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ABSTRACT 

 

Since hate speech and offensive language is becoming a growing problem, with the 

massive availability and popularity of opinion-rich resources such as social media, 

online review sites Hate speech on social media has unfortunately become a common 

occurrence largely due to advances in mobile computing and the internet. This thesis 

work analyses the social media content to try and identify hate speech, and with the 

application of various machine intelligence models, improving the detection rate with 

higher accuracy in contrast to previous research works. Various deep learning 

approaches such as Convolutional Neural Network (CNN) and Recurrent Neural 

Network (RNN) are used in the proposed approach. With the application of sentiment 

weighing, the opinion mining is carried out. The final model shows overall precision of 

0.82, recall 0.78 and F1 score of 0.80. The test accuracy achieved in the dataset is 83%. 

For the visual interpretation, ROC curve shows the distinction between the abusive or 

offensive and non-offensive content. 

 

Keywords: CNN, LSTM, hate, opinion. 
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1. INTRODUCTION 

 

1.1 Background 

Social Media have become a trusted medium for seeking connectedness, and resulting 

our connections to grow wide and broad but shallower. On the other hand, Social 

Media, web forums and online conversations and debates have brought various issues 

like anxiety, decrease in empathy and antisocial behavior like hate speech. Machine 

learning models are currently being used in the field to detect abusive language and 

hate speech on social media platforms including YouTube, Facebook, Instagram, and 

so on. This study tries to emphasize on hate speech and abusive language detection 

approaches and build a new system through the study of those existing tools and 

techniques. Researchers have tried to perform a large number of research in the past 

decade to develop automatic methods for hate speech detection in blogs and social 

media. A more detailed discussion of the methods and applications for hate speech 

detection can be found in many of the surveys carried out in recent years. 

Hate Speech 

Despite the strong presence of hate speech in public debates, there is not a universally 

recognized definition of this phenomenon (Spallaccia and Beatrice 2017). While 

researchers try to determine the content, tone and nature of this discourse, the main 

definitional challenge of this debate still lies in the identification of the social categories 

attacked by hate speech. Commentators have supported the separation of misogyny 

from other forms of hate speech (e.g., racism, sexism, homophobia and other offensive 

forms) more or less explicitly, ranging from its absence in the definitions of this 

phenomenon to the overt justification of such exclusion. Building effective 

countermeasures for hate speech online requires as the first step, identifying and 

tracking hate speech (Zhang 2018). However, many of recent works in hate speech 

identification are based on racist and sexist slurs. The definition of hate speech is 

different among the authors based on geographical locations, cultures and nationalities. 

However, this study is based on the following definitions of hate speech. Other 

definitions are similar and revolve around the gist of these definitions. 
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Davidson (2017) defines hate speech as the language that is used to express hatred 

towards a targeted group or is intended to be derogatory, to humiliate, or to insult the 

members of the group.  

George (2018) proposes the following list to identify hate speech. A hate speech is any 

speech that- 

1. Uses a sexist or racial slur. 

2. Attacks, seeks to silence, or criticizes a minority (without a well-founded 

argument). 

3. Promotes but not directly use, hate speech or violent crime. 

4. Blatantly misrepresents truth or seeks to distort views on a minority with 

unfounded claims. 

5. Contains a screen name that is offensive, as per the previous criteria, tweet is 

ambiguous (at best), and tweet is on a topic that satisfies any of the above 

criteria. 

Hate speech is characterized by any form of verbal or non-verbal attack targeting a 

specific group of people. It can be motivated by racial, ethnic, gender, religion or sexual 

orientation and other similar issues. Such issues are usually communicated through 

different media such as internet, hand-held devices, newspapers, magazines, television, 

radio broadcasts, and verbal person-to-person. 

Opinion Mining 

Opinion Mining, also interchangeably used as Sentiment Analysis (SA) is a field within 

Natural Language Processing (NLP) that builds systems that try to identify and extract 

opinions within the text however, the difference lies in a person’s view about something 

and a feeling. Usually, besides characterizing opinion, these systems extract expression 

attributes, for example: 

● Opinion holder: the entity or person that expresses the opinion. 

● Polarity: the speaker expresses a positive or negative opinion, 

● Subject: the thing that is being talked about, 

The distinction lies in the sense that a sentiment is more of a feeling, and an opinion is 

more of a person’s view about something, whereas. However, opinions imply positive 

or negative sentiments in most cases. Because detecting the polarity of text is often a 

step in sentiment analysis, the two fields are usually combined under the same umbrella 

as mentioned in [1]. Since negative opinions and hate speech are closely related, and it 
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is safe to assume that usually negative sentiment might imply a hate speech message 

(Nobata et al. 2016). 

1.2 Problem Statement 

With the massive growing content on social media, the amount of hate speech online is 

also increasing. While hate speech and abusive language detection has become an 

important area for natural language processing research (Schmidt and Wiegand, 2017; 

George et al., 2017; Fortuna and Nunes, 2018), there has been little work addressing 

the potential for these systems to be biased. Such bias could result in negative impacts 

on the results. Due to subjective bias, far fewer data are classified as more offensive or 

hateful than their true category. Recent works done on the identification of hate speech 

on social media data prove to be less accurate due to erroneous classification of 

offensive language as hate speech (Davidson et. al., 2017), or having very small dataset 

(Mugambi, 2017), and some do not consider sentiment weighting (Mugambi, 2017). 

Some works on hate speech detection might have identified these problems but many 

studies still tend to combine various classification models for better results.  

1.3 Objectives 

a) To develop a hate speech detection system through the investigation of existing 

techniques. 

b) To evaluate the performance of the proposed system. 
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2. RELATED THEORY 

 

2.1 Related Works 

Most of the recent methods primarily present the problem as a supervised text 

classification task which can be divided into two categories (Zhang et al. 2018): 

Classical methods that rely on feature engineering such as Naïve Bayes, SVM, Logistic 

Regression and Decision Trees; and deep learning-based methods that make use of 

neural networks to automatically learn multi-layers of abstract features from raw data.  

Wafula [2] uses POS tagging and a bag of words model for supervised classification of 

tweets data for hate speech sentiment analysis by developing a social media digital 

forensics tool through the design, development and implementation of a software 

application. They also state that the system could go further by employing machine 

intelligence algorithms for predictive analysis. Schmidt et. al. [3] conducted a survey 

on hate speech detection with the assumption that usually negative sentiment pertains 

to a hate speech message. They employ two predominant supervised learning 

approaches, namely SVM and RNN models. Most of the recent works use lexicon based 

approach, and classifiers such as Naive Bayes and SVM, and a few use Maximum 

Entropy and Neural Network based models for sentiment analysis. Mugambi [4] applies 

machine learning techniques to automatically classify tweets as hate speech or not. 

Davidson et. al. (2017) uses crowd-sourcing to label a sample of these tweets into three 

categories: those containing hate speech, those with offensive language, and those with 

neither. They train a multi-class classifier to distinguish between these different 

categories.  

More recently, new feature extraction techniques have been applied based on word 

embedding (also known as word vectors). This kind of representation makes it possible 

for words with similar meaning to have a similar representation, which can improve the 

performance of classifiers. 

2.2 Approaches in Related works 

Deep learning-based methods that make use of neural networks to automatically learn 

multi-layers of abstract features from raw data (Zhang et al. 2018). The most popular 

network architectures are CNN (Convolutional Neural Networks) and RNN (Recurrent 
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Neural Networks). CNN is well-known for its effective feature extraction capabilities 

(Zhang 2018). RNN assigns more weight to the previous data points of sequence. RNN 

learns word or character dependencies in tweets (Zhang 2018). 

LSTM and GRU 

Early RNNs had trouble with training because of exploding and vanishing gradients. 

With many time steps the gradients would often grow too steep, exploded, or they 

approached zero, vanished. This problem happened because the recurrent edge in a 

node always had the same weight, which resulted in the derivative of the error either 

exploding or approaching zero, at an exponential rate, as the number of time steps grew. 

This was solved by introducing a memory cell. The new model was introduced by and 

is called LSTM. GRU is a simpler version of LSTM, and therefore less computationally 

expensive, but often without performing worse than LSTM. 

Convolution Neural Network (CNN) 

CNNs are the feed forward neural networks made up of many hidden layers. They 

consist of filters or kernels or neurons that have learnable weights or parameters and 

biases. Each filter does convolution on some inputs as shown in figure 2.1. 

The components of CNN consist of following layers: 

i. Convolutional Layer 

ii. Rectified Linear Unit (ReLU) Layer 

iii. Max Pooling Layer 

iv. Fully Connected Layer 

 

Figure 2.1: CNN Architecture (Source: semanticsscholar.org [online]) 

Recurrent Neural Networks (RNN) 

Another neural network architecture that is addressed by the researchers for text mining 

and classification is Recurrent Neural Networks (RNN).  
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Therefore, this technique is a powerful method for text, string and sequential data 

classification. In RNN, the neural net considers the information of previous nodes in a 

very sophisticated method which allows for better semantic analysis of the structures 

in the dataset. A simple RNN is shown in figure 2.2. 

 

Figure 2.2: Recurrent Neural Network (Source: analyticsvidhya.com [online]) 

  

Long Short Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a special type of RNN that preserves long term 

dependency in a more effective way compared to the basic RNNs. This is particularly 

useful to overcome vanishing gradient problem.  LSTM takes whole document as single 

sequence and the average of the hidden states of all words is used as feature for 

classification (Yang et al. 2016). 

A General Recurrent Neural Network (RNN) can model temporal information by 

transforming a sequence of inputs to a sequence of outputs. LSTMs enable RNN’s to 

remember their inputs over a long period of time. This is because LSTMs contain their 

information in a memory that is much like the memory of a computer because the 

LSTM can read, write and delete information from its memory, as shown in figure 2.3. 

 

Figure 2.3: LSTM Architecture (Source: Hochreiter et. al., 1997) 
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Other variants of LSTM such as CuDNNLSTM (CuDNN is a library for deep neural 

nets built using CUDA (Compute Unified Device Architecture), NVIDIA’s API for 

programming on the graphics card) also exist, which run on GPU only, with the 

TensorFlow backend. 

Gated Recurrent Unit (GRU)  

GRU is a gating mechanism for RNN which was introduced by J. Chung et al. and K. 

Cho et al. GRU is a simplified variant of the LSTM architecture, but there are 

differences as in figure 2.4: GRU contains two gates and does not possess any internal 

memory and finally, a second non-linearity is not applied (tanh in figure). 

 

Figure 2.4: Gated Recurrent Unit (GRU) Architecture  

(Source: Cho et. al., 2014) 

Similarly, other variants of GRU, such as CuDNNGRU also exist, which run on GPU 

only, with the TensorFlow backend. 

Some of the previous works perform comparison of these different architectures with 

different results that an architecture outperforms other in different datasets, which is 

discussed in the following sections (chapters). 
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3. LITERATURE REVIEW 

 

3.1 Hate speech detection systems 

Social Media data constitutes of what is known as big data. Given the relatively high 

prevalence of offensive language and “curse words” on social media, this makes hate 

speech detection particularly challenging (Wang et al. 2014). Most of the recent 

methods primarily present the problem as a supervised text classification task which 

can be divided into two categories (Zhang et al. 2018): Classical methods that rely on 

feature engineering such as Naïve Bayes, SVM, Logistic Regression and Decision 

Trees; and deep learning-based methods that make use of neural networks to 

automatically learn multi-layers of abstract features from raw data. Lexical-based 

methods only identify potentially offensive terms but are inaccurate at identifying hate 

speech [5]. 

3.2 Classical methods 

These methods are based on the manual conversion or encoding of data features into 

feature vectors, which are then used by the classifiers. Simple features such as n-grams, 

bag-of-words and POS vectors. Opinion mining makes use of the degree of polarity as 

expressed by the opinion holder. Among the classifiers, however Logistic Regression, 

SVMs, Naïve Bayes and Random Forests are most popular. 

3.3 Deep Learning - based methods 

These are powerful set of learning techniques in neural networks. Deep learning mean 

using more layers. This does not just apply to neural networks, the layers of other 

artificial intelligence methods can also be stacked, but this work generally focuses on 

neural networks. Neural networks and deep learning currently provide the best solutions 

to many problems in image recognition, speech recognition, and natural language 

processing. Using deep layers, they can learn abstract feature representations through 

their multiple stacked layers for classification of text. The input can vary from raw data 

to various feature encodings including those used in classical methods. The most 

popular network architectures are CNN (Convolutional Neural Networks) and RNN 

(Recurrent Neural Networks). 
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Feature based approaches have been leveraged to better identify the intensity of hate 

speech, most works focus on detecting profanity, using features such as n-grams, bag 

of words, TF-IDF and part-of-speech features (Davidson et al. 2017, Wafula et al. 

2016). Many studies suggest that there are good and robust ways to identify abusive 

languages. George et al. (2018) present a list of criteria based in critical race theory to 

identify racist and sexist slurs.  

3.4 Hate Speech Opinion Mining 

Over the past years, interest in online hate speech detection and particularly the 

automatization of this task has continuously grown, along with the societal impact of 

the phenomenon. Opinion Mining has been handled as a Natural Language Processing 

task at many levels of granularity. A number of methods used for hate speech detection 

have been documented by the sources cited in this proposal. 

Context-driven Sentiment Analysis scheme are also present (Sharma et. al [6]) with the 

objective of refining the degree of subjectivity during Sentiment Analysis. Ceron, et. 

al. [7] presents an algorithm, named iSA (integrated Sentiment Analysis) for social 

networks and Web 2.0 sphere (Twitter, blogs) opinion analysis. Instead of performing 

an individual classification and then aggregate the predicted values, the algorithm 

directly estimates the aggregated distribution of opinions. Various social media 

contents-based sentiment analysis and prediction system exist that detect events in real 

time out of the massive social media contents (Yoo et. al. [8]). In these systems, users’ 

sentiments are classified using deep learning methods such as Convolutional Neural 

Networks. 

Various systems such as ontology-based sentiment analysis systems (Thakor and Sasi 

[9]) where tweets with negative sentiments only are used for polarity detection. In these 

sysems sentiment is detected from the built ontology. Positive polarity corresponds to 

positive sentiment and negative polarity correspond to the negative sentiment. 

Recent methods make use of new feature extraction techniques based on word 

embeddings. This kind of representation makes it possible for words with similar 

meaning to have a similar representation, which can improve the performance of 

classifiers. 

Deep learning-based ensemble model for intent detection of spoken language 

understanding are also developed, (Ekbal et. al. [10]) which primarily focus on 
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extraction of intended meaning. Various deep learning architectures such as CNN and 

variants of recurrent neural networks (RNN) like LSTM and multi-layer perceptron 

(MLP) are combined. Ensemble learning are also applied to NLP tasks, e.g. POS 

tagging, chunking and word sense disambiguation. Word embeddings such as Glove 

and Word2vec were combined in this approach. 

Some of the previous works perform comparison of these different approaches (deep 

learning architectures) with different results such as an approach outperforms other in 

different datasets. Example, for sentiment analysis tasks, (Mekolov et al. 2013) found 

that in deep learning approaches GRU outperforms LSTM and CNN in sentiment 

analysis of Russian tweets. Although CNNs are also considered good at extracting local 

and position-invariant features (Yin et al. 2018), they are outperformed by RNN in 

similar sentiment analysis problems because GRUs are better when sentiment is 

determined by the entire sentence or a long-range semantic dependency.  

However, the performance of these systems cannot be determined just alone by the 

output without varying the hyperparameters. For example, variations in batch sizes and 

hidden size could cause large fluctuations. Some authors also argue that the use of a 

linguistic characteristic with the use of BI-LSTM based on the occurrence of hateful 

words in data could also help improve the performance of the model (Sarracen et al. 

2018). 
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4. RESEARCH METHODOLOGY 

 

4.1 System Block Diagram 

The methodology implemented in this work is machine learning-based and has 

followed the workflow as shown in figure 4.1. 

 

Figure 4.1: System Block diagram 

The methodology in this system consists of the following steps: 

4.2 Data Collection and Sources 

The dataset used in this approach is a dataset compiled by hataebase.org, that creates a 

multilingual dictionary of words used in hate speech (phrases identified by internet 

users as hate speech) and consists of a sample of 3k tweets containing the hate speech 

lexicon. The Tweets are labeled as ‘hate’, ‘offensive’ and ‘neither.’ The dataset is 

classified based on crowdsourcing by the online users’ community. For testing the 

model, the streaming Twitter API and the scraped tweets were used. 

Figure 4.2 illustrates a sample of the labeled dataset. 



12 

 

 

Figure 4.2: A sample of the labeled tweets dataset 

4.3 Corpus Collection 

The corpus collection begins with carrying out an initial search of common slangs and 

terms used in social media such as twitter. Based on this sample, the public Twitter 

search API was used to collect the entire corpus containing tweets written in English, 

ensuring that non-offensive and potentially offensive words were also included in the 

tweets. For example, even though ‘trash’ is one of the most frequent words in hate or 

offensive tweets, it also occurs in neither of the category, such as “Power has been trash 

for a while now and I decided that I’m not gonna watch this season. My wife can tell 

me how it’s gonna end.” 

Identification and annotation: Although they can be expressed without any such terms, 

it is almost easy to identify offensive terms and hate speech. Also, sometimes it is 

difficult to identify hate speech for humans due to difference in exposure and 

knowledge of hate speech. The hate speech understanding here is based on the 

definitions presented in the introduction section. 

4.4 Text Preparation and Preprocessing 

The text data collected is basically in an unstructured format that is not suitable for 

machine learning. Since opinions and feelings are expressed in different ways, with 

different vocabulary, context of writing, usage of short forms and slang, making the 

data huge and disorganized, this step basically includes identifying and eliminating 

non-textual content and content that is irrelevant to the area of study from the data. For 
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example, tweets are short, noisy and ungrammatical. Before classifying sentiment of a 

tweet as positive and negative, good amount of pre-processing has to be done. For this, 

tweets undergo some or all of the processes of pre-processing as shown in figure 4.3. 

 

Figure 4.3: Cleaning of tweets for preprocessing 

a) Conversion to UTF-8: Many tweets might contain unusual or non-standard 

characters, which can be problematic for downstream processing. To address 

these issues, we can use for example, a combination of BeautifulSoup and 

Unidecode to convert and transliterate all tweets to UTF-8. 

b) Removal of Empty (Null) Tweets: After completing all of the other pre-

processing, any empty tweets can be deleted. 

c) Removal of stop words such as ‘is,’ ‘a,’ ‘the,’ ‘to,’ that don’t contain much 

information. 

The pre-processing of the extracted data and proper training is very important aspect 

than applying the algorithm and getting the results, which help in improving the 

accuracy of speech classification. The accuracy of classification also depends on the 

features obtained such as tf-idf, bag of words and n-grams. 
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4.5 Feature Extraction from Text 

The first step in a machine learning text classifier requires transforming the text into a 

numerical representation, usually a vector. Usually, each component of the vector 

represents the frequency of a word or expression in a predefined dictionary (e.g. a 

lexicon of polarized words). This process is known as feature extraction or text 

vectorization and the classical approach has been bag-of-words or bag-of-ngrams with 

their frequency. 

 

Figure 4.4: The feature extraction process 

Figure 4.4 shows the feature extraction process. It includes the given processes: 

a) Case Normalization: In this step entire document is converted into lowercase. 

b) Tokenization: Tokenization is splitting up the systems of text into personal 

terms or tokens. 

c) Stemming (Snowball): Stemming is the procedure of decreasing relevant 

tokens into a single type of token. This procedure contains the recognition and 

elimination of suffixes, prefixes, and unsuitable pluralization. 

d) Generate features: Character n-grams are ‘n’ nearby figures from a given 

feedback sequence. For example, a 3- gram of a phrase ’FORM’ would be ‘_ _ 

F’, ’_FO’, ‘FOR’, ‘ORM’, ‘RM_’, ‘M_ _’. N-grams of dimension one are 

known as ‘unigram’, two dimensional grams are known as ‘bigram’, three-

dimensional grams are known as ‘trigram’. And for the rest of the dimensions 

it is called n-grams. Other features include bag of words, part of speech features 

and TF-IDF, which are explained as follows. 



15 

 

Part-of-speech Features: Parts-of speech features i.e. nouns, adverbs, adjectives, etc. 

in each tweet are tagged. 

Bag-of-words: A bag-of-words is a representation of text that describes the occurrence 

of words within a document. As the vocabulary size increases, so does the vector 

representation of documents. As such, there is pressure to decrease the size of the 

vocabulary when using a bag-of-words model. There are simple text cleaning 

techniques that were used as a first step, such as ignoring case, punctuation and frequent 

words that do not contain much information, called stop words, reducing words to their 

stem (e.g. “play” from “playing”) using stemming algorithms. For this, the tweets are 

stemmed using Snowball method in the Natural Language Toolkit library (NLTK). 

Some of the words appear nearly in each message, and therefore, provide less 

distinctive information. Therefore, different weights are assigned for each word based 

on how often they appear in different messages using the Term Frequency — Inverse 

Document Frequency weighting (TF-IDF). TF-IDF gives higher importance for the 

words, which are only in few documents (or tweets in this case). 

The TF-IDF assigns the weight to a word as shown in equation 4.1: 

𝑤𝑖𝑘 = 𝑡𝑓𝑖𝑘 𝑥 log(
𝑁

𝑛𝑘
) …………….. (4.1) 

Where, 

𝑡𝑓𝑖𝑘 = frequency of term 𝑇𝑘 in document 𝐷𝑖 

N = total no. of documents in the collection C 

𝑛𝑘 = the no. of documents in C that contain 𝑇𝑘 

𝑇𝑘 = term k in document 𝐷𝑖 

𝑖𝑑𝑓𝑖𝑘 = log(
𝑁

𝑛𝑘
) (the inverse document frequency of 𝑇𝑘 in C) 

Word Embeddings 

Word Embedding converts a word to an n-dimensional vector. Related words are 

mapped to similar n-dimensional vectors, while dissimilar words have dissimilar 

vectors. In this way the ‘meaning’ of a word can be reflected in its embedding, a model 

is then able to use this information to learn the relationship between words. In this case, 

the text_to_word_sequence function from the Keras preprocessing library 
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automatically converts a string to a list of word tokens and at the same time clean the 

data by removing punctuation and capitalization. 

4.6 Model Selection 

For identifying the appropriate model, some baseline methods were explored and then 

the proposed approach was developed. This method uses embeddings generated for text 

classification and thus used with a classifies as its feature representation. The influence 

of different features on classification was performed using a variety of models that have 

been used in prior work, such as Support Vector Classifiers, Naive Bayes and Logistic 

Regression. In order to pick the most suitable feature, grid search with 5-fold Cross-

Validation was performed over all feature set combinations in both the approaches. 

Since ML algorithms do not understand text directly, the training data can be 

transformed into vectors (for e.g. simple but effective methods include bag-of-words 

and TF-IDF). Next, those vectors were used to train machine learning algorithms 

(Naive Bayes and Logistic Regression for example). However, the output depends on 

the dataset size and the extracted information. 

Finally, the trained model was used for text classification in new unseen dataset by 

transforming them into vectors and feeding them to the classifier which then decides 

whether the tweet data contains potentially hate or offensive speech. 

Baseline Method(s): Different representations were experimented for baseline 

approach: 

- TF-IDF (Term Frequency - Inverse Document Frequency): Words are given 

weight. TF-IDF measures relevance, not frequency (that is, word counts are 

replaced with TF-IDF scores across the whole dataset).  

- Model: Logistic Regression with same configuration as in Davidson (2017). 

Proposed Approach: Two different neural net architectures were investigated as 

explained follows. For each of the two architectures, word embeddings are initialized 

(Glove embeddings).  

- CNN (Convolutional Neural Networks): CNNs with 256 filters, kernel size 2 

was used. 

- RNN (Recurrent Neural Networks): Specifically, GRU and LSTM were used. 

Recurrent Neural Network like LSTMs can use their internal memory to process 

arbitrary sequences of inputs. Hence, long term dependencies can be captured 
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by LSTMs; which may play a role in hate speech detection. LSTMs with 100 

units were used in this experimentation. 

Figure 4.5 represents the model summary. 

 

Figure 4.5: Model Block diagram for proposed approach 

4.6.1 Optimization and Evaluation 

Activation functions: There are many different functions that can be used, the most 

common ones are: Sigmoid, tanh, Softmax, and rectified linear unit (ReLU). ReLU and 

Softmax are the most common functions used. In this classification problem, the 

softmax activation was chosen. 

Loss Function: A few popular loss functions that are currently being used are: mean 

squared error (MSE), likelihood loss and cross entropy loss. In this case, the categorical 

cross-entropy loss function is used to obtain the results because it was more effective 

in previous works. 

Callbacks: A callback basically is a set of various functions to be applied in stages of 

the training procedure. In this case, the EarlyStopping callback is used. Here, the model 

stops training when certain monitored quantity stops improving over time. For example, 

the ‘validation loss’ quantity can be monitored to prevent the model to overfit. 

Metric Functions: The four categories: true positive, false positive, false negative and 

true negative form the basis of the metrics that were used to evaluate the classification 

model including accuracy, precision, recall and F-Score. 
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Accuracy measures the percentage of inputs in the test set that the model correctly 

labelled either as hate speech or non-hate speech. Precision is the ratio of correctly 

classified documents to the total number of documents classified under a particular 

category. Recall is defined as the number of correctly classified documents among all 

documents belonging to that category, whereas F-Score is a harmonized mean of 

precision and recall.  

4.7 Opinion Mining (Sentiment Analysis) 

Opinion mining is the automated process of understanding an opinion about a given 

subject from written or spoken language. From being able to mine opinions from 

product reviews to being able to forecast stock prices by studying tweets, it has a very 

wide range of applications. A thorough process of the opinion mining process is 

described in the next chapter of this work. 

The use of a sentiment lexicon designed for social media (Davidson 2017, Hutto and 

Gilbert 2014) can also help sentiment detection. Table 4.1 shows sentiment analysis of 

collected data with their polarity (Negative, Neutral and Positive). 

Table 4.1: Sentiment Analysis Example 

Tweet Classification Polarity 

I love being a dizzy h*e for social 

media 
Offensive 1 (Positive) 

I want to retweet it 1000 times.. 

I just hate this one roommate of mine. 

F***ing c*nt. 

Hate -1 (Negative) 

Shoppee 9.9 sale = time to stock up 

on basic hoe necessities coz IT'S 

BRITNEY, B**CH. 

Offensive 0 (Neutral) 
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4.8 Tools Used 

Programming Language   Python 3.6 + 

IDE      Jupyter Notebook, Notepad++ 

ML library     Keras, sklearn, tensorflow 

 

The hardware specifications used are Graphics GPU accelerator Nvidia Geforce MX 

and RAM of 12 GB. 
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5. RESULT, ANALYSIS AND COMPARISON 

 

5.1 Dataset and Experimental Settings 

As explained earlier, TF-IDF was used for baseline and GloVe pre-trained embeddings 

was used for word embedding based approach. A 5-fold Cross Validation was 

performed and weighted metrics were used for precision, recall and F1-scores. For deep 

learning method, the ‘Adam’ optimizer was used. Batch size of 128 was used. Also, 

because of the unbalanced number of labelled classes, experimentation was also done 

with taking the equal number of the class instances. 

Word embeddings: GloVe pre-trained word embeddings was experimented. It was 

trained on a corpus of 6 billion tokens and contains 200 embedding dimensions. On 

glove embeddings, the training is basically performed on aggregated global word-word 

co-occurrence statistics from a corpus, and the resulting representations showcase 

interesting linear substructures of the word vector space (Source: Stanford GloVe). 

5.2 Results and Analysis 

The classifier was assigned a batch size of 128, epoch number of 10 and optimizer 

adam. Table 5.1 shows the results of different approaches applied to the detection of 

hate speech. The first row shows various results for Baseline Method and the second 

row shows the implementation of the deep learning models. 

Table 5.1: Experimental Results 

 Class Precision Recall F1-Score 

Baseline 

Method 

Hate 

Offensive 

Neither 

0.48 

0.88 

0.93 

0.78 

0.67 

0.86 

0.59 

0.76 

0.89 

Deep learning 

Methods 

Hate 

Offensive 

Neither 

0.57 

0.87 

0.92 

0.80 

0.71 

0.86 

0.66 

0.78 

0.88 

The final model shows overall precision of 0.82, recall 0.78 and F1 score of 0.80 and 

individually, as shown in the table for hate, offensive and neither classes, thus proposed 

methods prove to be significantly better than the baseline methods. RNNs (particularly 
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LSTMs) and CNNs performed slightly better than classical methods in the proposed 

approach. The use of word embeddings also helped in the classification.  

The confusion matrix in table 5.2 illustrates the output using various approaches. 

Table 5.2 (a): Confusion Matrix using baseline method 

 Predicted 

 Hate Offensive Neither 

Actual 

Hate 0.47 0.40 0.11 

Offensive 0.09 0.87 0.03 

Neither 0.04 0.02 0.93 

Table 5.2 (b): Confusion Matrix using RNN 

 Predicted 

 Hate Offensive Neither 

Actual 

Hate 0.59 0.21 0.20 

Offensive 0.05 0.82 0.13 

Neither 0.01 0.02 0.96 

Table 5.2 (c): Confusion Matrix using equal instances of all classes (baseline) 

 Predicted 

 Hate Offensive Neither 

Actual 

Hate 0.56 0.32 0.10 

Offensive 0.09 0.86 0.04 

Neither 0.05 0.02 0.92 

Table 5.2 (d): Confusion Matrix using equal instances of all classes (using RNN) 

 Predicted 

 Hate Offensive Neither 

Actual 

Hate 0.74 0.13 0.12 

Offensive 0.09 0.78 0.12 
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Neither 0.07 0.12 0.81 

 

ROC Plots 

Figure 5.1 shows ROC curve for the different classes. 

  

Figure 5.1 (a): ROC of class hate Figure 5.1 (b): ROC of class offensive 

 

Figure 5.1 (c): ROC of class neither 

  

Opinion Mining 

After preprocessing and a close analysis of the top positive and negative keywords in 

the dataset (for simplicity, most frequent ‘hateful’ and non-hateful keywords were 

identified from the labeled dataset, using the positive and hateful lexicon from 

hatebase.org), it results in the following list of top 50 keywords as shown in figure 5.2. 
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Figure 5.2 (a): Top 50 positive tokens 

 

Figure 5.2 (b): Top 50 negative tokens 

In the next step, tweets were collected over different time containing these particular 

terms and apply the sentiment analysis model upon the collected data (The streaming 

twitter API could also be used for data collection in real-time). For this, tweets were 

randomly collected over a period of two months. Figure 5.3 shows a sample of tweets 

containing particular terms. 
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Figure 5.3: A sample of tweets with particular terms 

Moreover, figure 5.4 shows the use of sentiment weighing for the tweets collected and 

preprocessed earlier. 

 

Figure 5.4: Sentiment weighing for opinion mining 

These tweets then undergo all the preprocessing steps mentioned earlier. After this, the 

opinion mining model is applied on to these tweets with their target class prediction. 

The polarity sentiment is denoted by positive and negative values (for example, 1 for 

positive and -1 for negative polarity). A summary of the prediction is shown in figure 

5.5. Although the polarity shows only negative or positive instances, it does not mean 

that an offensive speech is negative. As some tweets with negative words could also 

express positive meaning (e.g. f##ing awesome), the positive lexicon is also considered 

for more reliable prediction. 
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Figure 5.5: Opinion Mining for the tweets 

However, assuming that both the lexicons have same frequency, a tweet with short 

length could show more sentiment than one with a longer length. This is why the 

normalization of positive and negative term frequency is to be considered for more 

reliable sentiment analysis, as shown by the scores in Table 5.3. The sentiment scores 

are on the scale of 1-10. 

Table 5.3: Sentiment scores of tweets 

Tweet Classification Sentiment Scores 

Yes you do r*tard Hate 
Negative: 0 

Positive: 0 

love when girls pass up the guys 

who want Something real and to 

treat them right for the guy who 

just uses em cuz then they b*tch 

about it 

Offensive 
Negative: 3 

Positive: 2 

Roach happy birthday ni**a do 

coon shit in responsible way 
Hate 

Negative: 2 

Positive: 1 
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Table 5.4 illustrates the use of normalization for given tweets. Sentiment scores are on 

1-10 Scale and the normalized score is on the 0-1 scale. 

Table 5.4: Sentiment scores with normalization 

Tweet Classification Sentiment 

Scores 

Scores with 

Normalization 

All h*es lie Offensive 
Negative: 1 

Positive: 0 

Negative: 0.33 

Positive: 0 

These h*e a** ni**as talkn 

shyt about ni**a make ni**a 

wanna go and snatch the 

b**ch up outta ni**a 

Offensive 
Negative: 3 

Positive: 0 

Negative: 0.15 

Positive: 0 

haha yes ni**ah but 

yesterday night Idk man it hit 

me at night like around in the 

morning didn go to sleep till 

like 

Hate 
Negative: 6 

Positive: 1 

Negative: 0.25 

Positive: 0.04 

happy birthday you dirty 

little bird tear it up 
Neither 

Negative: 1 

Positive: 4 

Negative: 0.07 

Positive: 0.14 

 

5.3 Comparison 

This thesis work uses the word embedding models for creating word vectors and deep 

learning architectures such as long short term memory for text classification of the tweet 

data. Different standard datasets are used for experiment of the classification procedure. 

The precision, recall and F1 scores of the proposed method in classifying the text are 

0.82, 0.78 and 0.80 in case of classes hate, offensive and none, which suggests a 

noticeable improvement over the baseline method. The abusive language was taken as 

the combination of hateful as well as offensive tweets. The ROC curve also suggests an 

acceptable degree of classification among the classes. Moreover, the accuracy of hate 

speech can be increased if the instances of hateful languages are increased.  
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6. CONCLUSION AND RECOMMENDATION 

 

6.1 Conclusion 

The application of deep learning models has helped better identify hate speech from the 

given data. A model for recognizing the hate speech has been developed and the 

performance of the proposed method was demonstrated on different number of various 

classes. However, considering the fact that offensive language sometimes contributes 

to the negative sentiment, the prediction of offensive language as hate does improve the 

sentiment analysis model. Also, through the use of various feature of tweets, such as 

TF-IDF, Part-of-Speech, and other features such as average syllables, sentiment scores, 

number of characters, etc. as proposed by authors of [11] also helps in the distinction 

of hate speech from offensive language, however that is not always the case. For 

sentiment analysis, detection of offensive language as hate is ignored as both the class 

contribute to negative sentiment in most cases. The use of deep learning approaches 

such as Recurrent Neural Networks has proven to improve the classification. 

6.2 Limitations 

From the experimental results, the proposed method proves to have a significant 

performance over classic methods, however this method is limited to English language 

only and since hate speech is a subjective matter, the classification might be a 

challenging problem because what might be offensive to a person, might be hateful to 

others. This is true especially with people from different communities and different age 

groups. Also, due to class imbalance on the available dataset, there is no particular 

distinction on some instances of hate and offensive languages. 

6.3 Recommendation 

The use of deep learning methods has shown to increase the detection of hate speech 

and abusive language on the datasets however, given sufficient number of minority 

class, the precision can be increased even further. Also, hate speech being subjective 

matter, there is no particular distinction on hate and offensive languages. The use of 

deep learning architectures such as LSTMs and GRUs have helped on overall abusive 

language identification, however the differentiation on such features depends on the 

actual dataset size, class instances and the features used.  
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APPENDIX 

 

Extract (TF-IDF) features from text 

# Load file 

embedding_file = "data/cleaned_tweets.csv" 

 

cols = ['tweet', 'classifi','classification'] 

df = pd.read_csv(embedding_file, names=cols, encoding='ut

f-8') 

 

try:     

    df=df.dropna()     

except: 

    df=df.replace(np.nan, '', regex=True)     

 

X = np.array(df.tweet) 

y = np.array(df['classifi'].astype(int)) 

 

# Feature Extraction 

from sklearn.model_selection import StratifiedKFold 

stratified_split = StratifiedKFold(n_splits=5, 

random_state=42) 

for train_index, test_index in stratified_split.split(X, 

y): 

    X_train, X_test = X[train_index], X[test_index] 

    y_train, y_test = y[train_index], y[test_index] 

 

from sklearn.feature_extraction.text import TfidfVectoriz

er 

# build TFIDF features on train and test data 

tv = TfidfVectorizer(min_df=5, max_df=0.75, ngram_range=(

1,3), use_idf=True,stop_words='english', 

smooth_idf=False, decode_error='replace', 

sublinear_tf=True) 

tv_train_features = tv.fit_transform(X_train) 

tv_test_features = tv.transform(X_test) 

 

print(tv_train_features.shape, y_train.shape) 

print(tv_test_features.shape, y_test.shape) 
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Convert text data to Word Embeddings 

# convert text to word embedding (Using GloVe): 

def loadData_Tokenizer(X_train, X_test, 

MAX_NB_WORDS=75000, MAX_SEQUENCE_LENGTH=1000): 

    np.random.seed(42) 

    text = np.concatenate((X_train, X_test), axis=0) 

    text = np.array(text) 

    tokenizer = Tokenizer(num_words=MAX_NB_WORDS) 

    tokenizer.fit_on_texts(text) 

    sequences = tokenizer.texts_to_sequences(text) 

    word_index = tokenizer.word_index 

    text = pad_sequences(sequences, 

maxlen=MAX_SEQUENCE_LENGTH) 

    print ('Found %s unique tokens.' % len(word_index)) 

    indices = np.arange(text.shape[0]) 

    # np.random.shuffle(indices) 

    text = text[indices] 

    #print(text.shape) 

    X_train = text[0:len(X_train), ] 

    X_test = text[len(X_train):, ] 

    embeddings_index = {} 

    f = open("data/glove.6B.200d.txt", encoding="utf8") 

    for line in f: 

        values = line.split() 

        word = values[0] 

        try: 

            coefs = np.asarray(values[1:], 

dtype='float32') 

        except: 

            pass 

        embeddings_index[word] = coefs 

    f.close() 

    print ('Total %s word vectors.' % 

len(embeddings_index)) 

    return (X_train, X_test, word_index, 

embeddings_index) 

 

Build Model 

# run Model and see our results 

model_RNN = build_Model(64, 100) 

 

from keras.callbacks import EarlyStopping 

early_stopping = EarlyStopping(monitor='val_loss', mode='

min',patience=5, baseline=0.9, restore_best_weight

s=True) 

history = model_RNN.fit(tv_train, Y_train, 

                    validation_data=(tv_test, Y_test), 

                    epochs=15,batch_size=64, 
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                    verbose=2,callbacks=[early_stopping]) 

predicted = model_RNN.predict(tv_test) 

predicted = np.argmax(predicted, axis=1) 

 

 


