

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

THESIS NO: 072-MSCS-660

A RULE BASED STEMMER FOR NEPALI

BY

PRAVESH KOIRALA

FINAL REPORT

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND

COMPUTER ENGINEERING IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN

COMPUTER SYSTEMS AND KNOWLEDGE ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

NOVEMBER, 2017

 A

THESIS

ON

A RULE BASED STEMMER FOR NEPALI

BY:

PRAVESH KOIRALA

072/MSCS/660

SUPERVISED BY:

Dr. AMAN SHAKYA

A THESIS SUBMITTED TO DEPARTMENT OF ELECTRONICS AND COMPUTER

ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE IN COMPUTER SYSTEM AND KNOWLEDGE

ENGINEERING

 DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

INSTITUTE OF ENGINEERING, PULCHOWK CAMPUS

TRIBHUVAN UNIVERSITY

LALITPUR, NEPAL

NOVEMBER, 2017

1

Copyright ©

The author has agreed that the library, Department of Electronics and Computer

Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis report

freely available for inspection. Moreover, the author has agreed that the permission

for extensive copying of this thesis work for scholarly purpose may be granted by the

professors, who supervised this work recorded herein or, in their absence, by the

Head of Department, wherein this thesis was done. It is understood that the

recognition will be given to the author of this thesis and to the Department of

Electronics and Computer Engineering, Pulchowk Campus in any use of the material

of this thesis. Copying of publication or other use of this thesis for financial gain

without approval of the Department of Electronics and Computer Engineering,

Institute of Engineering, Pulchowk Campus and author’s written permission is

prohibited.

Request for permission to copy or to make any use of the material in this thesis in

whole or part should be addressed to:

Head of Department

Department of Electronics and Computer Engineering

Institute of Engineering

Pulchowk Campus

Lalitpur, Nepal

2

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certify that it has been read and recommended to the Department of

Electronics and Computer Engineering for acceptance, a report of thesis entitled “A

Rule Based Stemmer For Nepali”, submitted by Mr. Pravesh Koirala in partial

fulfillment of the requirement for the award of the degree of “Master of Science in

Computer System and Knowledge Engineering”.

Supervisor, Dr. Aman Shakya
Lecturer
Department of Electronics and
Computer Engineering,
Central Campus,
Institute of Engineering.

External Examiner, Dr. Manish
Pokharel
Associate Professor
Department of Computer Science
and Engineering
Kathmandu University

Committee Chairperson, Prof. Dr. Subarna Shakya
Professor
Department of Electronics and Computer Engineering,
Central Campus,
Institute of Engineering.

Date of Approval:

3

Departmental Acceptance

The thesis entitled “A Rule Based Stemmer For Nepali”, submitted by Mr.

Pravesh Koirala in partial fulfillment of the requirement for the award of the degree

of “Master of Science in Computer System and Knowledge Engineering” has

been accepted as a bonafide record of work independently carried out by him in the

department.

Dr. Dibakar Raj Pant

Head of Department,

Department of Electronics and Computer

Engineering,

Central Campus,

Institute of Engineering,

Tribhuvan University,

Pulchowk, Nepal.

4

Acknowledgement

I would like to express my sincere thanks to Dr. Aman Shakya for his dutiful

supervision as well as an active advisory participation during my topic selection and

thesis completion period. I would also like to thank Dr. Bal Krishna Bal for his

invaluable guidance and advice. In addition, I would like to acknowledge Mr. Ram

Hari Koirala for his guidance in Nepali linguistics and Dr. Nobal Bikram Niraula for

his support and advice.

I would also like to thank Professor Dr. Shashidhar Ram Joshi, Professor Dr. Subarna

Shakya, and Dr. Sanjeeb Prasad Pandey for their encouragement and insights. I am

equally grateful to Dr. Dibakar Raj Panta, Head of Department and faculty of the

department of Electronics and Computer Engineering for their support. I also heartily

thank my family and my classmates for their continued encouragement.

Pravesh Koirala
072MSCS660

5

Abstract

Stemming is an integral part of Natural Language Processing. It’s a preprocessing

step in almost every NLP application. Arguably, the most important usage of

stemming is in Information Retrieval. While there has been lots of work done on

stemming in languages like English, Nepali stemming has only a few mentionable

works. This study focuses on creating a Rule Based stemmer for Nepali text.

Specifically, it is a affix stripping system that identifies two different types of suffixes

in Nepali grammar and strips them separately. Only a single negativity prefix न is

identified and stripped. This study focuses on a number of techniques like exception

word identification, morphological normalization, word transformation and stemming

limit enforcement to increase stemming performance. The stemmer is also tested

intrinsically using Paice’s method and extrinsically on a basic tf-idf based IR system.

Upon testing, the under-stemming error was found to be 5.27% and the

over-stemming error was found to be 0.2% which is a superior performance than

existing works. The IR was tested on stemmed vs non-stemmed documents and

queries using 14 queries and it was found that the stemming scheme increased the

average relevance of retrieved documents by 18.6%.

Keywords: Nepali, Stemming, Over-Stemming, Under-Stemming, IR, tf-idf, Paice

method

6

Table of Contents

Copyright 2

Approval Page 3

Departmental Acceptance 4

Acknowledgement 5

Abstract 6

Table of Contents 7

List of Figures 9

List of Tables 10

List of Abbreviations 11

1. Introduction 12
1.1 Background and Motivation 12
1.2 Problem Statement 14
1.3 Objectives 15
1.4 Scope of Applications 15

2. Literature Review 16
2.1 Previous works in Nepali Language 16
2.2 Previous works in Nepali-like languages 18

3. Methodology 19
3.1 Stemming 19

3.1.1 Suffix Removal 19
3.2 Morphological Normalization 20
3.3 Suffixes 21

3.3.1 Type I Suffixes 22
3.3.2 Type II Suffixes 22

3.4 Suffix Stripping Rules 23
3.4.1 Stripping Type I suffixes 23
3.4.2 Stripping Type II Suffixes 25
3.4.3 Prefix Stripping 27

3.5 Stemmer 27
3.5.1 Input 27
3.5.2 Exception list 28
3.5.3 Stemming Rules 28

7

3.5.5 Stemming Engine 28
3.6 Data 29
3.7 Tools 29

4. Results and Discussion 30
4.1 Output 30
4.2 Performance Evaluation 31

4.2.1 Paice Method 31
4.2.1.1 Performance Indices 31
4.2.1.2 Test Setup and Results 34

4.2.2 Information Retrieval Test 36
4.2.2.1 Background 36
4.2.2.2 Test Setup and Results 40

5. Conclusions 42

6. Limitations and Future Works 43

7. References 44

Appendix A 46

Appendix B 47

Appendix C 49

8

List of Figures

Figure 1: Flowchart for a typical Rule based stemmer ………………………. 20

Figure 2: Block diagram of a Rule based stemmer…………………………… 27

Figure 3: Block diagram of Stemming Engine ………………………………. 29

Figure 4: Stemming of the word “गरेको” …………………………………….. 30

Figure 5: Stemming ideal merge (GDMT) vs unachieved merge (GUMT) ..… 35

Figure 6: Stemming ideal non-merge (GDNT) vs achieved non-merge (GWMT) 35

Figure 7: Average relevance score comparison for queries using

 stemming vs not raw document (unstemmed) ………………………. 42

9

List of Tables

Table 1: Morphological normalization scheme ……..………………………. 21

Table 2: Values for various metrics in Paice’s method.……………………… 34

Table 3: UI, OI and SW using Paice’s Method ……....……………………… 36

Table 4: Summary sheet for IR relevance scoring using vs not using stemmer 40

10

List of Abbreviations

FST Finite State Transducer

DMT Desired Merge Total

DNT Desired Non-Merge Total

UMT Unachieved Merge Total

GDMT Global Desired Merge Total

GDNT Global Desired Non-Merge Total

GUMT Global Unachieved Merge Total

GWMT Global Wrongly Merged Total

IR Information Retrieval

MT Machine Translation

NLP Natural Language Processing

OI Over-Stemming Index

SW Stemming Weight

UI Under-Stemming Index

WMT Wrongly Merged Total

11

1. Introduction

1.1 Background and Motivation

Stemming refers to the reduction of a given word into its stem which need not be the

morphological root of the word. This is done to reduce the inflection of any particular

word into a base form. For example: cats is the inflected form of cat and stemming

strips the plurality suffix -s from cats to give cat. Similarly, various tense inflections

of the verb go like go, going, gone are stemmed to a same stem i.e. go. The

straightforward challenge in word stemming is to identify the correct stem. Extending

the previous example, the past tense form of the verb go .e. went needs to be stemmed

to go, which might not be trivial.

Various NLP applications use stemming as a pre-processing step, for example: POS

Tagging, Machine Translation, Document Clustering etc but arguably the most

important role of word stemming is in Information Retrieval (IR). IR is an immensely

common and important application of Natural Language Processing. It essentially

refers to the retrieval of a particular document from a collection of documents.

Arguably, the most important example of IR is search engines. Search Engines index

massive collection of documents on a daily basis and provide a search interface where

users can query or search for a specific document. The nature of search can be for the

document itself or for any information contained in a document or for any metadata

present in the document, images, multimedia etc.

Similarly, in NLP applications like POS Tagging and Document Clustering,

Stemming reduces the word space i.e. the number of unique words to consider by

reducing multiple word inflections into a single stem. This not only improves the

efficiency of the program by speeding up the execution and reducing memory

requirements but also the accuracy by reducing the noise in the dataset.

12

Stemming need not produce a morphologically correct word. Its only requirement is

that it map various word inflections to a common stem even if the stem is not a

linguistically correct word. For example, for the word inflections rider and riding, it

suffices to map them both to a common stem (rid in this case) instead of their base

word (ride). In contrast, Lemmatization is a morphological process where words are

conflated into their original form or lemmas. For example, stemming went might

produce wen or went but Lemmatization yields go as the correct lemma.

Lemmatization, in general, is a more rigorous process than Stemming and the latter is

preferred due to its efficiency.

There are two major problems while stemming: Over-stemming and

Under-stemming. Over-stemming is when two separate inflected words are reduced

to a same word stem. This is a false-positive when considering the domain of

Information Retrieval, since it leads the IR engine to fetch documents which might

not contain the search query. Similarly, Under-stemming is when two same

inflections of a word are not reduced to a same word stem. This is false-negative. It

leads an IR engine to not find documents having a related word inflection. For

example: reducing “universe” and “university” to “univers” is over-stemming

because the two words are unrelated in modern context. Similarly reducing

“alumnus” to “alumnu” and “alumni” to “alum” is under-stemming because both of

the words are inflections of same root.

There are various techniques for Stemming. Perhaps the most naive out of them is

Lookup Tables. These tables have a many to one structure where multiple words can

point to the same word stem. While easy to implement, the tables eventually become

extensive and the process of mapping a word to stem is manual and particularly

tedious. Another technique, which is quite popular, is affix stripping technique where

an exhaustive table need not be computed but a very small set of affix stripping rules

are used to strip the inflections from the word to get stem.

In a language like Nepali, where most of the words are inflected by using suffixes,

affix stripping simplifies to suffix stripping. Constructing a database of known

13

suffixes, we can apply suffix stripping to derive a stem from the word inflection.

While this works in most cases, there might be some exceptions. Consider for

example the words सङ�्त and साङ�्�तक . These two are related word inflections but

suffix stripping alone is unable to reduce them to the same stem.

There is also a need to identify whether a linguistic entity attached at the end of the

word is actually a suffix attaching itself to a base word or is actually a part of the

word itself. For instance, in the word “काले” the entity “ले” is actually the part of the

word itself whereas in the word “कालेले” the rightmost “ले” is a postpositional suffix.

It is imperative to accurately identify when and when not to strip a given suffix

because unnecessary stripping leads to over-stemming.

Another challenge in suffix stripping is the difference in writing. For example, both

of the word form सा�के�तक and सा�केतीक are used interchangeable informally.

Unless an assumption about strictness of the writing rules, there is a need to include

both of the suffixes ि◌क and ◌ीक . Not only that, several postpositions can be joined

together as in उनीह�को which contains two postpositions compounded together. To

deal with these scenarios, there is a need to repeatedly apply the stripping rules.

However, this repetition increases the chance of over-stripping.

Similarly, suffix stripping also requires contextual awareness. For instance, the word

बाले can be interpreted in two different ways depending upon the context. It can mean

बा + ले (father did) or बाले (lit something on fire). Similar is with the word गाउँले,

depending upon context, it can either mean a villager or a village did.

1.2 Problem Statement

Multiple stemming algorithm exists for the English language. Some of which are:

1) Krovetz Stemming Algorithm(1993);

2) Paice/Husk Stemming Algorithm(1990);

3) Porter Stemming Algorithm(1980);

14

4) Dawson Stemming Algorithm(1974);

For Nepali language, however, a limited work has been done in Morphological

Analysis; particularly stemming. The fact that Nepali is an inherently complex

language further makes it inaccessible to many analysis. Various derivational and

inflectional techniques exist in Nepali grammar which creates plethora of frequently

used words in everyday life. For instance, inflection alone is categorized as being of

ten types. These inflections can alter a word's structure based on cases such as gender,

cardinality, respect, tense (काल) and its aspects (�प). Moreover, inflections are also

based on moods (भाव), voice, causality and negation [6][7].

These inflections make it hard to devise a proper stemming algorithm for Nepali

language. In absence of a stemmer, various NLP applications for Nepali which

require stemming as a pre-processing step have either not been possible or their

implementations have been unsatisfactory. IR for Nepali language has also been

pushed back precisely because of the lack of a proper stemming algorithm.

1.3 Objectives

● To devise a rule-based stemmer for Nepali language.

● To evaluate its performance intrinsically based on Over-Stemming and

Under-Stemming metrics and extrinsically on a basic IR system

1.4 Scope of Applications

As stated earlier, stemming is a pre-processing step in multiple NLP applications.

This work can have significant impact on applications such as IR, Machine

Translations, Semantic Analysis, Document Clustering etc.

15

2. Literature Review

2.1 Previous works in Nepali Language

There have been a few works in Nepali for Morphological Analysis and Stemming.

Prasain devised a theoretical model for computational analysis of nepali morphology

[1]. In his study, he primarily concerned himself with different morphological

categories and processes in Nepali language and the rules involved in deriving these

categories. He also focused on developing a computational model i.e. FST for the

Nepali morphology. He deals with the morphology of nominals, verbs, adverbs,

adjectives, post-positions, case markers, particles, and interjections and also analyses

their derivational aspect. However, his works has been all theoretical and no

implementation has been done by anyone.

Sitaula proposed a hybrid nepali stemming algorithm which uses affix stripping in

conjunction with a string similarity function and reports a recall rate of 72.1% on

1200 words [8]. He has taken into consideration a total of 150 suffixes and around 35

prefixes. After incrementally stripping affixes, Sitaula uses a string similarity method

to find the word from Nepali lexicon that is most similar to the stripped stem.

Paul et. al. describes an affix removal stemming algorithm for Nepali text. The

system has a database of 120 suffixes and 25 prefixes and a root lexicon of over 1000

words and reports an overall recall accuracy of 90.48% [9].

Shrestha et. al. describes a stemming algorithm for Nepali in which he lists 126 suffix

stripping rules. These rules are categorized into three distinct categories. The

algorithm strips the suffixes after determining the category of the suffixes. He reports

an accuracy of about 88.78% on a total 5000 words [10].

16

A functional stemming algorithm has been created by Bal Krishna et al [2]. They

have developed a database of word-breaking rules for different kind of affixes. The

rules are of the form:

एको | 5

न ु | 2

Where the first part of the rule statement denotes an affix and the second part (after

the pipe) denotes its corresponding entry in the word breaking rule table. They have

also maintained a free morpheme list of the form:

कलम | NN

खा | VV

मीठो | ADQ

Here the first part before the pipe is a free nepali morpheme while the second part

after the pipe is the POS of the word. Their system outputs the morphology of the

word as in the suffixes, root and prefixes. They, however, have not reported the

accuracy of their system.

Shrestha et. al. does a comparative study on existing stemmers for Nepali text [11].

The study reports three kinds of stemming algorithms implemented by various studies

and identifies them as

1. Rule Based

2. Affix stripping, and

3. Hybrid

The study implements the stemmers of different kinds and tests them against four

separate test sets. Affix stripping algorithms outperformed others in the study.

17

2.2 Previous works in Nepali-like languages

A hindi stemmer was devised by Ramanathan et. al [3] where he first uses a

transliteration scheme to transliterate devanagari to ascii. They have maintained a

suffix list which is used to strip the word by using the process of longest match. Upon

testing the algorithm in 35977 words, 4.6% words were found to be under-stemmed

while 13.8% were found to be over-stemmed. They mention that the same algorithm

can be successfully used for similar language such as Marathi and Nepali.

An Urdu stemmer is also written by Kansal et. al [4] which uses the rule based

approach to stem Urdu words. They report 85.14% accuracy on more than 20,000

words.

Majgaonkar et.al wrote an unsupervised stemmer for Marathi language which

basically learned the stemming rules from the given Marathi corpus. They achieved

an accuracy of 82.5% on a manually stemmed test data of 1500 words [5].

18

3. Methodology

3.1 Stemming

Stemming can roughly be divided into 3 types:

● Rule based stemming

● Statistical stemming

● Hybrid stemming

Rule Based Stemming has been known to give above average results in languages

like Hindi and Urdu which are morphologically quite similar to Nepali. A specific

kind of Rule Based Stemming is Affix removal where the affixes that inflect a given

word is stripped to derive the word stem. In Nepali language, prefixes are not known

to cause inflection in a word, thus, this study focuses only on suffix removal with the

exception of one negativity prefix न.

3.1.1 Suffix Removal

Rule Based stemming maintains a stemming rule list which defines how to strip

prefix or suffix from any word. [2], [3] and [4] are all examples of a rule based

stemmer. This stemming scheme is especially useful if the list of possible suffixes

and prefixes are predefined such as in Nepali language. In many cases, an exception

word list is also defined. This word list maintains the list of free morphemes which

should not be stemmed. This helps in reducing over-stemming errors. [3], [5], [10]

are an example of Rule Based Stemming where only a suffix list is defined.

A typical Rule based stemming flowchart looks as follows:

19

Figure 1: Flowchart for a typical Rule based stemmer.

3.2 Morphological Normalization

Among the vowels present in Nepali language, the vowel pairs <इ, ई> and <उ, ऊ> in

both their dependant and independant forms are often confused while writing. Same

is the case with some of the consonant groups like <व, ब>. To make the stemmer

more robust to these common grammatical errors, a morphological normalization

20

scheme is introduced where the often confused vowels and consonants are normalized

into a single entity. Concretely, all occurance of the vowel ई are replaced with इ and

so on. A more detailed normalization scheme is outlined below.

Table 1 : Morphological normalization scheme

Vowel / Consonant Normalized To

ई इ

◌ी ि◌

ऊ उ

◌ ू ◌ ु

व ब

श स

ष स

◌ ँ Nil
(all occurances removed)

All of the inputs to the stemmer are morphologically normalized during the stemming

process. This includes any input word to be stemmed, the suffix or prefix list, and the

word exception list; which is to say; the stemmer only deals with normalized Nepali

words.

3.3 Suffixes

Suffixes are linguistic entities that inflect a word by attaching themselves to the end

of it. For example, the plural marker ह�, inflects the singular word केटा into केटाह�.

In Nepali, there are many suffixes, but these have been broadly divided into two

categories in this study.

21

3.3.1 Type I Suffixes

These suffixes are agglutinative and called postpositions (�वभि�त in Nepali). Their

grammatical function is identical to the prepositions in English language. They attach

themselves to mostly Nouns and Pronouns but are not in any way restricted to the two

parts of speech. Some examples of these suffixes are:

● ले
● लाई
● बाट, �वारा
● ला�ग, �नि�त
● दे�ख, बाट
● को, का, क�
● मा
● अ�घ
● प�छ
● प�हले
● प�चात
● मा�थ
● म�ुन
● �भ�
● बा�हर
● वा�र
● पा�र
● झ�
● ज�त ै

A total of 85 Type I suffixes are identified in this study (see Appendix A).

3.3.2 Type II Suffixes

These suffixes, also called ��यय in Nepali mostly inflect verbs. Some of the

identified suffixes of this type are:

● छ
● ◌ँछ
● ◌ा
● ◌ेका
● एका
● न
● छु
● ◌ँछु

22

● छे
● छौ
● ने
● इने
● यो
● दा
● दै
● ◌ँदै
● न ु
● ए
● एँ
● ◌ े
● ◌�

It is worth noting that both the suffixes एका and ◌ेका are included in the list even

though they are essentially identical grammatical elements and only differ in respect

to whether the leading vowel is independent or is dependent to the preceding

consonant. A total of 161 of these type II suffixes were identified (see Appendix B).

3.4 Suffix Stripping Rules

Suffix stripping is done on the basis of the type of the suffix i.e. type I and type II

suffixes are stripped separately.

3.4.1 Stripping Type I suffixes

Stripping these suffixes is a non-trivial process. This can be attributed to two major
facts:

Firstly, identification of these suffix is challenging. As was discussed earlier, some of

these suffixes occur as a part of word itself. For instance, the word नेह� is the name

of a reputed Indian politician and not the suffix ह� attached to the base ने. There are

many more examples of such exception words. Before stripping type I suffixes, an

extensive exception word list has to be created.

There are essentially two ways in which the exception word list could be created:

● Lexicon Based
● Corpus Based

23

In Lexicon based approach, the entire contemporary Nepali Lexicon is taken as the

exception list. The lexicon contains words that are root on their own. Words like

मामा, प�हले, नला�ग etc are already listed on the lexicon. On the other hand, proper

nouns, abbreviations etc are not. So, the stemmer won’t recognize the word उमा or

ओबामा as exceptions.

In Corpus based approach, all the words present in the corpus that have the

suffixes/prefixes of interests are listed out. Out of those words, the words that are

exceptions are manually identified. This approach can identify words that occur in the

corpus but not in a standard Nepali lexicon.

In the study, corpus-based approach is used for all words ending with suffix of

interest and occurring a minimum number of time (threshold) inside the corpus.

Thresholding is done to reduce the number of words to deal with. For the purpose of

this work, the threshold was chosen to be 10. A total of 181 of these exceptions words

were identified (see Appendix C).

Another challenge in stripping type I suffix is that these suffixes can be chained

together i.e. the word उनीह�लाई is a word created by chaining two different type I

suffixes. This requires repetitive stripping of the suffixes while checking the

intermediate results against the exception word list.

The algorithm used to strip type I suffix can be outlined as follows:

Procedure:

1. Read suffixes, and exception words

2. Take input sentence

3. Tokenize the sentence into tokens using space and punctuation as word

boundary.

4. For each word:

a. Check if word is in exception list

i. If yes, do not tokenize, continue the loop

ii. If no, proceed to tokenization

24

b. Separate the word into root and suffix.

c. Repeat steps a..b for the newly tokenized root.

5. Output list of tokens

3.4.2 Stripping Type II Suffixes

Stemming these suffixes are particularly tricky largely due to the inherent structure of

Nepali Morphology. For example, consider the suffix छ. When appended with the

root जा, the combination introduces a new sound of न.

जा + छ = जा�छ (Introduction of a न in the middle)

However, no such phenomenon is observed when the root is गर ् (do)

गर ् + छ = गछ�

Similarly, the suffix यो, when used with the root जा, changes the morphology and

phonetics but it doesn’t do the same for the root खा or गर ्

जा + यो = गयो (change of the word structure)

खा + यो = खायो
सतु ् + यो = स�ुयो

These variations are not only observed in verb but also in noun roots. For instance,

the इक suffix is known to change the morphology of nouns in the following way:

सङ�्त + इक = साङ�्�तक

समाज + इक = सामािजक

भगुोल + इक = भौगो�लक

I.e. change of the dependent vowels (अ to आ) at the start of the word.

To take these factors into consideration, we introduce a word transformation rule. In

simple terms, if the word contains the इक prefix, the dependant vowel at the start of

the word is changed accordingly. The vowel आ becomes अ, vowel औ becomes उ and

the vowel एे becomes इ. Using this transformative rule, the word न�ैतक would be

transformed to the word �न�तक. It is important to observe that this map does not map

a word to its stem, rather only to an intermediate word, which will be then further

25

processed to produce the correct stem. The intermediate word might not be

grammatically correct one. The rationale being that the word �न�तक and the word

नी�त would conflate to the same once they are morphologically normalized and then

stemmed.

The stemming algorithm in itself is quite simple. In fact, after taking into account the

variations in word morphology by addition of suffixes, the rest of the process is the

repeated stripping of the suffixes in a longest suffix first approach. This stripping is

done until further stripping is not possible. In the event that any particular stripping

rule decreases the word size to below a set threshold, that rule is discarded. This is

done to prevent over-stemming of the word. The threshold value for this project was

taken 2 by observing the error rates as per the testing method described in 4.3.1.

The stripping algorithm of type II suffixes is as follows:

Procedure:

1. Read suffixes, and words transformation map.

2. Take input tokens

3. For each word:

a. Check if word has इक suffix

i. If yes, transform the word according to rule described in 3.2.2

ii. If no, proceed.

b. For each suffix in the suffix list from longest to shortest suffix

i. If the suffix is present in word

1. If stripping leads to word length above the threshold,

strip it.

2. Else ignore

3. Continue the loop in (3b)

c. If no suffix could be stripped, break the loop else repeat step 3b again.

4. Output list of tokens

26

3.4.3 Prefix Stripping

Only one kind of prefix has been stripped in this work, the negativity prefix न. As the

name implies this prefix is a verb inflection that negates it. For instance, the verb

आएको (has come) can be inflected to नआएको (has not come) by addition of the

prefix. The rule for stripping this prefix is quite straightforward i.e. it is stripped if it

occurs at the beginning of the word.

3.5 Stemmer

A simple outline of the built system is shown below:

Figure 2: Block diagram of a Rule Based Stemmer

3.5.1 Input

Input is typically a Nepali word or a string of words. An entire text document

encoded with UTF-8 encoding can be entered as well. The stemmer morphologically

normalizes the input according to the scheme mentioned in 3.2.

27

3.5.2 Exception list

This is a list of words that are known to be root words i.e. not inflected with any

suffix or prefix. For example: घर, माया, नेह�, नेपाल etc.

For now, these words have been taken from the corpus by the process of manual

eyeballing. The list also includes words that are non-native to Nepali language but are

root words. An example is ओबामा, which does not exist in Nepali lexicon but is a

root word. The exception words are also normalized as per section 3.2.

3.5.3 Stemming Rules

Stemming rules, is the collection of all known type I and type II suffixes. There are

54 type I suffixes whereas 115 type II suffixes. All of these suffixes are normalized.

3.5.5 Stemming Engine

This is the central application that takes the input wordlist, reads rules from the rules

base and stems the word. The matching of word with the free morpheme list and the

exception list is also handled by this engine. After it stems the word, it outputs the

stem of the word. A general flowchart of what this engine looks like is shown below.

28

 Figure 3: Block diagram of stemming engine.

3.6 Data

To test the stemming rules and evaluate the over/under stemming errors, a corpus was

constructed. This corpus was derived from various online news portals such as

Setopati, Nagariknews, eKantipur etc. The corpus contained articles from various

different areas including news, sports, arts and literature etc. Corpus contained a total

of 4387 news articles with the total word count of 1181343 and total unique word

count of 118056. Each news article, on average, contained 269 total words and 181

unique words.

3.7 Tools

● Python 2.7

● Pylex library

● Web.py server

● Pycharm IDE

29

4. Results and Discussion

4.1 Output

The output of the stemmer is essentially the stem of the word, or if it is a wordlist, the

stemmed wordlist. A simple GUI is provided to operate the stemmer. The GUI

contains two controls. A textbox to input a Nepali word or wordlist, and a button

control to stem the contents of the textbox. Once appropriate input is provided and the

button is pressed, the GUI generates a table with two columns: the original word and

the stemmed word.

A snapshot of the GUI is shown below:

Figure 4: Stemming the word “गरेको”

30

4.2 Performance Evaluation

Performance evaluation of a stemming algorithm is ideally done on the task that the

stemming was done for. For example, if stemming were done for IR purposes, then

the evaluation of stemming would be on the basis of accuracy or recall of the IR

system. This is also known as Extrinsic Evaluation. In contrast, Intrinsic Evaluation is

where the stemmer is tested in itself, without actually using it for any external

application.

Both Extrinsic and Intrinsic performance evaluation for this stemmer was done. For

Intrinsic evaluation, a testing method known as Paice method [12] was used while for

Extrinsic evaluation, a trivial Information Retrieval Engine was constructed.

4.2.1 Paice Method

Paice method for evaluation of stemmers is based on under-stemming and

over-stemming errors. In this method, a concept group is first defined where multiple

word inflations of a single word-concept are grouped together. To illustrate this

concept, consider the following words: walk, walking, go, went, gone, eat.

Among these six words, three concept groups can be defined. Walk and walking

would constitute a concept group because both these words are inflations of the verb

walk. Similarly, the words go, went, and gone would be mapped to a single concept

group because these three words are associated with the verb go. The remaining

group would constitute the single word go. After defining the concept groups, Paice

method operates by counting the actual over and under stemming errors and

calculating certain Performance Indices.

4.2.1.1 Performance Indices

These are the indices used to calculate under-stemming and over-stemming errors.

The equations are directly derived from [12]. A Desired Merge Total (DMT) for a

single concept group is defined as the number of word pairs that are supposed to

31

conflate to the same stem. Ideally, it equals the number of word pairs in the concept

group. It is calculated as

MT 0.5 n (n)D g = g g − 1 4.1

Where ng is defined as the number of words in the group.

A Desired Non-Merge Total (DNT) for a group is then defined as:

NT 0.5 n (W)D g = g − ng 4.2

Where W is the total number of words being evaluated i.e. sum of words in all

concept-groups. This metric is actually the number of possible word pairs between

the words of a concept group and the words outside of the concept groups.

By summing these two metrics across all concept-groups, two new indices GDMT

(Global Desired Merge Total) and GDNT (Global Desired Non-merge Total) are

calculated.

DMT MTG = ∑

g
D g 4.3

DNT NTG = ∑

g
D g 4.4

After stemming is applied to the text, some groups might have two or more distinct

word stems. This is due to the Under-Stemming of the words. To quantify these

errors, a new metric is used called the Unachieved Merge Total (UMT) for a group. It

is defined as:

MT 0.5 (n)U g = ∑
s

i=1
ui g − ui 4.5

UMT is a measure of the number of pairs in a group that did not successfully conflate

to the same stem. Summing over UMT across all groups, we get a Global Unachieved

Merge Total (GUMT).

UMT MTG = ∑

g
U g 4.6

Using GUMT and GDMT, we can calculate a under-stemming index (UI) as follows:

32

I UMT / GDMTU = G 4.7

Post-stemming, it can also be found that words of different concept groups conflate to

a same stem. This is Over-Stemming. To quantify this error, a stem-group is

constructed. Stem groups is essentially all the words that conflate to a particular word

stem. Any stem-group that consists of words from different concept-groups contains

over-stemming errors. Suppose a stem-group has ns items which are derived from t

different word-groups and suppose the numbers of words from the word-groups are

v1, v2 .. vt. The metric Wrongly Merged Total (WMT) can then be calculated as:

MT (n)W s = ∑
t

i=1
vi s − vi 4.8

WMTs gives the number of word pairs that wrongly conflated to the single stem.
Summing WMT across all the stemming groups, we get the Global Wrongly Merged
Total.

W MT MTG = ∑

s
W s 4.9

Using GWMT and GDNT, we can get a new metric called over-stemming error (OI):

I GW MT / GDNTO = 4.10

The metrics OI and UI give a measure of the Over and Under Stemming errors. Using
these two, a new metric called a Stemming Weight can be calculated.

W OI / UIS = 4.11

The stemming weight index is greater than one if the stemmer has fewer
under-stemming errors than over-stemming errors i.e. the stemmer aggressively stems
the word. These types of stemmer are called heavy stemmer. In contrast, if the
number of under-stemming errors is more than the over-stemming errors, the stemmer
is less aggressive in stemming. These stemmers are called light stemmer.

33

4.2.1.2 Test Setup and Results

For evaluating the stemmer according to Paice method, 497 concept groups were

defined. Each concept groups contained at least two related words with the maximum

being thirty-nine words. A total of 1813 words constituted the concept groups. Some

examples of the groups are as follows:

● तपा�, तपाई, तपा�को, तपा�ह�, तपा�ले, तपाईको, तपाईले, तपा�ह�

● हुनपुन�, हुन,ु हुनपुछ� , हुनहुु�छ, हुनहुु��यो
● रा�,े रा�, रा�दै, रा�ु, रा�ुपन�, रा�दा, रा�ुपछ�
● मा�नस, मा�नसको, मा�नसह�, मा�नसलाई, मा�नसले, मा�नसमा, मा�नसह�को,

मा�नसह�ले

These words were derived from the top 10,000 most frequent words occurring in the

corpus described in section 3.6. After running Paice method of evaluation on the

stemmer using these concept groups, following results were obtained.

Table 2: Values for various metrics in Paice’s method.

Metric Values

Global Desired Merge Total (GDMT) 8274

Global Unachieved Merge Total (GUMT) 436

Global Desired Non-Merge Total (GDNT) 2742411

Global Wrongly Merged Total (GWMT) 4729

34

These values can be summarised in the chart below:

Figure 5: Stemming ideal merge (GDMT) vs unachieved merge (GUMT)

Figure 6: Stemming ideal non-merge (GDNT) vs achieved non-merge (GWMT)

35

Using the metrics above, the under-stemming index and the over-stemming index can
be calculated as per equations 4.7 and 4.10.

Table 3: UI, OI and SW using Paice’s Method

Metric Values

Understemming Index (UI) 0.0527

Overstemming Index (OI) 0.002

Stemmer Weight (SW) 0.038

This shows that the stemmer has high understemming error in contrast to

over-stemming error. Which implies that the stemmer is a light stemmer i.e. it has a

tendency to not strip suffixes aggressively.

4.2.2 Information Retrieval Test

A most accurate and pragmatic test for any Stemmer is to actually implement a NLP

application based on that Stemmer and then check for the performance of that

application. For the purpose of this thesis, a crude IR system was developed using the

Stemmer and then tested on a prepared dataset upon a subset of the corpus described

in 4.1.

4.2.2.1 Background

Modern IR systems employ various measures like query expansion (where a simple

input query is reconstructed to multiple queries for getting a wider coverage) to

sophisticated relevancy algorithm like pagerank. For the purpose of this thesis,

however, only a simple IR system has been developed where both documents and

queries are modeled using the bag of words model and the ranking is done by using

tf-idf metric which has been shown to give good results for document retrieval [13].

Bag of Words is a simple technique to model a set of documents mathematically. It is

widely used in text classification. It is simple and intuitive to use but a drawback of

36

this model is that we lose the ordering information which also leads in the loss of the

semantic information. For example: using bag of words model for IR, the two queries

Fire Truck and Truck on Fire return same set of documents even though the two

queries are semantically different.

For the purpose of this thesis, a document d is defined as a body of text. Similarly, a

document collection D is the set of all the documents d. Mathematically,

D = {d0, d1, … dS} 4.12

Where S is the total number of documents in the document collection D.

We also define a corpus as the set of all unique words in the documents. For instance,

a corpus of size K is defined as:

C = {w0, w1, w2 … wK} 4.13

Where w0, w1 … wK are unique words in the document collection D.

Using the corpus, the documents that are to be used for IR purposes can be modeled

as a vector. For a corpus of size K, the document vector is of K dimension.

This vector is constructed in the following ways. Consider the document d of length

L.

d = w0 w1w2 … wL 4.14

Where, w0, w1 etc are words in the document which are not necessarily unique.

For any given word wi in the corpus, its non-normalized term frequency in the

document d is defined as:

tfn i, d = N i,d 4.15

37

Where Ni,d is the number of occurence of the word wi in the document d. Again, the

normalized term frequency or simply the term frequency of the document is defined

as:

f tf / t i, d = n i, d d || || 4.16

Where is the euclidean norm of the document d given by d || ||

 d || || = √ (ntf)∑
K

i
i,d

2 4.17

Simply using term frequency as relevance measure would bias the relevance metric to

the most frequently occuring words regardless of their relevance to the document. To

remedy this, a new metric called the document frequency is used. The document

frequency (df) of a word w is defined as:

fd w = N w 4.18

Where Nw is the number of documents containing the word w. Again, the metric

inverse document frequency (idf) for a word is calculated as:

df og (N / df)i w = l 2 w 4.19

The relevancy metric tf-idf for a given word wi in a given document d is calculated

as:

f idf tf idft w ,di
= w ,di * wi

4.20

38

Using equation 4.20, a column vector for the document described in equation 4.14

can be constructed as follows:

4.21

Vd is what is called the document vector of document d having U unique words. Once

document vector for every document d in the document collection D is defined,

relevance score of any document for any given query q can be obtained.

A query q is also a document typically having fewer words than the documents in the

document collection. Regardless, it can also be modelled as a vector called the query

vector. The query vector is defined as follows:

4.22

Vq is the query vector for the query having Q unique words. The relevance of any

document Vd and any query Vq can be calculated by the cosine similarity of the

vectors. Mathematically,

el(V , V) V . V / r d q = d q (||V || . ||V ||)q d 4.23

Where Vq . Vd is the dot product of the two vectors and || Vq || and || Vd || are the

euclidean norm of the vectors Vq and Vd respectively as defined in equation 4.17.

39

4.2.2.2 Test Setup and Results

For the purpose of this test, total 100 documents were sampled from the corpus in 4.1.

Then, 14 queries were constructed for retrieval. These queries contained one to three

words and were constructed manually using the gathered documents. Some of the

queries are shown below:

● पोखर�मा �वष

● साझा बस

● कतार राजदतु

● अ�खल �ाि�तकार�

Using the TF-IDF ranking scheme mentioned in 4.2.2.1, two independent information

retrieval experiment were carried out for each query. The first experiment was done

without stemming the documents or queries while the second experiment was done on

the stemmed document and queries. The topmost result of the information retrieval

i.e. the document with the highest relevance score for the given query for both

experiments were taken and 3 native nepalese human judges were asked to assess the

relevance of the retrieved document on the scale of 1 to 5, 1 being the least relevant

while 5 being most. If the query failed to return any document in any experiment, the

relevance was assumed to be 0.

A summary sheet of the experiment is shown below. The form used to collect data

could be found at https://goo.gl/forms/Kt82ZTzFeW37VMVC3.

Table 4: Summary sheet for IR relevance scoring using vs not using stemmer

Query Type Participant 1 Participant 2 Participant 3 Average Difference

पोखर�मा �वष

unstemmed 4 4 4 4
0

stemmed 4 4 4 4

साझा बस

unstemmed 3 4 5 4
0

stemmed 3 4 5 4

40

https://l.facebook.com/l.php?u=https%3A%2F%2Fgoo.gl%2Fforms%2FKt82ZTzFeW37VMVC3&h=ATPZk8Mask0JOvmJJ_TLbMWiSWbwvEEwkYOhpa5dDIXhqBXsf3-swNaMOrJktZ9hj7Kyi-z1mMInaz7v5Mz_FyyTcTyw7Q6WhzHWJcD7U7klmBVupEUSh6QdhqQlL0YFgck

कतार राजदतु

unstemmed 1 1 2 1.33
2

stemmed 3 3 4 3.33

अ�खल �ाि�तकार� unstemmed 4 5 5 4.67
0

stemmed 4 5 5 4.67

भ�लवल ��तयो�गता

unstemmed 5 4 5 4.67
0

stemmed 5 4 5 4.67

भ�तपरु मि�दर

unstemmed 4 5 4 4.33
0

stemmed 4 5 4 4.33

कृ�ष �यवसाय

unstemmed 2 1 2 1.67
-0.67

stemmed 1 1 1 1

नेपालको रा��प�त

unstemmed 4 5 5 4.67
-1.67

stemmed 4 1 4 3

नेपाल� कां�ेस
�नयमावल�

unstemmed 1 1 1 1
2.33

stemmed 3 3 4 3.33

�सहंनाथ गण

unstemmed 4 5 4 4.33
0

stemmed 4 5 4 4.33

राजेश हमालको
आमा

unstemmed 1 1 1 1
3.67

stemmed 4 5 5 4.67

दश�

unstemmed 5 3 5 4.33
0

stemmed 5 3 5 4.33

�वदेशमा रोजगार�

unstemmed 1 1 2 1.33
2.67

stemmed 3 4 5 4

दस�

unstemmed 0* 0* 0* 0
4.67

stemmed 4 5 5 4.67

Scores with * indicate that the document was not found for that experiment, thus,

relevance was assigned to be 0. The difference in average relevance score of the

retrieved document with stemming and without stemming was calculated for each

query and the differences were averaged at the end. The average gain in the relevance

was found to be 0.93. The chart below compares the average relevance gain for

individual queries.

41

Figure 7: Average relevance score comparison for queries using stemming vs not raw
document (unstemmed)

42

5. Conclusions

A rule based suffix stripping stemmer for Nepali was created in this project by

identifying multiple suffixes in Nepali language. These suffixes were categorized into

two broad types: type I which primarily consisted of postpositions and type II which

consisted of case markers. Both intrinsic and extrinsic evaluation was then performed

on the stemmer. The intrinsic evaluation was done using Paice’s method. The

extrinsic evaluation was done on a basic tf-idf based information retrieval engine

where sample documents were queried against a manually constructed query set using

both stemmed and non-stemmed documents. The results found were as follows:

1. Intrinsic Evaluation with Paice’s method gave a under-stemming error of

5.27% and over-stemming error of 0.2% implying that the stemmer is a light

stemmer

2. The average gain in relevancy of retrieved document for the IR was found to

be 0.93 i.e about 18.6%.

43

6. Limitations and Future Works

The limitations of the work can be summarized as follows:

1. Apart from the negativity prefix न, other prefixes have not been considered

for stripping. Prefixes can be included to improve upon this work.

2. Too few words have been tested during the intrinsic evaluation in section

4.2.1, an exhaustive number of test words can be constructed to evaluate the

stemmer performance.

3. The number of searchable documents and the queries are few for the extrinsic

evaluation in 4.2.2. More documents can be used with many queries to

evaluate extrinsic performance.

4. Context-sensitive words like बाले, गाउँले etc have not been properly

considered. This work could be improved upon to consider the context of the

words as well.

5. The IR for section 4.2.2 is a trivial one that only uses tf-idf metric for

similarity. A more robust IR system can be constructed to check for the

performance of stemmer.

6. Probabilistic stemming for Nepali can be worked upon and compared against

this work i.e. Rule based stemmer.

44

7. References

[1] Prasain, Balaram. A computational analysis of Nepali morphology: A model for

natural language Processing. Diss. Tribhuvan University, 2011.

[2] Bal, Bal Krishna, and Prajol Shrestha. "A Morphological Analyzer and a stemmer

for Nepali." PAN Localization, Working Papers 2007 (2004): 324-31.

[3] Ramanathan, Ananthakrishnan, and Durgesh D. Rao. "A lightweight stemmer for

Hindi." the Proceedings of EACL. 2003.

[4] Lehal, Rohit Kansal Vishal Goyal GS. "Rule Based Urdu Stemmer." 24th

International Conference on Computational Linguistics. Vol. 267. 2012.

[5] M. Majgaonker, Mudassar & Siddiqui. Discovering suffixes: A Case Study for

Marathi Language. International Journal on Computer Science and Engineering

(2010).

[6] Mathew, D. A Course in Nepali, RatnaPustak Bhandar, 1998

[7] Adhikari, H. R, Bhandar, B.P and Bhotahiti, Samasamayik Nepali Vyakaran,

Kathmandu, Third Edition 2062 B.S

[8] Sitaula, Chiranjibi. "A hybrid algorithm for stemming of Nepali text." Intelligent

Information Management 5.04 (2013): 136.

[9] Paul, Abhijit, Arindam Dey, and Bipul Syam Purkayastha. "An Affix Removal

Stemmer for Natural Language Text in Nepali." International Journal of Computer

Applications 91.6 (2014).

45

[10] Shrestha, Ingroj, and Shreeya Singh Dhakal. "A new stemmer for Nepali

language." Advances in Computing, Communication, & Automation

(ICACCA)(Fall), International Conference on. IEEE, 2016.

[11] Shrestha, Ingroj, Shreeya Singh Dhakal, and Madan Kadariya. "A Comparative

Study of Stemming Algorithms for Nepali Language." National Students’ Conference

on Information Technology (2016):

[12] Paice, Chris D. "An evaluation method for stemming algorithms." Proceedings

of the 17th annual international ACM SIGIR conference on Research and

development in information retrieval. Springer-Verlag New York, Inc., 1994.

[13] Ramos, Juan. "Using tf-idf to determine word relevance in document queries."

Proceedings of the first instructional conference on machine learning. Vol. 242. 2003.

46

Appendix A

List of Type I suffixes.

मा
बाट
ले
लाई
�वारा
ला�ग
�नि�त
दे�ख
बाट
को
का
क�
ह�
अ�घ
प�छ
प�हले
प�चात
मा�थ
म�ुन
�भ�
बा�हर
वा�र
पा�र
झ�
झ�
ज�त ै
समान
स�श

बमोिजम
�नि�त
�न�म�
ला�ग
स�म
पय��त
मा�
केवल
�तर
�नर
साम�ुने
तफ�
प��ट
�सत
सँग
समेत
स�हत
स�टा
�वना
बाहेक
पटक
म�ये
ि�थत
�व��ध
पा�लका
म�ये
बारे
लग� ै

भ�दा
यता
��त
बेला
कारण
ग�र
म ै
सम�
�बच
रत
कार�
लगायत
अ�तग�त
भयो
प�न
पणू�
अगा�ड
पछा�ड
�तर�य
ब�ध
�ब��कै
हु��यो
होला
पद�छ
परेको
हु�छ
कै
कम�
सँगै

47

Appendix B

List of Type II suffixes.

��यौ
पवू�क
◌ु�जेल
�छेस ्
उ�जेल
ि�छन ्
इ�जेल
ि◌�जेल
अनसुार
◌ुपन�
चाँ�ह
रहेक�
रहेको
रहेका
त�ुय
�य�
◌ा�मक
चाह��
खे�रन
�छस ्
◌ो�र
मा�
�छन ्
◌ो�म
�लस ्
�थन ्
�छौ
सकैु
ि◌सके
आउन ु
�लन ्
होस ्
◌ीकरण
इयाँ
याल ु
खे�र
उँला

◌ाएको
�यौ
◌ुँला
लान ्
�दने
इसके
औलंा
�छन ्
◌ो�भत
इ�छ
लास ्
◌�ला
ि◌�छ
ि◌या ँ
छेस ्
डाल ु
भएको
भएका
◌ँछन ्
पछ�
�यौ
आएका
आएको
◌ाउन ु
�थल
◌�ला
भ�र
◌्नो
◌े�ल
थ�
ओस ्
◌ेन ्
◌ाल ु
होस
साथ
ि◌लो
एस ्

◌ेस ्
◌ुन ्
◌ँदै
सार
◌ोस ्
�छ
इस ्
ि◌या
छ�
उन ्
आएर
इने
◌ोभन
एको
छन ्
एक�
◌ेका
◌ेको
◌ाडी
एका
◌े�क
छस ्
एन ्
शील
नन ्
ि◌स ्
य�
◌ँछु
नसु
इया
ईन ्
झ�
◌ाएर
◌ीन ्
भर
◌ेर
न ु

48

ने
ना
थे
सक
आइ
आउ
आए
दै
दो
दा
छु
छे
उँ
◌ँछ
छौ
◌ीय
त ै

औ ं
◌ाइ
◌ाए
ता
एर
एँ
इत
इन
यौ
यो
गत
कै
ि◌त
◌�
ि◌क
◌ ं
ि◌

◌ा
◌ ू
क
◌ो
◌ ्
◌ ँ
ई
न
◌ी
◌ौ
ए
ओ
छ
◌ ै
◌ ु

49

Appendix C

List of 181 identified exception words for Type I suffixes

आमा
शमा�
ज�मा
लामा
िज�मा
�सनेमा
सीमा
�बमा
उमा
मामा
�व�वकमा�
�समा
बीमा
पि�चमा
रमा
�मा
बमा�
�नमा
गोमा
अ�हले
एमाले
प�हले
क�हले
थाले
वा�ले
माले
घले
का�ले
�कुले
तलेै
बोले
आले
खोले
हाले
खेले
काले

�ड��ले
�ढलाई
बोलाई
आगला�ग
नला�ग
अक�
चक�
�नको
अर�नको
पोको
�ढ�को
डाँको
अका�
ठे�का
ख�का
मौका
अमे�रका
शंका
इलाका
ढोका
आशंका
उप�यका
प�का
�टका
बेलकुा
बालबा�लका
बा�लका
ट�का
त�रका
�नद��शका
हे�का
नगरपा�लका
चौका
नाका
खाका
�ीलंका

ह�का
गा�यका
�श��का
काय�ता�लका
ता�लका
काका
हलकुा
लकुा
ध�का
ईलाका
धोका
भ�ुमका
श�का
ल�का
अि�बका
जानकुा
ह�रता�लका
रो�का
एकताका
पोका
का�लका
झ�का
भाका
ताका
�हसंाका
�वे�शका
अ��का
रा�धका
बाँक�
काक�
अमे�रक�
ध�क�
प�क�
का�क�
बेलकु�
चौक�

50

अक�
अमेर�क�
बढुाथोक�
टक�
साक�
कलंक�
अ��क�
नसक�
ग�डक�
जानक�
हुलाक�
रोक�
दै�नक�
मलुकु�
कल�क�
सरुाक�
तोक�
झाँक�
बोक�
�घाखोक�
काल�ग�डक�
काक�
ल�क�
मान�वक�

�या�क�
घकु�
प�काप�क�
चका�चक�
ढुकढुक�
पे�क�
च�ुक�
वाँक�
सक�
वा�कटक�
�डक�
�या�क�
�टेफानो�क�
मोनाक�
स�कनसक�
नौटंक�
रामजानक�
ह�क�
ि�व�क�
�न�क�
टुक�
थकथक�
सक�नसक�
मा�क�

भ�क�
इराक�
अ�क�
पानी�या�क�
�स��दक�
बा�क�
ह�क�
खोक�
फुलचोक�
शाक�
होक�
डुब�ुक�
म�ुक�
फक�
धकुधकु�
नेह�
खा�तर
�हर�
म��ी
�धानम��ी
पोखरा
�ढलाई
खेले
उपि�थत
अनपुि�थत

51

