
i

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

THESIS NO. : 069/MSI/607

Broadcast Storm Prevention in Software Defined Network

by

Kabin Shrestha

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND

COMPUTER ENGINEERING IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN

INFORMATION AND COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

LALITPUR, NEPAL

OCTOBER, 2016

ii

Broadcast Storm Prevention in Software Defined Network

by

Kabin Shrestha

069/MSI/607

Thesis Supervisor

Dr. Surendra Shrestha

A thesis submitted in partial fulfillment of the requirements for the Degree of Master

of Science in Information and Communication Engineering

Department of Electronics and Computer Engineering

Institute

of Engineering, Pulchowk Campus

Tribhuvan University

Lalitpur, Nepal

October, 2016

iii

COPYRIGHT©

The author has agreed that the library, Department of Electronics and Computer

Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis freely

available for inspection. Moreover the author has agreed that the permission for

extensive copying of this thesis work for scholarly purpose may be granted by the

professor(s), who supervised the thesis work recorded herein or, in their absence, by

the Head of the Department, wherein this thesis was done. It is understood that the

recognition will be given to the author of this thesis and to the Department of

Electronics and Computer Engineering, Pulchowk Campus in any use of the material

of this thesis. Copying of publication or other use of this thesis for financial gain without

approval of the Department of Electronics and Computer Engineering, Institute of

Engineering, Pulchowk Campus and author’s written permission is prohibited.

Request for permission to copy or to make any use of the material in this thesis in whole

or part should be addressed to:

Head

Department of Electronics and Computer Engineering

Pulchowk Campus, Institute of Engineering

Pulchowk, Lalitpur

Nepal

vi

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to the Department of Electronics

and Computer Engineering, Institute of Engineering for accepting my thesis entitled

“Broadcast Storm Prevention in Software Defined Network”. I would like to extend my

sincere thanks for providing me with all the essential co-operation, valuable suggestions

for choosing the thesis topic.

 I am grateful to my supervisor Reader Dr. Surendra Shrestha for providing

useful information and guidance regarding this thesis. I am also grateful to Professor

Dr. Subarna Shakya and Dr. Dibakar Raj Pant for their valuable recommendations

during the thesis defense. I am also indebted to Er. Krishna Prasad Bhandari, Deputy

Manager, Nepal Telecom and Er. Om Bikram Thapa, Chief Technical Officer, Vianet

Communications Pvt. Ltd. for providing some valuable suggestions.

 Last but not the least I would like to express my heartfelt thanks to respected

teachers, my families and friends who have helped and supported me directly and

indirectly during the thesis.

vii

ABSTRACT

Software-Defined Networking (SDN) is a new principle in the networking paradigm,

which makes a communication network programmable. In SDN, control and

management are centralized and decoupled from data plane, thus making the network

programmable. In SDN, for a single change in network, the network configurations are

changed only at central or some specific controller(s) rather than touching individual

network devices. A Local Area Network (LAN) is prone to Layer-2 Broadcast Storm

and an early safety measure must be taken to ensure the broadcast storm does not take

down the whole network. A looped network topology in a LAN is basically what is

needed for the broadcast storm to strike. So in order to prevent the undesired creation

of loop network, Spanning Tree Protocol (STP) has been already in use in traditional

networking infrastructures. This thesis presents the application of STP in SDN as a loop

prevention mechanism. The network simulation of the looped topology is performed in

mininet (Linux based emulator) and with Ryu (SDN controller). A SDN controller

application specifically for the loop prevention is developed and tested.

Keywords: Software Defined Networking, Loop Avoidance, Rapid Spanning Tree

Protocol, Layer-2 broadcast storm.

1

Table of Contents

COPYRIGHT© .. III

APPROVAL PAGE ... IV

DEPARTMENTAL ACCEPTANCE ... V

ACKNOWLEDGEMENT ... VI

ABSTRACT ... VII

TABLE OF CONTENTS ... 1

LIST OF TABLES ... 3

LIST OF FIGURES ... 4

LIST OF ABBREVIATIONS .. 5

CHAPTER ONE: INTRODUCTION ... 6

1.1. RELATED THEORY .. 8

1.1.1. Broadcast Storm .. 8

1.1.2. Spanning Tree Protocol ... 10

1.1.3. RSTP Overview ... 10

1.1.4. RSTP Port States ... 11

1.1.5. RSTP Port Roles ... 12

1.1.6. Spanning Tree Packets .. 13

1.1.7. BPDU format ... 13

1.1.8. Choosing a Root Bridge .. 15

1.1.9. Choosing the Least-Cost Path and port role selection 17

1.1.10. Blocking Loop Paths .. 19

1.2. PROBLEM STATEMENT .. 19

1.3. OBJECTIVE .. 19

CHAPTER TWO: LITERATURE REVIEW ... 20

2.1. SOFTWARE DEFINED NETWORKING ... 20

2.2. LIMITATIONS IN TRADITIONAL NETWORKING CONCEPT 22

2.3. SDN ARCHITECTURE ... 23

2

2.4. OPENFLOW ... 24

2.5. RYU CONTROLLER ... 25

CHAPTER THREE: METHODOLOGY .. 26

CHAPTER FOUR: SIMULATION PROCESS .. 29

CHAPTER FIVE: RESULTS AND DISCUSSIONS.. 31

5.1. SDN WITHOUT RSTP CONTROLLER .. 32

5.2. SDN WITH RSTP CONTROLLER .. 35

5.3. ANALYSIS OF THE CONTROLLER ... 40

CHAPTER SIX: LIMITATIONS AND RECOMMENDATIONS 42

CHAPTER SEVEN: CONCLUSION ... 43

REFERENCES .. 44

3

List of Tables

Table 1.1 RST BPDU parameters and format ……...……...……...…… 14

Table 1.2 RST BPDU parameters and their description……...……...… 15

Table 1.3 Port Path Cost values……...……...……...……...……...…… 17

Table 3.1 Simulation Tools.....……...……...……...……...……...……. 28

Table 4.1 Network details……...……...……...……...……...……...…. 29

Table 5.1 Packets to and from Controller……...……...……...……...... 40

Table 5.2 Variation in packets to and from controller with switches…. 40

4

List of Figures

Figure 1.1 Ring topology of three switches..………………...………… 9

Figure 1.2 Alternate Port going to forward state when Root Port goes

down…………………………...…………………………... 13

Figure 1.3 Root Bridge Selection…………………………...………… 16

Figure 1.4 Different port roles assigned by RSTP…………………….. 17

Figure 2.1 Traditional network compared to SDN network……...……. 22

Figure 2.2 Software Defined Networking Architecture……...……...… 24

Figure 3.1 Network Topology……...……...……...……...……...……. 27

Figure 3.2 Spanning Tree with port roles...…………..……...……...…. 27

Figure 4.1 Simulated Network in mininet with interface numbers……. 30

Figure 5.1 Running Switched network in mininet with empty flow-

table shown……...……...……...……...……...……...……. 31

Figure 5.2 Ping request from host h1 to h2 under no RSTP controller

running…………………………………………………….. 32

Figure 5.3 Packets flow in the looped network……...……...……........ 32

Figure 5.4 ARP message Broadcast storm as observed in Wireshark… 34

Figure 5.5 Running Ryu controller……...……...……...……...……..... 35

Figure 5.6 RST BPDU packet captured by Wireshark……...……........ 36

Figure 5.7 Final Port States in switches……...……...……...……...….. 37

Figure 5.8 Ping reply from host h2 under RSTP controller running…… 38

Figure 5.9 ARP request and reply……...……...……...……...……...... 38

Figure 5.10 Traffic flow in interface 1 of switch s1 after RSTP controller

running……...……...……...……...……...……...……........ 39

Figure 5.11 Controller Packets vs. No of switches……...……...…….... 41

5

List of Abbreviations

Abbreviations Full Form

API Application Programming Interface

ARP Address Resolution Protocol

BID Bridge Identification

BPDU Bridge Protocol Data Unit

CLI Command Line Interface

DB Designated Bridge

DP Designated Port

LAN Local Area Network

MAC Media Access Control

QoS Quality of Service

RP Root Port

RST BPDU Rapid Spanning Tree BPDU

RSTP Rapid Spanning Tree Protocol

SDN Software Defined Networking

STP Spanning Tree Protocol

TC Topology Change

TCA Topology Change Acknowledgement

TCP Transmission Control Protocol

TTL Time To Live

6

CHAPTER ONE: INTRODUCTION

A Local Area Network (LAN) is an interconnected network of IP devices under the

same IP network. The fundamental method of communication between these devices is

guided by the Layer-2 protocols and specifications of TCP/IP networking protocol

stack. One of the major remarkable feature of this layer is that all the devices under this

layer are in the same Broadcast Domain. So a broadcast message that is destined to

Broadcast MAC address ff:ff:ff:ff:ff:ff is received and processed by every device in the

same Broadcast Domain. In practical LAN, redundant links are created to avoid

complete network failure in an event of failure in one link. But in such scenarios,

Broadcast message can go round the loop until the network capacity is saturated. This

is referred to as Broadcast Storm. It is the function of a network switch to prevent layer-

2 switching loops and broadcast storms. The IEEE 802.1D-2004 bridging standard

provides a rapid spanning tree protocol to avoid this problem by automatically

suppressing layer 2 switching loops [1].

In every LAN network, a switch functions on the basic of two functions – learning and

forwarding. Learning is the process of obtaining the MAC address of connected

devices. When a frame reaches into the port of a switch, the switch reads the MAC

address of the source device from Ethernet frame and compares it to its MAC address

table. If the switch cannot find a corresponding entry in MAC address table, the switch

will add the address to the table with the port number via the Ethernet frame arrived. If

the MAC address is already available in the MAC address table, the switch compares

the incoming port with the port already available in the MAC table. If the port numbers

are different, the switch updates the MAC address table new port number. Forwarding

is the process of passing network traffic a switch receives from one port of the switch

to another port on the switch. When a Layer 2 Ethernet frame reaches a port on the

switch, it reads the source MAC address of the Ethernet frame as a part of learning

function, and it also reads the destination MAC address also as a part of forwarding

function. The destination MAC address is important to determine the port number

which the destination device is connected. If the destination MAC address is found on

http://www.omnisecu.com/tcpip/media-access-control-mac-addresses.php

7

the MAC address table, the switch forwards the Ethernet frame via the corresponding

port of the MAC address. If the destination MAC address is not found on the MAC

address table, the switch generates an Address Resolution Protocol (ARP) based

Ethernet frame to find the destined host and forwards the frame through all its ports

except the source port. This a Broadcast message as it is destined for all the hosts in the

LAN, but only the destined host with the specific MAC address reply back as prescribed

by ARP protocol. The destined host then reply backs to ARP frame and thus the switch

now knows the destination port (learning) to send the Ethernet frame for this destined

host (forwarding).

Every networking device initially is unaware of the other devices in the network. So

ARP message which is a Broadcast traffic is required initially for the communication

to establish. But in case there is a network loop due to redundant links, the same ARP

message can go round the loop saturating the bandwidth of the network as well as

loading the processor of the switches. To allow switches to automatically create a loop-

free set of paths, even in a complex network with multiple paths connecting multiple

switches Rapid Spanning Tree Protocol defined by IEEE 802.1D is implemented in the

LAN [1]. It provides the ability to dynamically create a tree topology in a network by

blocking any packet forwarding on certain ports, and ensures that a set of switches can

automatically configure themselves to produce loop-free paths. The IEEE 802.1D

standard describes the operation of spanning tree, and every switch that claims

compliance with the 802.1D standard must include spanning tree capability. Based on

the tree topology created by Spanning Tree Protocol, real data traffic flows through the

network.

In traditional switch, the Spanning Tree Protocol runs individually on each switching

device in the network on the control plane in the device. The control plane is one of the

three logical planes in networking infrastructure of a switch and is responsible for

device to device signaling traffic flow to determine actual forwarding policies of data

in data plane. In the new concept, Software Defined Networking (SDN) device will

have the control plane removed from network hardware and implemented it in software

8

instead, which enables programmatic access and, as a result, makes network

administration much more flexible [2].

Moving the control plane to software allows dynamic access and administration. A

network administrator can shape traffic from a centralized control console without

having to touch individual switches. The administrator can change any network switch's

rules when necessary - prioritizing, de-prioritizing or even blocking specific types of

packets with a very granular level of control.

This thesis presents the application of Rapid Spanning Tree Protocol in Software

Defined Networking as a loop prevention mechanism. The network simulation of the

looped topology has been carried out in mininet (Linux based emulator) and with Ryu

(SDN controller) based on OpenFlow v1.3 protocol of SDN.

1.1. Related Theory

1.1.1. Broadcast Storm

Ethernet network traffic is classified as unicast, multicast, or broadcast traffic. Unicast

traffic refers to a message being sent directly from one Ethernet device to another

Ethernet device on the network. Multicast traffic refers to when one Ethernet device

sends a message to a specific group of Ethernet devices. Broadcast traffic refers to one

Ethernet device sending a message to all other devices on the network. All three types

of Ethernet traffic are common to any Ethernet network and are essential to the proper

operation of the Ethernet network. However a problem can arise when excessive

broadcast traffic results in a broadcast storm [3].

Broadcast traffic by itself is a normal part of Ethernet network communications. One

example of Broadcast traffic is the Address Resolution Protocol (ARP) message.

Ethernet devices use ARP messages to resolve their IP addresses on the network.

Broadcast storms happen when a network is saturated with a large volume of broadcast

traffic. They can occur for a short duration or for an extended period of time. Broadcast

storms consume precious resources from every Ethernet device on the network. This is

9

because every device needs to queue the broadcasts to be processed. Ethernet devices

will also have to queue broadcast protocol messages that they do not support. In an

Ethernet network, broadcast storms need to be reduced in order to minimize

unnecessary CPU usage and to keep the network operating properly.

One of the major reason of occurrence of a broadcast storm is switching loop in the

Ethernet wiring topology (i.e. two or more paths exist between end stations). For

instance, when switches are interconnected for redundancy in a ring topology as shown

in Figure 1.1 a broadcast originating from a device connected to any switch, can cause

the circulation of broadcasts around the network and can saturate the network

consuming all available bandwidth. The loop creates broadcast storms as broadcasts

are forwarded by switches out every port, the switch or switches will repeatedly

rebroadcast the broadcast messages flooding the network. Since the Layer 2 header does

not support a time to live (TTL) value, if a frame is sent into a looped topology, it can

loop forever.

HOST
A

HOST
B

HOST
C

LAN network

Broadcast message

Figure 1.1: Ring topology of three switches

To prevent such loop condition and to retain redundancy in the network, dynamic loop

avoidance mechanism guided by Spanning Tree Protocol is generally implemented that

changes the loop topology to a linear tree structure spanning the whole networking

devices.

10

1.1.2. Spanning Tree Protocol

The purpose of the spanning tree protocol (STP) is to allow switches to automatically

create a loop-free set of paths, even in a complex network with multiple paths

connecting multiple switches. Switches have many ports for interconnection to other

devices. The ports can be electrical port (RJ 45 interface, serial interface, etc.) or optical

port (Optical Module interface). When a number of switches are interconnected with

redundant links creating loops, STP provides the ability to dynamically create a tree

topology in a network by blocking any packet forwarding on certain ports, and ensures

that a set of Ethernet switches can automatically configure themselves to produce loop-

free paths. The IEEE 802.1D standard describes the operation of spanning tree, and

every switch that claims compliance with the 802.1D standard must include spanning

tree capability. IEEE Std 802.1D-2004 has incorporated Rapid Reconfiguration, which

specified the Rapid Spanning Tree Algorithm and Protocol (RSTP). So, STP has now

been superseded by the Rapid Spanning Tree Protocol (RSTP) specified in Clause 17

of IEEE Std 802.1D-2004 [1].

1.1.3. RSTP Overview

The Rapid Spanning Tree Protocol (RSTP) configures the Port State of each Bridge

Port in the Bridge Local Area Network. A switch is referred to as Bridge in this

protocol. RSTP ensures that temporary loops in the active topology do not occur if the

network has to reconfigure in response to the failure, removal, or addition of a network

component, and that erroneous station location information is removed from the

Filtering Database after reconfiguration.

Each of the Bridges in the network transmits Configuration Messages. Each

Configuration Message contains spanning tree priority vector information that

identifies one Bridge as the Root Bridge of the network, and allows each Bridge to

compute its own lowest path cost to that Root Bridge, information that will in turn be

transmitted in Configuration Messages. A Port Role of Root Port is assigned to the one

Port on each Bridge that provides that lowest cost path to the Root Bridge, and a Port

Role of Designated Port to the one Port attached to each LAN that provides the lowest

11

cost path from that LAN to the Root Bridge. Port roles of Alternate Port and Backup

Port are assigned to Bridge Ports that can provide connectivity if other network

components fail.

RSTP provides rapid recovery of connectivity to minimize frame loss. A new Root Port,

and Designated Ports attached to point-to-point LANs, can transition to Forwarding

without waiting for protocol timers to expire. A Root Port can transition to Forwarding

without transmitting or receiving messages from other Bridges, while a Designated Port

attached to a point-to-point LAN can transition when it receives an explicit role

agreement transmitted by the other Bridge attached to that LAN.

A Bridge Port attached to a LAN that has no other Bridges attached to it may be

administratively configured as an Edge Port. RSTP monitors the LAN to ensure that no

other Bridges are connected, and may be configured to automatically detect an Edge

Port. Each Edge Port transitions directly to the Forwarding Port State, since there is no

possibility of it participating in a loop.

1.1.4. RSTP Port States

Each Bridge Port has an operational Port State that governs whether or not it forwards

MAC frames and whether or not it learns from their source addresses. RSTP has been

reworked to classify 3 port states.

 Discarding

 Learning

 Forwarding

Discarding and Forwarding are the stable states, while Learning is the only transitory

state.

Discarding State – This State basically means that the port is not forwarding frames nor

is it receiving frames. Any frames that are transmitted to this port the MAC is not

learned. A port in a discarding state will still continue to process BPDUs. This is also

the default state for when a port first turns up.

12

Learning State – In this State, a port is not forwarding frames however the frames it is

receiving it is learning the MAC addresses of those frames as they enter the interface.

Forwarding State – In this State, ports that are in this state are actively transmitting and

receiving any and all frames passed through its interface.

The forwarding and learning performed by each Bridge Port is dynamically managed

to prevent temporary loops and reduce excessive traffic in the network while

minimizing denial of service following any change in the physical topology of the

network.

1.1.5. RSTP Port Roles

Each port of a bridge in the network is assigned a specific role based on its position

with respect to the Root Bridge. The ports can be either towards the Root Bridge or

away from the Root Bridge. RSTP includes four port roles:

 Root Port

 Designated Port

 Alternate Port

 Backup port

Root port is a forwarding port that is the closest to the root bridge in terms of path cost.

Hence it receives BPDU which is superior to all other BPDUs received on other

remaining ports of the bridge.

Designated Port is the port that is forwarding the least cost superior BPDU onto other

LAN segments.

Alternate Port is a best alternate path to the root bridge. It is considered as an alternate

replacement for the switch’s Root Port. The alternative port moves to the forwarding

state if there is a failure on the designated port for the segment.

Backup Port is a port that is considered an alternate replacement for the switch’s

Designated port into a shared LAN segment. The backup port applies only when a

13

single switch has two links to the same segment (collision domain). To have two links

to the same collision domain, the switch must be attached to a hub.

In the event a Root Port goes down, these Alternate ports can immediately takeover

converging the network in less than one second as shown in Figure 1.2.

Designated Port

Root Port

 Alternate Port

Figure 1.2: Alternate Port going to forward state when Root Port goes down

1.1.6. Spanning Tree Packets

Operation of the spanning tree algorithm is based on configuration messages sent by

each switch in packets called Bridge Protocol Data Units, or BPDUs. Each BPDU

packet is sent to a destination multicast address (Bridge Group Address

01:80:c2:00:00:00) that has been assigned to spanning tree operation. All IEEE 802.1D

switches join the BPDU multicast group and listen to frames sent to this address, so that

every switch can send and receive spanning tree configuration messages.

1.1.7. BPDU format

All BPDUs shall contain an integral number of octets. The octets in a BPDU are

numbered starting from 1 and increasing in the order they are put into a Data Link

Service Data Unit (DLSDU). The bits in an octet are numbered from 1 to 8, where 1 is

the low-order bit.

Rapid Spanning Tree BPDUs (RST BPDUs)

The format of the RST BPDUs is shown in Table 1.1. The Protocol Identifier is encoded

in Octets 1 and 2. It takes the value 0000 0000 0000 0000.

14

a) The Protocol Version Identifier is encoded in Octet 3. It takes the value 0000 0010.

b) The BPDU Type is encoded in Octet 4. This field takes the value 0000 0010. This

denotes a Rapid Spanning Tree BPDU.

c) The Topology Change flag is encoded in Bit 1 of Octet 5.

d) The Proposal flag is encoded in Bit 2 of Octet 5.

e) The Port Role is encoded in Bits 3 and 4 of Octet 5.

f) The Learning flag is encoded in Bit 5 of Octet 5.

g) The Forwarding flag is encoded in Bit 6 of Octet 5.

h) The Agreement flag is encoded in Bit 7 of Octet 5.

i) Topology Change Acknowledgment flag is encoded in Bit 8 of Octet 5 as zero.

j) The Root Identifier is encoded in Octets 6 through 13.

k) The Root Path Cost is encoded in Octets 14 through 17.

l) The Bridge Identifier is encoded in Octets 18 through 25.

m) The Port Identifier is encoded in Octets 26 and 27.

n) The Message Age timer value is encoded in Octets 28 and 29.

o) The Max Age timer value is encoded in Octets 30 and 31.

p) The Hello Time timer value is encoded in Octets 32 and 33.

q) The Forward Delay timer value is encoded in Octets 34 and 35.

r) The Version 1 Length value is encoded in Octet 36. It takes the value 0000 0000,

which indicates that there is no Version 1 protocol information present.

Table 1.1: RST BPDU parameters and format

Components Octet Value

Protocol Identifier 1-2 0000 0000 0000 0000

Protocol Version Identifier 3 0000 0010

BPDU Type 4 0000 0010

Flags 5

Root Identifier 6-13

Root Path Cost 14-17

Bridge Identifier 18-25

Port Identifier 26-27

Message Age 28-29

Max Age 30-31

Hello Time 32-33

Forward Delay 34-35

Version 1 Length 36 0000 0000

15

 Table 1.2: RST BPDU parameters and their description

Message Field Description

Protocol Identifier Contains the value zero

Flag 1st bit for topology change flag

2nd bit for proposal flag

3rd and 4th bit for port role

(00:Unknown,01:Root,10:Designated:11:Alternate/Backup)

5th bit for learning state

6th bit for forwarding state

7th bit for Agreement flag

8th bit for Topology Change acknowledgement

Root ID Identifies the root bridge by listing its priority and ID

Root Path Cost Contains cost of the path from bridge sending BPDU to root

bridge

Bridge ID Identifies priority and ID of the bridge sending BPDU

Port ID Identifies port from which BPDU was sent

Message Age Specifies amount of time elapsed since root sent BPDU on

which current configuration is based

Maximum Age Indicates when the current configuration message should be

detected. Recommended value = 20 sec

Hello Time Provides time period between root bridge configuration

messages. Recommended value = 2 sec

Forward Delay Provides length of time that bridges should wait before

transitioning to a new state after topology change.

Recommended value = 15 sec

1.1.8. Choosing a Root Bridge

The process of creating a spanning tree begins by using the information in the RST

BPDU messages to automatically elect a root bridge. The election is based on a bridge

ID (BID) which, in turn, is based on the combination of a configurable bridge priority

value (32,768 or 0x8000 by default) and the unique Ethernet MAC address assigned on

each bridge for use by the spanning tree process, called the system MAC. Bridges send

RST BPDUs to one another, and the bridge with the lowest BID is automatically elected

to be the root bridge.

RSTP Bridges send information to each other, in Configuration Messages as shown in

Table 1.1, to select a Root Bridge and the shortest path to it from each LAN and each

of the other Bridges. The information sent for this purpose is known as a spanning tree

priority vector.

16

MAC 00:00:00:00:02 MAC 00:00:00:00:01

Root Bridge

MAC 00:00:00:00:03

Figure 1.3: Root Bridge Selection

Spanning tree priority vectors provide the basis for a concise specification of RSTP’s

computation of the active topology. Each priority vector comprises:

a) Root Bridge Identifier, the Bridge Identifier of the Bridge believed to be the

Root by the transmitter

b) Root Path Cost, to that Root Bridge from the transmitting Bridge

c) Bridge Identifier, of the transmitting Bridge

d) Port Identifier, of the Port through which the message was transmitted

e) Port Identifier, of the Port through which the message was received (where

relevant)

For all components, a lesser numerical value is better, and earlier components in the

above list are more significant. The selection of Root Bridge and the shortest path to it

from each LAN is computed from the received priority vector in the Configuration

Message in a sequence:

a) Root Bridge is the one with least Root Bridge Identifier

b) If Root Bridge Identifier is same, choose Root Bridge from Root Path Cost

c) If Root Path Cost is equal, choose Root Bridge from Bridge Identifier of

transmitting Bridge

d) If Bridge Identifier is same, choose Root Bridge from Port Identifier of

transmitting Bridge

e) If Port Identifier is same, choose Root Bridge from Port Identifier of the

receiving Bridge

17

1.1.9. Choosing the Least-Cost Path and port role selection

Once a root bridge is chosen, each non-root bridge uses that information to determine

which of its ports has the least-cost path to the root bridge, then assigns that port to be

the root port (RP) as shown in Figure 1.4. Every Bridge has a Root Path Cost associated

with it. For the Root Bridge this is zero. For all other Bridges, it is the sum of the Port

Path Costs on the least cost path to the Root Bridge. Each Port’s Path Cost may be

managed, Table 1.3 recommends default values for Ports attached to LANs of various

speeds. All other bridges determine which of their ports connected to other links has

the least-cost path to the root bridge. The bridge with the least-cost path is assigned the

role of designated bridge (DB), and the ports on the DB are assigned as designated ports

(DP).

Figure 1.4: Different port roles assigned by RSTP

As BPDU packets travel through the system, they accumulate information about the

number of ports they travel through and the speed of each port. The total cost of a given

path through multiple switches is the sum of the costs of all the ports on that path.

Table 1.3: Port Path Cost values

Link Speed Recommended Value Recommended Range

<=100 Kb/s 200 000 000 20 000 000–200 000 000

1 Mb/s 20 000 000 2 000 000–200 000 000

10 Mb/s 2 000 000 200 000–20 000 000

100 Mb/s 200 000 20 000–2 000 000

MAC: 00:00:00:03:00

MAC: 00:00:00:01:00
Root Bridge

MAC: 00:00:00:02:00

Designated Port

Root Port

 Alternate Port

Port Blocked
By

STP

18

1 Gb/s 20 000 2 000–200 000

10 Gb/s 2 000 200–20 000

100 Gb/s 200 20–2 000

1 Tb/s 20 2–200

10 Tb/s 2 1–20

(Source: IEEE Std 802.1D-2004, Mac Bridges)

The Port on each Bridge with the lowest Root Path Cost is assigned the role of Root

Port for that Bridge (the Root Bridge does not have a Root Port). If a Bridge has two or

more ports with the same Root Path Cost, then the port with the best Port Identifier is

selected as the Root Port. Part of the Port Identifier is fixed and is different for each

Port on a Bridge, and part is a manageable priority component. The relative priority of

Ports is determined by the numerical comparison of the unique identifiers, with the

lower numerical value indicating the better identifier.

Each LAN in the Bridged Local Area Network also has an associated Root Path Cost.

This is the Root Path Cost of the lowest cost Bridge with a Bridge Port connected to

that LAN. This Bridge is selected as the Designated Bridge for that LAN. If there are

two or more Bridges with the same Root Path Cost, then the Bridge with the best

priority (least numerical value) is selected as the Designated Bridge. The Bridge Port

on the Designated Bridge that is connected to the LAN is assigned the role of

Designated Port for that LAN. If the Designated Bridge has two or more ports

connected to the LAN, then the Bridge Port with the best priority Port Identifier (least

numerical value) is selected as the Designated Port.

In a Bridged Local Area Network whose physical topology is stable, i.e. RSTP has

communicated consistent information throughout the network, every LAN has one and

only one Designated Port, and every Bridge with the exception of the Root Bridge has

a single Root Port connected to a LAN. Since each Bridge provides connectivity

between its Root Port and its Designated Ports, the resulting active topology connects

all LANs (is “spanning”) and will be loop free (is a “tree”).

Any operational Bridge Port that is not a Root or Designated Port is a Backup Port if

that Bridge is the Designated Bridge for the attached LAN, and an Alternate Port if the

Bridge has already chosen a better Root port. An Alternate Port offers an alternate path

19

in the direction of the Root Bridge to that provided by the Bridge’s own Root Port,

whereas a Backup Port acts as a backup for the path provided by a Designated Port in

the direction of the leaves of the Spanning Tree. Backup Ports exist only where there

are two or more connections from a given Bridge to a given LAN; hence, they (and the

Designated Ports that they back up) can only exist where two ports are connected

together in loopback by a point-to-point link, or where the Bridge has two or more

connections to a shared media LAN.

1.1.10. Blocking Loop Paths

Once the spanning tree process has determined the port roles, then the combination of

root ports and designated ports provides the spanning tree algorithm with the

information it needs to identify the best paths and block all other paths as shown in

Figure 1.4. Packet forwarding on any port that is not a root port or a designated port is

disabled by blocking the forwarding of packets on that port. While blocked ports do not

forward packets, they continue to receive BPDUs.

1.2. Problem Statement

The broadcast storm caused by a broadcast frame circling endlessly in layer-2 network

due to loop network topology will also reside in layer-2 Software Defined Network.

1.3. Objective

The main objectives of this thesis are

 To realize Local Area Network in Software Defined Network architecture.

 To prevent broadcast storm in Local Area Network using spanning tree protocol

defined by IEEE 802.1D-2004.

 To analyze the performance of spanning tree protocol in Software Defined

Network.

20

CHAPTER TWO: LITERATURE REVIEW

2.1. Software Defined Networking

In networking devices, there exist three planes: data plane, control plane and

management plane. Data plane refers to the hardware part where forwarding takes

place, and control plane refers to the software part where all network logics and

intelligence takes place. Typically in networking devices, control plane consist of

firmware developed and maintained by vendors only. Management plane is typically a

part of control plane and is used for network monitoring and controlling purposes.

In a traditional network shown in Figure 2.1, the data plane and control plane are

embedded inside the network device [2]. The network administrator provides the

configurations for the data flows, paths, routing & forwarding logic etc. These controls

or instructions are pushed to the data plane where the network data traffic is handled.

In this model, after the controls are defined, the only way to modify or adjust the data

flow is through reconfiguration of the device. And such modifications have to be done

over 1000s of devices (though certain degree of scripting or automation may be

achieved). This tight coupling between the data plane and control plane is too restrictive

to network operators who have to respond to traffic changes.

The problem arises when the data flow changes and new paths have to be defined or

when new devices have to be provisioned or new protocols or application policies have

to be applied. The only way to achieve this is by re-configuring the device and re-

writing the data flow rules by network administrators who are familiar with device

specific instructions. These device configurations can be done only by the network

operators. With the increase of network usage and data flow growth, network operators

and users are keen to see a scaling and easily adopting network.

Software Defined Networking (SDN) is a new concept of network resource

virtualization. “In SDN architecture the control and data plane are decoupled, network

intelligence and state are logically separated, and the underlying network infrastructure

21

is abstracted from the application”, as defined by The Open Networking Foundation

(ONF) [2].

SDN focuses on key areas, which are:

1. Separation of data plane from control plane.

2. Centralization of control plane.

3. Standardized interfaces between the device and controller.

4. Programmability of control plane by external applications.

1. Separation of data plane from control plane.

Data plane is the hardware substrate or the infrastructure that is responsible to move

the data from one point to another. To transport these data/messages, the data plane

uses routing and forwarding rules; these rules (also called controls or

configurations) are managed by the control plane. By separating the control plane

from the data plane, SDN provides the flexibility to view the entire data plane

infrastructure as a virtual resource that can be configured and controlled by an upper

layer control plane. The SDN architecture is shown in Figure 2.1 highlighting the

separation of network devices from control system. In a SDN architecture, the

network appears as one logical device to the applications.

2. Centralization of control plane.

The control layer provides a global view of all the network wide resources,

representing all the network devices as one virtual logical network. Centralizing the

control plane allows it to inspect the state of the data layer and make adjustments

dynamically to respond to new demands and changing conditions.

3. Standardized interfaces between the device and controller.

In Figure 2.2, the SDN architecture is shown with data flowing between application,

control and data layers generally referred as North-South messages. Southbound

messages from the controller communicate with lower level hardware infrastructure

and northbound messages communicate with business applications. To facilitate

easy adoption and make the SDN architecture vendor independent, these

22

communications (APIs) should ideally follow well defined standards. Applications

can use the northbound messages to extract information about the network.

4. Programmability of control plane by external applications.

With the control plane centralized and standard interfaces defined between the

different layers, it is easy to implement system wide policies, provision the entire

network for different demand conditions, split it into multiple virtual networks, and

dynamically adopt for changing business demands. The programmable control

plane allows the different components of the network communicate seamlessly, and

gives a network flexible adoption control. SDN controller software runs on a

separate hardware providing a centralized access to the entire network.

Figure 2.1: Traditional network compared to SDN network

2.2. Limitations in Traditional Networking Concept

The changing traffic patterns, rise of cloud services, and growing demand of bandwidth

has led service operators to look for innovative solutions, since traditional networking

Source: Open Networking Foundation

23

technologies are not able to meet those needs. Factors that limit achieving the growing

demand while maintaining profits are [2]:

 Complexity

 Inconsistent policies

 Inability to scale

 Vendor dependence

2.3. SDN architecture

An SDN architecture consists of three layers as shown in Figure 2.2. At the top is the

application layer, which includes applications that deliver services, such as

switch/network virtualization, firewalls, and flow balancers. These are abstracted from

the bottom layer, which is the underlying infrastructure layer. In between lies the SDN

controller, the most critical element of SDN. The controller removes the control plane

from the network hardware and runs it as software, but must integrate with all the

physical and virtual devices in the network.

The infrastructure and control layer are connected via control data plane interface such

as OpenFlow protocol, whereas the application layer is connected to the control layer

via application programming interfaces (APIs). The nodes at control layer are called as

controllers, and they send information such as routing, switching, priority etc. to the

data plane nodes associated with them. After receiving the information from control

node, the networking devices in the data plane update their forwarding table according

to the information received from the control plane [2].

24

Figure 2.2: Software Defined Networking Architecture

2.4. OpenFlow

OpenFlow is an open standard that offers controlling the networking equipment

programmatically [4]. Several vendors have adopted the OpenFlow protocol, originally

developed at Stanford University, as the basis of their SDN strategies. But OpenFlow

is not the only way to do SDN and should not be equated with it. The OpenFlow

specification is now in version 1.4 and is managed by the Open Networking Foundation

(ONF). The goal is to create a common "language" for programing network switches.

OpenFlow is used between a controller and a switch to tell the controller about traffic

flows and communicates to the switch how to forward those flows.

In the conventional network architecture, switch only works through packet forwarding

to the appropriate port without being able to distinguish the type of protocol data

transmitted. OpenFlow can perform the function of flow forwarding based network

layer and manage centrally packet flow from layer 2 to layer 7 (flow granularity), so

that the flow of packets in the network can be set up and configured independently. This

can be done by making the algorithm and its forwarding rules in the controller which

distributed to the switches on the network. The example of OpenFlow controller are

NOX, POX, Floodlight, Opendaylight and Ryu.

https://www.opennetworking.org/index.php?option=com_content&view=category&layout=blog&id=57&Itemid=175&lang=en
https://www.opennetworking.org/index.php?option=com_content&view=category&layout=blog&id=57&Itemid=175&lang=en

25

2.5. Ryu Controller

Ryu is a component-based software defined networking framework [5].

Ryu provides software components with well-defined Application Programming

Interface (API) that make it easy for developers to create new network management

and control applications. Ryu supports various protocols for managing network devices,

such as OpenFlow, Netconf, OF-config, etc. About OpenFlow, Ryu supports fully 1.0,

1.2, 1.3, 1.4 and Nicira Extensions.

26

CHAPTER THREE: METHODOLOGY

For the infrastructure layer, the choice of the emulator is mininet which is a network

emulator which creates a network of virtual hosts, switches, controllers, and links [6]

[7]. Mininet hosts run standard Linux network software, and its switches support

OpenFlow for highly flexible custom routing and Software-Defined Networking. A

looped switch network as shown in Figure 3.1 consisting of three switches and three

hosts were emulated in mininet. A topology script file in Python for mininet emulator

was developed. The switches are the SDN based Open vSwitch [8]. The RSTP

controller controls the behavior of these switches. The three hosts are connected to each

switches for the purpose of verifying the connectivity provided by the looped network

in both case when there is an RSTP controller and when there is no RSTP controller.

Also the ping request from one host to another will generate an ARP message from the

source host which will be broadcasted into the network, which is the base of verification

of spanning tree convergence.

For the controller layer to infrastructure layer communication OpenFlow Protocol was

used. And to implement OpenFlow controller in controller layer Ryu Controller has

been chosen as it supports up to the latest version of OpenFlow i.e. OpenFlow v1.4 [5]

[9]. Python based RSTP controller script file was developed in Ryu Framework for this

purpose. To validate the RST BPDU packets generated and to view ARP packet

flooding, Wireshark (a network protocol analyzer) is used [10].

A Ping command as shown in Figure 3.1 was requested which generates an ARP packet

broadcast into the network. Under the general operation of Layer-2 LAN switch, ARP

message broadcast will occur as the destination host is unknown. In a looped network,

this process will create a broadcast storm as the same packet circulates round the loop.

The SDN application of RSTP controller blocked this undesirable storm by pre-

formation of a tree topology of the physically looped network as shown in Figure 3.2.

For each switch, the selection of the port roles i.e. Root, Designated and Alternate was

determined by the RSTP controller.

27

The packets were captured by Wireshark in each simulation, without or with the RSTP

controller. The capture packets were analyzed in Wireshark for the validation of the

RST BPDU packets sent by the switches. Also the captured packets were analyzed to

verify whether there was Broadcast Storm in the network or not.

Figure 3.1: Network Topology

Figure 3.2: Spanning Tree with port roles

HOST
A

HOST
B

HOST
C

LAN network loop

Ping packet

Designated Port

Root Port

 Alternate Port

Link Disconnected by STP

LAN network loopHOST
A

HOST
B

HOST
C

28

Table 3.1: Simulation Tools

SN Items Description

1 mininet Emulator

2 Ryu SDN controller

3 OpenFlow Control Data Plane Interface

4 ICMP ping Ping command to create a broadcast storm

5 Wireshark For validation of RST BPDU packets and for traffic capture

29

CHAPTER FOUR: SIMULATION PROCESS

The simulation is based on the mininet emulator and Ryu framework. Mininet emulator

emulated the virtual switched network while the Ryu framework simulated the SDN

OpenFlow based controller. The simulation was executed in Ubuntu 14.04.4 LTS.

 Network emulator : Mininet v2.2.0

 Controller Framework : Ryu v4.4

 SDN Southbound protocol : OpenFlow v1.3

 Scripting language : Python v2.7.6

 Validation tool : Wireshark v1.10.6

Simulation process incorporates three different sections:

i. SDN Network implementation in Emulator (Mininet)

ii. OpenFlow based Controller (Ryu) for monitoring and controlling the traffic

flow in the SDN network

iii. Controller as a RSTP controller for the switch network

Section i deals mainly with the mininet environment. For the Network implementation,

a fully functioning mininet script in Python was written. The network topology is

consistent with the three switch network shown in Figure 3.1. Apart from the figure,

the script incorporates a tcp port connection to a remote controller over port 6633 [4].

The details of the emulated network are:

Table 4.1: Network details

SN Items Value

1 Total Switches 3

2 Hosts connected to each switch 1

3 TCP port connection to Remote Controller 6633

4 Host IP format 10.0.0.H

 where H = host number

5 Host MAC format 00:00:00:00:00:HH

 where H = host number

6 Switch interface MAC format 00:00:00:00:0S:0I

 where

 S = Switch number

 I = interface number

30

The Host IP address, Host MAC address and Switch interface MAC address format has

been designed for simplicity in the debugging process. For example 10.0.0.1 indicates

host h1 in mininet environment. Likewise, MAC ID 00:00:00:00:00:11 indicated MAC

ID of host h1 and MAC ID 00:00:00:00:01:01 indicates MAC ID of interface s1-eth1

in mininet environment.

Figure 4.1: Simulated Network in mininet with interface numbers

Section ii includes the Remote controller implementation for which the Ryu controller

is chosen. The choice of the controller was made being based on simplicity of Python

Programming language and also Ryu controller supporting the latest versions of

OpenFlow protocol. The Ryu controller connects to the network switches via tcp port

no 6633 to monitor the packet inflows to the switch and to handle those packet

processing and forwarding.

Section iii requires building a Ryu app for RSTP controller to the switch network. The

controller needs to direct each switch in network to form a RST BPDU packet and

multicast to special destination MAC address 01:80:c2:00:00:00. This MAC address is

specially reserved by 802.1D Standard as Bridge Group Address for transmitting

BPDUs to all other Spanning Tree Protocol Entities.

h1 h2

h3

1 1

1

2 2

2

3 3

3

Interface number

s1 s2

s2

31

CHAPTER FIVE: RESULTS AND DISCUSSIONS

The SDN Network implementation in mininet environment was carried in two

scenarios. The first scenario was without the RSTP controller running and the second

scenario was with the controller running parallel in Ryu.

Three switches loop network was emulated in mininet environment as a prerequisite for

both the scenarios. The simulated network in mininet followed the design guideline as

listed in Table 4.1 and the topology as shown in Figure 4.1. Also the switches were set

to operate in OpenFlow version 1.3 explicitly as default version used by the Open

vSwitch in mininet is version 1.0 [8].

Figure 5.1 shows the execution of the python scrip topology file ‘stp_3switch.py’ for

mininet environment, where the debug output in mininet shows the steps of the network

emulation. And in the mininet CLI prompt. The initial flow-table is checked and

verified to be empty.

Figure 5.1: Running Switched network in mininet with empty flow-table shown

32

5.1. SDN without RSTP controller

A ping request from host h1 to host h2 as shown in Figure 4.1 was made in mininet CLI

prompt shown in Figure 5.2 which created the ARP message broadcast storm in looped

network as observed in Figure 5.3.

Figure 5.2: Ping request from host h1 to h2 under no RSTP controller running

The ping request from host h1 results in ARP message broadcast starting from host h1

to find the destination MAC address of host h2 or of the gateway interface to host h2.

The ARP message broadcasted are rebroadcasted again by the same switch after the

broadcast message has been received round the loop. This resulted in the large packet

flow and also the required function of ARP message to find the destination MAC

address was not full filled. Thus the ping request also was not successful as observed

by 100% packet loss in Figure 5.2.

Figure 5.3: Packets flow in the looped network

0

20

40

60

80

100

120

140

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

P
ac

ke
ts

 p
er

 s
ec

o
n

d
s

Time (sec)

Traffic in interface 2 of switch s3

33

The Figure 5.3 shows the large packets flow in interface 2 of switch S3 after the ping

request was made. Though the ping request was from host h1 to host h2 whose direct

shortest path does not include switch s3, still due to prevailing loop in the network ARP

broadcast message reach switch s3 from both switches s1 and s2. In response switch s3

rebroadcasts ARP message towards switch s2 and s1.

The certain drops in the graph is merely due to the flow control mechanism of the TCP

IP protocol stack. Due to sudden high traffic increase the receiving switch buffers gets

full and signals back flow control message to the transmitting switch. And under this

condition the broadcast message packet flow was observed to be decreasing. The

decreasing pattern is more prominently observed in 35 and 45 seconds where traffic is

40 to 60 packets per seconds but only slightly observed in high packet flow per seconds

which is above 120 packets per seconds. This is due to the greater packets flow

increasing suddenly in the network.

The large packet flow was validated to be ARP message broadcast from the network

protocol analyzer tool, Wireshark by capturing the traffic in the above mentioned

interface shown in Figure 5.4. As observed clearly in the Wireshark, the destination

address is Broadcast which is actually broadcast address of ff:ff:ff:ff:ff:ff. The protocol

of the message is ARP, which indicated the ARP request generated the traffic. The

source MAC address of 00:00:00:00:33 indicates the packet is generated by host 3.

34

Figure 5.4: ARP message Broadcast storm as observed in Wireshark

35

5.2. SDN with RSTP controller

The python based controller script file was developed to incorporate the RSTP function

in the Ryu Controller. The three switches loop network was emulated in mininet

environment along with the RSTP controller running in Ryu framework.

Figure 5.5 shows the execution of RSTP controller scrip file ‘rstp13.py’ in Ryu

framework. The debug output also shows a switch in mininet environment joining the

STP bridge at the line in Figure 5.5, which already involves the handshaking operations

between three SDN switches and Ryu Controller as guided by OpenFlow protocol [4].

Figure 5.5: Running Ryu controller

The controller builds a formatted RST BPDU packet for each SDN switch and forwards

to the SDN switches for multicasting to Bridge Group Address 01:80:c2:00:00:00.

Figure 5.6 shows the RST BPDU packet captured on interface eth2 of switch S3 by

Wireshark. After receiving the RST BPDU, switch sends the RST BPDU packet to the

controller for processing. Based to information about the Root Bridge in RST BPDU

sent by the switch and in the received RST BPDU packet, the controller elects the Root

Bridge and the assigns respective roles to the ports of the switch. And with the Forward

delay timer expiry, ports goes through different states as seen in Figure 5.7.

36

Figure 5.6: RST BPDU packet captured by Wireshark

Figure 5.6 shows an instance of the RST BPDU packet captured at 12:05:48. The details

about the packet is shown in lower half of the figure. Under the Spanning Tree Protocol

all the fields of the RST BPDU packets can be observed. And Protocol Version

Identifier value of 2 signifies that it is RST BPDU packet.

37

Figure 5.7: Final Port States in switches

Figure 5.7 shows the roles of different ports of all the three switches and the states based

on those roles. The time information has also been traced out to debug the time

information of the port state changes. And the change in time from 19.691 seconds in

Learn state to 34.694 seconds in Forward which is 15.003 seconds resembles the

forwarding delay time of the RSTP protocol [11].

A ping request from host h1 to host h2 was executed to check the host reachability from

mininet CLI prompt, after all the switches have been in communication with Ryu

controller and the interfaces of switches went to forwarding state. As certain port has

been already assigned the Block state which resembles no traffic in or out flow, the

network now does not have any loop. Hence, the ping request in accepted and replied

by host h2 as observed in Figure 5.8. For showing the continuity of the ping reply and

for making the ping traffic more prominently visible in traffic graph, 10 ping request

were sent in this case. The observed Figure 5.8 also show that no packet has been lost.

38

Figure 5.8: Ping reply from host h2 under RSTP controller running

During the first ping request an ARP packet from host h1 destined to host h2 IP address

is broadcasted in the network. But due to the linear network topology the broadcast is

no rebroadcasted as in previous case. The ARP request message flooded to Broadcast

MAC address ff:ff:ff:ff:ff:ff is also replied back in this scenario by the host h2 as

observed in the controller debug log in Figure 5.9.

Figure 5.9: ARP request and reply

The traffic flow graph for this scenario with the presence of RSTP controller can been

seen in Figure 5.10. The traffic flow was captured by Wireshark at interface 1 of switch

s1. The time interval of the capture was 44 seconds during which the ping request was

sent from host h1 at interval between 27 to 36 seconds. Figure 5.10 also shows no

occurrence of broadcast storm. Figure 5.10(a) shows the presence of ARP request at 27

seconds, the reply for which is observable at 32 seconds in the same graph. In Figure

5.10(b) the periodic occurrence of RST BPDU packets every 2 sec is also observable,

as guided by hello timer. The presence of ping packets can be seen in Figure 5.10(c).

In all the graph the line graph resembles the sum of ARP, RST BPDU and Ping traffic.

39

Figure 5.10: Traffic flow in interface 1 of switch s1 after RSTP controller running

(a) with ARP messages (b) with RST BPDU packets (c) with Ping traffic

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

P
ac

ke
ts

 p
er

 s
ec

o
n

d
s

Time(sec)

(a)

ARP Total Traffic

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

P
ac

ke
ts

 p
er

 s
ec

o
n

d
s

Time(sec)

(b)

RST BPDU Total Traffic

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

P
ac

ke
ts

 p
er

 s
ec

o
n

d
s

Time(sec)

(c)

Ping Total Traffic

40

5.3. Analysis of the Controller

For the simulation process three switch ring network was taken. The no of traffic

handled by the controller over the TCP port no 6633 connected to the SDN switches

was observed over 300 seconds period duration as captured by Wireshark is shown in

Table 5.1.

Table 5.1: Packets to and from Controller

SN Switch Total

Packets

Total

Bytes

Packets to

Controller

Bytes to

Controller

Packets

from

Controller

Bytes

from

Controller

1 S1 1094 127044 535 69118 559 57926

2 S2 934 115722 379 43140 555 72582

3 S3 1119 129348 539 37846 580 91502

Total 3147 372114 1453 150104 1694 222010

With multiple number of switches implemented in similar ring topology, the total traffic

handled by the controller increased linearly as shown in the Table 5.2 and clearly visible

in Figure 5.11.

Table 5.2: Variation in packets to and from controller with switches

SN Total

switches

Total

Packets

Total

Bytes

Packets to

Controller

Bytes to

Controller

Packets

from

Controller

Bytes

from

Controller

1 2 1958 235782 1017 102156 941 133626

2 3 3147 372114 1453 150104 1694 222010

3 4 4523 530828 2126 217156 2397 313672

4 5 5534 664244 2506 265480 3028 398764

5 6 7303 859696 3544 362154 3759 497542

6 12 14650 1693642 7117 711944 7533 981698

41

Figure 5.11: Controller Packets vs. No of switches

Hence, though the RSTP controller was seen to avoid the loop structure in the network

by assigning ports with various port roles and states, the traffic handled by the controller

was observed to be increasing linearly with the no of increasing switching for the ring

network.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2 4 6 8 10 12 14

To
ta

l P
ac

ke
ts

Number of Switches

Packets to and from controller vs no of switches

42

CHAPTER SIX: LIMITATIONS AND RECOMMENDATIONS

The RSTP controller performed effectively to avoid the loop in the network. But after

the analysis of various sized ring networks, the traffic to be handled by the controller

was observed to be increasing linearly. However, this linearly increasing packet flow

in controller was not analyzed in depth and no measure what so ever had been taken for

the minimization of the increasing traffic.

Hence, the further analysis and minimization of load on controller with increasing

traffic with the increasing number of switch remains as future works.

43

CHAPTER SEVEN: CONCLUSION

The thesis was successful in controlling the Broadcast Storm in Software Defined

Network. In this thesis, Broadcast Storm prevention by loop avoidance method was

used. For the loop avoidance the RSTP protocol as described by IEEE 802.1D-2004

bridging standard was implemented. A RSTP controller script based on Ryu

Framework for SDN was developed. The SDN environment was emulated in mininet

environment over Ubuntu 14.04.4 LTS.

44

REFERENCES

[1] M. Seaman, IEEE Std 802.1 D-2004, MAC Bridges, 2004.

[2] O. N. Foundation, "Software-defined networking: The new norm for networks,"

ONF White Paper, 2012.

[3] H. Zengbin, "Analysis on the Causes & Solutions of Broadcast Storm in LAN

[J]," Office Informatization, vol. 10, p. 018, 2010.

[4] B. Pfaff, B. Lantz and B. Heller, Openflow Switch Specification, Version 1.3.0

(Wire Protocol 0x04), Open Networking Foundation, 2012.

[5] "ryu Documentation, Release 4.5," ryu development team, 2016.

[6] K. Kaur, J. Singh and N. S. Ghumman, "Mininet as Software Defined Networking

Testing Platform.," in International Conference on Communication, Computing

& Systems (ICCCS. 2014), vol. 20, 2014.

[7] B. Lantz, B. O’Connor and C. Burkard, 2014. [Online]. Available:

http://www.mininet.org. [Accessed on 2016].

[8] "Open vSwitch," [Online]. Available: http://www.openvswitch.org/. [Accessed

on 2016].

[9] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov and R. Smeliansky, "Advanced

study of SDN/OpenFlow controllers," in Proceedings of the 9th central & eastern

european software engineering conference in russia, ACM, 2013.

[10] G. Combs, "Wireshark," [Online]. Available: https://www.wireshark.org/.

[Accessed on 2016].

[11] "Understanding and Tuning Spanning Tree Protocol Timers," Cisco Systems, Inc,

2006. [Online]. Available: http://www.cisco.com/. [Accessed on 2016].

[12] F. Keti and S. Askar, "Emulation of Software Defined Networks Using Mininet

in Different Simulation Environments," in 2015 6th International Conference on

Intelligent Systems, Modelling and Simulation, IEEE, 2015, pp. 205--210.

[13] Python Software Foundation, 2016. [Online]. Available:

https://www.python.org/. [Accessed on 2016].

	Broadcast Storm Prevention in Software Defined Network _069_MSI_607_.pdf
	COPYRIGHT©
	APPROVAL PAGE
	DEPARTMENTAL ACCEPTANCE
	ACKNOWLEDGEMENT
	ABSTRACT
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	CHAPTER ONE: INTRODUCTION
	1.1. Related Theory
	1.1.1. Broadcast Storm
	1.1.2. Spanning Tree Protocol
	1.1.3. RSTP Overview
	1.1.4. RSTP Port States
	1.1.5. RSTP Port Roles
	1.1.6. Spanning Tree Packets
	1.1.7. BPDU format
	1.1.8. Choosing a Root Bridge
	1.1.9. Choosing the Least-Cost Path and port role selection
	1.1.10. Blocking Loop Paths

	1.2. Problem Statement
	1.3. Objective

	CHAPTER TWO: LITERATURE REVIEW
	2.1. Software Defined Networking
	2.2. Limitations in Traditional Networking Concept
	2.3. SDN architecture
	2.4. OpenFlow
	2.5. Ryu Controller

	CHAPTER THREE: METHODOLOGY
	CHAPTER FOUR: SIMULATION PROCESS
	CHAPTER FIVE: RESULTS AND DISCUSSIONS
	5.1. SDN without RSTP controller
	5.2. SDN with RSTP controller
	5.3. Analysis of the Controller

	CHAPTER SIX: LIMITATIONS AND RECOMMENDATIONS
	CHAPTER SEVEN: CONCLUSION
	REFERENCES

