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ABSTRACT  

Software-Defined Networking (SDN) is a new principle in the networking paradigm, 

which makes a communication network programmable. In SDN, control and 

management are centralized and decoupled from data plane, thus making the network 

programmable. In SDN, for a single change in network, the network configurations are 

changed only at central or some specific controller(s) rather than touching individual 

network devices. A Local Area Network (LAN) is prone to Layer-2 Broadcast Storm 

and an early safety measure must be taken to ensure the broadcast storm does not take 

down the whole network. A looped network topology in a LAN is basically what is 

needed for the broadcast storm to strike. So in order to prevent the undesired creation 

of loop network, Spanning Tree Protocol (STP) has been already in use in traditional 

networking infrastructures. This thesis presents the application of STP in SDN as a loop 

prevention mechanism. The network simulation of the looped topology is performed in 

mininet (Linux based emulator) and with Ryu (SDN controller). A SDN controller 

application specifically for the loop prevention is developed and tested. 

Keywords: Software Defined Networking, Loop Avoidance, Rapid Spanning Tree 

Protocol, Layer-2 broadcast storm. 
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CHAPTER ONE:  INTRODUCTION  

A Local Area Network (LAN) is an interconnected network of IP devices under the 

same IP network. The fundamental method of communication between these devices is 

guided by the Layer-2 protocols and specifications of TCP/IP networking protocol 

stack. One of the major remarkable feature of this layer is that all the devices under this 

layer are in the same Broadcast Domain. So a broadcast message that is destined to 

Broadcast MAC address ff:ff:ff:ff:ff:ff is received and processed by every device in the 

same Broadcast Domain. In practical LAN, redundant links are created to avoid 

complete network failure in an event of failure in one link. But in such scenarios, 

Broadcast message can go round the loop until the network capacity is saturated. This 

is referred to as Broadcast Storm. It is the function of a network switch to prevent layer-

2 switching loops and broadcast storms. The IEEE 802.1D-2004 bridging standard 

provides a rapid spanning tree protocol to avoid this problem by automatically 

suppressing layer 2 switching loops [1]. 

In every LAN network, a switch functions on the basic of two functions – learning and 

forwarding. Learning is the process of obtaining the MAC address of connected 

devices. When a frame reaches into the port of a switch, the switch reads the MAC 

address of the source device from Ethernet frame and compares it to its MAC address 

table. If the switch cannot find a corresponding entry in MAC address table, the switch 

will add the address to the table with the port number via the Ethernet frame arrived. If 

the MAC address is already available in the MAC address table, the switch compares 

the incoming port with the port already available in the MAC table. If the port numbers 

are different, the switch updates the MAC address table new port number. Forwarding 

is the process of passing network traffic a switch receives from one port of the switch 

to another port on the switch. When a Layer 2 Ethernet frame reaches a port on the 

switch, it reads the source MAC address of the Ethernet frame as a part of learning 

function, and it also reads the destination MAC address also as a part of forwarding 

function. The destination MAC address is important to determine the port number 

which the destination device is connected. If the destination MAC address is found on 

http://www.omnisecu.com/tcpip/media-access-control-mac-addresses.php
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the MAC address table, the switch forwards the Ethernet frame via the corresponding 

port of the MAC address. If the destination MAC address is not found on the MAC 

address table, the switch generates an Address Resolution Protocol (ARP) based 

Ethernet frame to find the destined host and forwards the frame through all its ports 

except the source port. This a Broadcast message as it is destined for all the hosts in the 

LAN, but only the destined host with the specific MAC address reply back as prescribed 

by ARP protocol. The destined host then reply backs to ARP frame and thus the switch 

now knows the destination port (learning) to send the Ethernet frame for this destined 

host (forwarding). 

Every networking device initially is unaware of the other devices in the network. So 

ARP message which is a Broadcast traffic is required initially for the communication 

to establish. But in case there is a network loop due to redundant links, the same ARP 

message can go round the loop saturating the bandwidth of the network as well as 

loading the processor of the switches. To allow switches to automatically create a loop-

free set of paths, even in a complex network with multiple paths connecting multiple 

switches Rapid Spanning Tree Protocol defined by IEEE 802.1D is implemented in the 

LAN [1]. It provides the ability to dynamically create a tree topology in a network by 

blocking any packet forwarding on certain ports, and ensures that a set of switches can 

automatically configure themselves to produce loop-free paths. The IEEE 802.1D 

standard describes the operation of spanning tree, and every switch that claims 

compliance with the 802.1D standard must include spanning tree capability. Based on 

the tree topology created by Spanning Tree Protocol, real data traffic flows through the 

network.  

In traditional switch, the Spanning Tree Protocol runs individually on each switching 

device in the network on the control plane in the device. The control plane is one of the 

three logical planes in networking infrastructure of a switch and is responsible for 

device to device signaling traffic flow to determine actual forwarding policies of data 

in data plane. In the new concept, Software Defined Networking (SDN) device will 

have the control plane removed from network hardware and implemented it in software 
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instead, which enables programmatic access and, as a result, makes network 

administration much more flexible [2]. 

Moving the control plane to software allows dynamic access and administration. A 

network administrator can shape traffic from a centralized control console without 

having to touch individual switches. The administrator can change any network switch's 

rules when necessary - prioritizing, de-prioritizing or even blocking specific types of 

packets with a very granular level of control.  

This thesis presents the application of Rapid Spanning Tree Protocol in Software 

Defined Networking as a loop prevention mechanism. The network simulation of the 

looped topology has been carried out in mininet (Linux based emulator) and with Ryu 

(SDN controller) based on OpenFlow v1.3 protocol of SDN. 

1.1. Related Theory 

1.1.1. Broadcast Storm 

Ethernet network traffic is classified as unicast, multicast, or broadcast traffic. Unicast 

traffic refers to a message being sent directly from one Ethernet device to another 

Ethernet device on the network. Multicast traffic refers to when one Ethernet device 

sends a message to a specific group of Ethernet devices. Broadcast traffic refers to one 

Ethernet device sending a message to all other devices on the network. All three types 

of Ethernet traffic are common to any Ethernet network and are essential to the proper 

operation of the Ethernet network. However a problem can arise when excessive 

broadcast traffic results in a broadcast storm [3]. 

Broadcast traffic by itself is a normal part of Ethernet network communications. One 

example of Broadcast traffic is the Address Resolution Protocol (ARP) message. 

Ethernet devices use ARP messages to resolve their IP addresses on the network. 

Broadcast storms happen when a network is saturated with a large volume of broadcast 

traffic. They can occur for a short duration or for an extended period of time. Broadcast 

storms consume precious resources from every Ethernet device on the network. This is 
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because every device needs to queue the broadcasts to be processed. Ethernet devices 

will also have to queue broadcast protocol messages that they do not support. In an 

Ethernet network, broadcast storms need to be reduced in order to minimize 

unnecessary CPU usage and to keep the network operating properly. 

One of the major reason of occurrence of a broadcast storm is switching loop in the 

Ethernet wiring topology (i.e. two or more paths exist between end stations). For 

instance, when switches are interconnected for redundancy in a ring topology as shown 

in Figure 1.1 a broadcast originating from a device connected to any switch, can cause 

the circulation of broadcasts around the network and can saturate the network 

consuming all available bandwidth.  The loop creates broadcast storms as broadcasts 

are forwarded by switches out every port, the switch or switches will repeatedly 

rebroadcast the broadcast messages flooding the network. Since the Layer 2 header does 

not support a time to live (TTL) value, if a frame is sent into a looped topology, it can 

loop forever. 

HOST
A

HOST
B

HOST
C

LAN network 

Broadcast message 

 

Figure 1.1: Ring topology of three switches 

To prevent such loop condition and to retain redundancy in the network, dynamic loop 

avoidance mechanism guided by Spanning Tree Protocol is generally implemented that 

changes the loop topology to a linear tree structure spanning the whole networking 

devices. 
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1.1.2. Spanning Tree Protocol 

The purpose of the spanning tree protocol (STP) is to allow switches to automatically 

create a loop-free set of paths, even in a complex network with multiple paths 

connecting multiple switches. Switches have many ports for interconnection to other 

devices. The ports can be electrical port (RJ 45 interface, serial interface, etc.) or optical 

port (Optical Module interface). When a number of switches are interconnected with 

redundant links creating loops, STP provides the ability to dynamically create a tree 

topology in a network by blocking any packet forwarding on certain ports, and ensures 

that a set of Ethernet switches can automatically configure themselves to produce loop-

free paths. The IEEE 802.1D standard describes the operation of spanning tree, and 

every switch that claims compliance with the 802.1D standard must include spanning 

tree capability. IEEE Std 802.1D-2004 has incorporated Rapid Reconfiguration, which 

specified the Rapid Spanning Tree Algorithm and Protocol (RSTP). So, STP has now 

been superseded by the Rapid Spanning Tree Protocol (RSTP) specified in Clause 17 

of IEEE Std 802.1D-2004 [1]. 

1.1.3. RSTP Overview 

The Rapid Spanning Tree Protocol (RSTP) configures the Port State of each Bridge 

Port in the Bridge Local Area Network. A switch is referred to as Bridge in this 

protocol. RSTP ensures that temporary loops in the active topology do not occur if the 

network has to reconfigure in response to the failure, removal, or addition of a network 

component, and that erroneous station location information is removed from the 

Filtering Database after reconfiguration. 

Each of the Bridges in the network transmits Configuration Messages. Each 

Configuration Message contains spanning tree priority vector information that 

identifies one Bridge as the Root Bridge of the network, and allows each Bridge to 

compute its own lowest path cost to that Root Bridge, information that will in turn be 

transmitted in Configuration Messages. A Port Role of Root Port is assigned to the one 

Port on each Bridge that provides that lowest cost path to the Root Bridge, and a Port 

Role of Designated Port to the one Port attached to each LAN that provides the lowest 
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cost path from that LAN to the Root Bridge. Port roles of Alternate Port and Backup 

Port are assigned to Bridge Ports that can provide connectivity if other network 

components fail. 

RSTP provides rapid recovery of connectivity to minimize frame loss. A new Root Port, 

and Designated Ports attached to point-to-point LANs, can transition to Forwarding 

without waiting for protocol timers to expire. A Root Port can transition to Forwarding 

without transmitting or receiving messages from other Bridges, while a Designated Port 

attached to a point-to-point LAN can transition when it receives an explicit role 

agreement transmitted by the other Bridge attached to that LAN.  

A Bridge Port attached to a LAN that has no other Bridges attached to it may be 

administratively configured as an Edge Port. RSTP monitors the LAN to ensure that no 

other Bridges are connected, and may be configured to automatically detect an Edge 

Port. Each Edge Port transitions directly to the Forwarding Port State, since there is no 

possibility of it participating in a loop. 

1.1.4. RSTP Port States 

Each Bridge Port has an operational Port State that governs whether or not it forwards 

MAC frames and whether or not it learns from their source addresses. RSTP has been 

reworked to classify 3 port states. 

 Discarding 

 Learning 

 Forwarding 

Discarding and Forwarding are the stable states, while Learning is the only transitory 

state.  

Discarding State – This State basically means that the port is not forwarding frames nor 

is it receiving frames. Any frames that are transmitted to this port the MAC is not 

learned. A port in a discarding state will still continue to process BPDUs. This is also 

the default state for when a port first turns up. 
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Learning State – In this State, a port is not forwarding frames however the frames it is 

receiving it is learning the MAC addresses of those frames as they enter the interface. 

Forwarding State – In this State, ports that are in this state are actively transmitting and 

receiving any and all frames passed through its interface. 

The forwarding and learning performed by each Bridge Port is dynamically managed 

to prevent temporary loops and reduce excessive traffic in the network while 

minimizing denial of service following any change in the physical topology of the 

network. 

1.1.5. RSTP Port Roles 

Each port of a bridge in the network is assigned a specific role based on its position 

with respect to the Root Bridge. The ports can be either towards the Root Bridge or 

away from the Root Bridge. RSTP includes four port roles: 

 Root Port 

 Designated Port 

 Alternate Port 

 Backup port 

Root port is a forwarding port that is the closest to the root bridge in terms of path cost. 

Hence it receives BPDU which is superior to all other BPDUs received on other 

remaining ports of the bridge.  

Designated Port is the port that is forwarding the least cost superior BPDU onto other 

LAN segments. 

Alternate Port is a best alternate path to the root bridge. It is considered as an alternate 

replacement for the switch’s Root Port. The alternative port moves to the forwarding 

state if there is a failure on the designated port for the segment. 

Backup Port is a port that is considered an alternate replacement for the switch’s 

Designated port into a shared LAN segment. The backup port applies only when a 
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single switch has two links to the same segment (collision domain). To have two links 

to the same collision domain, the switch must be attached to a hub. 

In the event a Root Port goes down, these Alternate ports can immediately takeover 

converging the network in less than one second as shown in Figure 1.2. 

Designated Port

Root Port

 Alternate Port

 

Figure 1.2: Alternate Port going to forward state when Root Port goes down 

1.1.6. Spanning Tree Packets 

Operation of the spanning tree algorithm is based on configuration messages sent by 

each switch in packets called Bridge Protocol Data Units, or BPDUs. Each BPDU 

packet is sent to a destination multicast address (Bridge Group Address 

01:80:c2:00:00:00) that has been assigned to spanning tree operation. All IEEE 802.1D 

switches join the BPDU multicast group and listen to frames sent to this address, so that 

every switch can send and receive spanning tree configuration messages. 

1.1.7. BPDU format 

All BPDUs shall contain an integral number of octets. The octets in a BPDU are 

numbered starting from 1 and increasing in the order they are put into a Data Link 

Service Data Unit (DLSDU). The bits in an octet are numbered from 1 to 8, where 1 is 

the low-order bit. 

Rapid Spanning Tree BPDUs (RST BPDUs) 

The format of the RST BPDUs is shown in Table 1.1. The Protocol Identifier is encoded 

in Octets 1 and 2. It takes the value 0000 0000 0000 0000. 
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a) The Protocol Version Identifier is encoded in Octet 3. It takes the value 0000 0010. 

b) The BPDU Type is encoded in Octet 4. This field takes the value 0000 0010. This 

denotes a Rapid Spanning Tree BPDU. 

c) The Topology Change flag is encoded in Bit 1 of Octet 5. 

d) The Proposal flag is encoded in Bit 2 of Octet 5. 

e) The Port Role is encoded in Bits 3 and 4 of Octet 5. 

f) The Learning flag is encoded in Bit 5 of Octet 5. 

g) The Forwarding flag is encoded in Bit 6 of Octet 5. 

h) The Agreement flag is encoded in Bit 7 of Octet 5. 

i) Topology Change Acknowledgment flag is encoded in Bit 8 of Octet 5 as zero. 

j) The Root Identifier is encoded in Octets 6 through 13. 

k) The Root Path Cost is encoded in Octets 14 through 17. 

l) The Bridge Identifier is encoded in Octets 18 through 25. 

m)  The Port Identifier is encoded in Octets 26 and 27. 

n) The Message Age timer value is encoded in Octets 28 and 29. 

o) The Max Age timer value is encoded in Octets 30 and 31. 

p) The Hello Time timer value is encoded in Octets 32 and 33. 

q) The Forward Delay timer value is encoded in Octets 34 and 35. 

r) The Version 1 Length value is encoded in Octet 36. It takes the value 0000 0000, 

which indicates that there is no Version 1 protocol information present. 

Table 1.1: RST BPDU parameters and format 

Components Octet Value 

Protocol Identifier 1-2 0000 0000 0000 0000 

Protocol Version Identifier 3 0000 0010 

BPDU Type 4 0000 0010 

Flags 5  

Root Identifier 6-13  

Root Path Cost 14-17  

Bridge Identifier 18-25  

Port Identifier 26-27  

Message Age 28-29  

Max Age 30-31  

Hello Time 32-33  

Forward Delay 34-35  

Version 1 Length 36 0000 0000 
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 Table 1.2: RST BPDU parameters and their description 

Message Field  Description  

Protocol Identifier  Contains the value zero  

Flag  1st bit for topology change flag 

2nd bit for proposal flag 

3rd and 4th bit for port role 

(00:Unknown,01:Root,10:Designated:11:Alternate/Backup) 

5th bit for learning state 

6th bit for forwarding state 

7th bit for Agreement flag 

8th bit for Topology Change acknowledgement 

Root ID  Identifies the root bridge by listing its priority and ID  

Root Path Cost  Contains cost of the path from bridge sending BPDU to root 

bridge  

Bridge ID  Identifies priority and ID of the bridge sending BPDU  

Port ID  Identifies port from which BPDU was sent  

Message Age  Specifies amount of time elapsed since root sent BPDU on 

which current configuration is based  

Maximum Age  Indicates when the current configuration message should be 

detected. Recommended value = 20 sec 

Hello Time  Provides time period between root bridge configuration 

messages. Recommended value = 2 sec 

Forward Delay  Provides length of time that bridges should wait before 

transitioning to a new state after topology change. 

Recommended value = 15 sec 

1.1.8. Choosing a Root Bridge 

The process of creating a spanning tree begins by using the information in the RST 

BPDU messages to automatically elect a root bridge. The election is based on a bridge 

ID (BID) which, in turn, is based on the combination of a configurable bridge priority 

value (32,768 or 0x8000 by default) and the unique Ethernet MAC address assigned on 

each bridge for use by the spanning tree process, called the system MAC. Bridges send 

RST BPDUs to one another, and the bridge with the lowest BID is automatically elected 

to be the root bridge. 

RSTP Bridges send information to each other, in Configuration Messages as shown in 

Table 1.1, to select a Root Bridge and the shortest path to it from each LAN and each 

of the other Bridges. The information sent for this purpose is known as a spanning tree 

priority vector. 
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MAC 00:00:00:00:02 MAC 00:00:00:00:01

Root Bridge

MAC 00:00:00:00:03  

Figure 1.3: Root Bridge Selection 

Spanning tree priority vectors provide the basis for a concise specification of RSTP’s 

computation of the active topology. Each priority vector comprises: 

a) Root Bridge Identifier, the Bridge Identifier of the Bridge believed to be the 

Root by the transmitter  

b) Root Path Cost, to that Root Bridge from the transmitting Bridge 

c) Bridge Identifier, of the transmitting Bridge 

d) Port Identifier, of the Port through which the message was transmitted 

e) Port Identifier, of the Port through which the message was received (where 

relevant) 

 

For all components, a lesser numerical value is better, and earlier components in the 

above list are more significant. The selection of Root Bridge and the shortest path to it 

from each LAN is computed from the received priority vector in the Configuration 

Message in a sequence: 

a) Root Bridge is the one with least Root Bridge Identifier 

b) If Root Bridge Identifier is same, choose Root Bridge from Root Path Cost 

c) If Root Path Cost is equal, choose Root Bridge from Bridge Identifier of  

transmitting Bridge 

d) If Bridge Identifier is same, choose Root Bridge from Port Identifier of 

transmitting Bridge 

e) If Port Identifier is same, choose Root Bridge from Port Identifier of the 

receiving Bridge 
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1.1.9. Choosing the Least-Cost Path and port role selection 

Once a root bridge is chosen, each non-root bridge uses that information to determine 

which of its ports has the least-cost path to the root bridge, then assigns that port to be 

the root port (RP) as shown in Figure 1.4. Every Bridge has a Root Path Cost associated 

with it. For the Root Bridge this is zero. For all other Bridges, it is the sum of the Port 

Path Costs on the least cost path to the Root Bridge. Each Port’s Path Cost may be 

managed, Table 1.3 recommends default values for Ports attached to LANs of various 

speeds. All other bridges determine which of their ports connected to other links has 

the least-cost path to the root bridge. The bridge with the least-cost path is assigned the 

role of designated bridge (DB), and the ports on the DB are assigned as designated ports 

(DP). 

 

Figure 1.4: Different port roles assigned by RSTP 

As BPDU packets travel through the system, they accumulate information about the 

number of ports they travel through and the speed of each port. The total cost of a given 

path through multiple switches is the sum of the costs of all the ports on that path. 

Table 1.3: Port Path Cost values 

Link Speed Recommended Value Recommended Range 

<=100 Kb/s 200 000 000 20 000 000–200 000 000 

1 Mb/s 20 000 000 2 000 000–200 000 000 

10 Mb/s 2 000 000 200 000–20 000 000 

100 Mb/s 200 000 20 000–2 000 000 

MAC: 00:00:00:03:00

MAC: 00:00:00:01:00
Root Bridge

MAC: 00:00:00:02:00

Designated Port

Root Port

 Alternate Port

Port Blocked 
By 

STP
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1 Gb/s 20 000 2 000–200 000 

10 Gb/s 2 000 200–20 000 

100 Gb/s 200 20–2 000 

1 Tb/s 20 2–200 

10 Tb/s 2 1–20 

(Source: IEEE Std 802.1D-2004, Mac Bridges) 

The Port on each Bridge with the lowest Root Path Cost is assigned the role of Root 

Port for that Bridge (the Root Bridge does not have a Root Port). If a Bridge has two or 

more ports with the same Root Path Cost, then the port with the best Port Identifier is 

selected as the Root Port. Part of the Port Identifier is fixed and is different for each 

Port on a Bridge, and part is a manageable priority component. The relative priority of 

Ports is determined by the numerical comparison of the unique identifiers, with the 

lower numerical value indicating the better identifier. 

Each LAN in the Bridged Local Area Network also has an associated Root Path Cost. 

This is the Root Path Cost of the lowest cost Bridge with a Bridge Port connected to 

that LAN. This Bridge is selected as the Designated Bridge for that LAN. If there are 

two or more Bridges with the same Root Path Cost, then the Bridge with the best 

priority (least numerical value) is selected as the Designated Bridge. The Bridge Port 

on the Designated Bridge that is connected to the LAN is assigned the role of 

Designated Port for that LAN. If the Designated Bridge has two or more ports 

connected to the LAN, then the Bridge Port with the best priority Port Identifier (least 

numerical value) is selected as the Designated Port. 

In a Bridged Local Area Network whose physical topology is stable, i.e. RSTP has 

communicated consistent information throughout the network, every LAN has one and 

only one Designated Port, and every Bridge with the exception of the Root Bridge has 

a single Root Port connected to a LAN. Since each Bridge provides connectivity 

between its Root Port and its Designated Ports, the resulting active topology connects 

all LANs (is “spanning”) and will be loop free (is a “tree”). 

Any operational Bridge Port that is not a Root or Designated Port is a Backup Port if 

that Bridge is the Designated Bridge for the attached LAN, and an Alternate Port if the 

Bridge has already chosen a better Root port. An Alternate Port offers an alternate path 
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in the direction of the Root Bridge to that provided by the Bridge’s own Root Port, 

whereas a Backup Port acts as a backup for the path provided by a Designated Port in 

the direction of the leaves of the Spanning Tree. Backup Ports exist only where there 

are two or more connections from a given Bridge to a given LAN; hence, they (and the 

Designated Ports that they back up) can only exist where two ports are connected 

together in loopback by a point-to-point link, or where the Bridge has two or more 

connections to a shared media LAN. 

1.1.10. Blocking Loop Paths 

Once the spanning tree process has determined the port roles, then the combination of 

root ports and designated ports provides the spanning tree algorithm with the 

information it needs to identify the best paths and block all other paths as shown in 

Figure 1.4. Packet forwarding on any port that is not a root port or a designated port is 

disabled by blocking the forwarding of packets on that port. While blocked ports do not 

forward packets, they continue to receive BPDUs. 

1.2. Problem Statement 

The broadcast storm caused by a broadcast frame circling endlessly in layer-2 network 

due to loop network topology will also reside in layer-2 Software Defined Network. 

1.3. Objective 

The main objectives of this thesis are 

 To realize Local Area Network in Software Defined Network architecture. 

 To prevent broadcast storm in Local Area Network using spanning tree protocol 

defined by IEEE 802.1D-2004. 

 To analyze the performance of spanning tree protocol in Software Defined 

Network. 
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CHAPTER TWO:  LITERATURE REVIEW 

2.1. Software Defined Networking 

In networking devices, there exist three planes: data plane, control plane and 

management plane. Data plane refers to the hardware part where forwarding takes 

place, and control plane refers to the software part where all network logics and 

intelligence takes place. Typically in networking devices, control plane consist of 

firmware developed and maintained by vendors only. Management plane is typically a 

part of control plane and is used for network monitoring and controlling purposes. 

In a traditional network shown in Figure 2.1, the data plane and control plane are 

embedded inside the network device [2]. The network administrator provides the 

configurations for the data flows, paths, routing & forwarding logic etc. These controls 

or instructions are pushed to the data plane where the network data traffic is handled. 

In this model, after the controls are defined, the only way to modify or adjust the data 

flow is through reconfiguration of the device. And such modifications have to be done 

over 1000s of devices (though certain degree of scripting or automation may be 

achieved). This tight coupling between the data plane and control plane is too restrictive 

to network operators who have to respond to traffic changes. 

The problem arises when the data flow changes and new paths have to be defined or 

when new devices have to be provisioned or new protocols or application policies have 

to be applied. The only way to achieve this is by re-configuring the device and re-

writing the data flow rules by network administrators who are familiar with device 

specific instructions. These device configurations can be done only by the network 

operators. With the increase of network usage and data flow growth, network operators 

and users are keen to see a scaling and easily adopting network. 

Software Defined Networking (SDN) is a new concept of network resource 

virtualization. “In SDN architecture the control and data plane are decoupled, network 

intelligence and state are logically separated, and the underlying network infrastructure 
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is abstracted from the application”, as defined by The Open Networking Foundation 

(ONF) [2]. 

SDN focuses on key areas, which are: 

 

1. Separation of data plane from control plane. 

2. Centralization of control plane. 

3. Standardized interfaces between the device and controller. 

4. Programmability of control plane by external applications. 

 

1. Separation of data plane from control plane. 

Data plane is the hardware substrate or the infrastructure that is responsible to move 

the data from one point to another. To transport these data/messages, the data plane 

uses routing and forwarding rules; these rules (also called controls or 

configurations) are managed by the control plane. By separating the control plane 

from the data plane, SDN provides the flexibility to view the entire data plane 

infrastructure as a virtual resource that can be configured and controlled by an upper 

layer control plane. The SDN architecture is shown in Figure 2.1 highlighting the 

separation of network devices from control system. In a SDN architecture, the 

network appears as one logical device to the applications. 

 

2. Centralization of control plane. 

The control layer provides a global view of all the network wide resources, 

representing all the network devices as one virtual logical network. Centralizing the 

control plane allows it to inspect the state of the data layer and make adjustments 

dynamically to respond to new demands and changing conditions. 

 

3. Standardized interfaces between the device and controller. 

In Figure 2.2, the SDN architecture is shown with data flowing between application, 

control and data layers generally referred as North-South messages. Southbound 

messages from the controller communicate with lower level hardware infrastructure 

and northbound messages communicate with business applications. To facilitate 

easy adoption and make the SDN architecture vendor independent, these 
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communications (APIs) should ideally follow well defined standards. Applications 

can use the northbound messages to extract information about the network. 

 

4. Programmability of control plane by external applications. 

With the control plane centralized and standard interfaces defined between the 

different layers, it is easy to implement system wide policies, provision the entire 

network for different demand conditions, split it into multiple virtual networks, and 

dynamically adopt for changing business demands. The programmable control 

plane allows the different components of the network communicate seamlessly, and 

gives a network flexible adoption control. SDN controller software runs on a 

separate hardware providing a centralized access to the entire network. 

 

Figure 2.1: Traditional network compared to SDN network  

2.2. Limitations in Traditional Networking Concept 

The changing traffic patterns, rise of cloud services, and growing demand of bandwidth 

has led service operators to look for innovative solutions, since traditional networking 

Source: Open Networking Foundation 
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technologies are not able to meet those needs. Factors that limit achieving the growing 

demand while maintaining profits are [2]: 

 Complexity 

 Inconsistent policies 

 Inability to scale 

 Vendor dependence 

2.3. SDN architecture 

An SDN architecture consists of three layers as shown in Figure 2.2. At the top is the 

application layer, which includes applications that deliver services, such as 

switch/network virtualization, firewalls, and flow balancers. These are abstracted from 

the bottom layer, which is the underlying infrastructure layer. In between lies the SDN 

controller, the most critical element of SDN. The controller removes the control plane 

from the network hardware and runs it as software, but must integrate with all the 

physical and virtual devices in the network.  

The infrastructure and control layer are connected via control data plane interface such 

as OpenFlow protocol, whereas the application layer is connected to the control layer 

via application programming interfaces (APIs). The nodes at control layer are called as 

controllers, and they send information such as routing, switching, priority etc. to the 

data plane nodes associated with them. After receiving the information from control 

node, the networking devices in the data plane update their forwarding table according 

to the information received from the control plane [2]. 
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Figure 2.2: Software Defined Networking Architecture 

2.4. OpenFlow 

OpenFlow is an open standard that offers controlling the networking equipment 

programmatically [4]. Several vendors have adopted the OpenFlow protocol, originally 

developed at Stanford University, as the basis of their SDN strategies. But OpenFlow 

is not the only way to do SDN and should not be equated with it. The OpenFlow 

specification is now in version 1.4 and is managed by the Open Networking Foundation 

(ONF). The goal is to create a common "language" for programing network switches. 

OpenFlow is used between a controller and a switch to tell the controller about traffic 

flows and communicates to the switch how to forward those flows. 

In the conventional network architecture, switch only works through packet forwarding 

to the appropriate port without being able to distinguish the type of protocol data 

transmitted. OpenFlow can perform the function of flow forwarding based network 

layer and manage centrally packet flow from layer 2 to layer 7 (flow granularity), so 

that the flow of packets in the network can be set up and configured independently. This 

can be done by making the algorithm and its forwarding rules in the controller which 

distributed to the switches on the network. The example of OpenFlow controller are 

NOX, POX, Floodlight, Opendaylight and Ryu. 

 

https://www.opennetworking.org/index.php?option=com_content&view=category&layout=blog&id=57&Itemid=175&lang=en
https://www.opennetworking.org/index.php?option=com_content&view=category&layout=blog&id=57&Itemid=175&lang=en
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2.5. Ryu Controller 

Ryu is a component-based software defined networking framework [5]. 

Ryu provides software components with well-defined Application Programming 

Interface (API) that make it easy for developers to create new network management 

and control applications. Ryu supports various protocols for managing network devices, 

such as OpenFlow, Netconf, OF-config, etc. About OpenFlow, Ryu supports fully 1.0, 

1.2, 1.3, 1.4 and Nicira Extensions. 

  



26 

 

CHAPTER THREE: METHODOLOGY 

For the infrastructure layer, the choice of the emulator is mininet which is a network 

emulator which creates a network of virtual hosts, switches, controllers, and links [6] 

[7]. Mininet hosts run standard Linux network software, and its switches support 

OpenFlow for highly flexible custom routing and Software-Defined Networking. A 

looped switch network as shown in Figure 3.1 consisting of three switches and three 

hosts were emulated in mininet. A topology script file in Python for mininet emulator 

was developed. The switches are the SDN based Open vSwitch [8]. The RSTP 

controller controls the behavior of these switches. The three hosts are connected to each 

switches for the purpose of verifying the connectivity provided by the looped network 

in both case when there is an RSTP controller and when there is no RSTP controller. 

Also the ping request from one host to another will generate an ARP message from the 

source host which will be broadcasted into the network, which is the base of verification 

of spanning tree convergence.  

For the controller layer to infrastructure layer communication OpenFlow Protocol was 

used. And to implement OpenFlow controller in controller layer Ryu Controller has 

been chosen as it supports up to the latest version of OpenFlow i.e. OpenFlow v1.4 [5] 

[9]. Python based RSTP controller script file was developed in Ryu Framework for this 

purpose. To validate the RST BPDU packets generated and to view ARP packet 

flooding, Wireshark (a network protocol analyzer) is used [10].  

A Ping command as shown in Figure 3.1 was requested which generates an ARP packet 

broadcast into the network. Under the general operation of Layer-2 LAN switch, ARP 

message broadcast will occur as the destination host is unknown. In a looped network, 

this process will create a broadcast storm as the same packet circulates round the loop. 

The SDN application of RSTP controller blocked this undesirable storm by pre-

formation of a tree topology of the physically looped network as shown in Figure 3.2. 

For each switch, the selection of the port roles i.e. Root, Designated and Alternate was 

determined by the RSTP controller. 
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The packets were captured by Wireshark in each simulation, without or with the RSTP 

controller. The capture packets were analyzed in Wireshark for the validation of the 

RST BPDU packets sent by the switches. Also the captured packets were analyzed to 

verify whether there was Broadcast Storm in the network or not. 

 

Figure 3.1: Network Topology 

 

 

Figure 3.2: Spanning Tree with port roles 
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Table 3.1: Simulation Tools 

SN Items Description 

1 mininet Emulator 

2 Ryu SDN controller 

3 OpenFlow Control Data Plane Interface 

4 ICMP ping Ping command to create a broadcast storm 

5 Wireshark For validation of RST BPDU packets and for traffic capture 
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CHAPTER FOUR: SIMULATION PROCESS 

The simulation is based on the mininet emulator and Ryu framework. Mininet emulator 

emulated the virtual switched network while the Ryu framework simulated the SDN 

OpenFlow based controller. The simulation was executed in Ubuntu 14.04.4 LTS. 

 Network emulator : Mininet v2.2.0 

 Controller Framework : Ryu v4.4 

 SDN Southbound protocol  : OpenFlow v1.3 

 Scripting language : Python v2.7.6 

 Validation tool : Wireshark v1.10.6 

Simulation process incorporates three different sections: 

i. SDN Network implementation in Emulator (Mininet) 

ii. OpenFlow based Controller (Ryu) for monitoring and controlling the traffic 

flow in the SDN network 

iii. Controller as a RSTP controller for the switch network 

Section i deals mainly with the mininet environment. For the Network implementation, 

a fully functioning mininet script in Python was written. The network topology is 

consistent with the three switch network shown in Figure 3.1. Apart from the figure, 

the script incorporates a tcp port connection to a remote controller over port 6633 [4]. 

The details of the emulated network are: 

Table 4.1: Network details 

SN Items Value 

1 Total Switches  3 

2 Hosts connected to each switch 1 

3 TCP port connection to Remote Controller 6633 

4 Host IP format 10.0.0.H 

    where H = host number 

5 Host MAC format 00:00:00:00:00:HH 

    where H = host number 

6 Switch interface MAC format 00:00:00:00:0S:0I 

    where  

    S = Switch number 

    I = interface number 
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The Host IP address, Host MAC address and Switch interface MAC address format has 

been designed for simplicity in the debugging process. For example 10.0.0.1 indicates 

host h1 in mininet environment. Likewise, MAC ID 00:00:00:00:00:11 indicated MAC 

ID of host h1 and MAC ID 00:00:00:00:01:01 indicates MAC ID of interface s1-eth1 

in mininet environment. 

 

Figure 4.1: Simulated Network in mininet with interface numbers 

Section ii includes the Remote controller implementation for which the Ryu controller 

is chosen. The choice of the controller was made being based on simplicity of Python 

Programming language and also Ryu controller supporting the latest versions of 

OpenFlow protocol. The Ryu controller connects to the network switches via tcp port 

no 6633 to monitor the packet inflows to the switch and to handle those packet 

processing and forwarding.  

Section iii requires building a Ryu app for RSTP controller to the switch network. The 

controller needs to direct each switch in network to form a RST BPDU packet and 

multicast to special destination MAC address 01:80:c2:00:00:00. This MAC address is 

specially reserved by 802.1D Standard as Bridge Group Address for transmitting 

BPDUs to all other Spanning Tree Protocol Entities. 
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CHAPTER FIVE: RESULTS AND DISCUSSIONS 

The SDN Network implementation in mininet environment was carried in two 

scenarios. The first scenario was without the RSTP controller running and the second 

scenario was with the controller running parallel in Ryu.  

Three switches loop network was emulated in mininet environment as a prerequisite for 

both the scenarios. The simulated network in mininet followed the design guideline as 

listed in Table 4.1 and the topology as shown in Figure 4.1. Also the switches were set 

to operate in OpenFlow version 1.3 explicitly as default version used by the Open 

vSwitch in mininet is version 1.0 [8]. 

Figure 5.1 shows the execution of the python scrip topology file ‘stp_3switch.py’ for 

mininet environment, where the debug output in mininet shows the steps of the network 

emulation. And in the mininet CLI prompt. The initial flow-table is checked and 

verified to be empty. 

 

Figure 5.1: Running Switched network in mininet with empty flow-table shown 
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5.1. SDN without RSTP controller 

A ping request from host h1 to host h2 as shown in Figure 4.1 was made in mininet CLI 

prompt shown in Figure 5.2 which created the ARP message broadcast storm in looped 

network as observed in Figure 5.3.  

 

Figure 5.2: Ping request from host h1 to h2 under no RSTP controller running 

The ping request from host h1 results in ARP message broadcast starting from host h1 

to find the destination MAC address of host h2 or of the gateway interface to host h2. 

The ARP message broadcasted are rebroadcasted again by the same switch after the 

broadcast message has been received round the loop. This resulted in the large packet 

flow and also the required function of ARP message to find the destination MAC 

address was not full filled. Thus the ping request also was not successful as observed 

by 100% packet loss in Figure 5.2. 

 

Figure 5.3: Packets flow in the looped network 
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The Figure 5.3 shows the large packets flow in interface 2 of switch S3 after the ping 

request was made. Though the ping request was from host h1 to host h2 whose direct 

shortest path does not include switch s3, still due to prevailing loop in the network ARP 

broadcast message reach switch s3 from both switches s1 and s2. In response switch s3 

rebroadcasts ARP message towards switch s2 and s1.  

The certain drops in the graph is merely due to the flow control mechanism of the TCP 

IP protocol stack. Due to sudden high traffic increase the receiving switch buffers gets 

full and signals back flow control message to the transmitting switch. And under this 

condition the broadcast message packet flow was observed to be decreasing. The 

decreasing pattern is more prominently observed in 35 and 45 seconds where traffic is 

40 to 60 packets per seconds but only slightly observed in high packet flow per seconds 

which is above 120 packets per seconds. This is due to the greater packets flow 

increasing suddenly in the network. 

The large packet flow was validated to be ARP message broadcast from the network 

protocol analyzer tool, Wireshark by capturing the traffic in the above mentioned 

interface shown in Figure 5.4. As observed clearly in the Wireshark, the destination 

address is Broadcast which is actually broadcast address of ff:ff:ff:ff:ff:ff. The protocol 

of the message is ARP, which indicated the ARP request generated the traffic. The 

source MAC address of 00:00:00:00:33 indicates the packet is generated by host 3.  
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Figure 5.4: ARP message Broadcast storm as observed in Wireshark 
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5.2.  SDN with RSTP controller 

The python based controller script file was developed to incorporate the RSTP function 

in the Ryu Controller. The three switches loop network was emulated in mininet 

environment along with the RSTP controller running in Ryu framework. 

Figure 5.5 shows the execution of RSTP controller scrip file ‘rstp13.py’ in Ryu 

framework. The debug output also shows a switch in mininet environment joining the 

STP bridge at the line in Figure 5.5, which already involves the handshaking operations 

between three SDN switches and Ryu Controller as guided by OpenFlow protocol [4]. 

 

Figure 5.5: Running Ryu controller 

The controller builds a formatted RST BPDU packet for each SDN switch and forwards 

to the SDN switches for multicasting to Bridge Group Address 01:80:c2:00:00:00. 

Figure 5.6 shows the RST BPDU packet captured on interface eth2 of switch S3 by 

Wireshark. After receiving the RST BPDU, switch sends the RST BPDU packet to the 

controller for processing. Based to information about the Root Bridge in RST BPDU 

sent by the switch and in the received RST BPDU packet, the controller elects the Root 

Bridge and the assigns respective roles to the ports of the switch. And with the Forward 

delay timer expiry, ports goes through different states as seen in Figure 5.7. 
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Figure 5.6: RST BPDU packet captured by Wireshark 

Figure 5.6 shows an instance of the RST BPDU packet captured at 12:05:48. The details 

about the packet is shown in lower half of the figure. Under the Spanning Tree Protocol 

all the fields of the RST BPDU packets can be observed. And Protocol Version 

Identifier value of 2 signifies that it is RST BPDU packet. 
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Figure 5.7: Final Port States in switches 

Figure 5.7 shows the roles of different ports of all the three switches and the states based 

on those roles. The time information has also been traced out to debug the time 

information of the port state changes. And the change in time from 19.691 seconds in 

Learn state to 34.694 seconds in Forward which is 15.003 seconds resembles the 

forwarding delay time of the RSTP protocol [11]. 

A ping request from host h1 to host h2 was executed to check the host reachability from 

mininet CLI prompt, after all the switches have been in communication with Ryu 

controller and the interfaces of switches went to forwarding state. As certain port has 

been already assigned the Block state which resembles no traffic in or out flow, the 

network now does not have any loop. Hence, the ping request in accepted and replied 

by host h2 as observed in Figure 5.8. For showing the continuity of the ping reply and 

for making the ping traffic more prominently visible in traffic graph, 10 ping request 

were sent in this case. The observed Figure 5.8 also show that no packet has been lost. 
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Figure 5.8: Ping reply from host h2 under RSTP controller running 

During the first ping request an ARP packet from host h1 destined to host h2 IP address 

is broadcasted in the network. But due to the linear network topology the broadcast is 

no rebroadcasted as in previous case. The ARP request message flooded to Broadcast 

MAC address ff:ff:ff:ff:ff:ff is also replied back in this scenario by the host h2 as 

observed in the controller debug log in Figure 5.9.  

 

Figure 5.9: ARP request and reply 

The traffic flow graph for this scenario with the presence of RSTP controller can been 

seen in Figure 5.10. The traffic flow was captured by Wireshark at interface 1 of switch 

s1. The time interval of the capture was 44 seconds during which the ping request was 

sent from host h1 at interval between 27 to 36 seconds. Figure 5.10 also shows no 

occurrence of broadcast storm. Figure 5.10(a) shows the presence of ARP request at 27 

seconds, the reply for which is observable at 32 seconds in the same graph. In Figure 

5.10(b) the periodic occurrence of RST BPDU packets every 2 sec is also observable, 

as guided by hello timer. The presence of ping packets can be seen in Figure 5.10(c). 

In all the graph the line graph resembles the sum of ARP, RST BPDU and Ping traffic. 
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Figure 5.10: Traffic flow in interface 1 of switch s1 after RSTP controller running  

(a) with ARP messages (b) with RST BPDU packets (c) with Ping traffic 
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5.3. Analysis of the Controller 

For the simulation process three switch ring network was taken. The no of traffic 

handled by the controller over the TCP port no 6633 connected to the SDN switches 

was observed over 300 seconds period duration as captured by Wireshark is shown in 

Table 5.1. 

Table 5.1: Packets to and from Controller 

SN Switch Total 

Packets 

Total 

Bytes 

Packets to 

Controller 

Bytes to 

Controller 

Packets 

from 

Controller 

Bytes 

from 

Controller 

1 S1 1094 127044 535 69118 559 57926 

2 S2 934 115722 379 43140 555 72582 

3 S3 1119 129348 539 37846 580 91502 

Total 3147 372114 1453 150104 1694 222010 

With multiple number of switches implemented in similar ring topology, the total traffic 

handled by the controller increased linearly as shown in the Table 5.2 and clearly visible 

in Figure 5.11. 

Table 5.2: Variation in packets to and from controller with switches 

SN Total 

switches 

Total 

Packets 

Total 

Bytes 

Packets to 

Controller 

Bytes to 

Controller 

Packets 

from 

Controller 

Bytes 

from 

Controller 

1 2 1958 235782 1017 102156 941 133626 

2 3 3147 372114 1453 150104 1694 222010 

3 4 4523 530828 2126 217156 2397 313672 

4 5 5534 664244 2506 265480 3028 398764 

5 6 7303 859696 3544 362154 3759 497542 

6 12 14650 1693642 7117 711944 7533 981698 
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Figure 5.11: Controller Packets vs. No of switches 

Hence, though the RSTP controller was seen to avoid the loop structure in the network 

by assigning ports with various port roles and states, the traffic handled by the controller 

was observed to be increasing linearly with the no of increasing switching for the ring 

network. 
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CHAPTER SIX: LIMITATIONS AND RECOMMENDATIONS 

The RSTP controller performed effectively to avoid the loop in the network. But after 

the analysis of various sized ring networks, the traffic to be handled by the controller 

was observed to be increasing linearly. However, this linearly increasing packet flow 

in controller was not analyzed in depth and no measure what so ever had been taken for 

the minimization of the increasing traffic. 

Hence, the further analysis and minimization of load on controller with increasing 

traffic with the increasing number of switch remains as future works.  
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CHAPTER SEVEN: CONCLUSION 

The thesis was successful in controlling the Broadcast Storm in Software Defined 

Network. In this thesis, Broadcast Storm prevention by loop avoidance method was 

used. For the loop avoidance the RSTP protocol as described by IEEE 802.1D-2004 

bridging standard was implemented. A RSTP controller script based on Ryu 

Framework for SDN was developed. The SDN environment was emulated in mininet 

environment over Ubuntu 14.04.4 LTS. 
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