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ABSTRACT 

Digital images can be degraded by noise during the process of acquisition, 

transmission, storage or compression. It is necessary to remove the noise in the image 

before the image is suitable for different processing operations. Image denoising is a 

process which is deployed to remove the noise through the manipulation of image 

data to recover quality image from the noisy image. The image denoising process 

should be such that the original image can be recovered without losing important 

features such as edges, corners and textures. One of the powerful and perspective 

approaches in this area is image denoising using discrete wavelet transform. This 

work combines genetic algorithm with wavelet based denoising methods. During the 

evolutionary process, wavelet based denoising methods are applied as local search 

operators and filtering techniques are applied as mutation operators.  A set of digital 

images, commonly used by the scientific community as benchmarks, is contaminated 

by different level of additive Gaussian noise and the proposed algorithm is used to 

reduce the noise level in the image. The results in terms of PSNR & SSIM values 

obtained by the proposed method shows that application of genetic algorithm can 

improve the result obtained from wavelet based denoising methods. Also the proposed 

method is compared against denoising methods in the literature. On average it 

outperforms the compared methods in terms of PSNR & SSIM values 

Keywords: Image denoising, Wavelet transform, Threshold, Feature preservation, 

Genetic Algorithm, Mutation 
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CHAPTER 1:  INTRODUCTION 

1.1.  Background 

The use of digital images has been rapidly increased in the applications of digital 

world such as Digital cameras, Satellite Television, Magnetic Resonance Imaging 

(MRI), Geographical Information System (GIS) etc. Image information i.e. 

information transmitted in the form of digital images, is one of the recent trends. One 

of the most interesting aspects of this information revolution is the ability to send and 

receive complex data that are beyond the capability of ordinary written text. Image 

processing is one form of signal processing for which the input is an image i.e. 

photographs or frames of video and the output can be either an image or a set of 

characteristics or parameters related to the image. The majority of image processing 

techniques involve treating the image as a two-dimensional signal and applying 

standard signal processing techniques to it. 

Generally, data sets collected by image sensors are contaminated by noise. Imperfect 

instruments, problems with data acquisition process, and interfering natural 

phenomena can all corrupt the data of interest. Various types of noise present in 

image are Gaussian noise, Salt &Pepper noise and Speckle noise. Image denoising is 

necessary to obtain best approximation of the original digital image from the received 

noisy image. Image denoising techniques are used to suppress these types of noises 

while retaining the important image features such as corners & edges. Noise 

suppression can introduce artifacts or cause image blurring, which makes image 

denoising a complex task. Several approaches have been proposed to remove noise in 

digital images; however, each one explores specific aspects of the problem. 

Spatial filters like mean and median filter are used to remove the noise from image. 

But the disadvantage of spatial filters is that these filters not only smooth the data to 

reduce noise but also blur edges in image. Therefore, Wavelet Transform is used to 

preserve the edges of image. It is a powerful tool of signal or image processing for its 

multi-resolution possibilities. 

For this work, Genetic Algorithm (GA) is proposed for image denoising that 

integrates GA with image denoising method. The method evolves the images that are 

restorations of noisy images. Mutation is applied over such noisy images to create an 
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initial population. The population is evolved for certain time and the best found 

individual is returned as restored image. 

1.2. Problem Statement 

Noise can get added in images during acquisition or during transmission. The main 

aim of an image denoising algorithm is to reduce the noise level, while preserving the 

image features.  

The multi resolution analysis performed by the wavelet transform has been shown to 

be a powerful tool to achieve these goals. In wavelet domain, the noise is uniformly 

spread throughout the coefficients, while most of the image information is 

concentrated in the few largest coefficients. The most straightforward way of 

distinguishing information from noise in the wavelet domain consists of thresholding 

the wavelet coefficients. 

GA in image denoising evolves images that are restorations of noisy images. 

Combination of GA with denoising methods can bring significant gain as compared to 

using GA only. In this research the GA is proposed to be combined with wavelet 

denoising methods. 

1.3.  Objectives 

a) To denoise the noisy image by wavelet thresholding method. 

b) To improve the image obtained in (a) by application of Genetic Algorithm.  
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CHAPTER 2:  LITERATURE REVIEW 

The most common techniques for performing image denoising are based on filters that 

smooth the images in order to suppress noise. However, these techniques in general 

also degrade important features of the images, such as edges, corners and texture. The 

filters used to suppress noise in images are classified as linear and non-linear filters. 

Linear filters can be expressed as a convolution of a kernel (filter) through a noisy 

image to produce the resulting image. On the other hand, any filter that cannot be 

represented as a convolution operation is a non-linear filter. A linear filter that is 

widely used for image denoising is the Wiener filter, which works by minimizing the 

mean squared error between the recovered and the original images. On the other hand, 

a commonly used non-linear filter is the median filter, which replaces the value of 

each pixel by the median value of neighbourhood pixels [3]. 

There are other techniques that aim at removing as much noise as possible, trying to 

preserve important features of the images. The total variation (TV) methods consider 

that the noisy signals in an image have high total variation and perform the denoising 

process by minimizing these signals [4–6]. Methods such as anisotropic and isotropic 

diffusion, on the other hand, use a function to identify the edges present in an image. 

These techniques diffuse the image continuously, smoothing it in the process, but they 

are able to identify when to stop the diffusion process through this edge-aware 

function. Therefore, they can produce an image that is smoothed and preserve its 

edges [7, 8].  

An example of anisotropic diffusion method is presented by Black et al. [9]. This 

method assumes that the noisy image is a piecewise defined function that has been 

corrupted by a Gaussian noise with zero mean and a small variance. Moreover, it is 

also assumed that the difference between a pixel and its neighbours must be small and 

follow a normal distribution with zero mean. When the difference between a pixel and 

its neighbours does not fit in this pattern, it must be an edge region. Based on these 

assumptions and using statistical analysis, they were able to create a new edge 

stopping function that makes it possible to smooth the image without suppressing 

relevant information about edges.  

Many denoising methods operate in the frequency domain, where techniques as 

Fourier or wavelet transforms are used, such that an image is represented by its 
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frequencies instead of being represented by a spatial function (f(x, y)). The BM3D 

[10] is one of these methods, which uses sliding windows to run through the image 

and create blocks in a first step. In the second step, similar blocks are stacked together 

and transformed to the frequency domain. The blocks are filtered in a third step by an 

adapted Wiener filter and, finally, the restored image is constructed by weighing the 

values of the blocks that were grouped together.  

Some of the most effective image denoising techniques rely on wavelet transforms. A 

common approach consists in searching for thresholds that limit the wavelet 

coefficients linked to the noisy frequencies. This process, commonly called wavelet 

shrinkage, is basically composed of three phases: (i) transform the image to the 

wavelet domain; (ii) estimate the thresholds and suppress the noise through a 

shrinkage rule; (iii) perform the inverse transformation and, therefore, retrieve the 

restored image [17, 11].  

A method based on the concepts of wavelet shrinkage is introduced in [11]. First, the 

image is divided into a set of blocks that are transformed to the wavelet domain. Next, 

an edge detection algorithm is applied and the thresholds for the sub-band are 

estimated. Then, the wavelet coefficients have their threshold limited adaptively 

regarding their sub-bands. After this step, a shrinkage rule is applied to identify and 

suppress the noisy coefficients in the image. Finally, the inverse transform is 

performed on the blocks and the restored image is reconstructed. A different approach 

to wavelet shrinkage was proposed by Ghael et al. [13]. In this technique, a wavelet 

shrinkage estimate is used to create a Wiener filter in the wavelet domain. Due to the 

fact that the filter is specially designed and takes into account the wavelet coefficients 

of the image, the technique becomes able to produce high quality outputs.  

Most of the image denoising techniques consider a model where an image was 

corrupted by an additive white Gaussian noise. Other methods have been specially 

proposed to suppress non-Gaussian or non-additive noise. The work by Deledalle et 

al. [14] shows a non-local mean method where, instead of simply calculating an 

Euclidean distance to define the averages of similar pixels, it provides statistical basis 

to define a weighted maximum likelihood estimator. This estimator takes into account 

the distribution of the noise, reaching impressive results for SAR images corrupted 

with a multiplicative speckle noise.  
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Ishikawa [15] considers an image as a Markov Random Field (MRF), which is 

described as an undirected graph that represents a set of random variables (vertices). 

In this case, the pixels are the vertices and the edges in the graph are the 

neighbourhood relationship between pixels. Each vertex of the graph can assume a 

range of values L, where the possibility of a vertex assuming a determined value is 

given by a probability function P(X), with X being a state of the graph. The image 

denoising problem is modelled as a minimum cut problem, where it is expected that 

the cost of the graph cut is the same as the energy function of the MRF. Therefore, 

minimizing the energy function could be considered as finding the minimum cut of 

the graph [15]. 

In the literature, there are also different evolutionary approaches to dealing with noisy 

images. Some of these methods are used to estimate the thresholds to perform wavelet 

shrinkage, as described in [16] that applied a Differential Evolution Strategy. The 

authors in [12] find threshold values using a Multi-Objective Genetic Algorithm.  

A genetic algorithm is proposed by [1] to perform image denoising, where the images 

are individuals and a population evolves applying tailor-made crossover and mutation 

operators. The new individuals are created by crossover operators exchanging pieces 

of images, while the mutation operators are simple filters such as averaging filters, 

median filters and Gaussian filters applied over the images.  
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CHAPTER 3:  RELATED THEORY 

3.1.  Noise in Images 

In this section various types of noise corrupting an image signal are studied. The 

sources of noise are discussed and mathematical models for the different types of 

noise are presented. 

3.1.1.  Sources of Noise 

During acquisition, transmission, storage and retrieval processes an image signal gets 

contaminated with noise. Acquisition noise is usually Additive White Gaussian Noise 

(AWGN) with very low variance. In many engineering applications, the acquisition 

noise is quite negligible. It is mainly due to very high quality sensors. In some 

applications like remote sensing, biomedical instrumentation, etc., the acquisition 

noise may be high enough. But in such a system, it is basically due to the fact that the 

image acquisition system itself comprises of a transmission channel. Hence the 

researchers are mainly concerned with the noise in a transmission system; usually the 

transmission channel is linear but dispersive due to a limited bandwidth. The image 

signal may be transmitted either in the analog form or in digital form. 

When an analog image signal is transmitted through a linear dispersive channel, the 

image edges get blurred and image signal gets contaminated with AWGN since no 

channel is noise free. The noise introduced in the transmission channel of a 

communication system will be considered in analog form. If the channel is so poor 

that the noise variances is high enough and make the signal excursive to very high 

positive or high negative value, the thresholding operation which is done at the front 

end of the receiver will contribute to saturated maximum and minimum values. Such 

noisy pixels will be seen as white and black spots. Therefore this type of noise is 

known as Salt and Pepper Noise (SPN). If analog image signal is transmitted the 

signal gets corrupted with AWGN and SPN as well. Thus there is an effect of mixed 

noise. If the image signal is transmitted in digital form through a linear dispersive 

channel, then a noise is introduced due to Bit Error called Inter Symbol Interference 

(ISI) which takes place along with AGWN which makes the situation worse. Due to 

ISI and AWGN, it may happen that 1 may be recognized as 0 and vice versa. Under 

such circumstance, the image pixel values have changed to some random values at 
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random positions in the image frame. Such type of noise is known as Random- 

Valued Impulse Noise (RVIN). 

3.2.  Mathematical Representation of Noise 

The mathematical representation of AWGN, SPN and SN are discussed in this 

section. 

3.2.1.  Gaussian Noise 

It is evenly distributing over the signal. This means that each pixel in the noisy image 

is the sum of true pixel values and random Gaussian distributed noise value is given 

by, 

 nAWGN  t = ηG t  (3.1) 

 fAWGN = f x, y + ηG x, y   (3.2) 

where ηG a random variable which has a Gaussian probability distribution with bell 

shaped probability distribution function given by 

 
F g =

1

 2πσ2
e−(g−m)2/2σ2

 
(3.3) 

where g represents the gray level, m is the average or mean of the function and σ is 

standard deviation of the noise. 

 

 Figure 3.1: Representation of Additive White Gaussian Noise Distribution 

Graphically it is represented as shown in Figure 3.1. In Equation 3.2 the noisy image 

is represented as the sum of original uncorrupted image and Gaussian distributed 
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random noise G . When the variance of the random noise G is very low, G(x,y) is 

zero or very close to zero with many pixel locations. Under such circumstances the 

noisy image fAWGN is same or very close to original image at many pixel location 

(x,y). 

3.2.2.  Salt & Pepper Noise 

SPN is caused generally due to error in data transmission. It has only two possible 

values a and b. The probability of each is less than 0.1. The corrupted pixels are set 

alternatively to the minimum or to the maximum value, giving the image a “salt and 

pepper” like appearance. Unaffected pixels remain unchanged. For an 8-bit image, the 

typical value for pepper noise is 0 and for salt noise 255. The salt and pepper noise is 

generally caused by malfunctioning of pixel elements in the camera sensors, faulty 

memory locations, or timing errors in the digitization process. The probability density 

function for this type of noise is shown in Fig. 1.3. The impulse noise occurs at 

random locations (x,y) with a probability of d. The SPN and RVIN are substitute in 

nature. An image corrupted with RVIN of density d, fRVIN(x,y)is mathematically 

represented as 

 
fRVIN  x, y =  

f x, y      with probability p = 1 − d

η x, y     with probability p = d        
  (3.4) 

Here (x,y) represents a uniformly distributed random variable, ranging from 0 to 1 

that replaces the original pixel value f (x, y) . The noise magnitude at any noisy pixel 

location (x, y) is independent of the original pixel magnitude. 

 

Figure 3.2: Representations of Salt and Pepper Noise Distribution 

Impulse 

p(z) 

Pb 

Pa 

a b 

z 
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3.2.3.  Speckle Noises 

This type of noise occurs in almost all coherent imaging systems such as laser, 

acoustics, SAR (Synthetic Aperture Radar) in bio medical applications like ultrasonic 

imaging. The SN is a signal dependent noise i.e., if the image pixel magnitude is high, 

then the noise is also high. Therefore it is also known as multiplicative noise and is 

given using Equation 3.5 & 3.6. 

 ηSN  t = η t . s(t) (3.5) 

 fSN  x, y = f x, y + η x, y . f(x, y) (3.6) 

where (t) is a random variable and s(t) is the magnitude of the signal. The noise is 

multiplicative since the imaging system transmits a signal to the object and the 

reflected signal is recorded. Speckle Noise follows a gamma distribution given using 

Equation (3.7). 

 
F g =

gα−1

 α − 1 ! aα
e−

g
a  

(3.7) 

where a
2
is variance and g is the gray level and is given below in Figure 3.3. 

  

Figure 3.3: Representation of Speckle Noise Distribution 

The speckle noise is encountered only in a few applications like ultrasonic imaging 

and SAR, whereas all other types namely AWGN, SPN and RVIN occur in almost all 

applications. The AWGN is the most common among all. In general, some 
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combinations of AWGN, SPN and RVIN may represent a practical noise. Such type 

of noise is known as Mixed Noise.  

3.3.  Denoising  

De-noising plays a important role in the field of the image pre-processing. It is often a 

necessary step to be taken, before the image data is analyzed. It attempts to remove 

whatever noise is present and retains the significant information, regardless of the 

frequency contents of the signal. De-noising has to be performed to recover the useful 

information. In this process much concentration is spent on, how well the edges are 

preserved and, how much of the noise granularity has been removed.  

3.4.  Classification of Denoising Methods 

There are two basic approaches to image denoising, spatial domain filtering methods 

and transform domain filtering methods. 

3.4.1.  Spatial Domain Filtering Methods 

A traditional way to remove noise from image data is to employ spatial filters. Spatial 

filters are further classified into linear filters and non linear filters. 

3.4.1.1.  Linear Filters 

Most classical linear image processing techniques are based on the assumption that 

image processing applications in which both edge enhancement and noise reduction 

are desired, linear filters tend to blur sharp edges, destroy lines and other fine image 

details and perform poorly in the presence of signal dependent noise. 

3.4.1.2.  Non Linear Filters 

Non linear filters modify the value of each pixel in an image based on the value 

returned by a non linear filtering function that depends on the neighbouring pixels. 

Non linear filters are mostly used for noise removal and edge detection. The 

traditional non linear filters are the median filter. Spatial filters employ a low pass 

filtering on groups of pixels with the assumption that the noise occupies the higher 

region of frequency spectrum. Generally spatial filters remove noise to a reasonable 

extent but at the cost of blurring images which in turn make the edges in pictures 

invisible.  
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3.4.2.  Transform Domain Filtering Methods 

The Transform Domain Filtering methods can be classified according to the choice of 

the basis or analysis function. The analysis functions can be further classified as 

Spatial Frequency Filtering and Wavelet domain 

3.4.2.1.  Spatial Frequency Filtering 

Spatial Frequency Filtering refers to low pass filters using Fast Fourier Transform 

(FFT). In frequency smoothing methods the removal of the noise is achieved by 

designing a frequency domain filter and adapting a cut-off frequency to distinguish 

the noise components from the useful signal in the frequency domain. These methods 

are time consuming and depend on the cut-off frequency and the filter function 

behavior. Furthermore they may produce frequency artifacts in the processed image. 

3.4.2.2.  Wavelet Domain 

Noise is usually concentrated in high frequency components of the signal which 

corresponds to small detail size when performing a wavelet analysis. Therefore 

removing some high frequency (small detail components) which may be distorted by 

noise is a denoising process in the wavelet domain. Filtering operations in wavelet 

domain can be categorized into wavelet thresholding, statistical wavelet coefficient 

model and undecimated wavelet domain transform based methods. 

3.5.  Wavelets 

The concept of wavelet was hidden in the works of mathematicians even more than a 

century ago. In 1873, Karl Weirstrass mathematically described how a family of 

functions can be constructed by superimposing scaled versions of a given basis 

function. The term wavelet was originally used in the field of seismology to describe 

the disturbances that emanate and proceed outward from a sharp seismic impulse. 

Wavelet means a “small wave”. The smallness refers to the condition that the window 

function is of finite length compactly supported. A wave is an oscillating function of 

time or space and is periodic. In contrast, wavelets are localized waves. They have 

their energy concentrated in time and are suited to analysis of transient signals. 

In wavelet analysis, the signal to be analyzed is multiplied with a wavelet function 

and then the transform is computed for each segment generated. The Wavelet 

Transform, at high frequencies, gives good time resolution and poor frequency 

resolution, while at low frequencies; the Wavelet Transform gives good frequency 



12 
 

resolution and poor time resolution. An arbitrary signal can be analyzed in terms of 

scaling and translation of a single mother wavelet function (basis). Wavelets allow 

both time and frequency analysis of signals simultaneously because of the fact that the 

energy of wavelets is concentrated in time and still possesses the wave-like (periodic) 

characteristics. As a result, wavelet representation provides a versatile mathematical 

tool to analyze transient, time-variant (non stationary) signals that are not statistically 

predictable especially at the region of discontinuities -a feature that is typical of 

images having discontinuities at the edges. 

 

Figure 3.4: Wave 

 

Figure 3.5: Wavelet 

3.5.1.  Types of Wavelet Transform 

Wavelets capability to give spatial frequency information is the main reason for this 

investigation. This property promises the possibility for better discrimination between 

the noise and the data. Successful exploitation of wavelet transform might lessen the 

blurring effect or even overcome it completely. There are mainly two types of wavelet 
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transform namely Continuous Wavelet Transform (CWT) and Discrete Wavelet 

Transform (DWT). 

3.5.1.1.  Continuous Wavelet Transform (CWT) 

CWT is an implementation of the wavelet transform using an arbitrary scales and 

almost arbitrary wavelets. Non-orthogonal wavelets are used for its development in 

the data obtained by this transform for highly correlated. CWT works by computing a 

convolution of the signal with the scaled wavelet . 

3.5.1.2.  Discrete Wavelet Transform (DWT) 

DWT of image signals produces a non-redundant image representation, which 

provides better spatial and spectral localization of image formation compared with 

other multi scale representation such as Gaussian and Laplacian pyramid. The DWT 

can be interpreted as signal decomposition in a set of independent spatially oriented 

frequency channels. The signal is passed through two complementary filters and 

emerges two signals, approximation and details. This is called decomposition or 

analysis. 

The components can be associated back into the original signal without loss of 

information. This process is called reconstruction or synthesis. The mathematical 

manipulation, which implies analysis and synthesis, is called Discrete Wavelet 

Transform and Inverse DWT.  

3.6.  Discrete Wavelet Transform 

In numerical analysis and functional analysis, a discrete wavelet transform (DWT) is 

any wavelet transform for which the wavelets are discretely sampled. Image is filtered 

by low pass (for smooth variation between gray level pixels) and high pass filter (for 

high variation between gray level pixels). Image is decomposed into multilevel which 

include approximation details (LL sub-band), horizontal detail (HL sub-band), 

vertical detail (LH sub-band) and diagonal details (HH sub-band). 

The discrete wavelet transform uses low-pass and high-pass filters, h(n) and g(n), to 

expand a digital signal. They are referred to as analysis filters. The dilation performed 

for each scale is now achieved by a decimator. The coefficients ck & dk are produced 

by convolving the digital signal, with each filter, & then decimating the output. The ck 

coefficients are produced by the low-pass filter, h(n) and called coarse coefficients. 

The dk coefficients are produced by the high pass filter and called detail coefficients. 
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Coarse coefficients provide information about low frequencies, & detail coefficients 

provide information about high frequencies. Coarse & detail coefficients are produced 

at multiple scales by iterating the process on the coarse coefficients of each scale. The 

entire process is computed using a tree-structure filter bank, as shown in figure 3.6. 

 

Figure 3.6: Analysis filter bank 

After analyzing, or processing, the signal in the wavelet domain it is often necessary 

to return the signal back to its original domain. This is achieved using synthesis filters 

and expanders. The wavelet coefficients are applied to a synthesis filter bank to 

restore the original signal, as shown in Figure 3.7. 

 

Figure 3.7: Synthesis filter bank 

The discrete wavelet transform has a huge number of applications in science, 

engineering & mathematics and computer science. The wavelet domain representation 
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of an image, or any signal, is useful in many applications, such as compression, noise 

reduction, watermarking etc. 

The two dimensional discrete wavelet transform is essentially a one dimensional 

analysis of two dimensional signal. It operates on one dimension at a time, by 

analyzing the rows & columns of an image in a separable fashion. The first step 

applies the analysis filters to the rows of an image. This produces two new images, 

where one image is set of coarse row coefficients, & the other a set of detail row 

coefficients. Next analysis filters are applied to the column of each new images, to 

produce four different images called sub bands. Rows and columns analyzed with a 

high pass filter are designated with H. Similarly, rows and columns analyzed with a 

low pass filter are designated with L. For example, if a sub-band image was produced 

using a high pass filter in the rows and a low pass filter on the columns, it is called the 

HL sub-band. Figure 3.8 shows this process in its entirety.  

 

Figure 3.8: Two Dimensional DWT 

Each sub-band provides different information about the image. The LL sub-band is a 

coarse approximation of the image & removes all high frequency information. The 

LH sub-band removes high frequency information along the rows & emphasizes high 
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frequency information along the columns. The result is an image in which vertical 

edges are emphasized. Similarly, the HL sub-band emphasizes horizontal edges, & the 

HH sub-band emphasizes diagonal edges. To compute DWT of the image at the next 

scale the process is applied again to the LL sub-band. 

Each level of the wavelet decomposition, four new images are created from the 

original N*N pixel image. The size of these new images is reduced to one-fourth of 

the original size i.e. the new size is N/2 * N/2. The new images are named according 

to the filter (low-pass or high-pass) which is applied to the original image in 

horizontal and vertical directions. For example, the LH image is a result of applying 

the low-pass filter in horizontal direction and high-pass filter in vertical direction. 

Thus, the four images produced from each decomposition level are LL, LH, HL & 

HH. The LL image is considered a reduced version of the original as it retains most 

details. The LH image contains horizontal edge features, while the HL contains 

vertical edge features. The HH contains high frequency information only & is 

typically nosy & is, therefore, not useful for the registration. In wavelet 

decomposition, only LL image is used to produce the next level of decomposition. 

                        

Figure 3.9: Image Decomposition using DWT 
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3.7.  Wavelet Thresholding 

In wavelet, coefficients with small absolute value are dominated by noise, while 

coefficients with large absolute value carry more signal information than noise. 

Replacing noisy coefficients (small coefficient below a certain threshold value) by 

zero and an inverse wavelet transform may lead to a reconstruction that has lesser 

noise. The idea of thresholding was motivated based on the following assumptions: 

 The decor relating property of a wavelet transform creates a sparse signal most 

untouched coefficients are zero or close to zero. 

 Noise is spread out equally along all coefficients. 

 The noise level is not too high so that the signal wavelet coefficients can be 

distinguished from the noisy ones. 

This method is a simple and efficient for noise reduction. Further, inserting zeros 

creates more scarcity in the wavelet domain. 

3.7.1.  Thresholding Method 

Hard and soft thresholding techniques are used for purpose of image denoising. In 

both cases the coefficients with magnitudes less than the threshold are set to zero. The 

difference between these two thresholding operations lies in how they deal with 

coefficients that are greater in magnitude than the threshold. In the case of soft 

thresholding, the coefficients greater in magnitude than the threshold are shrunk 

toward zero by subtracting the threshold value from the coefficient value whereas in 

hard thresholding the coefficients greater in magnitude than threshold are left 

unchanged. As soft thresholding gives more visually pleasant image and reduces the 

abrupt sharp changes that occurs in hard thresholding, therefore soft thresholding is 

preferred over hard thresholding. 

The Hard Thresholding TH is defined as: 

 

 

TH =  
x for  x ≥ t

.
0 in all other regions

  (3.8) 

The Soft thresholding TS is defined as: 

 

 

TS =  
sign x ( x − t) for x ≥ t

.
0 in all other regions

  (3.9) 
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Figure 3.10: Hard & Soft Thresholding Operation                  

3.7.2.  Threshold Selection Rules 

In image denoising application, PSNR needs to be maximized, hence optimal value 

should be selected. Finding an optimal value for thresholding is not an easy task. If 

we select a smaller threshold then it will pass all the noisy coefficients and hence 

resultant images may still be noisy but larger threshold makes more number of 

coefficients to zero, which provides smoothness in image and image processing may 

cause blur and artifacts, and hence the resultant images may lose some signal values. 

Some of the thresholding schemes are discussed below: 

3.7.2.1.  Universal Threshold 

The value of universal threshold is given by the following equation: 

 T = σ 2logM (3.10) 

where σ
2
 being the noise variance and M is the number of pixels. It is optimal 

threshold in asymptotic sense and minimizes the cost function of difference between 

the function. It is assumed that if number of samples is large, then the universal 

threshold may give better estimate for soft threshold. 

3.7.2.2.  Visu Shrink 

Visu Shrink is thresholding by applying the threshold proposed by Donoho & 

Johnston. It follows hard threshold rule. The drawbacks of this shrinkage is that 

neither speckle noise can be removed nor MSE can be minimized. It can only deal 

with additive noise. The threshold T can be calculated using the formula: 
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 TV = σ 2logN (3.11) 

where σ
2
 is the noise variance and N represents the size of original image i.e. total 

number of pixels in the image. 

3.7.2.3.  Bayes Shrink 

The Bayes Shrink method has been attracting attention recently as an algorithm for 

setting different thresholds for every sub band. Here sub-bands refer to frequency 

bands that are different from each other in level and direction. Bayes Shrink uses soft 

thresholding. The purpose of this method is to estimate a threshold value that 

minimizes the Bayesian risk assuming Generalized Gaussian Distribution (GGD) 

prior. Bayes threshold is defined as: 

 TB = σn
2 σF  (3.12) 

where σn
2
 is the estimated noise variance by robust median estimator and σF is 

estimated signal standard deviation in wavelet domain. The robust median estimator is 

stated as in equation (3.13). 

 
σn

2 =
Median({Yij })

0.6745
, Yijε subband HH1 (3.13) 

This estimator is used when there is no a priori knowledge about the noise variance. 

The estimated signal standard deviation is calculated using equation 3.14. 

 𝜎𝐹 =  max( 𝜎𝑌2 − 𝜎𝑛2 , 0) (3.14) 

where, σY
2
 is the variance of Y. Since Y is modelled as zero-mean, σY

2
 can be found 

empirically by equation 3.15. 

 
𝜎𝑌

2 =
1

𝑛2
 𝑌𝑖 ,𝑗

2
𝑛

𝑖,𝑗=1
 (3.15) 

Incase σn
2
≥ σY

2
, σF will become 0. That is, TB becomes ∞. Hence, for this case 

TB=max({|Yij|}). 

3.7.2.4.  Neigh Shrink 

Chen et al. proposed a wavelet-domain image thresholding scheme by incorporating 

neighbouring coefficients, namely NeighShrink [19]. The method thresholds the 
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wavelet coefficients according to the magnitude of the squared sum of all the wavelet 

coefficients, i.e., the local energy within the neighborhood window. The 

neighborhood window size may be 3×3, 5×5, 7×7, 9×9, etc. But, the authors have 

already demonstrated through the results that the 3×3 window is the best among all 

window sizes . The shrinkage function for NeighShrink of any arbitrary 3×3 window 

centred at (i,j) is expressed as in equation 3.16. 

 
Tij =  1 −

TU
2

sij
2
 

+

 (3.16) 

where TU is the universal threshold and sij
2
 is the squared sum of all wavelet 

coefficients in the respective 3×3 window given by equation 3.17 

 
Sij

2 =   Ym,n
2

i+1

m=i−1

j+1

n=j−1
 (3.17) 

where, + sign at the end of the formula means to keep the positive values while setting 

it to zero when it is negative. The estimated center wavelet coefficient Fij is then 

calculated from its noisy counterpart Yij as in equation 3.18. 

 Fij = Tij Yij  (3.18) 

3.8.  Genetic Algorithm 

The genetic algorithm is a method for solving both constrained and unconstrained 

optimization problems that is based on natural selection, the process that drives 

biological evolution. The genetic algorithm repeatedly modifies a population of 

individual solutions. At each step, the genetic algorithm selects individuals at random 

from the current population to be parents and uses them to produce the children for 

the next generation. Over successive generations, the population "evolves" toward an 

optimal solution. We can apply the genetic algorithm to solve a variety of 

optimization problems that are not well suited for standard optimization algorithms, 

including problems in which the objective function is discontinuous, non-

differentiable, stochastic, or highly nonlinear. The genetic algorithm can address 

problems of mixed integer programming, where some components are restricted to be 

integer-valued. 
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The genetic algorithm uses three main types of rules at each step to create the next 

generation from the current population: 

 Selection rules select the individuals, called parents, that contribute to the 

population at the next generation. 

 Crossover rules combine two parents to form children for the next generation. 

 Mutation rules apply random changes to individual parents to form children. 

3.9.  Genetic Algorithm Terminology  

3.9.1.  Fitness Functions 

The fitness function is the function we want to optimize. For standard optimization 

algorithms, this is known as the objective function.  

3.9.2.  Individuals 

An individual is any point to which we can apply the fitness function. The value of 

the fitness function for an individual is its score. An individual is sometimes referred 

to as a genome and the vector entries of an individual as genes. 

3.9.3. Populations and Generations 

A population is an array of individuals. At each iteration, the genetic algorithm 

performs a series of computations on the current population to produce a new 

population. Each successive population is called a new generation. 

3.9.4.  Fitness Values and Best Fitness Values 

The fitness value of an individual is the value of the fitness function for that 

individual. If our objective is to find the minimum of the fitness function, 

the best fitness value for a population is the smallest fitness value for any individual 

in the population. 

3.9.5.  Parents and Children 

To create the next generation, the genetic algorithm selects certain individuals in the 

current population, called parents, and uses them to create individuals in the next 

generation, called children. Typically, the algorithm is more likely to select parents 

that have better fitness values  
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CHAPTER 4:  METHODOLOGY 

This work is proposed based on the Genetic Algorithm where a noisy image I is used 

as input and the population is created by applying mutation operators on the noisy 

image. Furthermore, some of the crossover operators are the same introduced in [1]. 

However, this work proposed to combine the GA with image denoising technique 

using wavelets, which is different from the work in [1]. Each individual in this work 

will be represented by a two-dimensional array of pixels whose values are integers in 

the interval [0, 255].  

The basic block diagram of the proposed method is mentioned in the following 

section. 

4.1.  Block Diagram 

 

 

 

 

 

 

 

Figure 4.1: Block Diagram of Proposed Method 

Each part of the block diagram is described briefly in the following section: 

4.1.1.  Population Initialization 

The algorithm will start initializing its population of images following two steps. 

First, the input noisy image will be set as the initial individual that will be applied to 

three wavelet based denoising techniques:  

 Visu Shrink 

 Bayes Shrink 
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These methods will be used as local search operators to improve the initial individual 

(original noisy image). Then a denoised image will be returned by each of the three 

wavelet based denoising techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Procedure for initializing the population 

The outcomes of these methods will be included in the initial population. Thus, we 

will have three individuals in the initial population at the end of the first step.  

In the second step, one of these three outputs will be randomly chosen and submitted 

to a mutation operation, which will be also chosen randomly. The mutation operator is 

described as follows: 

 Gaussian blur: filters the image with a Gaussian filter. The size of the filter 

will be chosen randomly between 3×3 pixels and 5×5 pixels. 
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 Averaging filter: filters the image with an averaging filter. The size of the 

filter will be chosen randomly between 3×3 pixels and 5×5pixels. 

 Intensity change: all the pixels of the image will be multiplied by the same 

random factor, which lightens or darkens the image as a whole.  

These filters are named as mutation operators since they will apply some changes in 

the image recovered by the previous denoising methods. The resulting image will be 

included in the population, so the second step continues until the population size has 

been reached. At the end of this process, the initial population will be formed by the 

outputs of the three image denoising methods and by the images submitted to the 

mutation rounds. Figure 4.2 illustrates the two steps of this initialization procedure.  

4.1.2.  Fitness Evaluation 

This algorithm will be guided by the fitness function expressed in Equation (4.1). 

 
fitness I =    1 + β2|∇I|2

Ω

 +
λ

2
(I − I0)2 (4.1) 

This function is aware of the image edges and tries to preserve important features of 

the image as described in [18]. The term (I-I0)
2
 guarantees a certain degree of fidelity 

between the image being evaluated and the original image, where I is the image being 

evaluated and I0 the noisy image. The parameter ∇I is a total variation regularizing 

term, β and λ are balancing parameters and Ω is the set of all points in the image. By 

minimizing Equation (4.1) we, are basically trying to reduce the total variation of the 

image while preserving fidelity in relation to the original image. 

4.1.3.  Parent Selection 

Parents are chosen by a tournament selection process for crossover operation until the 

interim population size is reached. Out of the images selected as per tournament size, 

individual with better fitness value is selected as a parent. 

4.1.4.  Crossover 

After the selection of the parents, the new individual will be created by randomly 

choosing one out of three crossover operators presented next: 
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 one-point row: a row of pixels is randomly chosen. All the pixels above this 

row will come from one parent and all the pixels below this row will come 

from the second parent. 

 one-point column: similar to the previous method, but a column is chosen 

rather than the row. 

 point-to-point random: randomly chooses each pixel from one of the parents 

until the new individual is created.  

4.1.5.  Mutation 

After the crossover operator, the new individual may also pass through a local search 

operator, when a randomly chosen value from [0, 1] is lower than the local search rate 

of the algorithm. If an individual is selected for mutation, it will be done by a 

denoising method chosen at random out of the three: Visu Shrink, Neigh Shrink or 

Bayes Shrink. 

4.1.6.  Population Replacement and Intermediate Population 

During the evolutionary process, the population will continue to evolve while there is 

no change in the best individual for a number of iterations. When this number is 

reached, the population will be restarted keeping only the best individual found so far. 

The other individuals will be generated again by the initialization procedure 

previously described. An intermediate population will be created applying crossover 

and local search operators through the evolutionary process. This population will be 

two times larger than the population size, formed by the individuals of the current 

population and those new generated individuals. Such individuals will be created by 

crossing over parents that are chosen by a tournament selection process.  

Once the intermediate population is completed, all of its individuals will be sorted 

according to their fitness values and the best population size individuals become the 

population for the next iteration.  

4.1.7.  Termination Condition 

The evolutionary process will run for a fixed amount of time. After that, the algorithm 

returns the best individual i.e. image with best fitness value (minimum fitness value in 

this case) from the population of the last generation. 



26 
 

A 

Return best as 

output image 

End 

best = population.best 

Reset Population 

T 

F Is 

time<maxtime 

? 

Count = 0 

F 

T 
Is count<max 

&& 

time<maxtime 

? 

X 

Start 

Create Initial Population 

Calculate Fitness value for each image in 

population and assign image with low 

fitness value to best 

best = population.best 

Start timer 

 

Input Noisy 

Image 

4.2.  Flow Chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



27 
 

A 

interim pop = population 

i=1 

is 

i≤popsize? 

F T 

T 

Crossover 

mutate ? 

mutation 

Add to interim 

population 

i=i+1 

F 

Sort interim population 

according to fitness 

value 

population = interim 

pop[1....popsize] 

 

count ++ count = 0 

X 

is 

best=populati

on.best? 

F 

T 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Flowchart for the proposed method 
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4.3. Comparison Metrics 

4.3.1. PSNR 

The peak signal to noise ratio is one of the most common metrics used in image 

processing. It is measured in decibels(dB) and defined as in Equation (4.2) for 8-bit 

gray scale images: 

 
PSNR = 10 log10(

2552

MSE
) db (4.2) 

where MSE is the mean squared error between the original and the recovered image. 

It is defined in Equation (4.3). 

 

MSE =
1

MN
  (X i, j − P i, j )2

N

j=1

M

i=1

 (4.3) 

where, 

M- Width of Image    

N- Height of Image    

X- Original Image 

P- Recovered Image 

 

4.3.2. SSIM  

This metric maps two images to an interval [-1,1], where similar images have higher 

values. This metric is defined in Equation (4.4), where μA, μB, σA and σB are the 

values of mean and standard deviation for A and B, σAB is the covariance between A 

and B, c1=(k1L)
2
 and c2=(k2L)

2
, where L is the dynamic range of the pixel values 

(2
bitsperpixel

-1) and k1=0.001 and k2=0.03 are constants. 

 
SSIM A, B =

(2μAμB + c1)(2σAB + c2)

(μA
2 + μB

2 + c1)(σA
2 + σB

2 + c2)
 (4.4) 
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CHAPTER 5:  RESULTS & ANALYSIS 

5.1. Test Images 

The images in Figure 5.1 were selected to evaluate the result of the algorithm. These 

images are commonly used by the scientific community as benchmark for image 

denoising problems. 

 

 

 

 

 
 

Figure 5.1: Test images used to evaluate the proposed denoising method 

(a) Boat (b) Hill 

(c) Man (d) Lena 

(e) Glasses (f) Lightning 
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The algorithm as well as all other methods used for comparison was implemented in 

Matlab R2016b 64-bit. The algorithm was executed 10 times for each image and for 

each noise standard deviation level. These experiments were conducted on Intel Core 

i3 M380 2.53 GHz processor with 4 GB RAM in windows 7. 

5.2.  Setting Parameter 

Tests were performed to find the configuration for the parameters of the algorithm. 

Each test evaluated different values for a specific parameter, then, PSNR and SSIM 

were calculated for each best image achieved and the values were compared against 

each other. 

Initially, the configuration for the algorithm was set as tournament size of 3, local 

search rate of 0.4, population size of 15, β=1.5, and running time of 20mins. This 

configuration was used taking into account the computational time spent by executing 

the genetic algorithm combined with wavelet shrinkage denoising methods. For 

example, it is not possible to set a large sized population because it makes 

initialization, reinitialization and mutation processes very time consuming once they 

use the denoising methods at multiple times. 

For setting the parameters value, the algorithm was executed over Boat image 

corrupted with additive Gaussian noise N(0,σ) with six different values for standard 

deviation σ = 10, 20, 30, 40, 50 and 60. 

Tournament size for parent’s selection was evaluated first. As the initial population 

size is not large, the values of tournament size tested were 3,6 & 9. The average 

(Avg), maximum (Max) and minimum (Min) results for these different values are 

shown in table 5.1 and 5.2. These values were obtained by executing the algorithm 10 

times for each noise level. 

Table 5.1: PSNR values for different tournament sizes 

Nois

e 

Tournament: 9 Tournament: 6 Tournament: 3 

Avg Max Min Avg Max Min Avg Max Min 

10 31.63

89 

32.41

47 

30.41

46 

31.88

12 

32.41

47 

30.52

85 

31.93

87 

32.41

47 

30.19

96 

20 27.18

03 

27.37

91 

26.53

95 

27.58

72 

28.67

31 

27.11

74 

27.46

83 

27.56

52 

27.41

09 

30 25.91

28 

26.31

86 

25.17

55 

25.53

12 

26.11

33 

25.24

06 

26.11

26 

26.56

58 

25.53

48 

40 24.24 24.41

42 

24.15

68 

24.49

46 

24.81

53 

24.33

59 

24.45

92 

24.56 24.33

09 
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50 23.77

51 

23.85

68 

23.71

47 

23.82

56 

23.92

44 

23.72

33 

23.84

39 

23.91

33 

23.79

57 

60 23.12

38 

23.18

72 

23.01

48 

23.10

45 

23.2 23.00

59 

23.14

96 

23.19

38 

23.11

63 

 

Table 5.2: SSIM values for different tournament sizes 

Nois

e 

Tournament: 9 Tournament: 6 Tournament: 3 

Avg Max Min Avg Max Min Avg Max Min 

10 0.846

54 

0.854 0.833

99 

0.849

86 

0.854 0.838

44 

0.849

24 

0.854 0.831

52 

20 0.731

63 

0.741

1 

0.711

88 

0.741

04 

0.757

88 

0.725

33 

0.738

81 

0.740

62 

0.736

37 

30 0.669

55 

0.682

57 

0.656

45 

0.666

19 

0.676

45 

0.661

67 

0.676

5 

0.684

19 

0.662

47 

40 0.607

14 

0.614

66 

0.602

22 

0.617

55 

0.618

83 

0.616

06 

0.618

54 

0.623

24 

0.612

63 

50 0.577

95 

0.581

04 

0.576

11 

0.579

42 

0.581

15 

0.576

55 

0.578

07 

0.580

51 

0.573

51 

60 0.544

61 

0.548

01 

0.539

66 

0.544

32 

0.548

01 

0.539

65 

0.545

68 

0.548

08 

0.542

87 

 

The tournament size of 3 achieved better performance than other size values in table 

5.1 especially for higher level of noise. The values found for SSIM in table 5.2 are 

similar. Thus, tournament size of 3 was set as default value. 

The second parameter tested was local search rate for values of 0.2, 0.4 and 0.6. The 

results with different mutation rates are shown in tables 5.3 and 5.4. 

Table 5.3: PSNR values for different local search rate 

Nois

e 

lsr: 0.2 lsr: 0.4 lsr: 0.6 

Avg Max Min Avg Max Min Avg Max Min 

10 31.92

67 

32.41

47 

31.18

52 

31.93

87 

32.41

47 

30.19

96 

32.33

07 

32.41

48 

31.99

53 

20 27.55

86 

27.82

73 

27.25

68 

27.46

83 

27.56

52 

27.41

09 

27.80

91 

28.79

25 

27.38

59 

30 25.62

07 

26.05

91 

25.06

85 

26.11

26 

26.56

58 

25.53

48 

26.03

78 

26.54

48 

25.39

24 

40 24.46

66 

24.63

15 

24.31

63 

24.45

92 

24.56 24.33

09 

24.53

68 

24.77

09 

24.31

77 

50 23.77

84 

23.81

85 

23.71

86 

23.84

39 

23.91

33 

23.79

57 

23.80

51 

23.89

48 

23.73

52 

60 23.14

23 

23.19

21 

23.09

02 

23.14

96 

23.19

38 

23.11

63 

23.15

62 

23.18

54 

23.12

58 
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Table 5.4: SSIM values for different local search rate 

Nois

e 

lsr: 0.2 lsr: 0.4 lsr: 0.6 

Avg Max Min Avg Max Min Avg Max Min 

10 0.849

52 

0.854 0.842

06 

0.849

24 

0.854 0.831

52 

0.853

62 

0.854

01 

0.852

14 

20 0.740

2 

0.746

47 

0.734

7 

0.738

81 

0.740

62 

0.736

37 

0.745

03 

0.762

02 

0.738

93 

30 0.666

27 

0.675

83 

0.651

25 

0.676

5 

0.684

19 

0.662

47 

0.672

76 

0.679

43 

0.664

12 

40 0.618

56 

0.622

87 

0.613

84 

0.618

54 

0.623

24 

0.612

63 

0.618

6 

0.626

33 

0.612

3 

50 0.578

89 

0.580

46 

0.576

64 

0.578

07 

0.580

51 

0.573

51 

0.579

13 

0.580

48 

0.576

35 

60 0.543

41 

0.548

01 

0.539

18 

0.545

68 

0.548

08 

0.542

87 

0.547

14 

0.548

13 

0.544

41 

 

Local search rate of 0.6 has better PSNR values as compared to others in table 5.3. 

Hence local search rate of 0.6 was set as default value. 

Population size was the next parameter to be analyzed. For this test population size of 

10, 15, 20 & 25 were used. 

Table 5.5: PSNR values for different population size 

No

ise 

Pop Size: 10 Pop Size: 15 Pop Size: 20 Pop Size: 25 

Avg Max Min Avg Max Min Avg Max Min Avg Max Min 

10 31.9

279 

32.4

147 

31.0

202 

32.3

307 

32.4

148 

31.9

953 

32.3

616 

32.4

148 

32.2

477 

31.6

269 

32.4

146 

30.0

736 

20 27.4

834 

28.1

651 

27.1

954 

27.8

091 

28.7

925 

27.3

859 

27.7

628 

28.7

757 

27.2

644 

27.4

818 

27.8

362 

27.1

064 

30 25.4

423 

26.1

134 

24.8

549 

26.0

378 

26.5

448 

25.3

924 

25.9

929 

26.4

761 

25.5

394 

25.6

264 

26.1

37 

25.1

711 

40 24.5

722 

25.0

156 

24.3

003 

24.5

368 

24.7

709 

24.3

177 

24.6

633 

25.1

094 

24.3

455 

24.6

592 

24.9

244 

24.4

52 

50 23.7

66 

23.8

15 

23.7

147 

23.8

051 

23.8

948 

23.7

352 

23.7

963 

23.8

39 

23.7

639 

23.7

965 

23.8

974 

23.7

52 

60 23.1

3 

23.2

155 

23.0

431 

23.1

562 

23.1

854 

23.1

258 

23.1

713 

23.2

634 

23.1

279 

23.1

395 

23.1

765 

23.0

853 
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Table 5.6: SSIM values for different population size 

No

ise 

Pop Size: 10 Pop Size: 15 Pop Size: 20 Pop Size: 25 

Avg Max Min Avg Max Min Avg Max Min Avg Max Min 

10 0.85

012 

0.85

4 

0.84

201 

0.85

362 

0.85

401 

0.85

214 

0.85

295 

0.85

401 

0.85

021 

0.84

634 

0.85

4 

0.82

972 

20 0.73

687 

0.74

531 

0.72

404 

0.74

503 

0.76

202 

0.73

893 

0.74

44 

0.76

197 

0.73

563 

0.73

848 

0.74

435 

0.73

253 

30 0.65

79 

0.67

645 

0.62

689 

0.67

276 

0.67

943 

0.66

412 

0.67

306 

0.68

05 

0.66

642 

0.66

492 

0.67

496 

0.65

882 

40 0.61

665 

0.62

776 

0.60

964 

0.61

86 

0.62

633 

0.61

23 

0.62

194 

0.63

12 

0.61

437 

0.62

074 

0.62

753 

0.61

693 

50 0.57

848 

0.57

983 

0.57

676 

0.57

913 

0.58

048 

0.57

635 

0.57

877 

0.57

99 

0.57

57 

0.57

872 

0.58

046 

0.57

621 

60 0.54

369 

0.54

801 

0.53

297 

0.54

714 

0.54

813 

0.54

441 

0.54

764 

0.54

803 

0.54

67 

0.54

536 

0.54

8 

0.54

227 

 

The values of PSNR and SSIM for different population sizes are similar for higher 

level of noise. These values for lower level of noise are somewhat distinct. Population 

size of 15 and 20 show distinct differences for lower noise levels as compared to 

others and they both don’t show significant difference between them. So population 

size of 15 was chosen so that initialization, reinitialization and mutation process are 

less time consuming as compared to size of 20. 

For the parameter β in the fitness function the author in [18] mentioned that values 

between 1 & 3 would be more effective. So β was evaluated for 1, 1.5 & 2. The 

results are presented in table 5.7 & 5.8. 

Table 5.7: PSNR values for different value of β 

Nois

e 

beta: 1 beta: 1.5 beta: 2 

Avg Max Min Avg Max Min Avg Max Min 

10 32.30

82 

32.41

46 

31.88

29 

32.33

07 

32.41

48 

31.99

53 

29.87

47 

31.12

02 

28.95

59 

20 28.92 28.92

09 

28.91

65 

27.80

91 

28.79

25 

27.38

59 

26.68

8 

27.98

13 

25.42

04 

30 26.68

88 

26.78

97 

26.64

34 

26.03

78 

26.54

48 

25.39

24 

25.13

7 

25.84

11 

24.78

33 

40 25.12

94 

25.26

8 

25.01

92 

24.53

68 

24.77

09 

24.31

77 

24.38

43 

24.49

08 

24.3 

50 24.08

87 

24.20

65 

23.9 23.80

51 

23.89

48 

23.73

52 

23.73

57 

23.82

03 

23.70

53 

60 23.20

69 

23.32

16 

23.11

57 

23.15

62 

23.18

54 

23.12

58 

23.12

38 

23.22

84 

23.00

76 
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Table 5.8: SSIM values for different value of β 

Nois

e 

beta: 1 beta: 1.5 beta: 2 

Avg Max Min Avg Max Min Avg Max Min 

10 0.853

36 

0.854 0.850

79 

0.853

62 

0.854

01 

0.852

14 

0.821

48 

0.838

36 

0.807

13 

20 0.755

38 

0.761

28 

0.753

9 

0.745

03 

0.762

02 

0.738

93 

0.717

45 

0.748

31 

0.690

21 

30 0.665

05 

0.669

89 

0.662

17 

0.672

76 

0.679

43 

0.664

12 

0.654

93 

0.674

06 

0.643

97 

40 0.611

21 

0.625

24 

0.593

21 

0.618

6 

0.626

33 

0.612

3 

0.617

31 

0.621

87 

0.614

68 

50 0.573

88 

0.578

93 

0.565

26 

0.579

13 

0.580

48 

0.576

35 

0.577

15 

0.580

27 

0.575

32 

60 0.534

58 

0.546

66 

0.513

49 

0.547

14 

0.548

13 

0.544

41 

0.543

63 

0.547

96 

0.539

46 

 

From table 5.7 & 5.8 the value of β was chosen to be 1. 

The last tested parameter was execution time of the algorithm. For this test the 

execution time of 10, 15, 20 & 25 minutes were chosen. The results are presented in 

table 5.9 & 5.10. 

Table 5.9: PSNR values for different execution time 

No

ise 

Time: 10mins Time: 15mins Time: 20mins Time: 25mins 

Avg Max Min Avg Max Min Avg Max Min Avg Max Min 

10 31.9

692 

32.4

144 

30.2

842 

32.1

06 

32.4

148 

31.3

956 

32.3

082 

32.4

146 

31.8

829 

30.9

926 

32.1

707 

30.3

906 

20 27.5

655 

27.9

077 

27.3

427 

27.8

246 

28.3

866 

27.3

141 

28.9

2 

28.9

209 

28.9

165 

27.5

6 

27.8

85 

27.3

894 

30 26.0

669 

26.3

731 

25.8

664 

25.7

748 

26.0

985 

25.2

794 

26.6

888 

26.7

897 

26.6

434 

25.7

539 

26.5

574 

25.2

476 

40 24.6

382 

24.8

907 

24.4

114 

24.4

452 

24.5

842 

24.2

651 

25.1

294 

25.2

68 

25.0

192 

24.5

635 

24.6

413 

24.4

491 

50 23.7

994 

23.8

835 

23.6

374 

23.8

141 

23.8

826 

23.7

153 

24.0

887 

24.2

065 

23.9 23.8

31 

23.8

505 

23.8

192 

60 23.1

152 

23.1

627 

23.0

128 

23.1

722 

23.2

039 

23.1

462 

23.2

069 

23.3

216 

23.1

157 

23.1

621 

23.1

795 

23.1

515 
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Table 5.10: SSIM values for different execution time 

No

ise 

Time: 10mins Time: 15mins Time: 20mins Time: 25mins 

Avg Max Min Avg Max Min Avg Max Min Avg Max Min 

10 0.84

977 

0.85

398 

0.83

471 

0.85

143 

0.85

401 

0.84

461 

0.85

336 

0.85

4 

0.85

079 

0.83

982 

0.85

271 

0.83

23 

20 0.73

701 

0.74

377 

0.73

352 

0.74

583 

0.75

582 

0.73

856 

0.75

538 

0.76

128 

0.75

39 

0.73

959 

0.74

891 

0.73

367 

30 0.67

423 

0.68

24 

0.66

889 

0.66

646 

0.67

632 

0.66

112 

0.66

505 

0.66

989 

0.66

217 

0.66

945 

0.68

217 

0.66

006 

40 0.61

992 

0.62

609 

0.61

505 

0.61

509 

0.62

365 

0.60

181 

0.61

121 

0.62

524 

0.59

321 

0.61

944 

0.62

387 

0.61

695 

50 0.57

375 

0.58

077 

0.56

731 

0.57

843 

0.58

099 

0.57

643 

0.57

388 

0.57

893 

0.56

526 

0.57

79 

0.58

052 

0.57

282 

60 0.54

515 

0.54

811 

0.53

959 

0.54

71 

0.54

806 

0.54

494 

0.53

458 

0.54

666 

0.51

349 

0.54

704 

0.54

754 

0.54

609 

 

Execution time of 20minutes shows better value for PSNR as compared to others. 

Hence it was chosen as default value. 

After performing these tests, the basic configurations of the parameters was set as 

tournament size of 3, local search rate of 0.6, population size of 15, value of β=1 and 

running time of 20 minutes. 

 

5.3.  Image with Gaussian Noise 

The test images in figure 5.1 were used and these images were deteriorated with an 

additive Gaussian noise N(0,σ) with six different values for standard deviation σ = 10, 

20, 30, 40, 50 and 60. The noisy image was used as input to the proposed algorithm 

and the algorithm was executed for 10 times for each image. After the completion of 

the algorithm the comparison metrics i.e. PSNR & SSIM were calculated for each 

obtained image. The maximum values of these metrics after 10 executions are 

compared with the metrics of the image obtained from wavelet based denoising.   

 

 

 

 

 



36 
 

 

 

 

 

 

 

 

Figure 5.2: Denoising Result of Boat image 

(a) Original (b) Noisy (σ=60) 

(c) Visu Shrink (d) NeighSure Shrink 

(e) Bayes (f) Proposed method 
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Figure 5.3: Denoising Result of Man image 

  

(a) Original (b) Noisy (σ=50) 

(c) Visu Shrink (d) NeighSure Shrink 

(e) Bayes Shrink (f) Proposed method 
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Figure 5.4: Denoising Result of Hill image 

 

  

(a) Original (b) Noisy (σ=60) 

(c) Visu Shrink (d) NeighSure Shrink 

(e) Bayes Shrink (f) Proposed method 
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Figure 5.5: Denoising Result of Lena image 

 

 

(a) Original (b) Noisy (σ=60) 

(c) Visu Shrink (d) NeighSure Shrink 

(e) Bayes Shrink (f) Proposed method 
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Figure 5.6: Denoising Result of Glasses image 

 

 

 

 

(a) Original (b) Noisy (σ=60) 

(c) Visu Shrink (d) NeighSure Shrink 

(e) Bayes Shrink (f) Proposed method 

(a) Original (b) Noisy (σ=60) 

(c) Visu Shrink (d) NeighSure Shrink 
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Figure 5.7: Denoising Result of Lightning image 

Table 5.11: Comparison of PSNR for denoised images corrupted by Gaussian Noise 

Image σ 
Noisy 

Image 

Visu 

Shrink 

NeighSur

e Shrink 

Bayes 

Shrink 

Proposed 

Genetic 

Algorith

m 

boat 

10 28.1477 28.9773 32.4146 31.7814 32.3347 

20 22.189 26.52 28.9208 28.31 30.3156 

30 18.7455 25.1555 26.67 26.1874 28.5994 

40 16.3544 24.1459 25.0926 24.7858 27.7059 

50 14.6079 23.2234 23.7633 23.5725 24.7768 

60 13.2382 22.3883 22.71 22.589 23.4908 

glasses 

10 28.1332 36.9027 38.1691 37.3638 41.6787 

20 22.115 32.34 32.8294 32.6083 39.4528 

30 18.8612 29.6567 30.0701 29.9977 37.2065 

40 16.6635 25.3908 27.8036 27.8917 31.61 

50 15.0928 21.7697 26.271 26.4765 30.9628 

60 13.8205 19.8891 24.7938 25.0507 29.4783 

lightning 

10 28.1238 34.8101 36.8311 34.7808 37.7517 

20 22.1436 31.0632 31.8819 31.3332 36.4559 

30 18.7537 28.7542 29.1397 28.9806 34.2585 

40 16.4704 26.9053 27.2644 27.1054 31.1605 

50 14.7755 25.3525 25.4163 25.4409 30.009 

60 13.5005 24.0056 24.005 24.1248 27.9407 

man 

10 35.8054 31.6216 36.5772 36.1712 36.5772 

20 29.9517 28.937 32.1374 31.4835 32.1619 

30 26.5438 27.3595 29.346 28.8883 29.37 

40 24.1766 26.2732 27.3991 27.057 27.9497 

50 22.3996 25.3267 25.9617 25.7318 26.519 

60 21.0517 24.6093 24.6524 24.5253 25.3006 

hill 

10 35.7995 32.2995 36.7512 36.2846 36.7512 

20 29.9779 29.6018 32.2903 31.7774 32.2907 

30 26.5894 28.0127 29.6441 29.2781 29.9679 

40 24.1366 26.8814 27.5982 27.3456 28.3673 

50 22.3602 25.9409 26.0126 25.8536 27.0643 

(e) Bayes Shrink (f) Proposed method 
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60 21.0194 25.1119 24.8655 24.7722 25.9255 

lena 

10 28.1171 31.4538 34.1918 33.2785 34.1918 

20 22.1234 28.752 30.4404 29.8219 32.6679 

30 18.6974 27.1272 28.0426 27.6784 30.5616 

40 16.3763 25.799 26.3306 26.1014 29.0818 

50 14.6111 24.7051 24.9242 24.8412 26.6338 

60 13.2838 23.6252 23.6124 23.6916 26.1741 

 

 

 
Figure 5.8: Comparison of PSNR values for boat image 

 

 
Figure 5.9: Comparison of PSNR values for glasses image 
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Figure 5.10: Comparison of PSNR values for lightning image 

 

 

  
Figure 5.11: Comparison of PSNR values for lena image 
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Table 5.12: Comparison of SSIM for denoised images corrupted by Gaussian Noise 

Image σ 
Noisy 

Image 

Visu 

Shrink 

NeighSur

e Shrink 

Bayes 

Shrink 

Proposed 

Genetic 

Algorith

m 

boat 

10 0.69165 0.76473 0.854 0.83833 0.85313 

20 0.42721 0.67563 0.7539 0.72597 0.80583 

30 0.28954 0.60531 0.66217 0.63832 0.75889 

40 0.21171 0.54818 0.58834 0.5719 0.73871 

50 0.16234 0.49525 0.52007 0.5112 0.62108 

60 0.12828 0.45227 0.47017 0.46258 0.59179 

glasses 

10 0.44005 0.92379 0.92727 0.91034 0.98071 

20 0.18532 0.8043 0.7988 0.80072 0.97332 

30 0.10542 0.69442 0.689 0.69761 0.96541 

40 0.06961 0.53248 0.58221 0.59621 0.92944 

50 0.05112 0.38591 0.5166 0.52988 0.92499 

60 0.0388 0.31664 0.46319 0.4718 0.91927 

lightning 

10 0.46382 0.90677 0.91654 0.87344 0.95922 

20 0.20927 0.78889 0.78158 0.76993 0.94989 

30 0.12253 0.67483 0.65455 0.6654 0.93354 

40 0.08344 0.58502 0.57831 0.58276 0.91747 

50 0.06135 0.50129 0.47456 0.49277 0.89685 

60 0.04706 0.44117 0.40751 0.43279 0.88374 

man 

10 0.9349 0.8786 0.95472 0.94924 0.95472 

20 0.80688 0.80505 0.88739 0.86698 0.88893 

30 0.6843 0.75182 0.80789 0.78876 0.8282 

40 0.58269 0.70427 0.73235 0.71515 0.77398 

50 0.50309 0.65899 0.67296 0.6608 0.70413 

60 0.43901 0.62745 0.61315 0.6065 0.67235 

hill 

10 0.93661 0.87789 0.9532 0.9477 0.9532 

20 0.81022 0.8046 0.88427 0.86815 0.88428 

30 0.68412 0.74804 0.81203 0.79503 0.82689 

40 0.57108 0.69757 0.73446 0.71851 0.77515 

50 0.48632 0.65761 0.6688 0.65473 0.72266 

60 0.42251 0.62662 0.62055 0.61064 0.68111 

lena 

10 0.6134 0.84045 0.88219 0.85546 0.88219 

20 0.34361 0.75203 0.78225 0.75722 0.86792 

30 0.22183 0.66957 0.68653 0.67323 0.80754 

40 0.15842 0.59956 0.61265 0.60379 0.80163 

50 0.11943 0.53839 0.53931 0.54159 0.75527 

60 0.09475 0.48682 0.4754 0.48827 0.74501 
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Figure 5.12: Comparison of SSIM values for boat image 

 

  
Figure 5.13: Comparison of SSIM values for glasses image 

 

  
Figure 5.14: Comparison of SSIM values for lightning image 
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Figure 5.15: Comparison of SSIM values for lena image 

 

 

5.4.  Image with Speckle Noise 

Boat and Lena image were taken and speckle noise with 6 different levels of noise 

was added. The noisy image was then used as input to the proposed algorithm and the 

algorithm was executed 10 times for each image. The comparison metrics were 

calculated and then it was compared with metrics obtained from wavelet based 

denoising methods. 

 

 

Figure 5.16: Denoising of Boat image corrupted by Speckle Noise 

 

(a) Noisy (σ=60) (b) Proposed method 
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Figure 5.17: Denoising of Lena image corrupted by Speckle Noise 

 

Table 5.13: Comparison of PSNR for images corrupted by Speckle Noise 

Image V 
Noisy 

Image 

Visu 

Shrink 

NeighSur

e Shrink 

Bayes 

Shrink 

Proposed 

Genetic 

Algorithm 

boat 

10 33.456 31.3082 35.6064 35.042 35.5917 

20 27.4475 28.9884 31.4285 31.1557 31.5466 

30 23.9576 27.4898 28.5641 28.7459 28.6143 

40 21.4781 26.4339 26.6008 27.0877 27.75 

50 19.5853 25.6272 25.0226 25.8143 26.8302 

60 18.0098 24.9516 23.5506 24.6082 25.7009 

lena 

10 33.7864 33.9609 36.9007 36.4534 36.9007 

20 27.7557 31.5216 32.068 32.3459 32.7983 

30 24.2561 29.8678 28.9011 29.6974 30.9998 

40 21.7968 28.6066 26.6029 27.7248 29.5763 

50 19.9182 27.6652 24.9726 26.3505 28.6377 

60 18.418 26.8529 23.6829 25.2651 27.6949 

 

(a) Noisy (σ=60) (b) Proposed method 
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 Figure 5.18: PSNR comparison of Boat Image Corrupted by Speckle Noise 

 

 Figure 5.19: PSNR comparison of Lena Image Corrupted by Speckle Noise 
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Table 5.14: Comparison of SSIM for images corrupted by Speckle Noise 

Image V 
Noisy 

Image 

Visu 

Shrink 

NeighSur

e Shrink 

Bayes 

Shrink 

Proposed 

Genetic 

Algorithm 

boat 

10 0.87345 0.82714 0.91667 0.90933 0.91596 

20 0.68509 0.76574 0.8282 0.81685 0.84944 

30 0.54629 0.71556 0.73136 0.73538 0.78531 

40 0.44908 0.67048 0.65307 0.67008 0.74223 

50 0.37824 0.63477 0.58651 0.61537 0.70976 

60 0.32202 0.60006 0.5236 0.56078 0.67082 

lena 

10 0.83271 0.88438 0.9126 0.90764 0.9191 

20 0.62472 0.83612 0.80158 0.80838 0.85367 

30 0.48713 0.78777 0.70182 0.72067 0.82229 

40 0.39448 0.73918 0.62163 0.64635 0.77615 

50 0.32604 0.69947 0.56065 0.59076 0.76805 

60 0.27611 0.65936 0.51293 0.54647 0.74189 

 

 

  

Figure 5.20: SSIM comparison of Boat Image Corrupted by Speckle Noise 
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Figure 5.21: SSIM comparison of Lena Image Corrupted by Speckle Noise 

5.5.  Image with Salt & Pepper Noise 

Boat image was taken and corrupted with SPN noise. It was then used as input to the 

proposed algorithm. The image obtained as output shows that this algorithm is not 

effective to remove the SPN noise. It is because the local search operators i.e Visu 

Shrink, Bayes Shrink & Neigh Shrink are not effective methods to remove the SPN 

noise.  

 

Figure 5.22: Boat image corrupted with Salt & Pepper Noise of 0.1 
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Figure 5.23: Image obtained after applying the proposed algorithm to the Boat image 

corrupted by SPN of 0.1 

5.6. Comparison with methods in literature  

The results of the proposed algorithm for the test images were compared against other 

methods available in the literature. The methods used in the comparison were: 

Bivariate [17], Weiner-Chop [13], Median [3], Weiner [3], AD [8], BM3D [10], TV 

[4], HGA [21]. The values of PSNR & SSIM calculated for the above mentioned 

methods were obtained from [20]. Table 5.15 & 5.16 shows the results for PSNR & 

SSIM values. 

 

Table 5.15: PSNR values of images obtained with the proposed algorithm compared 

against other state-of-the-art methods 
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Table 5.16: SSIM values of images obtained with the proposed algorithm compared 

against other state-of-the-art methods 
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5.7.  Validation 

The dataset of images available in [20] corrupted by additive Gaussian noise N(0,σ) 

with six different values for standard deviation σ=10, 20, 30, 40, 50, 60 was taken. 

There were total of 66 noisy images. Different denoising algorithms were executed 

over these images and PSNR & SSIM values were calculated for each denoised 

images. The average PSNR & SSIM values for each noise deviation are calculated 

and tabulated corresponding to the respective methods in table 5.17 & 5.18.  

Table 5.17: Average PSNR values for images in dataset [20] denoised by different 

       methods 

Average PSNR values 

Method σ=10 σ=20 σ=30 σ=40 σ=50 σ=60 

Bivariate 27.8079 26.6691 25.3858 24.0463 22.7872 21.7026 

Weiner-Chop 33.3534 30.0502 28.1332 26.6299 25.4049 24.3347 

Median 30.0304 27.0764 24.7184 22.782 21.1919 19.8434 

Weiner 30.8184 28.4673 26.6168 25.048 23.7397 22.659 

AD 33.6932 29.943 27.781 26.2485 25.0155 23.9911 

BM3D 32.6519 31.7689 29.6167 22.8358 17.9778 15.5145 

TV 31.7366 29.3544 25.8243 22.7276 20.3173 18.4306 

HGA 33.6288 30.4156 28.504 26.6648 25.5056 24.4885 

Proposed GA 34.5559 31.7665 29.9112 27.4219 25.886 24.6599 
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Figure 5.24: Average PSNR values for images in dataset [20] denoised by proposed GA  

        & HGA 

 

 

 

 

Table 5.18: Average SSIM values for images in dataset [20] denoised by different 

       methods 

Average SSIM values 

Method σ=10 σ=20 σ=30 σ=40 σ=50 σ=60 

Bivariate 0.80577 0.72816 0.63649 0.55054 0.48106 0.42642 

Weiner-Chop 0.89997 0.83084 0.76767 0.70606 0.65575 0.61072 

Median 0.81273 0.65973 0.53156 0.43449 0.3639 0.30913 

Weiner 0.83273 0.77212 0.69505 0.61254 0.54122 0.48311 

AD 0.89954 0.81669 0.74257 0.67708 0.62105 0.57331 

BM3D 0.8802 0.86924 0.80928 0.44857 0.25629 0.17991 

TV 0.86165 0.8007 0.61415 0.4494 0.34206 0.2694 

HGA 0.89577 0.83303 0.78833 0.74007 0.70987 0.68375 

Proposed GA 0.91787 0.87805 0.8368 0.78911 0.73874 0.7059 
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Figure 5.25: Average SSIM values for images in dataset [20] denoised by proposed GA  

        & HGA 
 

5.8.  Analysis 

Table 5.11 shows comparison of PSNR values for different images denoised by 

different methods. The entries highlighted in the bold are the best PSNR values 

among the compared methods. It clearly shows that the proposed genetic algorithm 

produces better PSNR values as compared to Visu Shrink, NeighSure Shrink & Bayes 

Shrink. Figure 5.8, 5.9, 5.10 & 5.11 show corresponding PSNR plot for Boat, Glasses, 

Lightning & Lena images respectively. From these plots, it is evident that the 

proposed genetic algorithm clearly produces denoised images with higher PSNR 

values than the compared wavelet based denoising methods. 

Similarly table 5.12 shows comparison of SSIM values for different images denoised 

by different methods. The values highlighted in bold are the best values for that noise 

level. Figure 5.12, 5.13, 5.14 & 5.15 shows SSIM plot for Boat, Glasses, Lightning & 

Lena images respectively. From the table and these plots we can easily conclude that 

the proposed genetic algorithm  produces denoised images having SSIM values far 

better that those produced by the mentioned wavelet denoising techniques.    

Table 5.13 shows PSNR comparison for the images corrupted with speckle noise. 

Figure 5.18 & 5.19 shows PSNR plot for Boat and Lena image respectively. It can be 

seen that as noise level increase the proposed algorithm produces better PSNR values. 

Table 5.14 shows SSIM comparison for the images corrupted with speckle noise. 
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Figure 5.20 & 5.21 shows SSIM plot for Boat & Lena image. These plots show that 

the image obtained from the proposed algorithm is more structurally similar to the 

original image. 

Table 5.15 & 5.16 shows PSNR and SSIM values of images obtained with the 

proposed algorithm compared against other state-of-the-art methods respectively. The 

values highlighted in bold shows the best value for the particular noise level. The 

proposed method was able to outperform other methods listed in the table in terms of 

PSNR & SSIM values. 

Table 5.17 shows the average PSNR values for each noise level for images in dataset 

[20] denoised by different method. It shows the proposed genetic algorithm has higher 

PSNR values on average for each noise level as compared to other denoising method. 

Figure 5.24 shows the comparison between proposed genetic algorithm and HGA [21] 

in terms of PSNR. The proposed method produces higher PSNR values on average 

than that of HGA. 

Similarly, table 5.18 shows the average SSIM values for each noise level for images 

in dataset [20] for different denoising methods. The values highlighted in bold shows 

the best average value for each noise level. It is seen from this table that the proposed 

genetic algorithm produces best SSIM values on average as compared to other 

methods. Figure 5.25 shows the comparison in terms of SSIM values between 

proposed genetic algorithm and HGA [21]. From this chart we can conclude that the 

proposed genetic algorithm produces more structurally similar image than HGA. 
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CHAPTER 6: CONCLUSIONS 

The main objective of image denoising technique is to remove the noise content from 

noisy images while preserving relevant information, for instance, textures & edges. In 

this work Genetic Algorithm was proposed to be applied with image denoising using 

wavelets, where three different techniques i.e. Visu Shrink, Bayes Shrink & Neigh 

Shrink were used as mutation operators and helped to initialize and reinitialize the 

populations. A total of 6 levels of noise were applied to the test images and the 

algorithm was executed 10 times for each image. The proposed method was evaluated 

against Visu Shrink, Bayes Shrink & Neigh Shrink. The numerical values for PSNR 

& SSIM showed that the proposed method outperformed the mentioned denoising 

schemes, which indicates that the combination of GA with specific methods for image 

denoising can bring significant gain.   

The proposed method was also compared with techniques available in the literature. 

The numerical values for PSNR & SSIM showed this method outperformed the 

denoising techniques mentioned in the literature. 
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CHAPTER 7: LIMITATIONS & FUTURE WORKS 

The results obtained by the proposed method shows significant gain can be obtained 

against wavelet denoising methods by application of genetic algorithm. But this gain 

can be obtained on the cost of the execution time. The current stop criterion defines a 

specific amount of time to execute the method, so the proposed method is slow when 

compared to other methods. This is worse when several executions are necessary. 

Thus, stop criteria able to conclude the execution when a better image is already 

found can be under evaluation. 

The fitness function was able to guide the algorithm through the solution space, but 

there may be cases where good images are not recognized by it. For instance, an 

image recovered by Bayes Shrink can have high values of PSNR or SSIM, but the 

fitness function does not assign to it a relevant value. This can occur once the fitness 

function makes a calculation without the original image, so it works without a clue 

about how far we are from the original image. 

Also this method was unable to remove the SPN noise because the local search 

operators i.e. Visu Shrink, Bayes Shrink & Neigh Shrink are not effective methods to 

remove SPN noise. In future, methods which can remove SPN can be integrated as 

local search operators. Also, it can be improved to remove mixed type of noise in real 

world scenario. 

This work did not focus on the computational cost of the method, but on the quality of 

the denoised images. Investigating the computational cost and reducing the current 

execution time may be a topic for future work. 

 

  



63 
 

CHAPTER 8:  REFERENCES 

[1] C. Toledo, L. de Oliveira, R. Dutra da Silva, H. Pedrini, “Image denoising 

based on genetic algorithm”, IEEE Congress on Evolutionary Computation 

(CEC), 2013,pp. 1294–1301. 

[2] Yali Liu, “Image Denoising Method based on Threshold, Wavelet Transform 

and Genetic Algorithm”, International Journal of Signal Processing, Image 

Processing and Pattern Recognition(IJSIP), vol. 8, No. 2 (2015), pp 29-40. 

[3] R.C. Gonzalez, R.E. Woods, “Digital Image Processing”, 3rd edition, Pearson, 

2016. 

[4] L. Rudin, S. Osher, E. Fatemi, “Nonlinear total variation based noise removal 

algorithms”, Phys. D 60 (1992) 259–268. 

[5] A. Chambolle, “An algorithm for total variation minimization and 

applications”, J. Math. Imaging Vis. 20 (1–2) (2004) 89–97. 

[6] C. Drapaca, “A nonlinear total variation-based denoising method with two 

regularization parameters”, IEEE Trans. Biomed. Eng. 56 (3) (2009) 582–586. 

[7] P. Perona, J. Malik, “Scale-space and edge detection using anisotropic 

diffusion”, IEEE Trans. Pattern Anal. Mach. Intell. 12 (7) (1990) 629–639. 

[8] V. Katkovnik, K. Egiazarian, J. Astola, “Local Approximation Techniques in 

Signal and Image Processing”, vol. PM157, SPIE Press, 2006. 

[9] M.J. Black, G. Sapiro, D.H. Marimont, D. Heeger, “Robust anisotropic 

diffusion”, IEEE Trans. Image Process. 7 (3) (1998) 421–432. 

[10] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, “Image denoising with block-

matching and 3D filtering” SPIE Electronic Imaging: Algorithms and 

Systems,vol. 6064, 2006, 606414-1-606414-12. 

[11] R.D. da Silva, R. Minetto, W.R. Schwartz, H. Pedrini, “Adaptive edge-

preserving image denoising using wavelet transforms”, Pattern Anal. Appl. 16 

(4) (2013)567–580. 

[12] V. Thavavel, J.J. Basha, M. Krishna, R. Murugesan, “Heuristic wavelet 

approach for low-dose EPR tomographic reconstruction: an applicability 

analysis with phantom and in vivo imaging”, Expert Syst. Appl. 39 (5) (2012) 

5717–5726. 



64 
 

[13] S. Ghael, E.P. Ghael, A.M. Sayeed, R.G. Baraniuk, “Improved wavelet 

denoising via empirical wiener filtering”, Proceedings of SPIE, San Diego, 

CA, USA, vol. 3169,1997, pp. 389–399. 

[14] C. Deledalle, L. Denis, F. Tupin, “Iterative weighted maximum likelihood 

denoising with probabilistic patch-based weights”, IEEE Trans. Image 

Process. 18 (12)(2009) 2661–2672.  

[15] H. Ishikawa, “Global Optimization Using Embedded Graphs”, Department of 

Computer Science, New York University, 2000 (Ph.D. thesis).  

[16] V. Gupta, C.C. Chan, P.T. Sian, “A differential evolution approach to PET 

image denoising”, in: 29th Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society, 2007, pp. 4173–4176 

[17] L. Sendur, I.W. Selesnick, “Bivariate shrinkage with local variance 

estimation”, IEEE Signal Process. Lett. 9 (12) (2002) 439–441. 

[18] D. Zosso and A. Bustina, “A Primal-Dual Projected Gradient Algorithm for 

Efficient Beltrami Regularization”, 2014, preprint.  

[19] Chen G. Y., Bui T. D. and Krzyzak A. (2004), “Image Denoising Using 

Neighbouring wavelet Coefficients” ICASSP Vol. 9, pp 917-920. 

[20] http://hgaicmc.s3-website-sa-east-1.amazonaws.com/. 

[21] J. Paiva, C. Toledo, H. Pedrini, “A Hybrid Genetic Algorithm for Image 

Denoising”, IEEE Congress on Evolutionary Computation (CEC), Sendai, 

Japan, 2015. 

 

 

 


