Water Quality Assessment of Public Wells of Madhyapur Thimi Municipality

A Dissertation Submitted to Central Department of Environmental Science for partial fulfilment of the requirements for the Master's Degree in Environmental Science

Submitted by: Sarita Shrestha

Central Department of Environmental Science Institute of Science and Technology Tribhuvan University Kirtipur, Kathmandu.

Exam Roll No: 1039 T.U. Registration No. 5-2-37-457-2000

February, 2008

LETTER OF RECOMMENDATION

This is to certify that Ms. Sarita Shrestha has prepared this dissertation entitled "Water Quality Assessment of Public Wells of Madhyapur Thimi Municipality" for partial fulfillment of the requirement for the completion of Master's Degree in Environmental Science and she has worked satisfactorily under our supervision and guidance.

This dissertation work embodies her own work and is in the form as required by Central Department of Environmental Science, Tribhuvan University.

We therefore recommend the dissertation for approval and acceptance.

Co-Supervisor Mr. Prakash Chandra Amatya Executive Director, NGO Forum for Urban Water & Sanitation, Tripureshwor, Kathmandu, Nepal

.....

Supervisor Prof. Jaya Krishna Shrestha Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal.

TRIBHUVAN UNIVERSITY

CENTRAL DEPARTMENT OF ENVIRONMENTAL SCIENCE Kirtipur, Kathmandu, Nepal Ph no: 01-4332147, 4332711 www.cdes-tu.edu

LETTER OF APPROVAL

Name	Sarita Shrestha
Degree	Master of Science in Environmental Science: Majoring in
	Fresh Water Environment
Title of Thesis	Water Quality Assessment of Public Wells of Madhyapur Thimi Municipality

Evaluation Committee:

Pof. Dr. Uma kant Ray Yadav Head of Department, Central Department of Environmental Science Tribhuvan University, Kirtipur, Kathmandu, Nepal

External Examiner Prof. Dr. Krishna Manandhar Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal

.....

Supervisor Prof. Jaya Krishna Shrestha Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal Approved Date: February 27, 2008

Declaration

I, Sarita Shrestha, hereby declare that the work presented herein is genuine work done originally by me and has not been published or submitted elsewhere for the requirement of a degree program. Any literature data works done by others and cited within this dissertation has been acknowledged and listed in the reference section.

.....

Sarita Shrestha February 3, 2008

ACKNOWLEDGEMENT

My sincere gratitude goes to Prof. Dr. Uma Kant Ray Yadav, Head of the Department, Central Department of Environmental Science, supervisor Prof. Jaya Krishna Shrestha, Central Department of Chemistry, Tribhuvan University and co-supervisor Mr. Prakash Amatya, Executive Director, NGO Forum for urban water & sanitation for their tremendous support, constant encouragement and unfailing guidance during the present research work. This dissertation would have not been completed without their sincere guidance.

I express my gratitude to my teachers Dr. Maya Prakash Bhattta, Ms. Shaila Basnet and Ms. Usana Shrestha, for providing necessary guidance.

I am grateful to Mr. Prayag Joshi, UDLE, Mr. Tulshi Bhakta Tako, Community Development Section Chief, Mr. Ganga Man Shrestha, Map Section, Madhyapur Thimi Municipality for providing guidance and necessary materials.

My heartily thanks go to Manisha Shakya, Anil K.C., Gyan Kumar Chippi Shrestha, Pratikshya Pradhan, Sagar Shrestha and all others who helped a lot during this research work.

I am thankful to Laboratory staffs Ms. Anju Thapa and Mr. Alok Poudel (CDES), the library staffs of Tribhuvan University Central Library, ENPHO, IUCN, UNDP, Department of Hydrology and Meteorology (DHM) and other institutions.

At last, but not the least, I am very grateful to my family members, all staffs of CDES and local people for their incessant support and help during the present study.

Sarita Shrestha, February, 2008 sarita_sht@yahoo.com

ABSTRACT

Madhyapur Thimi Municipality with an area of 11.47 sq. km is situated exactly in between Kathmandu, Lalitpur and Bhaktapur and has total population of 47751(CBS 2001). Important physico-chemical parameters were studied monthly over the period of eight months from February to September 2006 and microbiological parameters were studied for the month September. The physico-chemical features such as pH, electrical conductivity, total dissolved solids, dissolved oxygen, free carbondioxide, total alkalinity, total hardness, calcium, magnesium, chloride and phosphate vary significantly from sites 1 to 20 whereas the monthly variation of only water temperature, pH, dissolved oxygen, free carbondioxide, total alkalinity, nitrate and phosphate were significant over the investigation period. The Nitrate-nitrogen content of all Well water samples were found within WHO limit during the investigation period. The iron content of Sites 1 (Kumhalachi), 2 (Bahanani), 4 (Gungachiwa), 9 (Tigani), 11 (Tahanani), 12 (Bhulankhel), 13 (Bramhanani), 15 (Tachutole), and 16 (Bamune tole) crosses the WHO limit for iron content. The maximum iron content was found in site 11 in the month June during the investigation period. Similarly, the electrical conductivity of sites 2 (Bahanani), 3 (Dhwakasi), 4 (Gungachiwa), 5 (Kasmatuthi), 8 (Nachutole), 9 (Tigani), 10 (Lokanthali), 11 (Tahanani), 12 (Bhulankhel), 13 (Bramhanani), 14 (Tulanani), 15 (Tachutole), 16 (Bamune tole), 17 (Parsikomarga), 18 (Gachen marga), 19 (Shiva tole) and 20 (Chode marga) crosses the WHO limit for electrical conductivity. The maximum electrical conductivity of 2330 μ S/cm was found in site 9. From MF Test all Well waters contained faecal coliform per 100 ml of water sample greater than 300. So, all Wells are contaminated with faecal coliforms. But from MPN Test, out of 10 sites in which MPN Test were performed maximum coliforms were found in site 20 (1600/100ml) and minimum were found in site 7 (2/100 ml). All the well water samples gave positive completed coliforms test confirming the detection of coliform bacteria in the water sample, indicating the faecal contamination of water except site 7. Thus, all well waters are considered as nonpotable from microbial point of view. Necessary treatment should be done before drinking such water

CONTENTS

CHAPTER	Page no.
1. INTRODUCTION	1
1.1 Background	1
1.2 Ground Water	2
1.3 Population and Water Resources: A Delicate Balance	4
1.4 Water Resources	5
1.4.1 Drinking Water Resources	5
1.4.2 Socio-economic Driving Forces	6
1.4.3 Pressure on Water Resources	8
2. LITERATURE REVIEW	10
2.1Review of Literatures	10
2.2 Rationale of the study	15
3. OBJECTIVES	16
3.1 Objectives of the study	16
3.2 Limitations of the study	16
4. STUDY AREA	17
4.1 Geography	
4.2 Climate	18
4.3 Geology	19
4.4 Demography	20
5. MATERIALS AND METHODS	21
5.1 Sampling Stations	
5.2 Sampling Frequency	22
5.3 Methods of sample collection and analysis	22
5.3.1 Water Sample collection and preservation	22
5.3.2 Methods of analysis of physico-chemical parameters	
5.3.3 Methods of analysis of Microbial parameters	30

5.4 Statistical Analysis	33
5.4.1 Hypotheses	33
6. RESULTS	34
6.1 Physico-chemical features	34
6.1.1 Water temperature	
6.1.2 pH	36
6.1.3 Dissolved Oxygen (DO)	39
6.1.4 Free Carbondioxide (CO ₂)	41
6.1.5 Total alkalinity	44
6.1.6 Total hardness	46
6.1.7 Calcium and Calcium hardness	
6.1.8 Magnesium	54
6.1.9 Chloride	56
6.1.10 Nitrate-nitrogen	
6.1.11 Ortho-phosphate	61
6.1.12 Iron	64
6.1.13 Electrical conductivity	66
6.1.14 Total Dissolved Solids (TDS)	69
6.2 Microbiological features	72
6.2.1 Membrane Filter Test	
6.2.2 MPN Test	
7. DISCUSSION	
7.1 Physico-chemical features	
7.2 Microbiological features	
8. CONCLUSION AND RECOMMENDATIONS	80
8.1 Conclusion	80
8.2 Recommendations	82

REFRENCES

APPENDICES

List of Tables

Table 1: Access to drinking water by household at district level (%)	6
Table 2: Drinking Water Supply and demand, Kathmandu Valley Cities	9
Table 3: Status of water supply in Kathmandu Valley	9
Table 4: Population Distribution among the wards	20
Table 5: Name of the sites, their location and ward no.	21

List of Figures

Figure 1: Location map of Madhyapur Thimi Municipality	
Figure 2: Ward boundary map of Madhyapur Thimi Municipality	
Fig. 3.1: Seasonal variation of water temperature of the wells (1-10) over of the	34
period eight months (2006)	
Figure 3.2: Seasonal variation of water temperature of the wells (11-20) over the	35
period of eight months (2006)	
Figure.4.1: Seasonal variation of pH of the wells (1-10) over the	37
period of eight months (2006)	
Figure 4.2: Seasonal variation of pH of the wells (11-20) over the period	37
of eight months (2006)	
Figure 5.1: Seasonal variation of Dissolved oxygen (DO) of the wells	39
(1-10) over the period of eight months (2006)	
Figure 5.2: Seasonal variation of Dissolved oxygen (DO) of the wells	40
(11-20) over the period of eight months (2006)	
Figure 6.1: Seasonal variation of Free Carbon dioxide of the wells (1-10)	42
over the period of eight months (2006)	
Figure 6.2: Seasonal variation of Dissolved oxygen (DO) of the wells	42
(11-20) over the period of eight months (2006)	
Figure 7.1: Seasonal variation of Total alkalinity of the wells (1-10)	44

over the period of eight months (2006)	
Figure 7.2: Seasonal variation of Total alkalinity of the wells (11-20) over	45
the period of eight months (2006)	
Figure 8.1: Seasonal variation of Total hardness of the wells (1-10) over	47
the period of eight months (2006)	
Figure 8.2: Seasonal variation of Total hardness of the wells (11-20) over	47
the period of eight months (2006)	
Figure 9.1: Seasonal variation of Calcium of the wells (1-10) over the	49
period of eight months (2006)	
Figure 10.1: Seasonal variation of Calcium hardness of the wells (1-10)	50
over the period of eight months (2006)	
Figure 9.2: Seasonal variation of Calcium of the wells (11-20) over the	50
period of eight months (2006)	
Figure 10.2: Seasonal variation of Calcium hardness of the wells (11-20)	51
over the period of eight months (2006)	
Figure 11.1: Seasonal variation of Magnesium of the wells (1-10) over the	54
period of eight months (2006)	
Figure 11.2: Seasonal variation of Magnesium of the wells (11-20) over	55
the period of eight months (2006)	
Figure 12.1: Seasonal variation of Chloride of the wells (1-10) over the	57
period of eight months (2006)	
Figure 12.2: Seasonal variation of Chloride of the wells (11-20) over	58
the period of eight months (2006)	
Figure 13.1: Seasonal variation of Nitrate-nitrogen of the wells (1-10)	59
over the period of eight months (2006)	
Figure 13.2: Seasonal variation of Nitrate-nitrogen of the wells (11-20)	60
over the period of eight months (2006)	
Figure 14.1: Seasonal variation of Ortho-phosphate of the wells (1-10)	62
over the period of eight months (2006)	
Figure 14.2: Seasonal variation of Ortho-phosphate of the wells (11-20)	62
over the period of eight months (2006)	

Figure 15.1: Seasonal variation of Iron of the wells (1-10) over the	64
period of eight months (2006)	
Figure 15.2: Seasonal variation of Iron of the wells (11-20) over the	65
period of eight months (2006)	
Figure 16.1: Seasonal variation of Electrical conductivity of the wells	67
(1-10) over the period of eight months (2006)	
Figure 16.2: Seasonal variation of Electrical conductivity of the wells	67
(11-20) over the period of eight months (2006)	
Figure 17.1: Seasonal variation of Total dissolved solids of the wells	69
(1-10) over the period of eight months (2006)	
Figure 17.2: Seasonal variation of Total dissolved solids of the wells	70
(11-20) over the period of eight months (2006)	

ABBREVIATIONS AND ACRONYMS

amsl	Above mean sea level
APHA	American Public Health Association
CaCO ₃	Calcium carbonate
CBS	Central Bureau of statistics
CDES	Central Department of Environmental Science
Cl	Chloride
CO_2	Carbondioxide
CO ₃	Carbonate
d.f.	degrees of freedom
DHM	Department of Hydrology and Meteorology
DO	Dissolved Oxygen
ENPHO	Environment and Public Health Organisation
Fe	Iron
GWRDP	Ground Water Resource Development Project
HCO ₃ ⁻	Bicarbonate
i.e.	that is
IUCN	International Union for Conservation of Nature and Natural
	Resources
JICA	Japan International Co-operation Agency
Mg/L	Milligrams/Liters
µS/cm	MicroSimens/centimeter
M ha-m	Million hector meter
MLD	Million Liters per Day
MOEST	Ministry of Environment, Science and Technology
MPN	Most Probable Number
$NO_3 - N$	Nitrate - Nitrogen
NO ₃ ⁻	Nitrate
NTU	Nephelometric Turbidity Unit

NWSC	Nepal Water Supply Corporation
OH	Hydroxide
Р	Phosphorus
PO ₄	Ortho – Phosphate
ppb	parts per billion
TDS	Total Dissolved Solids
UDLE	Urban Development Through Local Efforts
UNEP	United Nations Environment Program
UNESCO	United Nations Educational, Scientific and Cultural organisation
USA	United States of America
USPH	United States Public Health
VDC	Village Development Committee
WHO	World Health Organisation