

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

THESIS NO: 072MSCS664

A Comparative Analysis of Cloud based Recommendation System on Mapreduce and

Spark

by

Sarala Ghimire

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND COMPUTER

ENGINEERING IN PARTIAL FULFULLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SYSTEM AND

KNOWLEDGE ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

LALITPUR, NEPAL

NOV, 2017

A Comparative Analysis of Cloud based

Recommendation System on Mapreduce and Spark

by

Sarala Ghimire

072MSCS664

Thesis Supervisor

Prof. Dr. Subarna Shakya

A thesis submitted in partial fulfillment of the requirements for the

Degree of Master of Science in Computer System and Knowledge

Engineering

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Tribhuvan University

Lalitpur, Nepal

Nov, 2017

COPYRIGHT ©

The author has agreed that the library, Department of Electronics and Computer

Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis freely

available for inspection. Moreover the author has agreed that the permission for extensive

copying of this thesis work for scholarly purpose may be granted by the professor(s), who

supervised the thesis work recorded herein or, in their absence, by the Head of the

Department, wherein this thesis was done. It is understood that the recognition will be

given to the author of this thesis and to the Department of Electronics and Computer

Engineering, Pulchowk Campus in any use of the material of this thesis. Copying of

publication or other use of this thesis for financial gain without approval of the Department

of Electronics and Computer Engineering, Institute of Engineering, Pulchowk Campus and

author‟s written permission is prohibited.

Request for permission to copy or to make any use of the material in this thesis in whole or

part should be addressed to:

Head

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Pulchowk, Lalitpur, Nepal

TRIBHUVAN UNIVERSITY

 INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certify that they have read and recommended to the Department of

Electronics and Computer Engineering for acceptance, a thesis entitled “A Comparative

Analysis of Cloud based Recommendation System on Mapreduce and Spark”,

submitted by Sarala Ghimire in partial fulfillment of the requirement for the award of the

degree of “Master of Science in Computer System and Knowledge Engineering”.

 …..……………………………………….

Prof. Dr. Subarna Shakya

Supervisor

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

 ……………………………………………

Om Bikram Thapa

External Examiner

Vianet Communication Pvt.Ltd

 ….………………………………………..

Prof. Dr. Subarna Shakya

Committee Chairperson

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

……………………………………

Date:

I

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisor Prof. Dr. Subarna Shakya for

his encouragement and precious guidance during my thesis research. I am thankful to our

program coordinator Dr. Aman Shakya for providing a suitable platform to make this

research success. I would like to show my appreciations to all my professors, classmates

and faculty member of Department of Electronics and Computer Engineering for providing

me their views and ideas regarding thesis work.

II

ABSTRACT

Today, Big Data is a hot issue both in industrial and academic fields. The need of data

processing is changing with the gradual increase in data volume and with the mass of

sources leading to a diversity of structures. Although relational database management

system (RDBMS) remaining the primary technology for data management of structured

data and been proven best for more than 40 years, it has reached its limit, and the reason is

massive growth in the diverged volume of data. Several researchers and organizations now

focused on MapReduce and Spark framework that has discovered huge success in

processing and analyzing a large volume of data on several clusters. In this study, the

performance of MapReduce, RDBMS, and Spark with various comparison measures are

evaluated. To conduct a comparison and analysis, three processes are computed: (a)

developed recommendation system with all three algorithms, (b) run that system on various

data networks and data sizes, and (c) the output is then analyzed and compared on the basis

of time computation, memory consumption, and CPU usage. Moreover, statistical

validation of the observed results from all the algorithms with respective node and network

configuration using Friedman rank test and Holm post-hoc test are performed. Overall,

observations show that Spark is about 2.5x and 5x faster than MapReduce, and 10/20 times

faster than RDBMS. The reason for these speedups is the efficiency of the alternative least

square algorithm and reduced CPU and disk overheads due to RDD caching in spark.

Keywords: Cloud Computing, Hadoop, MapReduce, Multi-node cluster, RDBMS, Spark,

and Single-node cluster

III

TABLE OF CONTENTS

ABSTRACT ... II

TABLE OF CONTENTS ... III

LIST OF FIGURES .. VI

LIST OF TABLES .. VIII

1. INTRODUCTION ... 1

 1.1 Background Theory ... 1

 1.2 Hadoop Mapreduce Framework ... 4

 1.3 Spark .. 7

 1.4 Purpose ... 10

 1.5 ProblemStatement .. 10

 1.6 Objective .. 11

2. LITERATURE REVIEW .. 12

3. METHODOLOGY .. 15

 3.1 Computing Similarities between Item Pairs 16

 3.1.1 Calculation using RDBMS ... 17

 3.1.2 Calculation using Mapreduce ... 18

 3.1.3 Calculation using Spark .. 20

IV

 3.2 Deriving Recommendation .. 22

 3.2.1 Deriving recommendation list using RDBMS 22

 3.2.2 Deriving recommendation list using MapReduce 22

 3.2.3 Deriving recommendation list using Spark 23

 3.3 Cloudcomputing ... 24

 3.4 Execution time calculation ... 24

4 RESULT ANALYSIS AND COMPARISION 25

 4.1 The Evaluation of Results .. 25

 4.1.1 Dataset Selection ... 25

 4.1.2 Performance Measurement and Metrics 27

 4.1.3 The Comparison of Results .. 29

 4.2 Accuracy of recommendation system .. 35

 4.3 Statistical validation of the experimental results 36

 4.4 Analysis of the Result .. 39

5 CONCLUSION .. 41

REFERENCES ... 42

APPENDICES .. 44

Appendix A - Creating a cluster in google cloud 44

Appendix B - List of clusters ... 44

V

Appendix C - Running a Job in google cloud .. 45

Appendix D - List of MySQL Instance .. 45

Appendix E - Creating a database in MySQL in Google cloud 46

Appendix F - Mapreduce on cloud with single cluster 46

Appendix G - Mapreduce on cloud with multi-node cluster 48

Appendix H - Mapreduce on Non-cloud based system 49

Appendix I - Spark on cloud ... 51

Appendix J - Spark on non-cloud .. 51

Appendix K – Output recommendation list from all the methods 52

VI

LIST OF FIGURES

Figure 1 Architectural view of Hadoop. .. 5

Figure 2 The detail architecture of Hadoop. .. 6

Figure 3 Architectural view of Spark. .. 9

Figure 4 Detail architecture of Spark. .. 10

Figure 5 Basic block of methodology. ... 15

Figure 6 Input to Mapreduce-1. ... 18

Figure 7 Process of Mapreduce for similarity calculation. Here, U, S, and M

represent userid, songid, and Mapper, respectively. .. 19

Figure 8 Users Item Rating Matrix. ... 20

Figure 9 Calculation of a recommendation. ... 21

Figure 11 Deriving Recommendation list. ... 23

Figure 11 Sample input dataset. ... 26

Figure 12 Spark Application Web UI in the non-cloud based environment. .. 27

Figure 13 Hadoop Application Web UI in the non-cloud based environment.

 .. 28

Figure 14 Hadoop Application Web UI in cloud-based environment. 28

Figure 15. CPU utilization by Spark in the cloud. ... 28

Figure 16 Monitoring memory utilization. .. 29

VII

Figure 17. The computational time required by various recommendation

algorithms at different configurations of data networks with various sizes of

datasets: (a) 100000 ratings, (b) 2000000 ratings, (c) 6231790 ratings, and (d)

16231790 ratings. ... 31

Figure 18 Percentage of memory utilization by various recommendation

algorithms at different configurations of data networks with various sizes of

datasets: (a) 100000 ratings, (b) 2000000 ratings, (c) 6231790 ratings, and (d)

16231790 ratings. ... 33

Figure 19 Percentage of CPU usage by various recommendation algorithms at

different configurations of data networks with various sizes of datasets: (a)

100000 ratings, (b) 2000000 ratings, (c) 6231790 ratings, and (d) 16231790

ratings. .. 34

Figure 20 Graph plot of Disk I/O read and write by Spark and Hadoop on

cloud-based single node and multi-node cluster with various sizes of datasets.

 .. 35

VIII

 LIST OF TABLES

Table 1 System hardware and software configurations for experiments ……25

Table 2 Dataset specifications …….…………………………………………26

Table 3 Experiments carried out on various recommendation algorithms at

different configurations of data networks with various sizes of datasets….…30

Table 4 Spark's and Hadoop's speedup over RDBMS………………...……. 32

Table 5 Spark's speedup over Hadoop………...32

Table 6 Accuracy of recommendation system where hit-percentage is

accuracy……………………………………………………………...……….36

1

1. INTRODUCTION

1.1 Background Theory

Big Data is a characterization of the huge volume of various data type, mostly unstructured

[1]. This entails data, which is too vast and huge that relational database management

systems will not be able to analyze, because of its size, volume and unstructured in nature.

So there should be a tool that is capable of making use of data fusing from various sources

in the best way to generate value that can create better financial output for the company and

better experiences for the end user and the customers. The tool that can be considered as

effective if it can provide higher efficiency with limited resources. Big Data Analytics is

that tool which provides precise solutions to analysts and researchers making use of the

huge volume of previously unknown raw and unusable data. Using such analytics along

with various data mining, machine learning, and natural language processing techniques, it

is easier to find valuable and convenient insight, which aids enterprises and business to

make the right decision at the right time. Open source technology like Hadoop/Mapreduce

and Spark provides an effective solution for Big Data Analytics. In this study comparison

of recommendations by RDBMS, Spark and Mapreduce framework on Hadoop Distributed

File System are studied.

Recommendation systems are part of information filtering system, which predicts the

preference; the user might give to an item. Eliminating the static experience that

needs searching for static information for purchasing any products, recommendation

systems have generated a new experience to the user interacting with the websites by

collective interaction among users dynamically. These systems calculate

recommendations for each user based on their past experiences, searches and other

users‟ preferences and search behaviors. Unlike search engines, recommendation

engines try to present people with relevant content that they did not necessarily search

for or that they might not even have heard of. Typically, a recommendation engine tries

to model the connections between users and some type of item. Even if people do not

know exactly what a recommendation engine is, they have most likely experienced one

through the use of popular websites such as Facebook, Twitter, LinkedIn, and Amazon, etc.

Recommendation systems can be extremely effective on a large scale if they are

2

implemented correctly. These systems are a core part of all these businesses, and in some

cases, they drive significant percentages of their revenue.

Collaborative filtering is one of the most popular and successful algorithmic approaches of

recommendation algorithms. It is used in many websites and recognized as the most

successful recommendation systems. The system calculates predicted preferences of users

for items with which they have not yet interacted with using the set of preferences of many

other users concerning items. So the algorithm is based on the notion of similarity. There

are two popular approaches to perform this similarity, user and item based, and are referred

to as nearest-neighbor models since the predicted values are calculated based on the set of

most similar users or items.

In a user-based approach, two users are considered similar if they have similar preferences

and taste, that is, interacting pattern matched for the same item. So preference of another

user that has a similar interacting pattern with target user can be used to calculate

recommendations for unknown items. This can be done by selecting a set of similar users,

known as neighbor formation, and calculating the score based on the items they have

shown a preference for. The overall logic is that if others have tastes similar to a set of

items, these items will tend to be good candidates for recommendation.

In an item-based approach, the similarity between two items is calculated. This is usually

based on the existing user-item preferences or ratings. Items that tend to be rated the same

by similar users will be classed as similar under this approach. Once getting these

similarities, it can represent a user regarding the items they have interacted with and find

items that are similar to these known items, which can then recommend to the user. Again,

a set of items similar to the known items is used to generate a combined score to estimate

for an unknown item.

The goal of collaborative filtering algorithms is to either make suggestions about

new items or to make a prediction about the acceptance of a certain item for

recommendations when providing opinions about various items. Also, it even

3

aims to either make suggestions of new items or to make a prediction about the

acceptance of a certain item for a particular user based on users past

experiences and similarity with others users.

Moreover, Big Data analytics using data mining algorithms possess high computing

requirements, which require high-performance processors to accomplish the task. The

cloud provides a good platform for big data storage, processing, and analysis, addressing

two of the main requirements of big data analytics, high storage, and high-performance

computing [2].

The cloud-computing environment offers development, installation, and implementation

of software and data applications „as a service.' Three services that exist are, namely,

platform as a service (PaaS), software as a service (SaaS), and infrastructure as a

service (IaaS). Infrastructure-as-a-service is a model that provides computing and storage

resources as a service. Similarly, PaaS provides a software platform as a service whereas

SaaS provides software itself to its clients. Also, the notion of commodity hardware and the

„pay-as-you-go‟ model creates an efficient way of processing of huge volume data in a

timely fashion, giving the conception of „big data as a service‟ justice. Google Cloud

Dataproc can be taken as an example, which provides real-time vision in a cloud

environment for big data.

A relational database management system (RDBMS) is a database management system

(DBMS) that is based on a relational model in which data and relationship among the data

is stored in the form of tables. Relational databases are powerful in the sense that they

require few assumptions about how data is related or how it will be extracted from the

database. As a result, the same database can be viewed in many different ways. An

important feature of relational systems is that a single database can be spread across several

tables. These are used to store information like financial records, personal data,

manufacturing information and other applications [3]. Despite receiving a challenge by

object-oriented database system and XML database management system, RDBMS possess

most of the market. Nearly all full-sized database systems are RDBMS's.

4

However, this traditional data management tools cannot be used for Big Data Analytics for

the large volume and complexity of the datasets because of its limited capacity to support

variety and volume of data.

1.2 Hadoop Mapreduce Framework

Hadoop is an open source software framework that supports distributed storage and

processing of big data using the Mapreduce Programming Model. The cluster is maintained

here using commodity hardware [4] and is designed in such a way that the hardware

failures are automatically handled [5]. It processes Big Data in parallel and a fault tolerant

manner. Hadoop splits files into some chunks and distributes them across nodes in a cluster

along with the packaged code for processing of data in parallel. As data is processed in the

local system, i.e., on every node of the cluster, the data manipulation is faster and more

efficient. This is the reason why the system is faster and efficient in Hadoop system than it

would be in conventional super-computer architecture where processing and data are

distributed through high-speed networking.

The base Apache Hadoop framework is composed of the following modules:

 Hadoop Common – contains libraries and utilities needed by other Hadoop

modules;

 Hadoop Distributed File System (HDFS) – a distributed file-system that stores data

on commodity machines, providing very high aggregate bandwidth across the

cluster [6];

 Hadoop YARN – a platform responsible for managing computing resources in

clusters [7] and using them for scheduling users' applications; and

 Hadoop Mapreduce – an implementation of the Mapreduce programming model

for large-scale data processing.

Mapreduce library is written in many programming languages, so the Hadoop framework

supports different languages.

The architecture of Hadoop consists of a storage part, known as Hadoop Distributed File

System (HDFS), and a processing part which is a Mapreduce programming model as

shown in Figure 1. Hadoop cluster includes master and worker nodes. If the cluster is a

https://en.wikipedia.org/wiki/Big_data

5

small cluster, then there exists single master and multiple worker nodes. If the cluster is a

larger cluster, then the cluster may consist more than one number of masters having

secondary name node for replication of name node's memory to prevent loss of data and file

corruption. A master node consists of task tracker, name node, and resource manager

whereas worker node contains job tracker and data node. The detail of architecture is

illustrated in Figure 2.

Master Slave

Task tracker

Job tracker

Name node

Data node

Task tracker

Data node

Map reduce layer

HDFS layer

Figure 1 Architectural view of Hadoop.

HDFS Layer

HDFS contains name node and data node in master/slave architecture. A NameNode is a

master server that manages the file system namespace and regulates access to files by

clients. NameNode only stores the metadata of HDFS – the directory tree of all files in the

file system, and tracks the files across the cluster. It does not store the actual data or the

dataset. The data itself is actually stored in the DataNodes. Namenode knows the list of the

blocks and its location for any given file in HDFS. With this information, NameNode

knows how to construct the file from blocks. The NameNode executes the operations like

6

opening, renaming and closing files and directories. It also calculates the mapping of blocks

to DataNodes.

Client

Name node
Secondary

name node
Job tracker

Data node

Data blocks

Data node

HDFS Map reduce

Task tracker

Map Reduce

Task tracker

Map Reduce

Figure 2 The detail architecture of Hadoop.

There are some DataNodes in HDFS cluster, usually one per node in the cluster, which

manages data storage on the nodes on which they are running. The DataNode is responsible

for storing the actual data in HDFS. A file is split into a number of chunks/blocks, and

these blocks are stored in a set of such DataNodes. When a DataNode starts up it announce

itself to the NameNode along with the list of blocks it is responsible for. The DataNodes

performs read and write requests from the file system’s clients and creation, deletion, and

replication of blocks upon instruction from the NameNode. When a DataNode is down, it

does not affect the availability of data or the cluster. NameNode will arrange replication for

the blocks managed by the DataNode that is not available.

The NameNode and DataNode are pieces of software designed to run on commodity

machines. These machines typically run a GNU/Linux operating system (OS). HDFS is

built using the Java language; any machine that supports Java can run the NameNode or the

DataNode software.

7

Mapreduce Layer

This layer contains two trackers, job tracker and task tracker for implementing the

Mapreduce job. Job tracker to which a Mapreduce job is submitted is responsible for

pushing work to the task tracker available in the node in the cluster, to keep the work as

close to the data as possible. If the task tracker fails to work, then the work is rescheduled.

The allocation of work to TaskTrackers is very simple. Every TaskTracker has a number of

available slots (such as "4 slots"). Every active map or reduce task takes up one slot. The

Job Tracker allocates work to the tracker nearest to the data with an available slot.

Likewise, Mapreduce is a programming model that is capable of processing huge dataset

with parallel, distributed algorithm on a cluster. Mapreduce program is composed of map()

and reduce() function where map function is responsible for filtering and sorting and reduce

function is responsible for summarizing. So this model is based on the split-apply-combine

strategy for data analysis. It takes advantage of the locality of data, processing it near the

place it is stored to minimize communication overhead. The parallelism that a Mapreduce

provides offers the possibility of recovery from partial failure of storage units during

operations. Similarly, the data replication prevents the data loss due to any failure. Three

different stages of Mapreduce are Map, Shuffle and Reduce.

 "Map" step: Each worker node applies the "map()" function to the local data, and

writes the output to a temporary storage. A master node ensures that only one copy

of redundant input data is processed.

 "Shuffle" step: Worker nodes redistribute data based on the output keys (produced

by the "map()" function), such that all data belonging to one key is located on the

same worker node.

 "Reduce" step: Worker nodes now process each group of output data, per key, in

parallel

1.3 Spark

The third technology Spark is an open source big data processing framework built around

speed, ease of use, and sophisticated analytics. It gives us a comprehensive, unified

framework to manage big data processing requirements with a variety of datasets that are

diverse in nature (text data, graph data, etc.) as well as the source of data (batch v. real-time

8

streaming data). It enables applications in Hadoop clusters to run up to 100 times faster in

memory and ten times faster even when running on disk and lets quickly write applications

in Java, Scala, or Python. It comes with a built-in set of over 80 high-level operators. In

addition to Map and Reduce operations, it supports SQL queries, streaming data, and

machine learning and graph data processing.

Spark takes Mapreduce to the next level with less expensive shuffles in the data processing.

With capabilities like in-memory data storage and near real-time processing, the

performance can be several times faster than other big data technologies. It also supports

lazy evaluation of big data queries, which helps with optimization of the steps in data

processing workflows. It provides a higher-level API to improve developer productivity

and a consistent architect model for big data solutions. It holds intermediate results in

memory rather than writing them to disk, which is very useful especially when you need to

work on the same dataset multiple times. It‟s designed to be an execution engine that works

both in-memory and on-disk. Spark operators perform external operations when data does

not fit in memory. It can be used for processing datasets that is larger than the aggregate

memory in a cluster. It will attempt to store as much as data in memory and then will spill

to disk. It can store part of a data set in memory and the remaining data on the disk. With

this in-memory data storage, Spark comes with a performance advantage.

The architecture of Spark consists of Driver, Master, and Executer as shown in Figure 3.

9

Driver

Val sc = new sparkConvext ()

SparkContext

Master

Executor

Task Task

 Worker

Executor

Task Task

 Worker

Executor

Task Task

Worker

Figure 3 Architectural view of Spark.

Spark uses a master/worker architecture. It consists of Driver, Master, and Executer.

A driver that talks to a single coordinator called master manage workers in which

executers run. The driver and the executors run in their Java processes and can be run on

the same or separate machines or in a mixed machine configuration. A Spark Driver is a

master node in spark application that hosts spark context for spark application. Spark

context establishes a connection to a spark execution environment which when created is

used to create RDD, accumulators, access spark services and, run jobs. Specifically, to run

on a cluster, the SparkContext can connect to several types of cluster managers (either

Spark’s standalone cluster manager, Mesos or YARN [8]), which allocate resources across

applications. Once connected, Spark acquires executors on nodes in the cluster, which are

processes that run computations and store data for the application. Next, it sends

application code (defined by JAR or Python files passed to SparkContext) to the executors.

And finally, SparkContext sends tasks to the executors to run. Because the driver schedules

tasks on the cluster, it should be run close to the worker nodes, preferably on the same local

area network.

10

RDD graph

DAGSchedular

TaskSchedular

SchedularBackend

Cluster

manager
Threads

Block

manager

User manager Driver Executor

val rawData = sc.textFile("file:///

home/hduser/dataThesis/u.data")

rawData.first()

val rawRatings =

rawData.map(_.split("\t").take(3))

rawRatings.first()

Figure 4 Detail architecture of Spark.

As the Figure 5 entails, the spark application is split into several stages by DAG Scheduler

which is scheduled to run on executors by the task scheduler that lives inside the driver [9].

The executor is a distributed agent that is responsible for executing tasks. It provides in-

memory storage for RDDs that are cached in Spark applications. When an executor starts it

first registers with the driver and communicates directly to execute tasks. It can run

multiple tasks over its lifetime, both in parallel and sequential manner. They track running

tasks and send metrics (and heartbeats) using the internal heartbeat.

1.4 Purpose

The purpose of this research is to analyze the performance of different big data analytics

system on the cloud.

1.5 Problem Statement

Acquiring a solution to improve the accuracy of any Big-data system is a big issue while

implementing a huge and complex data, with minimum cost and infrastructure. Moreover,

the selection of Big-data analytics tools for different areas is a complicated task for the

learner. The comparative study along with could computing paradigm will enable an easier

way to apply machine-learning algorithm with an efficient data processing.

11

1.6 Objective

1. To build a recommendation system using Mapreduce, Spark, and RDBMS.

2. To perform the comparative analysis of Mapreduce, Spark and RDBMS based on

computational time, memory utilization, and CPU usage.

12

2. LITERATURE REVIEW

Hongyong Yu, Deshuai Wang [10] proposed a system for data processing and mining log

data of SaaS cloud using Hadoop. The results given in this thesis proved that Hadoop

data processing performance is very high as compare to RDBMS, i.e., 28% improvement

in the data processing. Apriori algorithm is used for data mining in the cloud which is

the best to find association rules from big data. It uses tree structure and bottom-up

approach to counting item sets efficiently from data. Parallel computing approach is used

in adaptive Apriori algorithm to improve the performance of the system having large data

size.

Similarly, Kong Xiangsheng [11] proposed a system for processing and mining scientific

data using Mapreduce in cloud environments. It states that the traditional supercomputing

centers consisting only of petascale computing resources are not sufficient to tackle the

broad range of e-Science challenges. The cloud computing model, based on scientific data

centers that scale well enough to support extremely large on-demand loads, are needed to:

Support large numbers of science gateways and their users.

Provide a platform that can support the creation of collaboration and data & application

sharing spaces that can be used by virtual organizations.

Manage the computations that are driven by streams of scientific instrument data.

The [12] study of data mining in cloud computing gives the depth knowledge of algorithm

for data mining in cloud computing using Mapreduce.

Similarly, [13] MRDS data processing and mining using Hadoop in cloud depict the data

processing of mineral resources all over the world. The system is for processing and mining

a big mineral resources data system‟s data. To enhance the performance of data processing

Hadoop‟s Mapreduce architecture is used. For better improvement in data mining for

MRDS, Apriori algorithm is used and improves the performance of the existing system

more than 30%. This shows that, by grouping a good and open source technology such as

Hadoop and Apriori algorithm together, we can achieve a better data processing and mining

13

for any system.

Every day, 2.5 quintillion bytes of data are created and 90 percent of the data in the

world today were produced within the past two years [14] [15] . The commonly used

software technology cannot cope with massive data, and the big challenge is to extract

important information from it. Big data has a large volume, heterogeneous format, and

decentralized data control. The example of big data applications is Facebook, Twitter,

and Google. It is a big challenge to manage and mining a massive data because of its

volume, different file formats and growth rate of the data in the world. There are many

challenges with big data such as storage, processing, variety, and cost.

There are several practical simulation-enabled analytics systems. One such system is given

by Li, Calheiros, Lu, Wang, Palit, Zheng and Buyya, which is a Direct Acrylic

Graph (DAG) form analytical application used for modeling and predicting the outbreak

of Dengue in Singapore.

It was in the 1980s that artificial intelligence-based algorithms were developed for data

mining. Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Yu, Zhou,

Steinbach, Hand and Steinberg mention the ten most influential data mining algorithms k-

means, C4.5, Apriori, Expectation Maximization (EM), PageRank, SVM (support vector

machine), AdaBoost, CART, Nave Bayes and kNN (k-nearest neighbors). Most of these

algorithms have been used commercially as well.

Aaron N. Richter, Taghi M. Khoshgoftaar, Sara Landset, and Tawfiq Hasanin proposed a

complete multidimensional examination of different open source devices likes Mahout,

MLlib, H2O, and SAMOA for machine learning with huge information. An assessment

standard is proposed alongside correlations of the structures talked about these open source

technologies.

Satish Gopalani and Rohan Arora [16] gives the analysis between Hadoop Map Reduce and

the as of late presented Apache Spark utilizing a standard machine learning calculation for

14

K-Means clustering.

Juwei Shi, unjie iu, Umar Farooq Minhas, imei Jiao, Chen ang, Berthold Reinwald,

and Fatma zcan [17]assess the major compositional segments in Mapreduce and Spark

systems including merging, execution time, and storing, by utilizing an arrangement of

critical investigative workloads.

Sara Landset, Taghi M. Khoshgoftaar, Aaron N. Richter and Tawfiq Hasanin, [18] gives a

rundown of criteria to making determinations of devices for Big Data Analytic alongside an

investigation of the focal points and downsides of each.

Jai Prakash Verma, Bankim Patel, and Atul Patel, [19] give execution of information

investigation utilizing Hadoop Framework for the content dataset.

15

3. METHODOLOGY

Here the recommendation list is computed by using three approaches, a traditional

approach using RDBMS, Mapreduce programming paradigm, and spark programming

paradigm. The performance is analyzed and compared by the execution time by all the

approaches to perform. Figure 5 shows a basic block diagram of methodology, which

includes processing, analysis and comparison units. The system begins with input dataset,

which is a data set of songs from Yahoo. The processing and analysis section comes under

Cloud. Data will be processed with three different processing tools, Hadoop, Spark and the

RDBMS. The processed dataset will be analyzed with a fixed recommendation filter, for

which Collaborative filtering is used. The collaborative is a standardized filter and widely

used in research works. To verify the comparison analysis study, a standard filter is taken

as reference. However, any kinds of recommendation filter can be used. Moreover, finally,

the filtering result of individual processing methods will be compared by execution time.

MapReduce

Spark

Traditional

method

Result1

Result2

Result3

Collaborative

Filtering
Input

data
Output

Processing Analysis Comparison

Cloud

MapReduce

Spark

Traditional

method

Figure 5 Basic block of methodology.

Mapreduce jobs run in parallel in Hadoop cluster. The large dataset file is divided into

several blocks and distributed across several data nodes, and Mapreduce job uses the

dataset relevant to that node and performs the required action specified on the job. Each

16

map task process the input and generates the required intermediate data value as output and

then the reduce task takes those output as its input and process it according to the reduce

job specified to give an output with key-value pair of the unique key.

Similarly, the spark runs the job in parallel. It revolves around the concept of a resilient

distributed dataset (RDD) [20], which is a fault-tolerant collection of elements that can be

operated on in parallel [21]. RDDs support two types of operations: transformations, which

create a new dataset from an existing one, and actions, which return a value to the driver

program after running a computation on the dataset. Spark translates the RDD

transformations into something called DAG (Directed Acyclic Graph) and starts the

execution. At high level, when any action is called on the RDD, Spark creates the DAG and

submits to the DAG scheduler. The DAG scheduler divides operators into stages of tasks.

A stage is comprised of tasks based on partitions of the input data. The DAG scheduler

pipelines operators together. E.g., Many map operators can be scheduled in a single stage.

The final result of a DAG scheduler is a set of stages. The Stages are passed on to the Task

Scheduler.The task scheduler launches tasks via cluster manager. However, task scheduler

will not know about dependencies of the stages. Moreover, finally, the Worker executes the

tasks on the Slave.

The working procedure of the RDBMS is different from that of technologies described

above; it differs largely in data processing. The parallel processing of data is not as more

comfortable as on two other technologies, and the storage and processing of unstructured

data are also not possible because of its presentation of data in row and column format. For

big data, what is needed is, storing data in different systems and copying code into those

systems and processing it in parallel with taking advantage of locality. This is not possible

in RDBMS, the working of which starts with copying data from storage to the RAM and

then processing it there, which is inefficient and time-consuming task while considering big

data.

3.1 Computing Similarities between Item Pairs

To compare three different techniques, the comparison is made by recommendation system

17

using those approaches. So firstly the calculation of similarities is computed on all the three

technologies. There are many ways to formalize this calculations, such as the similarity

metrics of cosine and Pearson correlation. For this research, cosine similarity measure has

been chosen. In an item-based approach, the similarity between two items is calculated.

 ()

‖ ‖‖ ‖

∑

√∑ ()

 √∑ ()

(1)

It is a measure of similarity between two non-zero vectors of an inner product space that

measures the cosine of the angle between them. The cosine of 0° is 1, and it is less than 1

for any other angle. It is thus a judgment of orientation and not magnitude: two vectors with

the same orientation have a cosine similarity of 1, two vectors at 90° have a similarity of 0,

and two vectors opposed have a similarity of -1, independent of their magnitude. So if two

items, i.e., songs are similar, then the cosine similarity is equal to 1 and a value of 0 if they

are not similar, and if they are opposite (dissimilar) then the cosine value will be -1. So the

similarity score will always be in the range -1 to 1.

3.1.1 Calculation using RDBMS

To obtain the required output, the similar item needs to be calculated, for which

neighborhood formation is done. Neighborhood formation consists of finding the most

similar items to the item preferred by the active user based on their past agreement on

ratings. Items that tend to be rated the same by similar users will be classed as similar under

this approach. After getting these similarities, it can represent a user regarding the items

they have interacted with and find items that are similar to these known items, which they

can recommend to the user.

The cosine formula (1) above is used to calculate similarity score which gives the list of

scores for item pair. This can be done using any languages, but this research had used java

as front end and MySQL as backend for RDBMS implementation. Moreover, all the

process is done on the same machine especially carried out on RAM.

18

3.1.2 Calculation using Mapreduce

The similarity computation of recommendation system is divided into 2 Mapreduce jobs.

The first job takes input from a yahoo dataset having each row of data separated by a tab as

shown in Figure 6.

Figure 6 Input to Mapreduce-1.

The output of this job is a key-value pair of a key representing userid and the value with the

set of all the songs with their ratings given by that user. This output will be the input to the

next Mapreduce job, which is responsible for computing a similarity between items. The

overall process is illustrated in Figure 7.

19

U1, S1, 2M1

U1 S1 , 2

U1, S2, 5 M2

U1 S2 , 5

U1, S4, 4M3

U1 S4, 4

U2

U1

S1 , 3 S4 , 3........

S1 , 2 S2 , 5.......

S1 , S2 2 , 5

U1 S1 , 2 S2 , 5.......

S1 , S4 3 , 3

U2 S1 , 3 S4 , 3........

S3 , S4 4 , 5

U3 S3 , 4 S4 , 5.......

S1 , S4

S3 , S4

S1 , S2

3

4.5

2.2

M1

Inputs to

mapper-2

Inputs to

reducer-1

Output from

reducer-2

Inputs to

reducer-2

Output

from

mapper-2

Output

from

mapper-1

Figure 7 Process of Mapreduce for similarity calculation. Here, U, S, and M represent userid, songid, and Mapper,

respectively.

Finally, the output is represented in the form of key-value pair, where the key represents the

pair of items and value gives the similarity score for those items.

First Mapreduce Job

As mentioned earlier, the first Mapreduce job computes the input to give a set of songs with

ratings by every single user. Each row of data is processed by the mapper-1 where the

output pair is generated by splitting the input data by a tab‟ /t'. This output intermediate

key-value pair contains the key that is a userid and value that represents a set of songid and

rating. Finally, the output from the first mapper is now an input to the reducer-1. Reducer-1

collects all the songs along with rating given by the user, where the key is a unique user and

value is a collection of songs with ratings by that user.

Second Mapreduce Job

Here the output from the reducer-1 from a first Mapreduce job is input to the mapper-2

where mapper-2 splits the value field of the input data by tab „/t‟ and delimiter „,‟ and

20

generates an intermediate pair of the item-item pair as key and rating-rating pair as value.

This intermediate pair is given to the final reducer, which is responsible for computing

similarity calculation using cosine similarity (1).

Finally, the output from the reducer-2 is a pair of item-item pair of the song as key and

similarity score between them as a value, which will be the output from the similarity

calculation phase.

3.1.3 Calculation using Spark

The Spark‟s recommendation system is based on the matrix factorization model, which is

easier to compute recommendation. These models are often called latent feature models, as

it discovers some form of hidden features which are represented by the factor matrices.

While the latent features or factors are not directly interpretable, they might, perhaps,

represent things such as the tendency of a user to like songs from a certain singer, genre,

musician, or group of artists, for example. Matrix factorization models a user-item matrix

by representing it as a product of two smaller matrices of lower dimension as shown in

Figure 8 and 9. Thus, it is a dimensionality-reduction technique. For a user-item matrix

with the dimension k, the two matrices are one for users of size U x k and one for items of

the size I x k as presented. Moreover, these are known as factor matrices. The

multiplication of these two-factor matrices reconstructs an approximate version of the

original rating matrix.

Ram

Shyam

Hari

4 5

5

5

5

5

?

Song1 Song2 Song3

Figure 8 Users Item Rating Matrix.

21

Ram

Shyam

Hari

Bimal

User/

Item

3

Song1

4

5

Song2

2

4

Song3

3

2

Song4

Shyam

Hari

Bimal

Ram

1.2

1.5

1.2

1.4

1

0.9

0.8

0.9

1.4

0.8

1.3

1.1

0.9

2

Song1 Song2 Song3

1.2

0.8

Song4

Item

User
Item

Figure 9 Calculation of a recommendation.

To find out the similarity between two items, the same measures of similarity as in the

nearest-neighbor models can be used, except the use of the factor vectors directly by

computing the similarity between two item-factor vectors.

However, these models are relatively more complicated to understand and interpret

compared to nearest-neighbor models. So to solve the problem of this model spark

implements an algorithm called alternative least square which is powerful technique and

has proven to be relatively easy to implement in a parallel fashion. ALS works by

iteratively solving a series of least squares regression problems. In each iteration, one of the

user- or item-factor matrices is treated as fixed, while the other one is updated using the

fixed factor and the rating data [22]. Then, the factor matrix that was solved for is, in turn,

treated as fixed, while the other one is updated. This process continues until the model has

converged.

Computing similarity between items has two processes, one, training a model that generates

user and item factors and the other, cosine similarity calculation for similarity computation.

To train the model, Mllib library of spark is used that makes use of ALS algorithm. The

training method of this algorithm returns a MatrixFactorizationModel object, which

contains user and item factors in the form of an RDD of (id, factor) pairs. Operations used

in MLlib's ALS implementation are lazy transformations, so the actual computation will

only be performed once some action on the resulting RDDs of the user and item factors are

called.

Now to compute the similarity score, jblas linear algebra library is used to compute the

22

required vector dot product for cosine similarity. Cosine similarity is a measure of the

angle between two vectors in an n-dimensional space. It is computed by first calculating the

dot product between the vectors and then dividing the result by a denominator, which is the

norm (or length) of each vector multiplied together (specifically, the L2-norm is used in

cosine similarity) which is given by the equation below.

 ()

 () ()

(2)

The cosine similarity measure takes on values between -1 and 1. A value of 1 implies

completely similar, while a value of 0 implies independence (that is, no similarity). This

measure is useful because it also captures negative similarity, that is, a value of -1 implies

that not only are the vectors not similar, but they are also completely dissimilar.

3.2 Deriving Recommendation

The final part of the recommendation system is to derive a recommendation list.

3.2.1 Deriving recommendation list using RDBMS

The list generated after calculating cosine similarity is sorted by similarity score for item

pairs in descending order, which gives the final list of recommendation for the item.

This process is carried out on a single machine using MySQL for data storage and

processing purpose. MySQL falls into the category of relational database management

system, so it stores data in row-column format and process data on RAM taking it from its

original storage. So the sorting of data from the list is carried out on RAM, and final output

after processing is only then stored on the storage.

3.2.2 Deriving recommendation list using MapReduce

The derivation of recommendation list is accomplished by MapReduce-3, which is based

on the similarity value calculated for the item pair as illustrated in Figure 11. The pair

having highest similarity value will have the highest priority rank for that item.

23

S1 , S4

S3 , S4

S1 , S2

3

4.5

2.2 Output from reducer-2 (Input to

mapper 3)

S1 , S2 2.2

S1 , S2 , 2.2

Output from

mapper-3

S1 , S4 3

S1 , S4 , 3

S3 , S4 4.5

S3 , S4 , 4.5

Sorting

Merging

S2

S3

S1

S1 , S3 ,...........

S4, S5, S6,...........

S2 , S4 , S7 ,...........

Process in

reducer-3

Output from reducer-3 (final

recommendation list)

Figure 10 Deriving Recommendation list.

The output from the MapReduce-2 is given to the input of MapReduce-3 where the

merging and sorting are done to accomplish desired output of recommendation list.

Mapper-3 will process the data coming from MapReduce-2 by splitting each row of data by

a tab „\t‟ and a delimiter „,‟. The output from the mapper-3 is now an intermediate key-

value pair of songid as key and value having a pair of song and similarity scores with that

key. Finally, the output from mapper-3 is given to the final reducer, which processes data to

give a final list of recommendation. The data is merged and sorted based on the similarity

score. So the final recommendation list output will be the key value pair of songid as key

and similar songs to that key as a value in descending order of similarity metrics as shown

in Figure 12.

3.2.3 Deriving recommendation list using Spark

Finally, the recommendation list is generated after calculating similarity measures. This list

is the list of item pairs and similarity value sorted in descending order of similarity.

This is achieved by using the top method of ALS algorithm, which automatically sorts the

24

list in the required format as shown in Figure 13.

3.3 Cloud computing

To overcome the need for large-scale computing, processing, and its infrastructure

maintenance Cloud computing would be the best service. So the Cloud Dataproc is chosen as

well suited service that is matched with the requirement of this research. Cloud Dataproc

supports Spark and Hadoop clustering with faster processing where operations that used to

take hours or days take seconds or minutes giving a powerful and complete platform for data

processing, analytics, and machine learning [23]. „Pay as you go‟ is available in this service

along with initial free service of value $300. Creating Cloud Dataproc clusters is quicker and

can be resized them at any time—from three to hundreds of nodes so no need to be worried

about data pipelines outgrowing clusters. With each cluster action taking less than 90 seconds

on average, more time can be focused on insights, with less time lost to infrastructure.

Creating a cluster is the easiest task in Cloud Dataproc. The specification of the size and

quantity of node and master is only the requirement to accomplish it. The list of clusters

can be visible with the option of update to resize a cluster in future need.

After creating a cluster, job or a program can be run using the interface with specifying the

cluster name, job type, i.e., whether it is spark or Hadoop and a jar file of that program. Just

a click on the submit button will then give the required output of desire.

3.4 Execution time calculation

The execution time of every system is calculated to compare the performance. Moreover,

this time is calculated by considering starting point and end point of execution of a task.

Subtracting the start value with an end value of execution period gives overall execution

time taken by the system to complete its task, which is as below:

Execution Time = (starting time-end time) in sec (3)

This value is considered as a metric to calculate the performance of every system.

25

4 RESULT ANALYSIS AND COMPARISION

Different technologies with their algorithms are designed to compute recommendations

based on the similarity between two items. To derive recommendations, yahoo dataset is

used as input data for the experiments, which is a collection of rating data by the user for

their preferred song. Experiments are performed on three of the algorithms for a single

node and multi-node clusters on both cloud-based and non-cloud based system, and

performance metrics of each are recorded. For the cloud-based experiment, Cloud Dataproc

is used as a cloud system where the single node and multi-node clusters are created and

performed an experiment for all the three algorithms. In case of RDBMS, it always

experiments on single machine whether it is cloud or non-cloud. The hardware and

software configuration for the system is listed in Table 1.

Table 1 System hardware and software configurations for experiments.

SN Cloud/Non-cloud Single/Multi Cluster Name Specification

1 Both Single Primary Disk Size 27GB

2 Both Single Memory 3GB

3 Non-cloud Single Operating System Ubuntu (64bit)

4 Cloud Multi (Worker node) Primary Disk Size 50GB

5 Cloud Multi (Worker node) Memory 7.5GB

6 Cloud Multi (master node) Primary Disk Size 100GB

7 Cloud Multi (master node) Memory 7.5GB

8 Apache Spark: version 2.2.0

9 Apache Hadoop: version 2.8.1 in cloud

10 Apache Hadoop: version 2.7.3 noncloud

11 MySQL Database: version 2.2.0

12 Number of Nodes in multi-node cluster: 3

4.1 The Evaluation of Results

4.1.1 Dataset Selection

One important component of evaluation is the dataset used to perform experiment. It is

26

essential to use a constant and easy to reproduce dataset. Since the goal, it is to perform

analysis on recommendation output from different framework; information about music

preferences from different people is needed. Here dataset of the song with different data

size from yahoo is used that stores information related to music preferences from millions

of songs and users which are listed in Table 2. So the same dataset is used for performance

analysis too. The sample input dataset is shown in Figure 11.

Table 2 Dataset Specifications.

No of songs No of users Total ratings

1682 943 100000

127771 200000 2000000

1639720 2988761 6231790

9086238 13565203 16231790

Figure 11 Sample input dataset.

27

4.1.2 Performance Measurement and Metrics

For the three case studies, on single node cluster in local mode and single node and multi-

node cluster in the cloud, performance in RDBMS, Hadoop and Spark are compared by

running time, memory consumption and CPU usage. To keep a fair comparison, the

following metrics are guaranteed, which are applied, to RDBMS, Hadoop, and Spark:

 RDBMS, Hadoop, and Spark run on the same machine and configuration for single

node and multi-node cluster environment on cloud and single cluster on non-cloud

based system

 Hadoop and Spark platforms run on the same cluster machines

 Both Hadoop and Spark use HDFS as the file storage system

 Case studies implemented in all systems are based on the same programing

language

 Start Time and Finish Time are listed to calculate the elapsed time of all three

applications, as shown in the Figures 12, 13, and 14 for cloud-based and non-cloud

based environments respectively:

 At last memory consumption and CPU usage is recorded for all applications in all

environments, as shown in Figure 15 and 16.

Figure 12 Spark Application Web UI in the non-cloud based environment.

28

Figure 13 Hadoop Application Web UI in the non-cloud based environment.

Figure 14 Hadoop Application Web UI in cloud-based environment.

Figure 15. CPU utilization by Spark in the cloud.

29

Figure 16 Monitoring memory utilization.

4.1.3 The Comparison of Results

Case studies carried out consist of the evaluation of three different recommendation

algorithms with a different configuration of data networks. Each algorithm with each node

configuration of data networks is evaluated individually with four different sizes of

datasets. Each of the case studies was repeated three times to obtain the average running

results. Sometimes because of unstable network traffic, there are a few seconds of error

band for a small dataset or tens of seconds of error band for a big dataset. Tables 3 shows

the average running time, memory utilization and CPU usage based comparison on

different sizes of data for each case study in RDBMS, Hadoop and in Spark. The

observations are as follows:

30

Table 3 Experiments carried out on various recommendation algorithms at different configurations of data networks with

various sizes of datasets.

SN

Case Studies C.Time %Memory %CPU C.Time %Memory %CPU C.Time %Memory %CPU C.Time %Memory %CPU

1 37.3 18.2 97.2 90.144 26.2 98.3 118.18 41.8 98.7 293.7 43 98.7

2 31.75 17.8 96.7 90.484 26.8 98.3 121.421 42.7 98.7 278.56 43.6 98.7

3 36.52 18.3 95 90.737 26.3 98.3 118.875 39.5 98.3 299.3 43.5 98.6

1 27.52 5.11 56 67.24 15.3 80.9 102.08 19.7 80.44 135.64 25.8 92.16

2 27.53 5.9 53.29 73.01 12.7 80.2 109.88 19 81.2 138.642 26.4 90.24

3 27.36 6.2 51 64.59 15.7 79.4 115.04 19.8 83.45 132.628 27.5 92.87

1 25.73 4.525 17.05 52.67 11.6 51.84 85.01 16.85 63.65 116.7 23.04 85.01

2 26.079 5.16 24.2 55.07 9.7 55.6 90.04 15.02 69.02 116.98 22.87 86.28

3 26.02 5.78 23.4 48.28 9.2 53.48 89.01 12.01 66.78 116.96 24.5 84.2893

1 267.98 6.193 87.68 312.487 7.3 90.67 379.34 7.425 81.6625 936.66 8.55 63.881

2 260.34 6.01 86.82 296.3 7.61 89.362 336.39 8.6 84.98 1080.8 8.2 67.467

3 255.21 5.98 87.09 298.76 7.01 89.04 398 7.89 80.67 964.45 9.1 66.98

1 224.45 5.2 41.77 251.67 7.1 50.07 290.732 9.8 50.51 458.519 12.1 56.87

2 227.673 5.6 42.07 251.79 6.9 51.22 295.37 9.8 51.23 460.231 12.3 54.23

3 223.23 5.1 41.2 248.512 7.5 50.7 296.026 9.6 51 460.42 12 54.87

1 211.29 4.7375 50.1175 233.534 5.25 60.6875 262.64 6.7687 59.18 388.814 9.031 65.544

2 213.45 4.123 52.324 233.62 5.08 56.04 260.76 6.245 58.0232 301.558 8.79 68.61

3 211.598 4.87 51.09 233.01 6.01 58.97 258.975 7.02 61.089 308.357 9.867 69.345

1 684.33 56.72 63.57 1421.23 63.33 76.42 2001.25 64.9 81.53 3301.2 71.45 92.46

2 685.1 55.89 61.4 1256.77 63.67 78.2 1866.12 65.76 81.01 3111.43 70.62 91.9

3 684.61 56.02 62.9 1330 62.9 78.01 1903.72 64.02 81.78 3032.01 70.1 91.05

1 593.389 51.07 23.32 1189 54.32 46.3 1698.32 58.3 42.3 2985.23 63.2 67.32

2 591.49 50.23 26.7 1208 52.01 44.3 1687.34 58.9 45.67 3001.34 64.01 68.9

3 592.83 49.89 29.3 1191.2 53.98 30.2 1690.94 58.02 43.98 2989.01 63.9 63.56

Hadoop-single node(non-cloud based)

spark-single node(cloud based)

spark-multi node(cloud based)

Hadoop-single node(cloud based)

Hadoop-multi node(cloud based)

100000 ratings 2000000 ratings 6231790 ratings 16231790 ratings

spark-single node(non-cloud based)

RDBMS(non-cloud based)

RDBMS(cloud based)

Moreover, all the configurations mentioned above are realized to publish three different

kinds of evaluation results namely: computational time, the percentage of memory

utilization, and percentage of CPU usage during the operation. The computational time

required by Spark, Hadoop, and RDBMS with a single node and multi-node configurations

are illustrated in Figure 17.

Spark Hadoop RDBMS

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200
 Single node

 Single node (cloud based)

 Multi node (cloud based)

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

ec
]

Recommendation algorithms

 (a)

Spark Hadoop RDBMS

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

ec
]

Recommendation algorithms

 Single node

 Single node (cloud based)

 Multi node (cloud based)

 (b)

31

Spark Hadoop RDBMS

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

ec
]

Recommendation algorithms

 Single node

 Single node (cloud based)

 Multi node (cloud based)

(c)

Spark Hadoop RDBMS

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

ec
]

Recommendation algorithms

 Single node

 Single node (cloud based)

 Multi node (cloud based)

 (d)

Figure 17. The computational time required by various recommendation algorithms at different configurations of data

networks with various sizes of datasets: (a) 100000 ratings, (b) 2000000 ratings, (c) 6231790 ratings, and (d) 16231790

ratings.

As shown in Figure 17, Since, Spark utilizes memory-based storage for RDDs but

MapReduce in Hadoop processes disk-based operations, and RDBMS not supporting

parallelism and memory-based processing, it stands to reason that the performance of Spark

with all the node configurations outperforms other methods at the computational time.

Moreover, the computational time of all the methods has increased gradually with the

increase in the size of datasets. Also, it is also seen that the cloud-based approach is

effective at maintaining lesser computational time than the non-cloud based when the

datasets are gradually increased. The performance ratio value shown in Table 4 over

RDBMS by the Spark is higher than that by Hadoop because of larger number of iterations

and calculations. Also, this ratio is decreasing in Hadoop and fluctuating in Spark for

increasing dataset size, with the highest value of 22.057 for the fourth dataset on cloud-

based single node cluster. Similarly, the Spark has better performance than Hadoop, with

maximum speedup up to 8.17 in a multi-node cluster environment in the cloud. However,

the advantage decreased as the input size increases and reached to 2.84 as shown in Table

5.

32

Table 4 Spark's and Hadoop's Speedup over RDBMS.

Input/DataSize(ratings) 100000 2000000 6231790 16231790 100000 2000000 6231790 16231790

Hadoop 261.18 302.52 371.24 993.97 225.12 250.66 294.04 459.72

Spark 35.19 90.455 119.49 290.52 27.47 68.282 109 135.64

RDBMS 684.61 1336 1923.72 3148.21 592.83 1196.07 1692.2 2991.9

Hadoop's Speedup 7.42199488 3.3444254 3.10687087 3.42134793 8.19512195 3.67095281 2.69761468 3.3892657

Spark's Speedup 19.4546746 14.769775 16.0994225 10.8364656 21.5809975 17.5166222 15.5247706 22.0576526

Single node cluster- Non-Cloud Single node cluster- Cloud

Table 5 Spark's Speedup over Hadoop.

Input/Data Size(ratings) 100000 2000000 6231790 16231790

Hadoop 212.11 233.39 260.79 332.91

Spark 25.943 52.007 88.02 116.88

Speedup over spark 8.17600123 4.48766512 2.96284935 2.84830595

Multi node cluster- Cloud

Based on the same memory usage, Spark performs better than RDBMS and Hadoop. The

reasons mainly result from the following factors:

1) Spark workloads have a higher number of disk accesses per second than Hadoop

and RDBMS

2) Spark has better memory bandwidth utilization than other two

3) RDBMS have many read and write operations on disk while Mapreduce have many read

but single write, in which Spark perform read and write operation on disk once a time.

Also, in Spark, task scheduling is based on an event-driven mode, but Hadoop employs

heartbeat to tracking tasks, which periodically causes a few seconds delays. For some

applications involved in the iterative algorithm, Hadoop is overwhelmed entirely by Spark

because multiple jobs in Hadoop cannot share data and have to access HDFS frequently.

Next evaluation of the recommendation is done by the memory utilization. The observed

result is presented in Figure 18.

33

Spark Hadoop RDBMS

0

10

20

30

40

50

60

70

80

90

100

M
em

o
ry

 u
ti

li
za

ti
o

n
 [

%
]

Recommendation algorithms

 Single node

 Single node (cloud based)

 Multi node (cloud based)

(a)

Spark Hadoop RDBMS

0

10

20

30

40

50

60

70

80

90

100

M
em

o
ry

 u
ti

li
za

ti
o

n
 [

%
]

Recommendation algorithms

 Single node

 Single node (cloud based)

 Multi node (cloud based)

(b)

Spark Hadoop RDBMS

0

10

20

30

40

50

60

70

80

90

100

M
em

o
ry

 u
ti

li
za

ti
o

n
 [

%
]

Recommendation algorithms

 Single node

 Single node (cloud based)

 Multi node (cloud based)

(c)

Spark Hadoop RDBMS

0

10

20

30

40

50

60

70

80

90

100

M
em

o
ry

 u
ti

li
za

ti
o

n
 [

%
]

Recommendation algorithms

 Single node

 Single node (cloud based)

 Multi node (cloud based)

(d)

Figure 18 Percentage of memory utilization by various recommendation algorithms at different configurations of data

networks with various sizes of datasets: (a) 100000 ratings, (b) 2000000 ratings, (c) 6231790 ratings, and (d) 16231790

ratings.

Here, Hadoop and RDBMS have less effect on memory utilization with an increase in the

size of datasets where former and later approaches are best and least efficient among the

three approaches concerning the memory utilization. However, memory utilization with

Spark has been significantly increased with increase in the size of datasets. Because of

more number of iterations, spark occupies more memory for newly created RDD, which

effect spark‟s performance and also increase the CPU consumption as shown in Figure 19.

At all the algorithms, a configuration with the cloud-based multi-node is best with memory

34

utilization as compared with non-cloud based because of its memory capacity and

parallelism of task computation on different clusters.

The third evaluation of the recommendation algorithms in this study is done by percentage

use of CPU during the operation. The obtained result is illustrated in the following Figure

19.

Spark Hadoop RDBMS

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 u

sa
g

e
[%

]

Recommendation algorithms

 Single node

 Single node (cloud based)

 Multi node (cloud based)

 (a)

Spark Hadoop RDBMS

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 u

sa
g

e
[%

]

Recommendation algorithms

 Single node

 Single node (cloud based)

 Multi node (cloud based)

 (b)

Spark Hadoop RDBMS

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 u

sa
g

e
[%

]

Recommendation algorithms

 Single node

 Single node (cloud based)

 Multi node (cloud based)

 (c)

Spark Hadoop RDBMS

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 u

sa
g

e
[%

]

Recommendation algorithms

 Single node

 Single node (cloud based)

 Multi node (cloud based)

 (d)

Figure 19 Percentage of CPU usage by various recommendation algorithms at different configurations of data networks

with various sizes of datasets: (a) 100000 ratings, (b) 2000000 ratings, (c) 6231790 ratings, and (d) 16231790 ratings.

It is seen from Figure 19 that the amount of CPU usage is increased gradually with the

increase in the size of datasets. The CPU usage of Hadoop with cloud-based single node is

lesser compared to other configurations of it at all sizes of datasets. At Spark and RDBMS,

35

the use of cloud-based configuration has helped to reduce the amount of CPU usage at all

the configurations. Overall, all the compared algorithms have mixed result with the change

in network configurations and increase in size of datasets.

Lastly, the observation is done by disk I/O operations per second. It is done only on cloud

environment after noticing cloud-based as more efficient than non-cloud based. This is

done only between Hadoop and Spark, to compare their disk I/O for task completion.

It is seen from the Figure 20 that, Spark has a higher number of disk accesses (read

operation per second) per second than Hadoop on every experiment. However, write

operation per second in Hadoop is slightly higher than that in spark. Overall, considering

disk I/O operations as a performance metric, spark on multi-node cluster environment have

faster access.

Figure 20 Graph plot of Disk I/O read and write by Spark and Hadoop on cloud-based single node and multi-node cluster

with various sizes of datasets.

4.2 Accuracy of recommendation system

Experiments test whether the algorithms are useful for predicting relevant song for any

item. For every item in the dataset, 10% song was randomly removed and the algorithms

were used to try to recommend that removed song. This “ eave one out” methodology has

been used in CF offline experiments.

36

The dataset is divided into training and test datasets at a 90% to 10% ratio. Ten different

training and testing datasets were created for 10-fold cross validation. This method of

experimentation has some limitations. These algorithms could recommend song that are

very similar to or even better than the removed song and this might diminish the

algorithms‟ performance, since these song will appear in the recommendation list before

than the removed song. Even though this is a possibility, it is expected the removed song to

be recommended. In order to do this, “Hit-percentage” is taken as a metric. “Hit-

percentage” (HP) is defined as a metric to measure the percentage of the time the

recommender algorithm correctly recommends the removed song. Here, Spark is taken as

the base system for calculating accuracy of algorithm which is shown in Table 6 below.

Table 6 Accuracy of Recommendation System where hit-percentage is accuracy.

As seen in Table 6, the minimum and maximum accuracy on a hit-percentage scale is

88.70% and 90.18%, respectively. At most of the times, nearly similar hit-percentage was

observed with overall accuracy being 89.248%.

4.3 Statistical validation of the experimental results

To validate the reported result, Friedman as the ranking test [24] [25] and Holm [26] as the

post-hoc test is performed. For the test, the null hypothesis () is set as:

a. Ranking: The means of the results of two or more algorithms are the same.

b. Post-hoc: The mean of the results of the control method and against each other

groups is equal (compared in pairs).

The following tests are applied to the STAC web platform where it is assumed that the

lower the result of an algorithm on a problem, the better of such algorithm [27] [28]. Here,

a combination of a node configuration and network configuration in a recommendation

method is assumed as an individual algorithm or a group. Hence there are eight algorithms

for the ranking and post-hoc test. For example, a non-cloud based Spark with a single node

is assumed an algorithm among the eight. For an evaluation measure, each algorithm has

round-1 round-2 round-3 round-4 round-5 round-6 round-7 round-8 round-9 round-10

Hit-percentage 89.09% 89.12% 90.18% 89.31% 89.20% 89.17% 89.86% 88.70% 88.79% 89.06%

37

three samples of output in one dataset. Hence, a number of the group for the test () is eight

and number of samples () is 96 (12 samples per algorithm). The significance level (α) is

assumed as 0.05 for all the tests.

 Computational time

The null hypothesis for ranking was rejected by the Friedman test with -value of

0.0021. In addition, the null hypothesis for the post-hoc test with multi node cloud

based Spark as a control method yielded the following result.

1. Spark (multi node/cloud based) vs. RDBMS (non-cloud): is rejected with -

value of 0.0012.

2. Spark (multi node/cloud based) vs. RDBMS (cloud based): is rejected with

 -value of 0.0054.

3. Spark (multi node/cloud based) vs. Hadoop (single node/non-cloud): is

rejected with -value of 0.0013.

4. Spark (multi node/cloud based) vs. Hadoop (single node/cloud based): is

rejected with -value of 0.00398.

5. Spark (multi node/cloud based) vs. Hadoop (multi node/cloud based): is

accepted with -value of 0.08342.

6. Spark (multi node/cloud based) vs. Spark (single node/non-cloud): is

accepted with -value of 0.35257.

7. Spark (multi node/cloud based) vs. Spark (single node/cloud based): is

accepted with -value of 0.55098.

The result of the rank test suggests that the computational time required by every individual

algorithm differs from each other. Moreover, post-hoc test signifies that the computational

time required by multi-node cloud-based Hadoop is statistically similar to multi-node

cloud-based Spark with -value very close to the significance level (0.05). The post-hoc

test for remaining Hadoop configurations and RDBMS is rejected.

 Memory utilization

The null hypothesis for ranking was rejected by the Friedman test with -value of

0.0021. Since, Hadoop seems efficient at memory utilization as shown in Figure 21,

the multi node cloud based Hadoop is set as a control method in the null hypothesis

38

for the post-hoc test on memory utilization by different algorithms. The result of the

post-hoc test is presented as follows:

1. Hadoop (multi node/cloud based) vs. RDBMS (non-cloud): is rejected with

 -value of 0.0011.

2. Hadoop (multi node/cloud based) vs. RDBMS (cloud based): is rejected with

 -value of 0.0012.

3. Hadoop (multi node/cloud based) vs. Spark (single node/non-cloud): is

rejected with -value of 0.0021.

4. Hadoop (multi node/cloud based) vs. Spark (single node/cloud based): is

rejected with -value of 0.0023.

5. Hadoop (multi node/cloud based) vs. Spark (multi node/cloud based): is

accepted with -value of 0.06829.

6. Hadoop (multi node/cloud based) vs. Hadoop (single node/non-cloud): is

accepted with -value of 0.41024.

7. Hadoop (multi node/cloud based) vs. Hadoop (single node/cloud based): is

accepted with -value of 0.23953.

Since the null hypothesis for the rank test is rejected, it is clear that the memory utilization

by every individual algorithm is different. Furthermore, as in computational time, the post-

host test compared with multi-node cloud-based Spark is accepted by the -value very

close to the significance level. Test with remaining Spark configurations and RDBMS is

rejected.

 CPU usage

Similar to the computational time and memory utilization, the Friedman ranking test

is rejected with -value 0.0020. In addition, as the CPU usage among the

recommendation algorithms in Figure 22 shows the mixed result, cloud based

RDBMS have set as a control method in the null hypothesis in the post-hoc test.

The obtained statistical result is reported as follows:

1. RDBMS (cloud-based) vs. Spark (single node/non-cloud): is rejected with -

value of 0.0050.

39

2. RDBMS (cloud based) vs. Spark (single node/cloud-based): is rejected with

 -value of 0.00276.

3. RDBMS (cloud-based) vs. Spark (multi node/cloud-based): is accepted with

 -value of 0.41024.

4. RDBMS (cloud-based) vs. Hadoop (single node/non-cloud): is rejected with

 -value of 0.00303.

5. RDBMS (cloud-based) vs. Hadoop (single node/cloud-based): is rejected

with -value of 0.00150.

6. RDBMS (cloud-based) vs. Hadoop (multi node/cloud-based): is accepted

with -value of 0.40420.

7. RDBMS (cloud-based) vs. RDBMS (non-cloud): is rejected with -value of

0.00243.

The Friedman rank test signifies that the CPU usages by various algorithms are different.

Moreover, the post-hoc test suggests that the CPU usage of cloud-based RDBMS is

statistically similar to multi-node cloud based Spark/Hadoop.

4.4 Analysis of the Result

As from all the observations, the performance of the spark technology is best among all.

The Hadoop lies on second and RDBMS technology on third. The characteristics of

dividing up of the single task into multiple tasks and executing those tasks from individual

clusters make the performance of the system faster, which can be seen from the

performance of Spark and Mapreduce in every experiment, and this is not found in

RDBMS as it is not its property. Similarly the processing of a task on memory rather than

on a disk again improves the performance, which is proven by the performance of Spark

that is not available on Hadoop, where Hadoop have number of data in and out from disk

while processing data causing a delay. RDBMS having property of processing data on

memory taking from disk is not much significant because of its higher disk I/O overhead,

memory utilization and CPU usage, making the process slower for huge data.

The use of cloud has also a prominent impact on the performance of the system, which can

be seen from the cloud-based output in every graph of experimentally observed. The result

40

value (time in second) from all the system for the cloud-based environment is least among

them all. Moreover, from memory usage, multi-node cluster in the cloud have the best

result for every algorithm.

41

5 CONCLUSION

By comparing the experimental results for running different case studies, it is found that

processing of data in-memory led spark to outperform Hadoop as Hadoop MapReduce

persists back to the disk after a map or reduce action. Nonetheless, Spark needs much

memory. The memory in the Spark cluster should be at least as large as the amount of data

that need to process because the data has to fit into the memory for optimal performance.

So, if it is to process really Big Data, Hadoop will definitely be the cheaper option since

hard disk space comes at a much lower rate than memory space. On the other hand,

considering Spark‟s benchmarks, it should be more cost-effective since less hardware can

perform the same tasks much faster, especially on the cloud where compute power is paid

per use.

Overall, if there is no sufficient memory and the speed is not a demanding requirement,

Hadoop is a better choice. In addition, if the speed is not an important constraint and data

volume is less and structured in nature then RDBMS is the best choice. For those

applications, which are, time sensitive or involved in iterative algorithms and there is

abundant memory available, Spark sure to be a best fit. Moreover, Spark running on cloud

system having high compute power and pay per use property will be the most requirement

fulfilling system.

As for future work, setting up of recommendation system on a bigger cluster with large

volume of data to test the scalability of each platform will be the first priority. Also,

increasing the memory capacity of the clusters to explore the influence of memory

restriction on running time of Spark will be the other work. And planned to design an

intelligent system that can help to choose a platform and the configuration parameters

based on the applications and input data sizes to get optimized performance.

42

REFERENCES

[1] Manekar and A. a. Pradeepini, "A Review on Cloud -based Big Data Analytics," ICSES

Journal on Computer Networks and Communication (IJCNC, 2015.

[2] Assuncao, M. D., Calheiros, R. N., Bianchi, S. a. Netto and M. A. S., "Big Data Computing

and Clouds," : Trends and Future Directions. J. Parallel Distrib. Computing, 2015.

[3] R. Raphael1 and R. Kumar T2 , "Big Data, RDBMS and HADOOP - A Comparative Study,"

International Journal of Science and Research (IJSR) , 2014.

[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and a. I. Stoica, "Spark: cluster

computing with working sets," in Proceedings of the 2nd USENIX Conference on Hot Topics

in cloud computing, Berkeley, 2010.

[5] " Apache Software Foundation.," june 2014. [Online]. Available:

http://hadoop.apache.org/hadoop. [Accessed june 2014].

[6] K. Shvachko, K. Hairong, S. Radia and a. R. Chansler, "The Hadoop Distributed File System,"

2010 IEEE 26th Symposium on Mass Storage Systems and Technologies, 2010.

[7] H. Karau, A. Konwinski, P. Wendell and a. M. Zaharia, Learning Spark, Sebastopol: O'Reilly

Media, 2015.

[8] N. Islam, S. Sharmin, M. Wasi-ur-Rahman, X. Lu, D. Shankar and D. K. Panda, "Performance

characterization and acceleration of in-memory file systems for Hadoop and Spark applications

on HPC clusters," in IEEE International Conference on Big Data, 2015.

[9] "Apache Spark: core concepts, architecture and internals," 03 03 2016. [Online]. Available:

http://datastrophic.io/core-concepts-architecture-and-internals-of-apache-spark/. [Accessed 03

03 2016].

[10] H. Yu and D. Wang, "Mass Log Data Processing and Mining Based on Hadoop and Cloud

Computing," in The 7th International conference on Computer Science and Education,

Melbourne, Australia, 2012.

[11] Xiangsheng and Kong, "Scientific data mining and processing using MapReduce in cloud,"

Journal of Chemical and Pharmaceutical Research, 2014.

[12] Patil and Viki, "Study of Data Mining algorithm in cloud computing using MapReduce

Framework," Journal of Engineering, Computers & Applied Sciences, 2013.

[13] U. Gov, "minerals.usgs.gov," [Online]. Available: minerals.usgs.gov.

[14] Wu, X., Zhu, X., Wu and G. a. Ding, "Data Mining with Big Data," School of Computer

Science and Information Engineering, Hefei University of Technology, China, 2013.

[15] X. Wu, X. Zhu, G.-Q. Wu and a. W. Ding, "Data mining with big data," IEEE Transaction on

Knowledge and Engineering, 2014.

[16] Arora and S. G. a. Rohan, "Comparing Apache Spark and Map Reduce with Performance

Analysis using K-Means," International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 1, 2015.

[17] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald and a. F. . . zcan, MapReduce

vs. Spark for Large Scale Data Analytics," Proceedings of the VLDB Endowment, Vol. 8, No.

13, 2015.

[18] S. Landset, T. M. Khoshgoftaar and A. N. R. a. T. Hasanin, "A survey of open source tools for

machine learning with big data in the Hadoop ecosystem," Landset et al. Journal of Big Data,

2015.

[19] J. P. Verma, B. Patel and a. A. Patel, "Big Data Analysis: Recommendation System with

Hadoop Framework," 2015 IEEE International Conference on Computational Intelligence &

43

Communication Technology, 2015.

[20] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker

and a. I. Stoica, "Resilient distributed datasets: a fault-tolerant abstraction for in-memory

cluster computing," in 9th USENIX Conference on Networked Systems Design and

Implementation, Berkeley, 2012.

[21] "Spark Overview," 2015. [Online]. Available: http://spark.apache.org/.

[22] J. A. Scott, Getting Started with Apache Spark, First Edition ed., United States of America:

MapR Technologies, Inc., 350 Holger Way, San Jose, CA 95134, 2015.

[23] "Cloud DataProc," [Online]. Available: https://cloud.google.com/.

[24] M. Friedman, "The Use of Ranks to Avoid the Assumption of Normality Implicit in the

Analysis of Variance," 1937, p. 675–701.

[25] J. Hodges and E. Lehmann, "Rank Methods for Combination of Independent Experiments in

Analysis of Variance," in The Annals of Mathematical Statistics, vol. 33, Institute of

Mathematical Statistics, p. pp. 482–497..

[26] S. Holm, "A Simple Sequentially Rejective Multiple Test Procedure," in Scandinavian Journal

of Statistics, vol. 6, WileyBoard of the Foundation of the Scandinavian Journal of Statistics,

1979, p. pp. 65–70.

[27] I. Rodriguez-Fdez, A. Canosa, M. Mucientes and A. Bugarin, "STAC: A web platform for the

comparison of algorithms using statistical tests," in IEEE International Conference on Fuzzy

Systems (FUZZ-IEEE), 2015.

[28] "STAC Web Platform.," [Online]. Available: http://tec.citius.usc.es/stac/index.html.. [Accessed

2 11 2017].

44

APPENDICES

Appendix A - Creating a cluster in google cloud

Appendix B - List of clusters

45

Appendix C - Running a Job in google cloud

Appendix D - List of MySQL Instance

46

Appendix E - Creating a database in MySQL in Google cloud

Appendix F - Mapreduce on cloud with single cluster

47

48

Appendix G - Mapreduce on cloud with multi-node cluster

49

Appendix H - Mapreduce on Non-cloud based system

50

51

Appendix I - Spark on cloud

Appendix J - Spark on non-cloud

52

Appendix K – Output recommendation list from all the methods

53

