TRIBHUVAN UNIVERSITY
INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

THESIS NO: 072-MSCS-660

A RULE BASED STEMMER FOR NEPALI

BY
PRAVESH KOIRALA

FINAL REPORT
SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND
COMPUTER ENGINEERING IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN
COMPUTER SYSTEMS AND KNOWLEDGE ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
NOVEMBER, 2017

A
THESIS
ON

A RULE BASED STEMMER FOR NEPALI

BY:
PRAVESH KOIRALA
072/MSCS/660

SUPERVISED BY:
Dr. AMAN SHAKYA

A THESIS SUBMITTED TO DEPARTMENT OF ELECTRONICS AND COMPUTER

ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE IN COMPUTER SYSTEM AND KNOWLEDGE
ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INSTITUTE OF ENGINEERING, PULCHOWK CAMPUS
TRIBHUVAN UNIVERSITY
LALITPUR, NEPAL

NOVEMBER, 2017

Copyright ©

The author has agreed that the library, Department of Electronics and Computer
Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis report
freely available for inspection. Moreover, the author has agreed that the permission
for extensive copying of this thesis work for scholarly purpose may be granted by the
professors, who supervised this work recorded herein or, in their absence, by the
Head of Department, wherein this thesis was done. It is understood that the
recognition will be given to the author of this thesis and to the Department of
Electronics and Computer Engineering, Pulchowk Campus in any use of the material
of this thesis. Copying of publication or other use of this thesis for financial gain
without approval of the Department of Electronics and Computer Engineering,
Institute of Engineering, Pulchowk Campus and author’s written permission is

prohibited.

Request for permission to copy or to make any use of the material in this thesis in

whole or part should be addressed to:

Head of Department

Department of Electronics and Computer Engineering
Institute of Engineering

Pulchowk Campus

Lalitpur, Nepal

TRIBHUVAN UNIVERSITY
INSTITUTE OF ENGINEERING
PULCHOWK CAMPUS
DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certify that it has been read and recommended to the Department of
Electronics and Computer Engineering for acceptance, a report of thesis entitled “A
Rule Based Stemmer For Nepali”, submitted by Mr. Pravesh Koirala in partial
fulfillment of the requirement for the award of the degree of “Master of Science in

Computer System and Knowledge Engineering”.

Supervisor, Dr. Aman Shakya External Examiner, Dr. Manish
Lecturer Pokharel

Department of Electronics and Associate Professor

Computer Engineering, Department of Computer Science
Central Campus, and Engineering

Institute of Engineering. Kathmandu University

Committee Chairperson, Prof. Dr. Subarna Shakya
Professor

Department of Electronics and Computer Engineering,
Central Campus,

Institute of Engineering.

Date of Approval:

Departmental Acceptance

The thesis entitled “A Rule Based Stemmer For Nepali”, submitted by Mr.
Pravesh Koirala in partial fulfillment of the requirement for the award of the degree
of “Master of Science in Computer System and Knowledge Engineering” has
been accepted as a bonafide record of work independently carried out by him in the

department.

Dr. Dibakar Raj Pant

Head of Department,

Department of Electronics and Computer
Engineering,

Central Campus,

Institute of Engineering,

Tribhuvan University,

Pulchowk, Nepal.

Acknowledgement

I would like to express my sincere thanks to Dr. Aman Shakya for his dutiful
supervision as well as an active advisory participation during my topic selection and
thesis completion period. I would also like to thank Dr. Bal Krishna Bal for his
invaluable guidance and advice. In addition, I would like to acknowledge Mr. Ram
Hari Koirala for his guidance in Nepali linguistics and Dr. Nobal Bikram Niraula for

his support and advice.

I would also like to thank Professor Dr. Shashidhar Ram Joshi, Professor Dr. Subarna
Shakya, and Dr. Sanjeeb Prasad Pandey for their encouragement and insights. I am
equally grateful to Dr. Dibakar Raj Panta, Head of Department and faculty of the
department of Electronics and Computer Engineering for their support. I also heartily

thank my family and my classmates for their continued encouragement.

Pravesh Koirala
072MSCS660

Abstract

Stemming is an integral part of Natural Language Processing. It’s a preprocessing
step in almost every NLP application. Arguably, the most important usage of
stemming is in Information Retrieval. While there has been lots of work done on
stemming in languages like English, Nepali stemming has only a few mentionable
works. This study focuses on creating a Rule Based stemmer for Nepali text.
Specifically, it is a affix stripping system that identifies two different types of suffixes
in Nepali grammar and strips them separately. Only a single negativity prefix o is
identified and stripped. This study focuses on a number of techniques like exception
word identification, morphological normalization, word transformation and stemming
limit enforcement to increase stemming performance. The stemmer is also tested
intrinsically using Paice’s method and extrinsically on a basic tf-idf based IR system.
Upon testing, the under-stemming error was found to be 5.27% and the
over-stemming error was found to be 0.2% which is a superior performance than
existing works. The IR was tested on stemmed vs non-stemmed documents and
queries using 14 queries and it was found that the stemming scheme increased the

average relevance of retrieved documents by 18.6%.

Keywords: Nepali, Stemming, Over-Stemming, Under-Stemming, IR, tf-idf, Paice

method

Table of Contents

Copyright

Approval Page
Departmental Acceptance
Acknowledgement
Abstract

Table of Contents

List of Figures

List of Tables

List of Abbreviations

1. Introduction
1.1 Background and Motivation
1.2 Problem Statement
1.3 Objectives
1.4 Scope of Applications

2. Literature Review

2.1 Previous works in Nepali Language
2.2 Previous works in Nepali-like languages

3. Methodology
3.1 Stemming
3.1.1 Suffix Removal

3.2 Morphological Normalization

3.3 Suffixes
3.3.1 Type I Suffixes
3.3.2 Type II Suffixes
3.4 Suffix Stripping Rules

3.4.1 Stripping Type I suffixes
3.4.2 Stripping Type II Suffixes

3.4.3 Prefix Stripping
3.5 Stemmer

3.5.1 Input

3.5.2 Exception list

3.5.3 Stemming Rules

10
11

12
12
14
15
15

16
16
18

19
19
19
20
21
22
22
23
23
25
27
27
27
28
28

3.5.5 Stemming Engine
3.6 Data
3.7 Tools

4. Results and Discussion
4.1 Output
4.2 Performance Evaluation
4.2.1 Paice Method
4.2.1.1 Performance Indices
4.2.1.2 Test Setup and Results
4.2.2 Information Retrieval Test
4.2.2.1 Background
4.2.2.2 Test Setup and Results

5. Conclusions

6. Limitations and Future Works
7. References

Appendix A

Appendix B

Appendix C

28
29
29

30
30
31
31
31
34
36
36
40

42
43
44
46
47
49

List of Figures

Figure 1: Flowchart for a typical Rule based stemmer .

Figure 2: Block diagram of a Rule based stemmer......

Figure 3: Block diagram of Stemming Engine

Figure 4: Stemming of the word “TRPI”

Figure 5: Stemming ideal merge (GDMT) vs unachieved merge (GUMT)

Figure 6: Stemming ideal non-merge (GDNT) vs achieved non-merge (GWMT)

Figure 7: Average relevance score comparison for queries using

stemming vs not raw document (unstemmed)

20
27
29
30
35
35

42

List of Tables

Table 1: Morphological normalization scheme

Table 2: Values for various metrics in Paice’s method

Table 3: UI, OI and SW using Paice’s Method

Table 4: Summary sheet for IR relevance scoring using vs not using stemmer

10

21
34
36
40

FST
DMT
DNT
UMT
GDMT
GDNT
GUMT
GWMT
IR

MT
NLP
Ol

SW

Ul
WMT

List of Abbreviations

Finite State Transducer

Desired Merge Total

Desired Non-Merge Total
Unachieved Merge Total

Global Desired Merge Total
Global Desired Non-Merge Total
Global Unachieved Merge Total
Global Wrongly Merged Total
Information Retrieval

Machine Translation

Natural Language Processing
Over-Stemming Index
Stemming Weight
Under-Stemming Index

Wrongly Merged Total

11

1. Introduction

1.1 Background and Motivation

Stemming refers to the reduction of a given word into its stem which need not be the
morphological root of the word. This is done to reduce the inflection of any particular
word into a base form. For example: cats is the inflected form of cat and stemming
strips the plurality suffix -s from cats to give cat. Similarly, various tense inflections
of the verb go like go, going, gone are stemmed to a same stem i.e. go. The
straightforward challenge in word stemming is to identify the correct stem. Extending
the previous example, the past tense form of the verb go .e. went needs to be stemmed

to go, which might not be trivial.

Various NLP applications use stemming as a pre-processing step, for example: POS
Tagging, Machine Translation, Document Clustering etc but arguably the most
important role of word stemming is in Information Retrieval (IR). IR is an immensely
common and important application of Natural Language Processing. It essentially
refers to the retrieval of a particular document from a collection of documents.
Arguably, the most important example of IR is search engines. Search Engines index
massive collection of documents on a daily basis and provide a search interface where
users can query or search for a specific document. The nature of search can be for the
document itself or for any information contained in a document or for any metadata

present in the document, images, multimedia etc.

Similarly, in NLP applications like POS Tagging and Document Clustering,
Stemming reduces the word space i.e. the number of unique words to consider by
reducing multiple word inflections into a single stem. This not only improves the
efficiency of the program by speeding up the execution and reducing memory

requirements but also the accuracy by reducing the noise in the dataset.

12

Stemming need not produce a morphologically correct word. Its only requirement is
that it map various word inflections to a common stem even if the stem is not a
linguistically correct word. For example, for the word inflections rider and riding, it
suffices to map them both to a common stem (7id in this case) instead of their base
word (ride). In contrast, Lemmatization is a morphological process where words are
conflated into their original form or lemmas. For example, stemming went might
produce wen or went but Lemmatization yields go as the correct lemma.
Lemmatization, in general, is a more rigorous process than Stemming and the latter is

preferred due to its efficiency.

There are two major problems while stemming: Over-stemming and
Under-stemming. Over-stemming is when two separate inflected words are reduced
to a same word stem. This is a false-positive when considering the domain of
Information Retrieval, since it leads the IR engine to fetch documents which might
not contain the search query. Similarly, Under-stemming is when two same
inflections of a word are not reduced to a same word stem. This is false-negative. It
leads an IR engine to not find documents having a related word inflection. For
example: reducing “universe” and ‘“university” to ‘“univers” is over-stemming
because the two words are unrelated in modern context. Similarly reducing
“alumnus” to “alumnu” and “alumni” to “alum” is under-stemming because both of

the words are inflections of same root.

There are various techniques for Stemming. Perhaps the most naive out of them is
Lookup Tables. These tables have a many to one structure where multiple words can
point to the same word stem. While easy to implement, the tables eventually become
extensive and the process of mapping a word to stem is manual and particularly
tedious. Another technique, which is quite popular, is affix stripping technique where
an exhaustive table need not be computed but a very small set of affix stripping rules

are used to strip the inflections from the word to get stem.

In a language like Nepali, where most of the words are inflected by using suffixes,

affix stripping simplifies to suffix stripping. Constructing a database of known

13

suffixes, we can apply suffix stripping to derive a stem from the word inflection.
While this works in most cases, there might be some exceptions. Consider for
example the words &3l and &Ts1fda. These two are related word inflections but

suffix stripping alone is unable to reduce them to the same stem.

There is also a need to identify whether a linguistic entity attached at the end of the
word is actually a suffix attaching itself to a base word or is actually a part of the
word itself. For instance, in the word “ehTel” the entity “@ is actually the part of the
word itself whereas in the word “@Telel” the rightmost “e” is a postpositional suffix.
It is imperative to accurately identify when and when not to strip a given suffix

because unnecessary stripping leads to over-stemming.

Another challenge in suffix stripping is the difference in writing. For example, both
of the word form HISHhTdeH and HTShcileh are used interchangeable informally.
Unless an assumption about strictness of the writing rules, there is a need to include
both of the suffixes f7& and <&, Not only that, several postpositions can be joined
together as in 3ailgeehl which contains two postpositions compounded together. To
deal with these scenarios, there is a need to repeatedly apply the stripping rules.

However, this repetition increases the chance of over-stripping.

Similarly, suffix stripping also requires contextual awareness. For instance, the word
el can be interpreted in two different ways depending upon the context. It can mean

a1 + o (father did) or ST (lit something on fire). Similar is with the word I3,

depending upon context, it can either mean a villager or a village did.

1.2 Problem Statement

Multiple stemming algorithm exists for the English language. Some of which are:
1) Krovetz Stemming Algorithm(1993);

2) Paice/Husk Stemming Algorithm(1990);
3) Porter Stemming Algorithm(1980);

14

4) Dawson Stemming Algorithm(1974);

For Nepali language, however, a limited work has been done in Morphological
Analysis; particularly stemming. The fact that Nepali is an inherently complex
language further makes it inaccessible to many analysis. Various derivational and
inflectional techniques exist in Nepali grammar which creates plethora of frequently
used words in everyday life. For instance, inflection alone is categorized as being of
ten types. These inflections can alter a word's structure based on cases such as gender,
cardinality, respect, tense (hTel) and its aspects (¥9). Moreover, inflections are also

based on moods (#ATd), voice, causality and negation [6][7].

These inflections make it hard to devise a proper stemming algorithm for Nepali
language. In absence of a stemmer, various NLP applications for Nepali which
require stemming as a pre-processing step have either not been possible or their
implementations have been unsatisfactory. IR for Nepali language has also been

pushed back precisely because of the lack of a proper stemming algorithm.

1.3 Objectives

e To devise a rule-based stemmer for Nepali language.
e To ecvaluate its performance intrinsically based on Over-Stemming and

Under-Stemming metrics and extrinsically on a basic IR system

1.4 Scope of Applications

As stated earlier, stemming is a pre-processing step in multiple NLP applications.
This work can have significant impact on applications such as IR, Machine

Translations, Semantic Analysis, Document Clustering etc.

15

2. Literature Review

2.1 Previous works in Nepali Language

There have been a few works in Nepali for Morphological Analysis and Stemming.

Prasain devised a theoretical model for computational analysis of nepali morphology
[1]. In his study, he primarily concerned himself with different morphological
categories and processes in Nepali language and the rules involved in deriving these
categories. He also focused on developing a computational model i.e. FST for the
Nepali morphology. He deals with the morphology of nominals, verbs, adverbs,
adjectives, post-positions, case markers, particles, and interjections and also analyses
their derivational aspect. However, his works has been all theoretical and no

implementation has been done by anyone.

Sitaula proposed a hybrid nepali stemming algorithm which uses affix stripping in
conjunction with a string similarity function and reports a recall rate of 72.1% on
1200 words [8]. He has taken into consideration a total of 150 suffixes and around 35
prefixes. After incrementally stripping affixes, Sitaula uses a string similarity method

to find the word from Nepali lexicon that is most similar to the stripped stem.

Paul et. al. describes an affix removal stemming algorithm for Nepali text. The
system has a database of 120 suffixes and 25 prefixes and a root lexicon of over 1000

words and reports an overall recall accuracy of 90.48% [9].

Shrestha et. al. describes a stemming algorithm for Nepali in which he lists 126 suffix
stripping rules. These rules are categorized into three distinct categories. The
algorithm strips the suffixes after determining the category of the suffixes. He reports

an accuracy of about 88.78% on a total 5000 words [10].

16

A functional stemming algorithm has been created by Bal Krishna et al [2]. They
have developed a database of word-breaking rules for different kind of affixes. The

rules are of the form:

Tl | 5
T2
S

Where the first part of the rule statement denotes an affix and the second part (after
the pipe) denotes its corresponding entry in the word breaking rule table. They have

also maintained a free morpheme list of the form:

FelH | NN
qr| vV
#Har | ADQ

Here the first part before the pipe is a free nepali morpheme while the second part
after the pipe is the POS of the word. Their system outputs the morphology of the
word as in the suffixes, root and prefixes. They, however, have not reported the

accuracy of their system.

Shrestha et. al. does a comparative study on existing stemmers for Nepali text [11].
The study reports three kinds of stemming algorithms implemented by various studies
and identifies them as

1. Rule Based

2. Affix stripping, and

3. Hybrid

The study implements the stemmers of different kinds and tests them against four

separate test sets. Affix stripping algorithms outperformed others in the study.

17

2.2 Previous works in Nepali-like languages

A hindi stemmer was devised by Ramanathan et. al [3] where he first uses a
transliteration scheme to transliterate devanagari to ascii. They have maintained a
suffix list which is used to strip the word by using the process of longest match. Upon
testing the algorithm in 35977 words, 4.6% words were found to be under-stemmed
while 13.8% were found to be over-stemmed. They mention that the same algorithm

can be successfully used for similar language such as Marathi and Nepali.

An Urdu stemmer is also written by Kansal et. al [4] which uses the rule based
approach to stem Urdu words. They report 85.14% accuracy on more than 20,000

words.
Majgaonkar et.al wrote an unsupervised stemmer for Marathi language which

basically learned the stemming rules from the given Marathi corpus. They achieved

an accuracy of 82.5% on a manually stemmed test data of 1500 words [5].

18

3. Methodology

3.1 Stemming

Stemming can roughly be divided into 3 types:

e Rule based stemming
e Statistical stemming

e Hybrid stemming

Rule Based Stemming has been known to give above average results in languages
like Hindi and Urdu which are morphologically quite similar to Nepali. A specific
kind of Rule Based Stemming is Affix removal where the affixes that inflect a given
word is stripped to derive the word stem. In Nepali language, prefixes are not known
to cause inflection in a word, thus, this study focuses only on suffix removal with the

exception of one negativity prefix oT.

3.1.1 Suffix Removal

Rule Based stemming maintains a stemming rule list which defines how to strip
prefix or suffix from any word. [2], [3] and [4] are all examples of a rule based
stemmer. This stemming scheme is especially useful if the list of possible suffixes
and prefixes are predefined such as in Nepali language. In many cases, an exception
word list is also defined. This word list maintains the list of free morphemes which
should not be stemmed. This helps in reducing over-stemming errors. [3], [5], [10]
are an example of Rule Based Stemming where only a suffix list is defined.

A typical Rule based stemming flowchart looks as follows:

19

/ Input token /

Y

Is root word?

yes
Strip suffix from word s Sufiix present?

yes

Strip prefix from word {5 prefix present

Output word stem

Figure 1: Flowchart for a typical Rule based stemmer.

3.2 Morphological Normalization

Among the vowels present in Nepali language, the vowel pairs <S, $>and <3, 3> in
both their dependant and independant forms are often confused while writing. Same
is the case with some of the consonant groups like <d, §>. To make the stemmer

more robust to these common grammatical errors, a morphological normalization

20

scheme is introduced where the often confused vowels and consonants are normalized
into a single entity. Concretely, all occurance of the vowel S are replaced with § and

so on. A more detailed normalization scheme is outlined below.

Table 1 : Morphological normalization scheme

Vowel / Consonant Normalized To
S $
> 3
Gl El
A q
v q
] Nil
(all occurances removed)

All of the inputs to the stemmer are morphologically normalized during the stemming
process. This includes any input word to be stemmed, the suffix or prefix list, and the
word exception list; which is to say; the stemmer only deals with normalized Nepali

words.

3.3 Suffixes

Suffixes are linguistic entities that inflect a word by attaching themselves to the end

of it. For example, the plural marker &%, inflects the singular word &heT into ShCIsb.
In Nepali, there are many suffixes, but these have been broadly divided into two

categories in this study.

21

3.3.1 Type I Suffixes

These suffixes are agglutinative and called postpositions (Ta#1f#d in Nepali). Their
grammatical function is identical to the prepositions in English language. They attach
themselves to mostly Nouns and Pronouns but are not in any way restricted to the two

parts of speech. Some examples of these suffixes are:

A total of 85 Type I suffixes are identified in this study (see Appendix A).

3.3.2 Type I Suffixes

These suffixes, also called Y& in Nepali mostly inflect verbs. Some of the

identified suffixes of this type are:

e 6 6 o6 o o o o
GO UG g geo

22

Gty Aedod] et 4 A G o

It is worth noting that both the suffixes TehT and <@ are included in the list even
though they are essentially identical grammatical elements and only differ in respect
to whether the leading vowel is independent or is dependent to the preceding

consonant. A total of 161 of these type II suffixes were identified (see Appendix B).

3.4 Suffix Stripping Rules

Suffix stripping is done on the basis of the type of the suffix i.e. type I and type 11

suffixes are stripped separately.

3.4.1 Stripping Type I suffixes

Stripping these suffixes is a non-trivial process. This can be attributed to two major
facts:

Firstly, identification of these suffix is challenging. As was discussed earlier, some of
these suffixes occur as a part of word itself. For instance, the word sig% is the name
of a reputed Indian politician and not the suffix % attached to the base =1. There are
many more examples of such exception words. Before stripping type I suffixes, an

extensive exception word list has to be created.

There are essentially two ways in which the exception word list could be created:
e [Lexicon Based
e Corpus Based

23

In Lexicon based approach, the entire contemporary Nepali Lexicon is taken as the
exception list. The lexicon contains words that are root on their own. Words like
HTHT, 9fgel, STl etc are already listed on the lexicon. On the other hand, proper

nouns, abbreviations etc are not. So, the stemmer won’t recognize the word 3HT or

37IETAT as exceptions.

In Corpus based approach, all the words present in the corpus that have the
suffixes/prefixes of interests are listed out. Out of those words, the words that are
exceptions are manually identified. This approach can identify words that occur in the

corpus but not in a standard Nepali lexicon.

In the study, corpus-based approach is used for all words ending with suffix of
interest and occurring a minimum number of time (threshold) inside the corpus.
Thresholding is done to reduce the number of words to deal with. For the purpose of
this work, the threshold was chosen to be 10. A total of 181 of these exceptions words

were identified (see Appendix C).

Another challenge in stripping type I suffix is that these suffixes can be chained
together i.e. the word 3e1I8%elTS is a word created by chaining two different type I
suffixes. This requires repetitive stripping of the suffixes while checking the

intermediate results against the exception word list.

The algorithm used to strip type I suffix can be outlined as follows:

Procedure:

1. Read suffixes, and exception words
2. Take input sentence
3. Tokenize the sentence into tokens using space and punctuation as word
boundary.
4. Foreach word:
a. Check if word is in exception list
i. Ifyes, do not tokenize, continue the loop

ii. Ifno, proceed to tokenization

24

b. Separate the word into root and suffix.
c. Repeat steps a..b for the newly tokenized root.

5. Output list of tokens

3.4.2 Stripping Type II Suffixes

Stemming these suffixes are particularly tricky largely due to the inherent structure of
Nepali Morphology. For example, consider the suffix ©®. When appended with the
root 31T, the combination introduces a new sound of oT.

ST + & = 9l (Introduction of a o1 in the middle)

However, no such phenomenon is observed when the root is 9IY (do)

TN+ T =TS

Similarly, the suffix IT, when used with the root ST, changes the morphology and
phonetics but it doesn’t do the same for the root €T or I
ST + Y = 91T (change of the word structure)

T+ 31 = @rar
gT-[JrEﬁ:gFéfr

These variations are not only observed in verb but also in noun roots. For instance,

the Sh suffix is known to change the morphology of nouns in the following way:

I + 3 = A8
HHTST + b = HIHATSIeh
3ol + 5o = stanforn

I.e. change of the dependent vowels (31 to 31) at the start of the word.

To take these factors into consideration, we introduce a word transformation rule. In
simple terms, if the word contains the $oh prefix, the dependant vowel at the start of
the word is changed accordingly. The vowel 31T becomes 37, vowel 3if becomes 3 and
the vowel ¥ becomes 3. Using this transformative rule, the word e would be
transformed to the word ffae. It is important to observe that this map does not map

a word to its stem, rather only to an intermediate word, which will be then further

25

processed to produce the correct stem. The intermediate word might not be
grammatically correct one. The rationale being that the word fafde® and the word
i would conflate to the same once they are morphologically normalized and then

stemmed.

The stemming algorithm in itself is quite simple. In fact, after taking into account the
variations in word morphology by addition of suffixes, the rest of the process is the
repeated stripping of the suffixes in a longest suffix first approach. This stripping is
done until further stripping is not possible. In the event that any particular stripping
rule decreases the word size to below a set threshold, that rule is discarded. This is
done to prevent over-stemming of the word. The threshold value for this project was

taken 2 by observing the error rates as per the testing method described in 4.3.1.

The stripping algorithm of type II suffixes is as follows:

Procedure:

1. Read suffixes, and words transformation map.
2. Take input tokens
3. Foreach word:
a. Check if word has 8 suffix
i. Ifyes, transform the word according to rule described in 3.2.2
ii. Ifno, proceed.
b. For each suffix in the suffix list from longest to shortest suffix
i. If'the suffix is present in word
1. If stripping leads to word length above the threshold,
Strip it.
2. Elseignore
3. Continue the loop in (3b)
c. If'no suffix could be stripped, break the loop else repeat step 3b again.
4. Output list of tokens

26

3.4.3 Prefix Stripping

Only one kind of prefix has been stripped in this work, the negativity prefix «I. As the
name implies this prefix is a verb inflection that negates it. For instance, the verb
37TUST (has come) can be inflected to aT3TTUeRI (has not come) by addition of the
prefix. The rule for stripping this prefix is quite straightforward i.e. it is stripped if it

occurs at the beginning of the word.

3.5 Stemmer

A simple outline of the built system is shown below:

Stemming Rules

L\

* Stemming Engine

Exception list

Figure 2: Block diagram of a Rule Based Stemmer

3.5.1 Input

Input is typically a Nepali word or a string of words. An entire text document
encoded with UTF-8 encoding can be entered as well. The stemmer morphologically

normalizes the input according to the scheme mentioned in 3.2.

27

3.5.2 Exception list

This is a list of words that are known to be root words i.e. not inflected with any
suffix or prefix. For example: 9, HATAT, A, 9T etc.

For now, these words have been taken from the corpus by the process of manual
eyeballing. The list also includes words that are non-native to Nepali language but are
root words. An example is 3TSTHT, which does not exist in Nepali lexicon but is a

root word. The exception words are also normalized as per section 3.2.

3.5.3 Stemming Rules

Stemming rules, is the collection of all known type I and type II suffixes. There are

54 type I suffixes whereas 115 type II suffixes. All of these suffixes are normalized.

3.5.5 Stemming Engine

This is the central application that takes the input wordlist, reads rules from the rules
base and stems the word. The matching of word with the free morpheme list and the
exception list is also handled by this engine. After it stems the word, it outputs the

stem of the word. A general flowchart of what this engine looks like is shown below.

28

o §

Input Word

type | prefix stripper

Y

h

type Il prefix stripper

i Word mapping for '
| altered words :

Stemming Engine

Output

Figure 3: Block diagram of stemming engine.

3.6 Data

To test the stemming rules and evaluate the over/under stemming errors, a corpus was
constructed. This corpus was derived from various online news portals such as
Setopati, Nagariknews, eKantipur etc. The corpus contained articles from various
different areas including news, sports, arts and literature etc. Corpus contained a total
of 4387 news articles with the total word count of 1181343 and total unique word
count of 118056. Each news article, on average, contained 269 total words and 181

unique words.

3.7 Tools

e Python 2.7

e Pylex library
e Web.py server
e Pycharm IDE

29

4. Results and Discussion

4.1 Output

The output of the stemmer is essentially the stem of the word, or if it is a wordlist, the
stemmed wordlist. A simple GUI is provided to operate the stemmer. The GUI
contains two controls. A textbox to input a Nepali word or wordlist, and a button
control to stem the contents of the textbox. Once appropriate input is provided and the
button is pressed, the GUI generates a table with two columns: the original word and

the stemmed word.

A snapshot of the GUI is shown below:

Stemmer

Input Text | RS

Token Token Stem

T ™

Figure 4: Stemming the word “IRe!”

30

4.2 Performance Evaluation

Performance evaluation of a stemming algorithm is ideally done on the task that the
stemming was done for. For example, if stemming were done for IR purposes, then
the evaluation of stemming would be on the basis of accuracy or recall of the IR
system. This is also known as Extrinsic Evaluation. In contrast, Intrinsic Evaluation is
where the stemmer is tested in itself, without actually using it for any external

application.

Both Extrinsic and Intrinsic performance evaluation for this stemmer was done. For
Intrinsic evaluation, a testing method known as Paice method [12] was used while for

Extrinsic evaluation, a trivial Information Retrieval Engine was constructed.

4.2.1 Paice Method

Paice method for evaluation of stemmers is based on under-stemming and
over-stemming errors. In this method, a concept group is first defined where multiple
word inflations of a single word-concept are grouped together. To illustrate this

concept, consider the following words: walk, walking, go, went, gone, eat.

Among these six words, three concept groups can be defined. Walk and walking
would constitute a concept group because both these words are inflations of the verb
walk. Similarly, the words go, went, and gone would be mapped to a single concept
group because these three words are associated with the verb go. The remaining
group would constitute the single word go. After defining the concept groups, Paice
method operates by counting the actual over and under stemming errors and

calculating certain Performance Indices.

4.2.1.1 Performance Indices

These are the indices used to calculate under-stemming and over-stemming errors.
The equations are directly derived from [12]. A Desired Merge Total (DMT) for a

single concept group is defined as the number of word pairs that are supposed to

31

conflate to the same stem. Ideally, it equals the number of word pairs in the concept

group. It is calculated as

DMTg = 0.5n, (ng—1) 4.1
Where n, is defined as the number of words in the group.
A Desired Non-Merge Total (DNT) for a group is then defined as:

DNT, = 0.5 n,(W —ny,) 4.2

Where W is the total number of words being evaluated i.e. sum of words in all
concept-groups. This metric is actually the number of possible word pairs between

the words of a concept group and the words outside of the concept groups.

By summing these two metrics across all concept-groups, two new indices GDMT
(Global Desired Merge Total) and GDNT (Global Desired Non-merge Total) are

calculated.

GDMT = Y DMT, 4.3
g

GDNT =Y DNT, 4.4
4

After stemming is applied to the text, some groups might have two or more distinct
word stems. This is due to the Under-Stemming of the words. To quantify these
errors, a new metric is used called the Unachieved Merge Total (UMT) for a group. It

1s defined as:
=1

UMT is a measure of the number of pairs in a group that did not successfully conflate
to the same stem. Summing over UMT across all groups, we get a Global Unachieved

Merge Total (GUMT).

GUMT = YUMT, 4.6
g

Using GUMT and GDMT, we can calculate a under-stemming index (UI) as follows:

32

Ul =GUMT /| GDMT 4.7

Post-stemming, it can also be found that words of different concept groups conflate to
a same stem. This is Over-Stemming. To quantify this error, a stem-group is
constructed. Stem groups is essentially all the words that conflate to a particular word
stem. Any stem-group that consists of words from different concept-groups contains
over-stemming errors. Suppose a stem-group has n_ items which are derived from ¢
different word-groups and suppose the numbers of words from the word-groups are

Vv, V,.. v, The metric Wrongly Merged Total (WMT) can then be calculated as:

t
WMT, =3 vins—v,) 4.8
i=1

WMT, gives the number of word pairs that wrongly conflated to the single stem.
Summing WMT across all the stemming groups, we get the Global Wrongly Merged
Total.

GWMT = Y WMT; 4.9

Using GWMT and GDNT, we can get a new metric called over-stemming error (Ol):
Ol = GWMT |/ GDNT 4.10

The metrics OI and UI give a measure of the Over and Under Stemming errors. Using
these two, a new metric called a Stemming Weight can be calculated.

Sw = 01/UI 4.11

The stemming weight index is greater than one if the stemmer has fewer
under-stemming errors than over-stemming errors i.e. the stemmer aggressively stems
the word. These types of stemmer are called heavy stemmer. In contrast, if the
number of under-stemming errors is more than the over-stemming errors, the stemmer
is less aggressive in stemming. These stemmers are called /ight stemmer.

33

4.2.1.2 Test Setup and Results

For evaluating the stemmer according to Paice method, 497 concept groups were
defined. Each concept groups contained at least two related words with the maximum
being thirty-nine words. A total of 1813 words constituted the concept groups. Some
examples of the groups are as follows:
o goj)qoi', &7, g«gqé, gIge o, gojjgo—uﬁ
o IR, TR, TS, TRY, TR, TEaT, IRGIS
AR

These words were derived from the top 10,000 most frequent words occurring in the
corpus described in section 3.6. After running Paice method of evaluation on the

stemmer using these concept groups, following results were obtained.

Table 2: Values for various metrics in Paice’s method.

Metric Values
Global Desired Merge Total (GDMT) 8274
Global Unachieved Merge Total (GUMT) 436
Global Desired Non-Merge Total (GDNT) 2742411
Global Wrongly Merged Total (GWMT) 4729

34

These values can be summarised in the chart below:

GDMT-GUMT

H4.%

Figure 5: Stemming ideal merge (GDMT) vs unachieved merge (GUMT)

GWMT

0.2%

GONT-GWMT

00 8%

Figure 6: Stemming ideal non-merge (GDNT) vs achieved non-merge (GWMT)
35

Using the metrics above, the under-stemming index and the over-stemming index can
be calculated as per equations 4.7 and 4.10.

Table 3: UI, OI and SW using Paice’s Method

Metric Values
Understemming Index (UI) 0.0527
Overstemming Index (OI) 0.002
Stemmer Weight (SW) 0.038

This shows that the stemmer has high understemming error in contrast to
over-stemming error. Which implies that the stemmer is a light stemmer i.e. it has a

tendency to not strip suffixes aggressively.

4.2.2 Information Retrieval Test

A most accurate and pragmatic test for any Stemmer is to actually implement a NLP
application based on that Stemmer and then check for the performance of that
application. For the purpose of this thesis, a crude IR system was developed using the
Stemmer and then tested on a prepared dataset upon a subset of the corpus described

in4.1.

4.2.2.1 Background

Modern IR systems employ various measures like query expansion (where a simple
input query is reconstructed to multiple queries for getting a wider coverage) to
sophisticated relevancy algorithm like pagerank. For the purpose of this thesis,
however, only a simple IR system has been developed where both documents and
queries are modeled using the bag of words model and the ranking is done by using

tf-idf metric which has been shown to give good results for document retrieval [13].

Bag of Words is a simple technique to model a set of documents mathematically. It is

widely used in text classification. It is simple and intuitive to use but a drawback of

36

this model is that we lose the ordering information which also leads in the loss of the
semantic information. For example: using bag of words model for IR, the two queries
Fire Truck and Truck on Fire return same set of documents even though the two

queries are semantically different.

For the purpose of this thesis, a document d is defined as a body of text. Similarly, a

document collection D is the set of all the documents d. Mathematically,

D={d,d,, ... dg} 4.12
Where S is the total number of documents in the document collection D.

We also define a corpus as the set of all unique words in the documents. For instance,

a corpus of size K is defined as:

C={wy, W, W, ... wy} 4.13

Where w,, w, ... wy are unique words in the document collection D.

Using the corpus, the documents that are to be used for IR purposes can be modeled

as a vector. For a corpus of size K, the document vector is of K dimension.

This vector is constructed in the following ways. Consider the document d of length

L.

d=w,ww,...w, 4.14

Where, w,, w, etc are words in the document which are not necessarily unique.

For any given word w; in the corpus, its non-normalized term frequency in the

document d is defined as:

ntf; =N, , 4.15

s

37

Where N;, is the number of occurence of the word w; in the document d. Again, the
normalized term frequency or simply the term frequency of the document is defined

as:

AL 416

Where || d || is the euclidean norm of the document d given by

K
ld||=~ /z_(nrf,-,d)z 417

Simply using term frequency as relevance measure would bias the relevance metric to
the most frequently occuring words regardless of their relevance to the document. To
remedy this, a new metric called the document frequency is used. The document

frequency (df) of a word w is defined as:
df,, =N, 4.18

Where N is the number of documents containing the word w. Again, the metric

inverse document frequency (idf) for a word is calculated as:
idf,, = log,(N / df,,) 4.19

The relevancy metric tf-idf for a given word w, in a given document d is calculated

as:

tfidf, g = tf, 4 * idf,, 4.20

38

Using equation 4.20, a column vector for the document described in equation 4.14

can be constructed as follows:

tfidfu,a
tfidfuw,a 4.21

L tfidfuy.a

V', 1s what is called the document vector of document d having U unique words. Once

document vector for every document d in the document collection D is defined,

relevance score of any document for any given query ¢ can be obtained.

A query ¢ is also a document typically having fewer words than the documents in the
document collection. Regardless, it can also be modelled as a vector called the query

vector. The query vector is defined as follows:

tfidfw.:“q

v — | tfidfu.g 4.22

| tfidfug.q |

V, is the query vector for the query having Q unique words. The relevance of any

document Vd and any query Vq can be calculated by the cosine similarity of the

vectors. Mathematically,
rellV , V) =V, . Vel (Val-1IV) 4.23

Where V, . V, is the dot product of the two vectors and || V, || and || V, || are the

euclidean norm of the vectors ¥, and V, respectively as defined in equation 4.17.

39

4.2.2.2 Test Setup and Results

For the purpose of this test, total 100 documents were sampled from the corpus in 4.1.
Then, 14 queries were constructed for retrieval. These queries contained one to three
words and were constructed manually using the gathered documents. Some of the

queries are shown below:

o TIE{AT AW
o {ISTdH

® AR ITSIgd
o 3TQ FIledehrT

Using the TF-IDF ranking scheme mentioned in 4.2.2.1, two independent information
retrieval experiment were carried out for each query. The first experiment was done
without stemming the documents or queries while the second experiment was done on
the stemmed document and queries. The topmost result of the information retrieval
i.e. the document with the highest relevance score for the given query for both
experiments were taken and 3 native nepalese human judges were asked to assess the
relevance of the retrieved document on the scale of 1 to 5, 1 being the least relevant
while 5 being most. If the query failed to return any document in any experiment, the

relevance was assumed to be 0.

A summary sheet of the experiment is shown below. The form used to collect data

could be found at https.//goo.gl/forms/Kt82ZTzFeW37VMVC3.

Table 4: Summary sheet for IR relevance scoring using vs not using stemmer

Query Type Participant 1 | Participant 2 | Participant 3 | Average Difference
unstemmed 4 4 4 4
GrEdAT fay 0
stemmed 4 4 4 4
unstemmed 3 4 5 4
BIEILCES 0
stemmed 3 4 5 4

40

https://l.facebook.com/l.php?u=https%3A%2F%2Fgoo.gl%2Fforms%2FKt82ZTzFeW37VMVC3&h=ATPZk8Mask0JOvmJJ_TLbMWiSWbwvEEwkYOhpa5dDIXhqBXsf3-swNaMOrJktZ9hj7Kyi-z1mMInaz7v5Mz_FyyTcTyw7Q6WhzHWJcD7U7klmBVupEUSh6QdhqQlL0YFgck

unstemmed 1 1 2 1.33
AR IsTgd 2
stemmed 3 3 4 3.33
= unstemmed 4 5 5 4.67
Frfecent 0
stemmed 4 5 5 4.67
unstemmed 5 4 5 4.67
Hferaer gfaAIfarar 0
stemmed 5 4 5 4.67
unstemmed 4 5 4 4.33
HFaIR Afrey 0
stemmed 4 5 4 433
unstemmed 2 1 2 1.67
HY FadT -0.67
stemmed 1 1 1 1
unstemmed 4 5 5 4.67
AUTeThT IrSeafY -1.67
stemmed 4 1 4 3
) unstemmed 1 1 1 1
AYTell ST 233
GREIEC] stemmed 3 3 4 3.33
) unstemmed 4 5 4 433
=T 3107 0
stemmed 4 5 4 4.33
unstemmed 1 1 1 1
ST §HATADT 3.67
3ITAT stemmed 4 5 5 4.67
i unstemmed 5 3 5 4.33
gef 0
stemmed 5 3 5 4.33
unstemmed 1 1 2 1.33
[EEEIRIC N 2.67
stemmed 3 4 5 4
) unstemmed 0* 0* 0* 0
g 4.67
stemmed 4 5 5 4.67

Scores with * indicate that the document was not found for that experiment, thus,
relevance was assigned to be 0. The difference in average relevance score of the
retrieved document with stemming and without stemming was calculated for each
query and the differences were averaged at the end. The average gain in the relevance
was found to be 0.93. The chart below compares the average relevance gain for

individual queries.

41

Average Relevance Score for Unstemmed vs Stemmed documents and queries

5 B Unstemmed
B Stemmed

Relevance Score

ELELS S AP,
ﬁﬁﬁﬁfff*‘?‘@@ &

Queries

Figure 7: Average relevance score comparison for queries using stemming vs not raw
document (unstemmed)

42

5. Conclusions

A rule based suffix stripping stemmer for Nepali was created in this project by
identifying multiple suffixes in Nepali language. These suffixes were categorized into
two broad types: type I which primarily consisted of postpositions and type II which
consisted of case markers. Both intrinsic and extrinsic evaluation was then performed
on the stemmer. The intrinsic evaluation was done using Paice’s method. The
extrinsic evaluation was done on a basic tf-idf based information retrieval engine
where sample documents were queried against a manually constructed query set using
both stemmed and non-stemmed documents. The results found were as follows:

1. Intrinsic Evaluation with Paice’s method gave a under-stemming error of
5.27% and over-stemming error of 0.2% implying that the stemmer is a light
Stemmer

2. The average gain in relevancy of retrieved document for the IR was found to

be 0.93 i.e about 18.6%.

43

6. Limitations and Future Works

The limitations of the work can be summarized as follows:

1.

Apart from the negativity prefix oI, other prefixes have not been considered
for stripping. Prefixes can be included to improve upon this work.

Too few words have been tested during the intrinsic evaluation in section
4.2.1, an exhaustive number of test words can be constructed to evaluate the
stemmer performance.

The number of searchable documents and the queries are few for the extrinsic
evaluation in 4.2.2. More documents can be used with many queries to
evaluate extrinsic performance.

Context-sensitive words like §Tel, IM3el etc have not been properly
considered. This work could be improved upon to consider the context of the
words as well.

The IR for section 4.2.2 is a trivial one that only uses tf-idf metric for
similarity. A more robust IR system can be constructed to check for the
performance of stemmer.

Probabilistic stemming for Nepali can be worked upon and compared against

this work i.e. Rule based stemmer.

44

7. References
[1] Prasain, Balaram. A computational analysis of Nepali morphology: A model for

natural language Processing. Diss. Tribhuvan University, 2011.

[2] Bal, Bal Krishna, and Prajol Shrestha. "A Morphological Analyzer and a stemmer
for Nepali." PAN Localization, Working Papers 2007 (2004): 324-31.

[3] Ramanathan, Ananthakrishnan, and Durgesh D. Rao. "A lightweight stemmer for
Hindi." the Proceedings of EACL. 2003.

[4] Lehal, Rohit Kansal Vishal Goyal GS. "Rule Based Urdu Stemmer." 24th

International Conference on Computational Linguistics. Vol. 267. 2012.

[5] M. Majgaonker, Mudassar & Siddiqui. Discovering suffixes: A Case Study for
Marathi Language. International Journal on Computer Science and Engineering
(2010).

[6] Mathew, D. A Course in Nepali, RatnaPustak Bhandar, 1998

[7] Adhikari, H. R, Bhandar, B.P and Bhotahiti, Samasamayik Nepali Vyakaran,
Kathmandu, Third Edition 2062 B.S

[8] Sitaula, Chiranjibi. "A hybrid algorithm for stemming of Nepali text." Intelligent
Information Management 5.04 (2013): 136.

[9] Paul, Abhijit, Arindam Dey, and Bipul Syam Purkayastha. "An Affix Removal

Stemmer for Natural Language Text in Nepali." International Journal of Computer

Applications 91.6 (2014).

45

[10] Shrestha, Ingroj, and Shreeya Singh Dhakal. "A new stemmer for Nepali
language." Advances in Computing, Communication, & Automation

(ICACCA)(Fall), International Conference on. IEEE, 2016.

[11] Shrestha, Ingroj, Shreeya Singh Dhakal, and Madan Kadariya. "A Comparative
Study of Stemming Algorithms for Nepali Language." National Students’ Conference

on Information Technology (2016):
[12] Paice, Chris D. "An evaluation method for stemming algorithms." Proceedings
of the 17th annual international ACM SIGIR conference on Research and

development in information retrieval. Springer-Verlag New York, Inc., 1994.

[13] Ramos, Juan. "Using tf-idf to determine word relevance in document queries."

Proceedings of the first instructional conference on machine learning. Vol. 242. 2003.

46

ELEERRRLEEEFEREE

QAT

13497533733

Appendix A

List of Type I suffixes.

47

ik Epp s R A EEE R CEE B E p s O EE S b g

Appendix B
List of Type II suffixes.

48

15 m\uwmmméﬁa_&uoﬁusu

2

49

Appendix C

List of 181 identified exception words for Type I suffixes

f3Tcer goadT

feors miRrepr
CICIEY IRIGED
3TaTATfaY CORRIEC)
Ferfar arferer
37ehf HIepT
TH ET
ST T
IR SETo)
qrepl SelTehT
fecar Sico)
ST GIEGC)
37T QTSI
ST EEERI
LCECT) 37TESeT
His e
ARG gRarferer
QThT JrerenT
STl UehdTenl
AEa giepT
3TTRIRT rfelenT
3UCIHT STeehT
garehT TehT
e RIEDI
il R
CIRENGED ECIRED]
CIEED 37T
Erepr aferer
GIEGHI qiehr
IGEARE] TRl
ECl AT
TIR T oTehT 3p=-0)
BICa garehl
TRt hIEhT
e g
Aretet hr

50

51

AT

% 54"

(8
()

%§%§§§3i5%

