

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

THESIS NO: 073/MSCS/654

Opinion Mining for the detection of Hate Speech on Social Media

by

Gajendra Acharya

A THESIS

SUBMITTED TO

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE IN COMPUTER SYSTEM AND KNOWLEDGE

ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

LALITPUR, NEPAL

November, 2019

ii

Opinion Mining for The Detection of Hate Speech On Social Media

by

Gajendra Acharya

073/MSCS/654

Thesis Supervisor

Prof. Dr. Subarna Shakya

A thesis submitted in partial fulfillment of the requirement for

the degree of Master of Science in Computer System and Knowledge Engineering.

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Tribhuvan University

Lalitpur, Nepal

November, 2019

iii

COPYRIGHT ©

The author has agreed that the library, Department of Electronics and Computer

Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis freely

available for inspection. Moreover, the author has agreed that the permission for

extensive copying of this thesis work for scholarly purpose may be granted by the

professor(s), who supervised the thesis work recorded herein or, in their absence, by

the Head of the Department, wherein this thesis was done. It is understood that the

recognition will be given to the author of this thesis and to the Department of

Electronics and Computer Engineering, Pulchowk Campus in any use of the material

of this thesis. Copying of publication or other use of this thesis for financial gain

without approval of the Department of Electronics and Computer Engineering, Institute

of Engineering, Pulchowk Campus and author's written permission is prohibited.

Request for permission to copy or to make any use of the material in this thesis in whole

or part should be addressed to:

Head

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Pulchowk, Lalitpur, Nepal

iv

DECLARATION

I declare that the work hereby submitted for Master of Science in Computer Systems

and Knowledge Engineering (MSCSKE) at IOE, Pulchowk Campus entitled “Opinion

Mining for the Detection of Hate Speech on Social Media" is my own work and has not

been previously submitted by me at any university for any academic award. I authorize

Institute of Engineering, Pulchowk Campus to lend this thesis to other institution or

individuals for the purpose of scholarly research.

Gajendra Acharya

073/MSCS/654

November, 2019

v

RECOMMENDATION

The undersigned certify that they have read and recommended to the Department of

Electronics and Computer Engineering for acceptance, a thesis entitled “Opinion

Mining for The Detection of Hate Speech On Social Media”, submitted by Gajendra

Acharya in partial fulfillment of the requirement for the award of the degree of

“Master of Science in Computer System and Knowledge Engineering”.

..

Supervisor: Prof. Dr. Subarna Shakya,

Department of Electronics and Computer Engineering,

Institute of Engineering, Tribhuvan University

..

External Examiner:

Prof. Dr. Bal Krishna Bal

..

Committee Chairperson: Dr. Aman Shakya,

Program Coordinator,

Computer System and Knowledge Engineering

Institute of Engineering, Tribhuvan University.

Date: November, 2019

vi

DEPARTMENTAL ACCEPTANCE

The thesis entitled “Opinion Mining for The Detection of Hate Speech On Social

Media ", submitted by Gajendra Acharya in partial fulfillment of the requirement for

the award of the degree of “Master of Science in Computer System and Knowledge

Engineering" has been accepted as a bonafide record of work independently carried

out by him in the department.

 …………………………………………………………

Associate Prof. Dr. Surendra Shrestha

Head of the Department

Department of Electronics and Computer Engineering,

Pulchowk Campus,

Institute of Engineering,

Tribhuvan University,

Nepal

vii

ACKNOWLEDGEMENT

I would like to express my special thanks of gratitude to the Department of Electronics

and Computer Engineering for giving a golden opportunity to carry out this thesis work.

I owe my deep gratitude to my thesis supervisor Prof. Dr. Subarna Shakya, who took

keen interest in this work and guided me by providing all the necessary information for

developing a good system.

I am thankful to our program coordinator Dr. Aman Shakya for providing suitable

platform to prepare this report.

I owe a debt of gratitude towards our Head of Department Assoc. Prof. Dr. Surendra

Shrestha, Assoc. Prof. Dr. Diwakar Raj Panta, Prof. Dr. Shashidhar Ram Joshi, Assoc.

Prof. Dr. Sanjeeb Prashad Pandey, for their encouragement and precious guidance

during the thesis, and also to our other faculty members of the department as well as

my friends for providing their valuable views and ideas.

Gajendra Acharya

073/MSCS/654

viii

ABSTRACT

Since hate speech and offensive language is becoming a growing problem, with the

massive availability and popularity of opinion-rich resources such as social media,

online review sites Hate speech on social media has unfortunately become a common

occurrence largely due to advances in mobile computing and the internet. This thesis

work analyses the social media content to try and identify hate speech, and with the

application of various machine intelligence models, improving the detection rate with

higher accuracy in contrast to previous research works. Various deep learning

approaches such as Convolutional Neural Network (CNN) and Recurrent Neural

Network (RNN) are used in the proposed approach. With the application of sentiment

weighing, the opinion mining is carried out. The final model shows overall precision of

0.82, recall 0.78 and F1 score of 0.80. The test accuracy achieved in the dataset is 83%.

For the visual interpretation, ROC curve shows the distinction between the abusive or

offensive and non-offensive content.

Keywords: CNN, LSTM, hate, opinion.

ix

TABLE OF CONTENTS

COPYRIGHT © ... iii

DECLARATION .. iv

RECOMMENDATION ... v

DEPARTMENTAL ACCEPTANCE ... vi

ACKNOWLEDGEMENT ... vii

ABSTRACT ... viii

TABLE OF CONTENTS .. ix

1. INTRODUCTION ... 1

1.1 Background .. 1

1.2 Problem Statement ... 3

1.3 Objectives .. 3

2. RELATED THEORY .. 4

2.1 Related Works .. 4

2.2 Approaches in Related works .. 4

3. LITERATURE REVIEW .. 8

3.1 Hate speech detection systems ... 8

3.2 Classical methods... 8

3.3 Deep Learning - based methods ... 8

3.4 Hate Speech Opinion Mining... 9

4. RESEARCH METHODOLOGY... 11

4.1 System Block Diagram .. 11

4.2 Data Collection and Sources .. 11

4.3 Corpus Collection .. 12

4.4 Text Preparation and Preprocessing... 12

4.5 Feature Extraction from Text ... 14

x

4.6 Model Selection ... 16

4.6.1 Optimization and Evaluation .. 17

4.7 Opinion Mining (Sentiment Analysis) ... 18

4.8 Tools Used ... 19

5. RESULT, ANALYSIS AND COMPARISON .. 20

5.1 Dataset and Experimental Settings .. 20

5.2 Results and Analysis .. 20

5.3 Comparison .. 26

6. CONCLUSION AND RECOMMENDATION ... 27

6.1 Conclusion ... 27

6.2 Limitations ... 27

6.3 Recommendation ... 27

7. REFERENCES .. 28

APPENDIX .. 30

xi

LIST OF FIGURES

Figure 2.1: CNN Architecture 5

Figure 2.2: Recurrent Neural Network 6

Figure 2.3: LSTM Architecture 6

Figure 2.4: Gated Recurrent Unit (GRU) Architecture 7

Figure 4.1: System Block diagram 11

Figure 4.2: A sample of the labeled tweets dataset 12

Figure 4.3: Cleaning of tweets for preprocessing 13

Figure 4.4: The feature extraction process 14

Figure 4.5: Model Block diagram for proposed approach 17

Figure 5.1: ROC curve 22

Figure 5.2: Top 50 tokens present in the dataset 23

Figure 5.3: A sample of tweets with particular terms 24

Figure 5.4: Sentiment weighing for opinion mining 24

Figure 5.5: Opinion mining for tweets 25

xii

LIST OF TABLES

Table 4.1: Sentiment Analysis Example 18

Table 5.1: Experimental Results 20

Table 5.2: Confusion Matrix 21

Table 5.3: Sentiment scores of tweets 25

Table 5.4: Sentiment scores with normalization 26

xiii

LIST OF ABBREVIATIONS

BI-LSTM Bidirectional Long Short-Term Memory

BOW Bag of Words

CNN Convolutional Neural Network

GRU Gated Recurrent Unit

IDE Integrated Development Environment

LSTM Long Short-Term Memory

ML Machine Learning

NLP Natural Language Processing

POS Part of Speech

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SA Sentiment Analysis

SVM Support Vector Machines

TF-IDF Term Frequency-Inverse Document Frequency

1

1. INTRODUCTION

1.1 Background

Social Media have become a trusted medium for seeking connectedness, and resulting

our connections to grow wide and broad but shallower. On the other hand, Social

Media, web forums and online conversations and debates have brought various issues

like anxiety, decrease in empathy and antisocial behavior like hate speech. Machine

learning models are currently being used in the field to detect abusive language and

hate speech on social media platforms including YouTube, Facebook, Instagram, and

so on. This study tries to emphasize on hate speech and abusive language detection

approaches and build a new system through the study of those existing tools and

techniques. Researchers have tried to perform a large number of research in the past

decade to develop automatic methods for hate speech detection in blogs and social

media. A more detailed discussion of the methods and applications for hate speech

detection can be found in many of the surveys carried out in recent years.

Hate Speech

Despite the strong presence of hate speech in public debates, there is not a universally

recognized definition of this phenomenon (Spallaccia and Beatrice 2017). While

researchers try to determine the content, tone and nature of this discourse, the main

definitional challenge of this debate still lies in the identification of the social categories

attacked by hate speech. Commentators have supported the separation of misogyny

from other forms of hate speech (e.g., racism, sexism, homophobia and other offensive

forms) more or less explicitly, ranging from its absence in the definitions of this

phenomenon to the overt justification of such exclusion. Building effective

countermeasures for hate speech online requires as the first step, identifying and

tracking hate speech (Zhang 2018). However, many of recent works in hate speech

identification are based on racist and sexist slurs. The definition of hate speech is

different among the authors based on geographical locations, cultures and nationalities.

However, this study is based on the following definitions of hate speech. Other

definitions are similar and revolve around the gist of these definitions.

2

Davidson (2017) defines hate speech as the language that is used to express hatred

towards a targeted group or is intended to be derogatory, to humiliate, or to insult the

members of the group.

George (2018) proposes the following list to identify hate speech. A hate speech is any

speech that-

1. Uses a sexist or racial slur.

2. Attacks, seeks to silence, or criticizes a minority (without a well-founded

argument).

3. Promotes but not directly use, hate speech or violent crime.

4. Blatantly misrepresents truth or seeks to distort views on a minority with

unfounded claims.

5. Contains a screen name that is offensive, as per the previous criteria, tweet is

ambiguous (at best), and tweet is on a topic that satisfies any of the above

criteria.

Hate speech is characterized by any form of verbal or non-verbal attack targeting a

specific group of people. It can be motivated by racial, ethnic, gender, religion or sexual

orientation and other similar issues. Such issues are usually communicated through

different media such as internet, hand-held devices, newspapers, magazines, television,

radio broadcasts, and verbal person-to-person.

Opinion Mining

Opinion Mining, also interchangeably used as Sentiment Analysis (SA) is a field within

Natural Language Processing (NLP) that builds systems that try to identify and extract

opinions within the text however, the difference lies in a person’s view about something

and a feeling. Usually, besides characterizing opinion, these systems extract expression

attributes, for example:

● Opinion holder: the entity or person that expresses the opinion.

● Polarity: the speaker expresses a positive or negative opinion,

● Subject: the thing that is being talked about,

The distinction lies in the sense that a sentiment is more of a feeling, and an opinion is

more of a person’s view about something, whereas. However, opinions imply positive

or negative sentiments in most cases. Because detecting the polarity of text is often a

step in sentiment analysis, the two fields are usually combined under the same umbrella

as mentioned in [1]. Since negative opinions and hate speech are closely related, and it

3

is safe to assume that usually negative sentiment might imply a hate speech message

(Nobata et al. 2016).

1.2 Problem Statement

With the massive growing content on social media, the amount of hate speech online is

also increasing. While hate speech and abusive language detection has become an

important area for natural language processing research (Schmidt and Wiegand, 2017;

George et al., 2017; Fortuna and Nunes, 2018), there has been little work addressing

the potential for these systems to be biased. Such bias could result in negative impacts

on the results. Due to subjective bias, far fewer data are classified as more offensive or

hateful than their true category. Recent works done on the identification of hate speech

on social media data prove to be less accurate due to erroneous classification of

offensive language as hate speech (Davidson et. al., 2017), or having very small dataset

(Mugambi, 2017), and some do not consider sentiment weighting (Mugambi, 2017).

Some works on hate speech detection might have identified these problems but many

studies still tend to combine various classification models for better results.

1.3 Objectives

a) To develop a hate speech detection system through the investigation of existing

techniques.

b) To evaluate the performance of the proposed system.

4

2. RELATED THEORY

2.1 Related Works

Most of the recent methods primarily present the problem as a supervised text

classification task which can be divided into two categories (Zhang et al. 2018):

Classical methods that rely on feature engineering such as Naïve Bayes, SVM, Logistic

Regression and Decision Trees; and deep learning-based methods that make use of

neural networks to automatically learn multi-layers of abstract features from raw data.

Wafula [2] uses POS tagging and a bag of words model for supervised classification of

tweets data for hate speech sentiment analysis by developing a social media digital

forensics tool through the design, development and implementation of a software

application. They also state that the system could go further by employing machine

intelligence algorithms for predictive analysis. Schmidt et. al. [3] conducted a survey

on hate speech detection with the assumption that usually negative sentiment pertains

to a hate speech message. They employ two predominant supervised learning

approaches, namely SVM and RNN models. Most of the recent works use lexicon based

approach, and classifiers such as Naive Bayes and SVM, and a few use Maximum

Entropy and Neural Network based models for sentiment analysis. Mugambi [4] applies

machine learning techniques to automatically classify tweets as hate speech or not.

Davidson et. al. (2017) uses crowd-sourcing to label a sample of these tweets into three

categories: those containing hate speech, those with offensive language, and those with

neither. They train a multi-class classifier to distinguish between these different

categories.

More recently, new feature extraction techniques have been applied based on word

embedding (also known as word vectors). This kind of representation makes it possible

for words with similar meaning to have a similar representation, which can improve the

performance of classifiers.

2.2 Approaches in Related works

Deep learning-based methods that make use of neural networks to automatically learn

multi-layers of abstract features from raw data (Zhang et al. 2018). The most popular

network architectures are CNN (Convolutional Neural Networks) and RNN (Recurrent

5

Neural Networks). CNN is well-known for its effective feature extraction capabilities

(Zhang 2018). RNN assigns more weight to the previous data points of sequence. RNN

learns word or character dependencies in tweets (Zhang 2018).

LSTM and GRU

Early RNNs had trouble with training because of exploding and vanishing gradients.

With many time steps the gradients would often grow too steep, exploded, or they

approached zero, vanished. This problem happened because the recurrent edge in a

node always had the same weight, which resulted in the derivative of the error either

exploding or approaching zero, at an exponential rate, as the number of time steps grew.

This was solved by introducing a memory cell. The new model was introduced by and

is called LSTM. GRU is a simpler version of LSTM, and therefore less computationally

expensive, but often without performing worse than LSTM.

Convolution Neural Network (CNN)

CNNs are the feed forward neural networks made up of many hidden layers. They

consist of filters or kernels or neurons that have learnable weights or parameters and

biases. Each filter does convolution on some inputs as shown in figure 2.1.

The components of CNN consist of following layers:

i. Convolutional Layer

ii. Rectified Linear Unit (ReLU) Layer

iii. Max Pooling Layer

iv. Fully Connected Layer

Figure 2.1: CNN Architecture (Source: semanticsscholar.org [online])

Recurrent Neural Networks (RNN)

Another neural network architecture that is addressed by the researchers for text mining

and classification is Recurrent Neural Networks (RNN).

6

Therefore, this technique is a powerful method for text, string and sequential data

classification. In RNN, the neural net considers the information of previous nodes in a

very sophisticated method which allows for better semantic analysis of the structures

in the dataset. A simple RNN is shown in figure 2.2.

Figure 2.2: Recurrent Neural Network (Source: analyticsvidhya.com [online])

Long Short Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a special type of RNN that preserves long term

dependency in a more effective way compared to the basic RNNs. This is particularly

useful to overcome vanishing gradient problem. LSTM takes whole document as single

sequence and the average of the hidden states of all words is used as feature for

classification (Yang et al. 2016).

A General Recurrent Neural Network (RNN) can model temporal information by

transforming a sequence of inputs to a sequence of outputs. LSTMs enable RNN’s to

remember their inputs over a long period of time. This is because LSTMs contain their

information in a memory that is much like the memory of a computer because the

LSTM can read, write and delete information from its memory, as shown in figure 2.3.

Figure 2.3: LSTM Architecture (Source: Hochreiter et. al., 1997)

7

Other variants of LSTM such as CuDNNLSTM (CuDNN is a library for deep neural

nets built using CUDA (Compute Unified Device Architecture), NVIDIA’s API for

programming on the graphics card) also exist, which run on GPU only, with the

TensorFlow backend.

Gated Recurrent Unit (GRU)

GRU is a gating mechanism for RNN which was introduced by J. Chung et al. and K.

Cho et al. GRU is a simplified variant of the LSTM architecture, but there are

differences as in figure 2.4: GRU contains two gates and does not possess any internal

memory and finally, a second non-linearity is not applied (tanh in figure).

Figure 2.4: Gated Recurrent Unit (GRU) Architecture

(Source: Cho et. al., 2014)

Similarly, other variants of GRU, such as CuDNNGRU also exist, which run on GPU

only, with the TensorFlow backend.

Some of the previous works perform comparison of these different architectures with

different results that an architecture outperforms other in different datasets, which is

discussed in the following sections (chapters).

8

3. LITERATURE REVIEW

3.1 Hate speech detection systems

Social Media data constitutes of what is known as big data. Given the relatively high

prevalence of offensive language and “curse words” on social media, this makes hate

speech detection particularly challenging (Wang et al. 2014). Most of the recent

methods primarily present the problem as a supervised text classification task which

can be divided into two categories (Zhang et al. 2018): Classical methods that rely on

feature engineering such as Naïve Bayes, SVM, Logistic Regression and Decision

Trees; and deep learning-based methods that make use of neural networks to

automatically learn multi-layers of abstract features from raw data. Lexical-based

methods only identify potentially offensive terms but are inaccurate at identifying hate

speech [5].

3.2 Classical methods

These methods are based on the manual conversion or encoding of data features into

feature vectors, which are then used by the classifiers. Simple features such as n-grams,

bag-of-words and POS vectors. Opinion mining makes use of the degree of polarity as

expressed by the opinion holder. Among the classifiers, however Logistic Regression,

SVMs, Naïve Bayes and Random Forests are most popular.

3.3 Deep Learning - based methods

These are powerful set of learning techniques in neural networks. Deep learning mean

using more layers. This does not just apply to neural networks, the layers of other

artificial intelligence methods can also be stacked, but this work generally focuses on

neural networks. Neural networks and deep learning currently provide the best solutions

to many problems in image recognition, speech recognition, and natural language

processing. Using deep layers, they can learn abstract feature representations through

their multiple stacked layers for classification of text. The input can vary from raw data

to various feature encodings including those used in classical methods. The most

popular network architectures are CNN (Convolutional Neural Networks) and RNN

(Recurrent Neural Networks).

9

Feature based approaches have been leveraged to better identify the intensity of hate

speech, most works focus on detecting profanity, using features such as n-grams, bag

of words, TF-IDF and part-of-speech features (Davidson et al. 2017, Wafula et al.

2016). Many studies suggest that there are good and robust ways to identify abusive

languages. George et al. (2018) present a list of criteria based in critical race theory to

identify racist and sexist slurs.

3.4 Hate Speech Opinion Mining

Over the past years, interest in online hate speech detection and particularly the

automatization of this task has continuously grown, along with the societal impact of

the phenomenon. Opinion Mining has been handled as a Natural Language Processing

task at many levels of granularity. A number of methods used for hate speech detection

have been documented by the sources cited in this proposal.

Context-driven Sentiment Analysis scheme are also present (Sharma et. al [6]) with the

objective of refining the degree of subjectivity during Sentiment Analysis. Ceron, et.

al. [7] presents an algorithm, named iSA (integrated Sentiment Analysis) for social

networks and Web 2.0 sphere (Twitter, blogs) opinion analysis. Instead of performing

an individual classification and then aggregate the predicted values, the algorithm

directly estimates the aggregated distribution of opinions. Various social media

contents-based sentiment analysis and prediction system exist that detect events in real

time out of the massive social media contents (Yoo et. al. [8]). In these systems, users’

sentiments are classified using deep learning methods such as Convolutional Neural

Networks.

Various systems such as ontology-based sentiment analysis systems (Thakor and Sasi

[9]) where tweets with negative sentiments only are used for polarity detection. In these

sysems sentiment is detected from the built ontology. Positive polarity corresponds to

positive sentiment and negative polarity correspond to the negative sentiment.

Recent methods make use of new feature extraction techniques based on word

embeddings. This kind of representation makes it possible for words with similar

meaning to have a similar representation, which can improve the performance of

classifiers.

Deep learning-based ensemble model for intent detection of spoken language

understanding are also developed, (Ekbal et. al. [10]) which primarily focus on

10

extraction of intended meaning. Various deep learning architectures such as CNN and

variants of recurrent neural networks (RNN) like LSTM and multi-layer perceptron

(MLP) are combined. Ensemble learning are also applied to NLP tasks, e.g. POS

tagging, chunking and word sense disambiguation. Word embeddings such as Glove

and Word2vec were combined in this approach.

Some of the previous works perform comparison of these different approaches (deep

learning architectures) with different results such as an approach outperforms other in

different datasets. Example, for sentiment analysis tasks, (Mekolov et al. 2013) found

that in deep learning approaches GRU outperforms LSTM and CNN in sentiment

analysis of Russian tweets. Although CNNs are also considered good at extracting local

and position-invariant features (Yin et al. 2018), they are outperformed by RNN in

similar sentiment analysis problems because GRUs are better when sentiment is

determined by the entire sentence or a long-range semantic dependency.

However, the performance of these systems cannot be determined just alone by the

output without varying the hyperparameters. For example, variations in batch sizes and

hidden size could cause large fluctuations. Some authors also argue that the use of a

linguistic characteristic with the use of BI-LSTM based on the occurrence of hateful

words in data could also help improve the performance of the model (Sarracen et al.

2018).

11

4. RESEARCH METHODOLOGY

4.1 System Block Diagram

The methodology implemented in this work is machine learning-based and has

followed the workflow as shown in figure 4.1.

Figure 4.1: System Block diagram

The methodology in this system consists of the following steps:

4.2 Data Collection and Sources

The dataset used in this approach is a dataset compiled by hataebase.org, that creates a

multilingual dictionary of words used in hate speech (phrases identified by internet

users as hate speech) and consists of a sample of 3k tweets containing the hate speech

lexicon. The Tweets are labeled as ‘hate’, ‘offensive’ and ‘neither.’ The dataset is

classified based on crowdsourcing by the online users’ community. For testing the

model, the streaming Twitter API and the scraped tweets were used.

Figure 4.2 illustrates a sample of the labeled dataset.

12

Figure 4.2: A sample of the labeled tweets dataset

4.3 Corpus Collection

The corpus collection begins with carrying out an initial search of common slangs and

terms used in social media such as twitter. Based on this sample, the public Twitter

search API was used to collect the entire corpus containing tweets written in English,

ensuring that non-offensive and potentially offensive words were also included in the

tweets. For example, even though ‘trash’ is one of the most frequent words in hate or

offensive tweets, it also occurs in neither of the category, such as “Power has been trash

for a while now and I decided that I’m not gonna watch this season. My wife can tell

me how it’s gonna end.”

Identification and annotation: Although they can be expressed without any such terms,

it is almost easy to identify offensive terms and hate speech. Also, sometimes it is

difficult to identify hate speech for humans due to difference in exposure and

knowledge of hate speech. The hate speech understanding here is based on the

definitions presented in the introduction section.

4.4 Text Preparation and Preprocessing

The text data collected is basically in an unstructured format that is not suitable for

machine learning. Since opinions and feelings are expressed in different ways, with

different vocabulary, context of writing, usage of short forms and slang, making the

data huge and disorganized, this step basically includes identifying and eliminating

non-textual content and content that is irrelevant to the area of study from the data. For

13

example, tweets are short, noisy and ungrammatical. Before classifying sentiment of a

tweet as positive and negative, good amount of pre-processing has to be done. For this,

tweets undergo some or all of the processes of pre-processing as shown in figure 4.3.

Figure 4.3: Cleaning of tweets for preprocessing

a) Conversion to UTF-8: Many tweets might contain unusual or non-standard

characters, which can be problematic for downstream processing. To address

these issues, we can use for example, a combination of BeautifulSoup and

Unidecode to convert and transliterate all tweets to UTF-8.

b) Removal of Empty (Null) Tweets: After completing all of the other pre-

processing, any empty tweets can be deleted.

c) Removal of stop words such as ‘is,’ ‘a,’ ‘the,’ ‘to,’ that don’t contain much

information.

The pre-processing of the extracted data and proper training is very important aspect

than applying the algorithm and getting the results, which help in improving the

accuracy of speech classification. The accuracy of classification also depends on the

features obtained such as tf-idf, bag of words and n-grams.

14

4.5 Feature Extraction from Text

The first step in a machine learning text classifier requires transforming the text into a

numerical representation, usually a vector. Usually, each component of the vector

represents the frequency of a word or expression in a predefined dictionary (e.g. a

lexicon of polarized words). This process is known as feature extraction or text

vectorization and the classical approach has been bag-of-words or bag-of-ngrams with

their frequency.

Figure 4.4: The feature extraction process

Figure 4.4 shows the feature extraction process. It includes the given processes:

a) Case Normalization: In this step entire document is converted into lowercase.

b) Tokenization: Tokenization is splitting up the systems of text into personal

terms or tokens.

c) Stemming (Snowball): Stemming is the procedure of decreasing relevant

tokens into a single type of token. This procedure contains the recognition and

elimination of suffixes, prefixes, and unsuitable pluralization.

d) Generate features: Character n-grams are ‘n’ nearby figures from a given

feedback sequence. For example, a 3- gram of a phrase ’FORM’ would be ‘_ _

F’, ’_FO’, ‘FOR’, ‘ORM’, ‘RM_’, ‘M_ _’. N-grams of dimension one are

known as ‘unigram’, two dimensional grams are known as ‘bigram’, three-

dimensional grams are known as ‘trigram’. And for the rest of the dimensions

it is called n-grams. Other features include bag of words, part of speech features

and TF-IDF, which are explained as follows.

15

Part-of-speech Features: Parts-of speech features i.e. nouns, adverbs, adjectives, etc.

in each tweet are tagged.

Bag-of-words: A bag-of-words is a representation of text that describes the occurrence

of words within a document. As the vocabulary size increases, so does the vector

representation of documents. As such, there is pressure to decrease the size of the

vocabulary when using a bag-of-words model. There are simple text cleaning

techniques that were used as a first step, such as ignoring case, punctuation and frequent

words that do not contain much information, called stop words, reducing words to their

stem (e.g. “play” from “playing”) using stemming algorithms. For this, the tweets are

stemmed using Snowball method in the Natural Language Toolkit library (NLTK).

Some of the words appear nearly in each message, and therefore, provide less

distinctive information. Therefore, different weights are assigned for each word based

on how often they appear in different messages using the Term Frequency — Inverse

Document Frequency weighting (TF-IDF). TF-IDF gives higher importance for the

words, which are only in few documents (or tweets in this case).

The TF-IDF assigns the weight to a word as shown in equation 4.1:

𝑤𝑖𝑘 = 𝑡𝑓𝑖𝑘 𝑥 log(
𝑁

𝑛𝑘
) …………….. (4.1)

Where,

𝑡𝑓𝑖𝑘 = frequency of term 𝑇𝑘 in document 𝐷𝑖

N = total no. of documents in the collection C

𝑛𝑘 = the no. of documents in C that contain 𝑇𝑘

𝑇𝑘 = term k in document 𝐷𝑖

𝑖𝑑𝑓𝑖𝑘 = log(
𝑁

𝑛𝑘
) (the inverse document frequency of 𝑇𝑘 in C)

Word Embeddings

Word Embedding converts a word to an n-dimensional vector. Related words are

mapped to similar n-dimensional vectors, while dissimilar words have dissimilar

vectors. In this way the ‘meaning’ of a word can be reflected in its embedding, a model

is then able to use this information to learn the relationship between words. In this case,

the text_to_word_sequence function from the Keras preprocessing library

16

automatically converts a string to a list of word tokens and at the same time clean the

data by removing punctuation and capitalization.

4.6 Model Selection

For identifying the appropriate model, some baseline methods were explored and then

the proposed approach was developed. This method uses embeddings generated for text

classification and thus used with a classifies as its feature representation. The influence

of different features on classification was performed using a variety of models that have

been used in prior work, such as Support Vector Classifiers, Naive Bayes and Logistic

Regression. In order to pick the most suitable feature, grid search with 5-fold Cross-

Validation was performed over all feature set combinations in both the approaches.

Since ML algorithms do not understand text directly, the training data can be

transformed into vectors (for e.g. simple but effective methods include bag-of-words

and TF-IDF). Next, those vectors were used to train machine learning algorithms

(Naive Bayes and Logistic Regression for example). However, the output depends on

the dataset size and the extracted information.

Finally, the trained model was used for text classification in new unseen dataset by

transforming them into vectors and feeding them to the classifier which then decides

whether the tweet data contains potentially hate or offensive speech.

Baseline Method(s): Different representations were experimented for baseline

approach:

- TF-IDF (Term Frequency - Inverse Document Frequency): Words are given

weight. TF-IDF measures relevance, not frequency (that is, word counts are

replaced with TF-IDF scores across the whole dataset).

- Model: Logistic Regression with same configuration as in Davidson (2017).

Proposed Approach: Two different neural net architectures were investigated as

explained follows. For each of the two architectures, word embeddings are initialized

(Glove embeddings).

- CNN (Convolutional Neural Networks): CNNs with 256 filters, kernel size 2

was used.

- RNN (Recurrent Neural Networks): Specifically, GRU and LSTM were used.

Recurrent Neural Network like LSTMs can use their internal memory to process

arbitrary sequences of inputs. Hence, long term dependencies can be captured

17

by LSTMs; which may play a role in hate speech detection. LSTMs with 100

units were used in this experimentation.

Figure 4.5 represents the model summary.

Figure 4.5: Model Block diagram for proposed approach

4.6.1 Optimization and Evaluation

Activation functions: There are many different functions that can be used, the most

common ones are: Sigmoid, tanh, Softmax, and rectified linear unit (ReLU). ReLU and

Softmax are the most common functions used. In this classification problem, the

softmax activation was chosen.

Loss Function: A few popular loss functions that are currently being used are: mean

squared error (MSE), likelihood loss and cross entropy loss. In this case, the categorical

cross-entropy loss function is used to obtain the results because it was more effective

in previous works.

Callbacks: A callback basically is a set of various functions to be applied in stages of

the training procedure. In this case, the EarlyStopping callback is used. Here, the model

stops training when certain monitored quantity stops improving over time. For example,

the ‘validation loss’ quantity can be monitored to prevent the model to overfit.

Metric Functions: The four categories: true positive, false positive, false negative and

true negative form the basis of the metrics that were used to evaluate the classification

model including accuracy, precision, recall and F-Score.

18

Accuracy measures the percentage of inputs in the test set that the model correctly

labelled either as hate speech or non-hate speech. Precision is the ratio of correctly

classified documents to the total number of documents classified under a particular

category. Recall is defined as the number of correctly classified documents among all

documents belonging to that category, whereas F-Score is a harmonized mean of

precision and recall.

4.7 Opinion Mining (Sentiment Analysis)

Opinion mining is the automated process of understanding an opinion about a given

subject from written or spoken language. From being able to mine opinions from

product reviews to being able to forecast stock prices by studying tweets, it has a very

wide range of applications. A thorough process of the opinion mining process is

described in the next chapter of this work.

The use of a sentiment lexicon designed for social media (Davidson 2017, Hutto and

Gilbert 2014) can also help sentiment detection. Table 4.1 shows sentiment analysis of

collected data with their polarity (Negative, Neutral and Positive).

Table 4.1: Sentiment Analysis Example

Tweet Classification Polarity

I love being a dizzy h*e for social

media
Offensive 1 (Positive)

I want to retweet it 1000 times..

I just hate this one roommate of mine.

F***ing c*nt.

Hate -1 (Negative)

Shoppee 9.9 sale = time to stock up

on basic hoe necessities coz IT'S

BRITNEY, B**CH.

Offensive 0 (Neutral)

19

4.8 Tools Used

Programming Language Python 3.6 +

IDE Jupyter Notebook, Notepad++

ML library Keras, sklearn, tensorflow

The hardware specifications used are Graphics GPU accelerator Nvidia Geforce MX

and RAM of 12 GB.

20

5. RESULT, ANALYSIS AND COMPARISON

5.1 Dataset and Experimental Settings

As explained earlier, TF-IDF was used for baseline and GloVe pre-trained embeddings

was used for word embedding based approach. A 5-fold Cross Validation was

performed and weighted metrics were used for precision, recall and F1-scores. For deep

learning method, the ‘Adam’ optimizer was used. Batch size of 128 was used. Also,

because of the unbalanced number of labelled classes, experimentation was also done

with taking the equal number of the class instances.

Word embeddings: GloVe pre-trained word embeddings was experimented. It was

trained on a corpus of 6 billion tokens and contains 200 embedding dimensions. On

glove embeddings, the training is basically performed on aggregated global word-word

co-occurrence statistics from a corpus, and the resulting representations showcase

interesting linear substructures of the word vector space (Source: Stanford GloVe).

5.2 Results and Analysis

The classifier was assigned a batch size of 128, epoch number of 10 and optimizer

adam. Table 5.1 shows the results of different approaches applied to the detection of

hate speech. The first row shows various results for Baseline Method and the second

row shows the implementation of the deep learning models.

Table 5.1: Experimental Results

 Class Precision Recall F1-Score

Baseline

Method

Hate

Offensive

Neither

0.48

0.88

0.93

0.78

0.67

0.86

0.59

0.76

0.89

Deep learning

Methods

Hate

Offensive

Neither

0.57

0.87

0.92

0.80

0.71

0.86

0.66

0.78

0.88

The final model shows overall precision of 0.82, recall 0.78 and F1 score of 0.80 and

individually, as shown in the table for hate, offensive and neither classes, thus proposed

methods prove to be significantly better than the baseline methods. RNNs (particularly

21

LSTMs) and CNNs performed slightly better than classical methods in the proposed

approach. The use of word embeddings also helped in the classification.

The confusion matrix in table 5.2 illustrates the output using various approaches.

Table 5.2 (a): Confusion Matrix using baseline method

 Predicted

 Hate Offensive Neither

Actual

Hate 0.47 0.40 0.11

Offensive 0.09 0.87 0.03

Neither 0.04 0.02 0.93

Table 5.2 (b): Confusion Matrix using RNN

 Predicted

 Hate Offensive Neither

Actual

Hate 0.59 0.21 0.20

Offensive 0.05 0.82 0.13

Neither 0.01 0.02 0.96

Table 5.2 (c): Confusion Matrix using equal instances of all classes (baseline)

 Predicted

 Hate Offensive Neither

Actual

Hate 0.56 0.32 0.10

Offensive 0.09 0.86 0.04

Neither 0.05 0.02 0.92

Table 5.2 (d): Confusion Matrix using equal instances of all classes (using RNN)

 Predicted

 Hate Offensive Neither

Actual

Hate 0.74 0.13 0.12

Offensive 0.09 0.78 0.12

22

Neither 0.07 0.12 0.81

ROC Plots

Figure 5.1 shows ROC curve for the different classes.

Figure 5.1 (a): ROC of class hate Figure 5.1 (b): ROC of class offensive

Figure 5.1 (c): ROC of class neither

Opinion Mining

After preprocessing and a close analysis of the top positive and negative keywords in

the dataset (for simplicity, most frequent ‘hateful’ and non-hateful keywords were

identified from the labeled dataset, using the positive and hateful lexicon from

hatebase.org), it results in the following list of top 50 keywords as shown in figure 5.2.

23

Figure 5.2 (a): Top 50 positive tokens

Figure 5.2 (b): Top 50 negative tokens

In the next step, tweets were collected over different time containing these particular

terms and apply the sentiment analysis model upon the collected data (The streaming

twitter API could also be used for data collection in real-time). For this, tweets were

randomly collected over a period of two months. Figure 5.3 shows a sample of tweets

containing particular terms.

24

Figure 5.3: A sample of tweets with particular terms

Moreover, figure 5.4 shows the use of sentiment weighing for the tweets collected and

preprocessed earlier.

Figure 5.4: Sentiment weighing for opinion mining

These tweets then undergo all the preprocessing steps mentioned earlier. After this, the

opinion mining model is applied on to these tweets with their target class prediction.

The polarity sentiment is denoted by positive and negative values (for example, 1 for

positive and -1 for negative polarity). A summary of the prediction is shown in figure

5.5. Although the polarity shows only negative or positive instances, it does not mean

that an offensive speech is negative. As some tweets with negative words could also

express positive meaning (e.g. f##ing awesome), the positive lexicon is also considered

for more reliable prediction.

25

Figure 5.5: Opinion Mining for the tweets

However, assuming that both the lexicons have same frequency, a tweet with short

length could show more sentiment than one with a longer length. This is why the

normalization of positive and negative term frequency is to be considered for more

reliable sentiment analysis, as shown by the scores in Table 5.3. The sentiment scores

are on the scale of 1-10.

Table 5.3: Sentiment scores of tweets

Tweet Classification Sentiment Scores

Yes you do r*tard Hate
Negative: 0

Positive: 0

love when girls pass up the guys

who want Something real and to

treat them right for the guy who

just uses em cuz then they b*tch

about it

Offensive
Negative: 3

Positive: 2

Roach happy birthday ni**a do

coon shit in responsible way
Hate

Negative: 2

Positive: 1

26

Table 5.4 illustrates the use of normalization for given tweets. Sentiment scores are on

1-10 Scale and the normalized score is on the 0-1 scale.

Table 5.4: Sentiment scores with normalization

Tweet Classification Sentiment

Scores

Scores with

Normalization

All h*es lie Offensive
Negative: 1

Positive: 0

Negative: 0.33

Positive: 0

These h*e a** ni**as talkn

shyt about ni**a make ni**a

wanna go and snatch the

b**ch up outta ni**a

Offensive
Negative: 3

Positive: 0

Negative: 0.15

Positive: 0

haha yes ni**ah but

yesterday night Idk man it hit

me at night like around in the

morning didn go to sleep till

like

Hate
Negative: 6

Positive: 1

Negative: 0.25

Positive: 0.04

happy birthday you dirty

little bird tear it up
Neither

Negative: 1

Positive: 4

Negative: 0.07

Positive: 0.14

5.3 Comparison

This thesis work uses the word embedding models for creating word vectors and deep

learning architectures such as long short term memory for text classification of the tweet

data. Different standard datasets are used for experiment of the classification procedure.

The precision, recall and F1 scores of the proposed method in classifying the text are

0.82, 0.78 and 0.80 in case of classes hate, offensive and none, which suggests a

noticeable improvement over the baseline method. The abusive language was taken as

the combination of hateful as well as offensive tweets. The ROC curve also suggests an

acceptable degree of classification among the classes. Moreover, the accuracy of hate

speech can be increased if the instances of hateful languages are increased.

27

6. CONCLUSION AND RECOMMENDATION

6.1 Conclusion

The application of deep learning models has helped better identify hate speech from the

given data. A model for recognizing the hate speech has been developed and the

performance of the proposed method was demonstrated on different number of various

classes. However, considering the fact that offensive language sometimes contributes

to the negative sentiment, the prediction of offensive language as hate does improve the

sentiment analysis model. Also, through the use of various feature of tweets, such as

TF-IDF, Part-of-Speech, and other features such as average syllables, sentiment scores,

number of characters, etc. as proposed by authors of [11] also helps in the distinction

of hate speech from offensive language, however that is not always the case. For

sentiment analysis, detection of offensive language as hate is ignored as both the class

contribute to negative sentiment in most cases. The use of deep learning approaches

such as Recurrent Neural Networks has proven to improve the classification.

6.2 Limitations

From the experimental results, the proposed method proves to have a significant

performance over classic methods, however this method is limited to English language

only and since hate speech is a subjective matter, the classification might be a

challenging problem because what might be offensive to a person, might be hateful to

others. This is true especially with people from different communities and different age

groups. Also, due to class imbalance on the available dataset, there is no particular

distinction on some instances of hate and offensive languages.

6.3 Recommendation

The use of deep learning methods has shown to increase the detection of hate speech

and abusive language on the datasets however, given sufficient number of minority

class, the precision can be increased even further. Also, hate speech being subjective

matter, there is no particular distinction on hate and offensive languages. The use of

deep learning architectures such as LSTMs and GRUs have helped on overall abusive

language identification, however the differentiation on such features depends on the

actual dataset size, class instances and the features used.

28

7. REFERENCES

[1] Kherwa, P., Sachdeva, A., Mahajan, D., Pande, N., & Singh, P. K. (2014). An

approach towards comprehensive sentimental data analysis and opinion mining.

[2] Wafula, & W, G. (2016). Social Media Forensics for Hate Speech Opinion

Mining.

[3] Schmidt, A., & Wiegand, M. (2017). A Survey on Hate Speech Detection using

Natural Language Processing. Proceedings of the Fifth International Workshop

on Natural Language Processing for Social Media.

[4] Mugambi, S. K. (2017). Sentiment analysis for hate speech detection on social

media: TF-IDF weighted N-Grams based approach.

[5] Davidson, T., Warmsley, D., Macy, M.W., & Weber, I. (2017). Automated Hate

Speech Detection and the Problem of Offensive Language. ICWSM.

[6] Sharma, S., Chakraverty, S., Sharma, A., & Kaur, J. (2017). A context-based

algorithm for sentiment analysis. International Journal of Computational Vision

and Robotics, 7(5), 558.

[7] Ceron, A., Curini, L., & Iacus, S. M. (2016). ISA: A fast, scalable and accurate

algorithm for sentiment analysis of social media content. Information Sciences,

367-368, 105-124.

[8] Yoo, S., Song, J., & Jeong, O. (2018). Social media contents based sentiment

analysis and prediction system. Expert Systems with Applications, 105, 102-111.

[9] Thakor, P., & Sasi, S. (2015). Ontology-based Sentiment Analysis Process for

Social Media Content. Procedia Computer Science, 53, 199-207.

[10] Firdaus, M., Bhatnagar, S., Ekbal, A., & Bhattacharyya, P. (2018). Intent

Detection for Spoken Language Understanding Using a Deep Ensemble Model.

Lecture Notes in Computer Science PRICAI 2018: Trends in Artificial

Intelligence, 629-642.

[11] Ghosal, D., Akhtar, M. S., Ekbal, A., & Bhattacharyya, P. (2018). Deep

Ensemble Model with the Fusion of Character, Word and Lexicon Level

29

Information for Emotion and Sentiment Prediction. Neural Information

Processing Lecture Notes in Computer Science, 162-174.

[12] Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms

and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093-1113.

[13] Go, A. (2009). Twitter Sentiment Classification using Distant Supervision.

[14] K. Paramesha (2016). A Perspective on Sentiment Analysis. Proceedings of

‘Second International Conference on Emerging Research in Computing,

Information, Communication and Applications.’

[15] Liu, B., & Zhang, L. (2012). A Survey of Opinion Mining and Sentiment

Analysis. Mining Text Data, 415-463.

[16] Soni, V., & Patel, M. R. (2014). Unsupervised Opinion Mining From Text

Reviews Using SentiWordNet. International Journal of Computer Trends and

Technology, 11(5), 234-238.

[17] Ghosal, D., Akhtar, M.S., Chauhan, D., Poria, S., Ekbal, A., & Bhattacharyya,

P. (2018). Contextual Inter-modal Attention for Multi-modal Sentiment

Analysis. EMNLP.

[18] Joshi, M., Prajapati, P., Shaikh, A., & Vala, V. (2017). A Survey on Sentiment

Analysis. International Journal of Computer Applications, 163(6), 34-38.

[19] Pinkesh B., Shashank G., Manish G., and Vasudeva V. (2017). Deep learning

for hate speech detection in tweets. In Proceedings of the 26th International

Conference on World Wide Web Companion. pages 759–760.

[20] Gitari, Njagi Dennis, et al. “A Lexicon-Based Approach for Hate Speech

Detection (2015).” International Journal of Multimedia and Ubiquitous

Engineering, vol. 10.

[21] Ghosal, Deepanway, et al. “Deep Ensemble Model with the Fusion of

Character, Word and Lexicon Level Information for Emotion and Sentiment

Prediction (2018).” Neural Information Processing Lecture Notes in Computer

Science.

30

APPENDIX

Extract (TF-IDF) features from text

Load file

embedding_file = "data/cleaned_tweets.csv"

cols = ['tweet', 'classifi','classification']

df = pd.read_csv(embedding_file, names=cols, encoding='ut

f-8')

try:

 df=df.dropna()

except:

 df=df.replace(np.nan, '', regex=True)

X = np.array(df.tweet)

y = np.array(df['classifi'].astype(int))

Feature Extraction

from sklearn.model_selection import StratifiedKFold

stratified_split = StratifiedKFold(n_splits=5,

random_state=42)

for train_index, test_index in stratified_split.split(X,

y):

 X_train, X_test = X[train_index], X[test_index]

 y_train, y_test = y[train_index], y[test_index]

from sklearn.feature_extraction.text import TfidfVectoriz

er

build TFIDF features on train and test data

tv = TfidfVectorizer(min_df=5, max_df=0.75, ngram_range=(

1,3), use_idf=True,stop_words='english',

smooth_idf=False, decode_error='replace',

sublinear_tf=True)

tv_train_features = tv.fit_transform(X_train)

tv_test_features = tv.transform(X_test)

print(tv_train_features.shape, y_train.shape)

print(tv_test_features.shape, y_test.shape)

31

Convert text data to Word Embeddings

convert text to word embedding (Using GloVe):

def loadData_Tokenizer(X_train, X_test,

MAX_NB_WORDS=75000, MAX_SEQUENCE_LENGTH=1000):

 np.random.seed(42)

 text = np.concatenate((X_train, X_test), axis=0)

 text = np.array(text)

 tokenizer = Tokenizer(num_words=MAX_NB_WORDS)

 tokenizer.fit_on_texts(text)

 sequences = tokenizer.texts_to_sequences(text)

 word_index = tokenizer.word_index

 text = pad_sequences(sequences,

maxlen=MAX_SEQUENCE_LENGTH)

 print ('Found %s unique tokens.' % len(word_index))

 indices = np.arange(text.shape[0])

 # np.random.shuffle(indices)

 text = text[indices]

 #print(text.shape)

 X_train = text[0:len(X_train),]

 X_test = text[len(X_train):,]

 embeddings_index = {}

 f = open("data/glove.6B.200d.txt", encoding="utf8")

 for line in f:

 values = line.split()

 word = values[0]

 try:

 coefs = np.asarray(values[1:],

dtype='float32')

 except:

 pass

 embeddings_index[word] = coefs

 f.close()

 print ('Total %s word vectors.' %

len(embeddings_index))

 return (X_train, X_test, word_index,

embeddings_index)

Build Model

run Model and see our results

model_RNN = build_Model(64, 100)

from keras.callbacks import EarlyStopping

early_stopping = EarlyStopping(monitor='val_loss', mode='

min',patience=5, baseline=0.9, restore_best_weight

s=True)

history = model_RNN.fit(tv_train, Y_train,

 validation_data=(tv_test, Y_test),

 epochs=15,batch_size=64,

32

 verbose=2,callbacks=[early_stopping])

predicted = model_RNN.predict(tv_test)

predicted = np.argmax(predicted, axis=1)

