Train 

Accuracy 

Test 

Accuracy 

Adam 0.9353 0.80266 0.93237 0.8 0.930807 0.8 

RMSProp 0.9249 0.79801 0.93059 0.7986 0.93255 0.799 

Nadam 0.9346 0.80024 0.931487 0.8101 0.93284 0.8003 

SGD 0.9144 0.7921 0.931254 0.7913 0.9083 0.7944 

 

The table above shows, under the dataset training accuracy has reached about 93% and testing 

in a range of 81%.  The testing is performed with different optimizer and Adam showed it as 

best of all.  Following ROC curve shows the marginal region for true positive rate and false 

positive rate. 

 

Figure 5.10. 1 ROC analysis for BLSTM with Adam Optimizer 
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The curve nature shows model has classified the problem pretty well. It has reached nearly 

80% of the area under the curve. 
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5.10.2 42K Training Set 

The experiment now conducted for 42K dataset. All of the training algorithm has reached its 

saturation state under 4 epochs. Table below summarizes the overall performance.  

 

Table 5.10. 2 Performance on 42K dataset 

Algorithm BLSTM LSTM GRU 

Optimizer 

Train 

Accuracy 

Test 

Accuracy 

Train 

Accuracy 

Test 

Accuracy 

Train 

Accuracy 

Test 

Accuracy 

Adam 0.98439 0.91233 0.98287 0.91173 0.98369 0.91224 

RMSProp 0.98296 0.91102 0.983105 0.9105 0.98366 0.9102 

Nadam 0.983118 0.91152 0.98395 0.9101 0.98399 0.9113 

SGD 0.97955 0.90511 0.976177 0.9011 0.972289 0.9061 

 

 

 

 

 

Figure 5.10. 2 ROC analysis for BLSTM with Adam Optimizer 

 

On larger dataset, BLSTM with Adam as optimizer has won the competition with training 

accuracy of 98%. The test accuracy also reached 91%. ROC curve for the BLSTM with Adam 
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as optimizer is shown in figure 5.9.2. The ROC curve has supported the classifier is able to 

reach nearly 90% of the area under the curve. The AUC is little smaller or larger than test 

accuracy score as AUC is based on multiple threshold calculations. 

 

5.10.3 Confusion matrix analysis 

Confusion matrix analysis gives the measurement of how truly or badly classified the 

predictive problem. This research work is validated with confusion matrix on test data for its 

accuracy output. For this unseen test data with 143 positive class and 357 negative class are 

fed to models’ output. Table 5.10.3 summarize the model accuracy. Model has reached true 

positive rate of 0.8 and true negative of 0.95. The slight variation of accuracy is due to 

imbalanced training dataset, where major of dataset are in negative class. Out of 42K dataset 

only 783 sample are in positive class. 

 

Table 5.10. 3 Confusion matrix 

 Stroke (Predicted) Non-Stroke (Predicted) 

Stroke (Actual) 114 29 

Non-Stroke (Actual) 16 341 
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Chapter 6: Conclusion 

This research conducted for series of experiments using different optimizer and three kinds 

of recurrent neural network. List of experiment shows that, BLSTM networks has best 

performance over all other RNN variant network. In 42K dataset, BLSTM reach 98% of 

validation accuracy.  

This work points that model has reached optimum state trained with Adam as optimizer in 

0.001 learning rate with sigmoid activation function in final layer. Data set partition of 8:2 

from training to validation and use of 0.42 drop-out gives the best performance. This work 

suggests increasing training dataset to achieve higher accuracy. 

This research work shows, it is the best model design among task done by other researchers. 

Researcher Hung and et al. [2] designed model using DNN which achieved the accuracy of 

86%. The work done by M. Singh and P. Choudhary [1] was used ANN architecture and 

achieved the accuracy of 89%. Result comparison shows this work gained better performance 

over those ones.  



 

42 

 

Chapter 7: Further Enhancement 

This research work is based on very few feature vectors, all together it has included eleven 

features. Biologically these feature set could not be sufficient to determine the actual stroke 

condition. It has been advised that this model could solve the real time problem if those more 

correlated feature vectors is available in training data set. 

Relatively, 42K dataset is not enough for the real time problems using machine learning 

model. Future research with high volume of dataset lead high accuracy even. 

Looking into the current data ratio only 2% fall under stroke patient case. This thesis work 

has not addressed any solution to mitigate the imbalanced data. So, machine learning model 

could achieve more if the work can stir on fact.  

This research is done on single BLSTM with 128 timestamps. Next research could be done 

on stacked BLSTM networks. 
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