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ABSTRACT

Today, Big Data is a hot issue both in industrial and academic fields. The need of data
processing is changing with the gradual increase in data volume and with the mass of
sources leading to a diversity of structures. Although relational database management
system (RDBMS) remaining the primary technology for data management of structured
data and been proven best for more than 40 years, it has reached its limit, and the reason is
massive growth in the diverged volume of data. Several researchers and organizations now
focused on MapReduce and Spark framework that has discovered huge success in
processing and analyzing a large volume of data on several clusters. In this study, the
performance of MapReduce, RDBMS, and Spark with various comparison measures are
evaluated. To conduct a comparison and analysis, three processes are computed: (a)
developed recommendation system with all three algorithms, (b) run that system on various
data networks and data sizes, and (c) the output is then analyzed and compared on the basis
of time computation, memory consumption, and CPU usage. Moreover, statistical
validation of the observed results from all the algorithms with respective node and network
configuration using Friedman rank test and Holm post-hoc test are performed. Overall,
observations show that Spark is about 2.5x and 5x faster than MapReduce, and 10/20 times
faster than RDBMS. The reason for these speedups is the efficiency of the alternative least

square algorithm and reduced CPU and disk overheads due to RDD caching in spark.

Keywords: Cloud Computing, Hadoop, MapReduce, Multi-node cluster, RDBMS, Spark,
and Single-node cluster
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1. INTRODUCTION

1.1 Background Theory

Big Data is a characterization of the huge volume of various data type, mostly unstructured
[1]. This entails data, which is too vast and huge that relational database management
systems will not be able to analyze, because of its size, volume and unstructured in nature.
So there should be a tool that is capable of making use of data fusing from various sources
in the best way to generate value that can create better financial output for the company and
better experiences for the end user and the customers. The tool that can be considered as
effective if it can provide higher efficiency with limited resources. Big Data Analytics is
that tool which provides precise solutions to analysts and researchers making use of the
huge volume of previously unknown raw and unusable data. Using such analytics along
with various data mining, machine learning, and natural language processing techniques, it
is easier to find valuable and convenient insight, which aids enterprises and business to
make the right decision at the right time. Open source technology like Hadoop/Mapreduce
and Spark provides an effective solution for Big Data Analytics. In this study comparison
of recommendations by RDBMS, Spark and Mapreduce framework on Hadoop Distributed

File System are studied.

Recommendation systems are part of information filtering system, which predicts the
preference; the user might give to an item. Eliminating the static experience that
needs searching for static information for purchasing any products, recommendation
systems have generated a new experience to the user interacting with the websites by
collective interaction among users dynamically. These systems calculate
recommendations for each user based on their past experiences, searches and other
users’ preferences and search behaviors. Unlike search engines, recommendation
engines try to present people with relevant content that they did not necessarily search
for or that they might not even have heard of. Typically, a recommendation engine tries
to model the connections between users and some type of item. Even if people do not
know exactly what a recommendation engine is, they have most likely experienced one
through the use of popular websites such as Facebook, Twitter, LinkedIn, and Amazon, etc.

Recommendation systems can be extremely effective on a large scale if they are
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implemented correctly. These systems are a core part of all these businesses, and in some
cases, they drive significant percentages of their revenue.

Collaborative filtering is one of the most popular and successful algorithmic approaches of
recommendation algorithms. It is used in many websites and recognized as the most
successful recommendation systems. The system calculates predicted preferences of users
for items with which they have not yet interacted with using the set of preferences of many
other users concerning items. So the algorithm is based on the notion of similarity. There
are two popular approaches to perform this similarity, user and item based, and are referred
to as nearest-neighbor models since the predicted values are calculated based on the set of

most similar users or items.

In a user-based approach, two users are considered similar if they have similar preferences
and taste, that is, interacting pattern matched for the same item. So preference of another
user that has a similar interacting pattern with target user can be used to calculate
recommendations for unknown items. This can be done by selecting a set of similar users,
known as neighbor formation, and calculating the score based on the items they have
shown a preference for. The overall logic is that if others have tastes similar to a set of

items, these items will tend to be good candidates for recommendation.

In an item-based approach, the similarity between two items is calculated. This is usually
based on the existing user-item preferences or ratings. Items that tend to be rated the same
by similar users will be classed as similar under this approach. Once getting these
similarities, it can represent a user regarding the items they have interacted with and find
items that are similar to these known items, which can then recommend to the user. Again,
a set of items similar to the known items is used to generate a combined score to estimate

for an unknown item.

The goal of collaborative filtering algorithms is to either make suggestions about
new items or to make a prediction about the acceptance of a certain item for

recommendations when providing opinions about various items. Also, it even



aims to either make suggestions of new items or to make a prediction about the
acceptance of a certain item for a particular user based on users past

experiences and similarity with others users.

Moreover, Big Data analytics using data mining algorithms possess high computing
requirements, which require high-performance processors to accomplish the task. The
cloud provides a good platform for big data storage, processing, and analysis, addressing
two of the main requirements of big data analytics, high storage, and high-performance

computing [2].

The cloud-computing environment offers development, installation, and implementation
of software and data applications ‘as a service." Three services that exist are, namely,
platform as a service (PaaS), software as a service (SaaS), and infrastructure as a
service (laaS). Infrastructure-as-a-service is a model that provides computing and storage
resources as a service. Similarly, PaaS provides a software platform as a service whereas
SaaS provides software itself to its clients. Also, the notion of commodity hardware and the
‘pay-as-you-go’ model creates an efficient way of processing of huge volume data in a
timely fashion, giving the conception of ‘big data as a service’ justice. Google Cloud
Dataproc can be taken as an example, which provides real-time vision in a cloud

environment for big data.

A relational database management system (RDBMS) is a database management system
(DBMS) that is based on a relational model in which data and relationship among the data
is stored in the form of tables. Relational databases are powerful in the sense that they
require few assumptions about how data is related or how it will be extracted from the
database. As a result, the same database can be viewed in many different ways. An
important feature of relational systems is that a single database can be spread across several
tables. These are used to store information like financial records, personal data,

manufacturing information and other applications [3]. Despite receiving a challenge by

object-oriented database system and XML database management system, RDBMS possess

most of the market. Nearly all full-sized database systems are RDBMS's.
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However, this traditional data management tools cannot be used for Big Data Analytics for
the large volume and complexity of the datasets because of its limited capacity to support

variety and volume of data.

1.2 Hadoop Mapreduce Framework

Hadoop is anopen source software framework that supports distributed storage and
processing of big data using the Mapreduce Programming Model. The cluster is maintained
here using commodity hardware [4] and is designed in such a way that the hardware
failures are automatically handled [5]. It processes Big Data in parallel and a fault tolerant
manner. Hadoop splits files into some chunks and distributes them across nodes in a cluster
along with the packaged code for processing of data in parallel. As data is processed in the
local system, i.e., on every node of the cluster, the data manipulation is faster and more
efficient. This is the reason why the system is faster and efficient in Hadoop system than it
would be in conventional super-computer architecture where processing and data are
distributed through high-speed networking.

The base Apache Hadoop framework is composed of the following modules:

e Hadoop Common — contains libraries and utilities needed by other Hadoop
modules;

e Hadoop Distributed File System (HDFS) — a distributed file-system that stores data
on commodity machines, providing very high aggregate bandwidth across the
cluster [6];

e Hadoop YARN — a platform responsible for managing computing resources in
clusters [7] and using them for scheduling users' applications; and

e Hadoop Mapreduce — an implementation of the Mapreduce programming model
for large-scale data processing.

Mapreduce library is written in many programming languages, so the Hadoop framework

supports different languages.

The architecture of Hadoop consists of a storage part, known as Hadoop Distributed File
System (HDFS), and a processing part which is a Mapreduce programming model as

shown in Figure 1. Hadoop cluster includes master and worker nodes. If the cluster is a
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small cluster, then there exists single master and multiple worker nodes. If the cluster is a
larger cluster, then the cluster may consist more than one number of masters having
secondary name node for replication of name node's memory to prevent loss of data and file
corruption. A master node consists of task tracker, name node, and resource manager
whereas worker node contains job tracker and data node. The detail of architecture is

illustrated in Figure 2.

Master Slave

Task tracker Task tracker

A/’

Job tracker

Map reduce layer

HDFS layer

Name node

\ 4

Data node Data node

Figure 1 Architectural view of Hadoop.

HDFS Layer

HDFS contains name node and data node in master/slave architecture. A NameNode is a
master server that manages the file system namespace and regulates access to files by
clients. NameNode only stores the metadata of HDFS — the directory tree of all files in the
file system, and tracks the files across the cluster. It does not store the actual data or the
dataset. The data itself is actually stored in the DataNodes. Namenode knows the list of the
blocks and its location for any given file in HDFS. With this information, NameNode

knows how to construct the file from blocks. The NameNode executes the operations like
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opening, renaming and closing files and directories. It also calculates the mapping of blocks

to DataNodes.

| HDFS Map reduce |

Name node Secondary
name node
Data node

Job tracker

Task tracker

Task tracker

Map  Reduce Reduce

Map

Data blocks

Figure 2 The detail architecture of Hadoop.

There are some DataNodes in HDFS cluster, usually one per node in the cluster, which
manages data storage on the nodes on which they are running. The DataNode is responsible
for storing the actual data in HDFS. A file is split into a number of chunks/blocks, and
these blocks are stored in a set of such DataNodes. When a DataNode starts up it announce
itself to the NameNode along with the list of blocks it is responsible for. The DataNodes
performs read and write requests from the file system’s clients and creation, deletion, and
replication of blocks upon instruction from the NameNode. When a DataNode is down, it
does not affect the availability of data or the cluster. NameNode will arrange replication for

the blocks managed by the DataNode that is not available.

The NameNode and DataNode are pieces of software designed to run on commodity
machines. These machines typically run a GNU/Linux operating system (OS). HDFS is
built using the Java language; any machine that supports Java can run the NameNode or the

DataNode software.



Mapreduce Layer

This layer contains two trackers, job tracker and task tracker for implementing the
Mapreduce job. Job tracker to which a Mapreduce job is submitted is responsible for
pushing work to the task tracker available in the node in the cluster, to keep the work as
close to the data as possible. If the task tracker fails to work, then the work is rescheduled.
The allocation of work to TaskTrackers is very simple. Every TaskTracker has a number of
available slots (such as "4 slots"). Every active map or reduce task takes up one slot. The
Job Tracker allocates work to the tracker nearest to the data with an available slot.
Likewise, Mapreduce is a programming model that is capable of processing huge dataset
with parallel, distributed algorithm on a cluster. Mapreduce program is composed of map()
and reduce() function where map function is responsible for filtering and sorting and reduce
function is responsible for summarizing. So this model is based on the split-apply-combine
strategy for data analysis. It takes advantage of the locality of data, processing it near the
place it is stored to minimize communication overhead. The parallelism that a Mapreduce
provides offers the possibility of recovery from partial failure of storage units during
operations. Similarly, the data replication prevents the data loss due to any failure. Three
different stages of Mapreduce are Map, Shuffle and Reduce.

o "Map" step: Each worker node applies the "map()" function to the local data, and
writes the output to a temporary storage. A master node ensures that only one copy
of redundant input data is processed.

o "Shuffle" step: Worker nodes redistribute data based on the output keys (produced
by the "map()" function), such that all data belonging to one key is located on the
same worker node.

e "Reduce" step: Worker nodes now process each group of output data, per key, in

parallel

1.3 Spark

The third technology Spark is an open source big data processing framework built around
speed, ease of use, and sophisticated analytics. It gives us a comprehensive, unified
framework to manage big data processing requirements with a variety of datasets that are
diverse in nature (text data, graph data, etc.) as well as the source of data (batch v. real-time
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streaming data). It enables applications in Hadoop clusters to run up to 100 times faster in
memory and ten times faster even when running on disk and lets quickly write applications
in Java, Scala, or Python. It comes with a built-in set of over 80 high-level operators. In
addition to Map and Reduce operations, it supports SQL queries, streaming data, and

machine learning and graph data processing.

Spark takes Mapreduce to the next level with less expensive shuffles in the data processing.
With capabilities like in-memory data storage and near real-time processing, the
performance can be several times faster than other big data technologies. It also supports
lazy evaluation of big data queries, which helps with optimization of the steps in data
processing workflows. It provides a higher-level API to improve developer productivity
and a consistent architect model for big data solutions. It holds intermediate results in
memory rather than writing them to disk, which is very useful especially when you need to
work on the same dataset multiple times. It’s designed to be an execution engine that works
both in-memory and on-disk. Spark operators perform external operations when data does
not fit in memory. It can be used for processing datasets that is larger than the aggregate
memory in a cluster. It will attempt to store as much as data in memory and then will spill
to disk. It can store part of a data set in memory and the remaining data on the disk. With

this in-memory data storage, Spark comes with a performance advantage.

The architecture of Spark consists of Driver, Master, and Executer as shown in Figure 3.
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Figure 3 Architectural view of Spark.

Spark uses a master/worker architecture. It consists of Driver, Master, and Executer.
A driver that talks to a single coordinator called master manage workers in which
executers run. The driver and the executors run in their Java processes and can be run on
the same or separate machines or in a mixed machine configuration. A Spark Driver is a
master node in spark application that hosts spark context for spark application. Spark
context establishes a connection to a spark execution environment which when created is
used to create RDD, accumulators, access spark services and, run jobs. Specifically, to run
on a cluster, the SparkContext can connect to several types of cluster managers (either
Spark’s standalone cluster manager, Mesos or YARN [8]), which allocate resources across
applications. Once connected, Spark acquires executors on nodes in the cluster, which are
processes that run computations and store data for the application. Next, it sends
application code (defined by JAR or Python files passed to SparkContext) to the executors.
And finally, SparkContext sends tasks to the executors to run. Because the driver schedules
tasks on the cluster, it should be run close to the worker nodes, preferably on the same local

area network.
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rawRatings.first() \\ 9
\
\ SchedularBackend
\

Figure 4 Detail architecture of Spark.

As the Figure 5 entails, the spark application is split into several stages by DAG Scheduler
which is scheduled to run on executors by the task scheduler that lives inside the driver [9].
The executor is a distributed agent that is responsible for executing tasks. It provides in-
memory storage for RDDs that are cached in Spark applications. When an executor starts it
first registers with the driver and communicates directly to execute tasks. It can run
multiple tasks over its lifetime, both in parallel and sequential manner. They track running

tasks and send metrics (and heartbeats) using the internal heartbeat.

1.4 Purpose
The purpose of this research is to analyze the performance of different big data analytics

system on the cloud.

1.5 Problem Statement

Acquiring a solution to improve the accuracy of any Big-data system is a big issue while
implementing a huge and complex data, with minimum cost and infrastructure. Moreover,
the selection of Big-data analytics tools for different areas is a complicated task for the
learner. The comparative study along with could computing paradigm will enable an easier

way to apply machine-learning algorithm with an efficient data processing.
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1.6 Objective

1. To build a recommendation system using Mapreduce, Spark, and RDBMS.
2. To perform the comparative analysis of Mapreduce, Spark and RDBMS based on

computational time, memory utilization, and CPU usage.
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2. LITERATURE REVIEW

Hongyong Yu, Deshuai Wang [10] proposed a system for data processing and mining log
data of SaaS cloud using Hadoop. The results given in this thesis proved that Hadoop
data processing performance is very high as compare to RDBMS, i.e., 28% improvement
in the data processing. Apriori algorithm is used for data mining in the cloud which is
the best to find association rules from big data. It uses tree structure and bottom-up
approach to counting item sets efficiently from data. Parallel computing approach is used
in adaptive Apriori algorithm to improve the performance of the system having large data

size.

Similarly, Kong Xiangsheng [11] proposed a system for processing and mining scientific
data using Mapreduce in cloud environments. It states that the traditional supercomputing
centers consisting only of petascale computing resources are not sufficient to tackle the
broad range of e-Science challenges. The cloud computing model, based on scientific data

centers that scale well enough to support extremely large on-demand loads, are needed to:

Support large numbers of science gateways and their users.
Provide a platform that can support the creation of collaboration and data & application
sharing spaces that can be used by virtual organizations.

Manage the computations that are driven by streams of scientific instrument data.

The [12] study of data mining in cloud computing gives the depth knowledge of algorithm

for data mining in cloud computing using Mapreduce.

Similarly, [13] MRDS data processing and mining using Hadoop in cloud depict the data
processing of mineral resources all over the world. The system is for processing and mining
a big mineral resources data system’s data. To enhance the performance of data processing
Hadoop’s Mapreduce architecture is used. For better improvement in data mining for
MRDS, Apriori algorithm is used and improves the performance of the existing system
more than 30%. This shows that, by grouping a good and open source technology such as

Hadoop and Apriori algorithm together, we can achieve a better data processing and mining

12



for any system.

Every day, 2.5 quintillion bytes of data are created and 90 percent of the data in the
world today were produced within the past two years [14] [15] . The commonly used
software technology cannot cope with massive data, and the big challenge is to extract
important information from it. Big data has a large volume, heterogeneous format, and
decentralized data control. The example of big data applications is Facebook, Twitter,
and Google. It is a big challenge to manage and mining a massive data because of its
volume, different file formats and growth rate of the data in the world. There are many
challenges with big data such as storage, processing, variety, and cost.

There are several practical simulation-enabled analytics systems. One such system is given
by Li, Calheiros, Lu, Wang, Palit, Zheng and Buyya, which is a Direct Acrylic
Graph (DAG) form analytical application used for modeling and predicting the outbreak

of Dengue in Singapore.

It was in the 1980s that artificial intelligence-based algorithms were developed for data
mining. Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Yu, Zhou,
Steinbach, Hand and Steinberg mention the ten most influential data mining algorithms k-
means, C4.5, Apriori, Expectation Maximization (EM), PageRank, SVM (support vector
machine), AdaBoost, CART, Nave Bayes and kNN (k-nearest neighbors). Most of these

algorithms have been used commercially as well.

Aaron N. Richter, Taghi M. Khoshgoftaar, Sara Landset, and Tawfiq Hasanin proposed a
complete multidimensional examination of different open source devices likes Mahout,
MLIib, H20, and SAMOA for machine learning with huge information. An assessment
standard is proposed alongside correlations of the structures talked about these open source

technologies.

Satish Gopalani and Rohan Arora [16] gives the analysis between Hadoop Map Reduce and
the as of late presented Apache Spark utilizing a standard machine learning calculation for

13



K-Means clustering.

Juwei Shi, YunjieQiu, Umar Farooq Minhas, Limei Jiao, Chen Wang, Berthold Reinwald,
and Fatma O~ zcan [17]assess the major compositional segments in Mapreduce and Spark
systems including merging, execution time, and storing, by utilizing an arrangement of

critical investigative workloads.

Sara Landset, Taghi M. Khoshgoftaar, Aaron N. Richter and Tawfig Hasanin, [18] gives a
rundown of criteria to making determinations of devices for Big Data Analytic alongside an
investigation of the focal points and downsides of each.

Jai Prakash Verma, Bankim Patel, and Atul Patel, [19] give execution of information

investigation utilizing Hadoop Framework for the content dataset.
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3. METHODOLOGY

Here the recommendation list is computed by using three approaches, a traditional
approach using RDBMS, Mapreduce programming paradigm, and spark programming
paradigm. The performance is analyzed and compared by the execution time by all the
approaches to perform. Figure 5 shows a basic block diagram of methodology, which
includes processing, analysis and comparison units. The system begins with input dataset,
which is a data set of songs from Yahoo. The processing and analysis section comes under
Cloud. Data will be processed with three different processing tools, Hadoop, Spark and the
RDBMS. The processed dataset will be analyzed with a fixed recommendation filter, for
which Collaborative filtering is used. The collaborative is a standardized filter and widely
used in research works. To verify the comparison analysis study, a standard filter is taken
as reference. However, any kinds of recommendation filter can be used. Moreover, finally,
the filtering result of individual processing methods will be compared by execution time.

e ————————

eeeeiiiiiiineeeCloud
| ' | ! ' '
I Processing I I Analysis [ |  Comparison |
| | I I I I
s I | I | |
s ' I I | |
[ N\ | | () | : MapReduce |
S | | : I Resultl I
| MapReduce | | | | |
1\ ) | ! o | !
b | | b | |
S Y : I : : | |
| || Collaborative : I I
Input | - Spark I- a0l . Spark
o | : Filtering T ! Result2 ! Output
. — .
o ' I I | |
[ | I ! |
| . I I I | |
o Traditional l [ | Traditional |  —— |
S method : I [ Result3 |
[ : [ |
I I I
| I | |

Figure 5 Basic block of methodology.

Mapreduce jobs run in parallel in Hadoop cluster. The large dataset file is divided into
several blocks and distributed across several data nodes, and Mapreduce job uses the

dataset relevant to that node and performs the required action specified on the job. Each
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map task process the input and generates the required intermediate data value as output and
then the reduce task takes those output as its input and process it according to the reduce

job specified to give an output with key-value pair of the unique key.

Similarly, the spark runs the job in parallel. It revolves around the concept of a resilient
distributed dataset (RDD) [20], which is a fault-tolerant collection of elements that can be
operated on in parallel [21]. RDDs support two types of operations: transformations, which
create a new dataset from an existing one, and actions, which return a value to the driver
program after running a computation on the dataset. Spark translates the RDD
transformations into something called DAG (Directed Acyclic Graph) and starts the
execution. At high level, when any action is called on the RDD, Spark creates the DAG and
submits to the DAG scheduler. The DAG scheduler divides operators into stages of tasks.
A stage is comprised of tasks based on partitions of the input data. The DAG scheduler
pipelines operators together. E.g., Many map operators can be scheduled in a single stage.
The final result of a DAG scheduler is a set of stages. The Stages are passed on to the Task
Scheduler.The task scheduler launches tasks via cluster manager. However, task scheduler
will not know about dependencies of the stages. Moreover, finally, the Worker executes the

tasks on the Slave.

The working procedure of the RDBMS is different from that of technologies described
above; it differs largely in data processing. The parallel processing of data is not as more
comfortable as on two other technologies, and the storage and processing of unstructured
data are also not possible because of its presentation of data in row and column format. For
big data, what is needed is, storing data in different systems and copying code into those
systems and processing it in parallel with taking advantage of locality. This is not possible
in RDBMS, the working of which starts with copying data from storage to the RAM and
then processing it there, which is inefficient and time-consuming task while considering big
data.

3.1 Computing Similarities between Item Pairs

To compare three different techniques, the comparison is made by recommendation system
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using those approaches. So firstly the calculation of similarities is computed on all the three
technologies. There are many ways to formalize this calculations, such as the similarity
metrics of cosine and Pearson correlation. For this research, cosine similarity measure has
been chosen. In an item-based approach, the similarity between two items is calculated.

A.B n L A; X B (1)

O = AT~ [T an? VG0

It is a measure of similarity between two non-zero vectors of an inner product space that
measures the cosine of the angle between them. The cosine of 0° is 1, and it is less than 1
for any other angle. It is thus a judgment of orientation and not magnitude: two vectors with
the same orientation have a cosine similarity of 1, two vectors at 90° have a similarity of 0,
and two vectors opposed have a similarity of -1, independent of their magnitude. So if two
items, i.e., songs are similar, then the cosine similarity is equal to 1 and a value of 0 if they
are not similar, and if they are opposite (dissimilar) then the cosine value will be -1. So the

similarity score will always be in the range -1 to 1.

3.1.1 Calculation using RDBMS

To obtain the required output, the similar item needs to be calculated, for which
neighborhood formation is done. Neighborhood formation consists of finding the most
similar items to the item preferred by the active user based on their past agreement on

ratings. Items that tend to be rated the same by similar users will be classed as similar under
this approach. After getting these similarities, it can represent a user regarding the items

they have interacted with and find items that are similar to these known items, which they

can recommend to the user.

The cosine formula (1) above is used to calculate similarity score which gives the list of
scores for item pair. This can be done using any languages, but this research had used java
as front end and MySQL as backend for RDBMS implementation. Moreover, all the

process is done on the same machine especially carried out on RAM.
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3.1.2 Calculation using Mapreduce
The similarity computation of recommendation system is divided into 2 Mapreduce jobs.
The first job takes input from a yahoo dataset having each row of data separated by a tab as

shown in Figure 6.

196 242 3 881250949
186 302 3 891717742
22 377 1 878887116
244 51 2 880606923
166 346 1 886397596
298 474 4 884182806
115 265 2 881171488
253 465 5 891628467
305 451 3 886324817
6 86 3 883603013
62 257 2 879372434
286 1014 5 879781125
200 222 5 876042340
210 40 3 891035994
224 29 3 888104457
303 785 3 879485318
122 387 5 879270459
194 274 2 879539794
291 1042 4 874834944
234 1184 2 892079237
119 392 4 886176814
167 486 4 892738452
299 144 4 877881320
291 118 2 874833878
3e8 1 4 887736532
95 546 2 879196566
38 95 5 892430094
102 768 2 883748450
63 277 4 875747401
160 234 5 876861185
5@ 246 3 877052329
301 a8 4 882075827
225 193 4 879539727
290 88 4 880731963
97 194 3 884238860
157 274 4 886890835
181 1081 1 878962623
278 603 5 891295330
276 796 1 874791932
7 32 4 891350932
10 16 4 877888877
284 304 4 885329322
201 a79 2 884114233
276 564 3 874791805
287 327 5 875333916
246 201 5 884921594
242 1137 5 879741196
249 241 5 879641194
99 4 5 886519097
178 332 3 882823437
251 100 4 886271884
81 432 2 876535131
260 322 4 890618898
25 181 5 885853415
59 196 5 888205088
72 679 2 880037164
87 384 4 879877127
290 143 5 880474293
42 423 5 881107687
292 515 4 881103977
115 20 3 881171009
20 288 1 879667584
201 219 4 884112673
13 526 3 882141053
246 919 4 8849206949
138 26 5 879024232
167 232 1 892738341
60 az27 5 883326620
57 304 5 883698581
223 274 4 891550094
189 512 4 893277702
243 15 3 879987440
92 1049 1 890251826
246 416 3 884923047
194 165 4 879546723
241 690 2 887249482
178 248 4 882823954
254 1444 3 886475558
293 5 3 888906576
127 229 5 884364867
225 237 5 879539643

Figure 6 Input to Mapreduce-1.

The output of this job is a key-value pair of a key representing userid and the value with the
set of all the songs with their ratings given by that user. This output will be the input to the
next Mapreduce job, which is responsible for computing a similarity between items. The

overall process is illustrated in Figure 7.
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Figure 7 Process of Mapreduce for similarity calculation. Here, U, S, and M represent userid, songid, and Mapper,

respectively.

Finally, the output is represented in the form of key-value pair, where the key represents the

pair of items and value gives the similarity score for those items.

First Mapreduce Job

As mentioned earlier, the first Mapreduce job computes the input to give a set of songs with
ratings by every single user. Each row of data is processed by the mapper-1 where the
output pair is generated by splitting the input data by a tab’ /t'. This output intermediate
key-value pair contains the key that is a userid and value that represents a set of songid and
rating. Finally, the output from the first mapper is now an input to the reducer-1. Reducer-1
collects all the songs along with rating given by the user, where the key is a unique user and

value is a collection of songs with ratings by that user.

Second Mapreduce Job
Here the output from the reducer-1 from a first Mapreduce job is input to the mapper-2

where mapper-2 splits the value field of the input data by tab ‘/t’ and delimiter “,” and
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generates an intermediate pair of the item-item pair as key and rating-rating pair as value.
This intermediate pair is given to the final reducer, which is responsible for computing

similarity calculation using cosine similarity (1).

Finally, the output from the reducer-2 is a pair of item-item pair of the song as key and
similarity score between them as a value, which will be the output from the similarity

calculation phase.

3.1.3 Calculation using Spark

The Spark’s recommendation system is based on the matrix factorization model, which is
easier to compute recommendation. These models are often called latent feature models, as
it discovers some form of hidden features which are represented by the factor matrices.
While the latent features or factors are not directly interpretable, they might, perhaps,
represent things such as the tendency of a user to like songs from a certain singer, genre,
musician, or group of artists, for example. Matrix factorization models a user-item matrix
by representing it as a product of two smaller matrices of lower dimension as shown in
Figure 8 and 9. Thus, it is a dimensionality-reduction technique. For a user-item matrix
with the dimension K, the two matrices are one for users of size U x k and one for items of
the size I x k as presented. Moreover, these are known as factor matrices. The
multiplication of these two-factor matrices reconstructs an approximate version of the

original rating matrix.

E

Hari

Figure 8 Users Item Rating Matrix.
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To find out the similarity between two items, the same measures of similarity as in the

nearest-neighbor models can be used, except the use of the factor vectors directly by

computing the similarity between two item-factor vectors.

However, these models are relatively more complicated to understand and interpret
compared to nearest-neighbor models. So to solve the problem of this model spark
implements an algorithm called alternative least square which is powerful technique and
has proven to be relatively easy to implement in a parallel fashion. ALS works by
iteratively solving a series of least squares regression problems. In each iteration, one of the
user- or item-factor matrices is treated as fixed, while the other one is updated using the
fixed factor and the rating data [22]. Then, the factor matrix that was solved for is, in turn,
treated as fixed, while the other one is updated. This process continues until the model has

converged.

Computing similarity between items has two processes, one, training a model that generates
user and item factors and the other, cosine similarity calculation for similarity computation.
To train the model, Mllib library of spark is used that makes use of ALS algorithm. The
training method of this algorithm returns a MatrixFactorizationModel object, which
contains user and item factors in the form of an RDD of (id, factor) pairs. Operations used
in MLIib's ALS implementation are lazy transformations, so the actual computation will
only be performed once some action on the resulting RDDs of the user and item factors are

called.

Now to compute the similarity score, jblas linear algebra library is used to compute the
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required vector dot product for cosine similarity. Cosine similarity is a measure of the
angle between two vectors in an n-dimensional space. It is computed by first calculating the
dot product between the vectors and then dividing the result by a denominator, which is the
norm (or length) of each vector multiplied together (specifically, the L2-norm is used in
cosine similarity) which is given by the equation below.

itemVectorl. dot (itemVector2) (2)
itemVectorl.norm2 () * itemVector2.norm2 ()

Val simScore =

The cosine similarity measure takes on values between -1 and 1. A value of 1 implies
completely similar, while a value of 0 implies independence (that is, no similarity). This
measure is useful because it also captures negative similarity, that is, a value of -1 implies

that not only are the vectors not similar, but they are also completely dissimilar.

3.2 Deriving Recommendation

The final part of the recommendation system is to derive a recommendation list.

3.2.1 Deriving recommendation list using RDBMS

The list generated after calculating cosine similarity is sorted by similarity score for item
pairs in descending order, which gives the final list of recommendation for the item.

This process is carried out on a single machine using MySQL for data storage and
processing purpose. MySQL falls into the category of relational database management
system, so it stores data in row-column format and process data on RAM taking it from its
original storage. So the sorting of data from the list is carried out on RAM, and final output

after processing is only then stored on the storage.

3.2.2 Deriving recommendation list using MapReduce

The derivation of recommendation list is accomplished by MapReduce-3, which is based
on the similarity value calculated for the item pair as illustrated in Figure 11. The pair

having highest similarity value will have the highest priority rank for that item.
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Figure 10 Deriving Recommendation list.

The output from the MapReduce-2 is given to the input of MapReduce-3 where the
merging and sorting are done to accomplish desired output of recommendation list.
Mapper-3 will process the data coming from MapReduce-2 by splitting each row of data by
a tab ‘\t” and a delimiter “,”. The output from the mapper-3 is now an intermediate key-
value pair of songid as key and value having a pair of song and similarity scores with that
key. Finally, the output from mapper-3 is given to the final reducer, which processes data to
give a final list of recommendation. The data is merged and sorted based on the similarity
score. So the final recommendation list output will be the key value pair of songid as key
and similar songs to that key as a value in descending order of similarity metrics as shown

in Figure 12.

3.2.3 Deriving recommendation list using Spark
Finally, the recommendation list is generated after calculating similarity measures. This list
is the list of item pairs and similarity value sorted in descending order of similarity.

This is achieved by using the top method of ALS algorithm, which automatically sorts the
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list in the required format as shown in Figure 13.

3.3 Cloud computing

To overcome the need for large-scale computing, processing, and its infrastructure
maintenance Cloud computing would be the best service. So the Cloud Dataproc is chosen as
well suited service that is matched with the requirement of this research. Cloud Dataproc
supports Spark and Hadoop clustering with faster processing where operations that used to
take hours or days take seconds or minutes giving a powerful and complete platform for data
processing, analytics, and machine learning [23]. ‘Pay as you go’ is available in this service
along with initial free service of value $300. Creating Cloud Dataproc clusters is quicker and
can be resized them at any time—from three to hundreds of nodes so no need to be worried
about data pipelines outgrowing clusters. With each cluster action taking less than 90 seconds

on average, more time can be focused on insights, with less time lost to infrastructure.

Creating a cluster is the easiest task in Cloud Dataproc. The specification of the size and
quantity of node and master is only the requirement to accomplish it. The list of clusters

can be visible with the option of update to resize a cluster in future need.

After creating a cluster, job or a program can be run using the interface with specifying the
cluster name, job type, i.e., whether it is spark or Hadoop and a jar file of that program. Just

a click on the submit button will then give the required output of desire.

3.4 Execution time calculation

The execution time of every system is calculated to compare the performance. Moreover,
this time is calculated by considering starting point and end point of execution of a task.
Subtracting the start value with an end value of execution period gives overall execution
time taken by the system to complete its task, which is as below:

Execution Time = (starting time-end time) in sec 3)

This value is considered as a metric to calculate the performance of every system.
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4 RESULT ANALYSIS AND COMPARISION

Different technologies with their algorithms are designed to compute recommendations
based on the similarity between two items. To derive recommendations, yahoo dataset is
used as input data for the experiments, which is a collection of rating data by the user for
their preferred song. Experiments are performed on three of the algorithms for a single
node and multi-node clusters on both cloud-based and non-cloud based system, and
performance metrics of each are recorded. For the cloud-based experiment, Cloud Dataproc
is used as a cloud system where the single node and multi-node clusters are created and
performed an experiment for all the three algorithms. In case of RDBMS, it always
experiments on single machine whether it is cloud or non-cloud. The hardware and

software configuration for the system is listed in Table 1.

Table 1 System hardware and software configurations for experiments.

SN | Cloud/Non-cloud | Single/Multi Cluster | Name Specification
1 | Both Single Primary Disk Size | 27GB

2 | Both Single Memory 3GB

3 | Non-cloud Single Operating System Ubuntu (64bit)
4 | Cloud Multi (Worker node) | Primary Disk Size | 50GB

5 | Cloud Multi (Worker node) | Memory 7.5GB

6 | Cloud Multi (master node) | Primary Disk Size | 100GB

7 | Cloud Multi (master node) Memory 7.5GB

8 | Apache Spark: version 2.2.0

9 | Apache Hadoop: version 2.8.1 in cloud

10 | Apache Hadoop: version 2.7.3 noncloud

11 | MySQL Database: version 2.2.0

12 | Number of Nodes in multi-node cluster: 3

4.1 The Evaluation of Results

4.1.1 Dataset Selection

One important component of evaluation is the dataset used to perform experiment. It is
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essential to use a constant and easy to reproduce dataset. Since the goal, it is to perform
analysis on recommendation output from different framework; information about music
preferences from different people is needed. Here dataset of the song with different data
size from yahoo is used that stores information related to music preferences from millions
of songs and users which are listed in Table 2. So the same dataset is used for performance
analysis too. The sample input dataset is shown in Figure 11.

Table 2 Dataset Specifications.

No of songs [No of users |[Total ratings
1682 943 100000
127771 200000 2000000
1639720 2988761 6231790
9086238| 13565203| 16231790

196 242 3 881250949
186 302 3 891717742
22 377 1 878887116
244 51 2 880606923
166 346 1 886397596
298 474 4 884182806
115 265 2 881171488
253 465 5 891628467
3es5 451 3 886324817
6 86 3 883603013
62 257 2 879372434
286 1014 5 879781125
200 222 5 876042340
210 40 3 891035994
224 29 3 888104457
303 785 3 879485318
122 387 5 879270459
194 274 2 879539794
291 1042 4 874834944
234 1184 2 892079237
119 392 4 886176814
167 486 4 892738452
299 144 a 877881320
291 118 2 874833878
308 1 4 887736532
95 546 2 879196566
38 95 5 892430094
102 768 2 883748450
63 277 4 875747401
160 234 5 876861185
5@ 246 3 877052329
301 o8 4 882075827
225 193 a 879539727
290 88 4 880@731963
o7 194 3 884238860
157 274 4 886890835
181 1081 1 878962623
278 603 5 891295330
276 796 1 874791932
7 32 4 891350932
1@ 16 q 877888877
284 304 4 885329322
201 979 2 884114233
276 564 3 874791805
287 327 5 875333916
246 201 5 884921594
242 1137 5 879741196
249 241 5 879641194
99 4 5 886519097
178 332 3 882823437
251 100 4 886271884
81 432 2 876535131
260 322 4 890618898
25 181 5 885853415
59 196 5 888205088
72 679 2 880037164
87 384 4 879877127
290 143 5 880474293
42 423 5 881107687
292 515 a 881103977
115 20 3 881171009
2 288 1 879667584
201 219 4 884112673
13 526 3 882141053
246 919 4 884920949
138 26 5 879024232
167 232 1 892738341
60 427 5 883326620
57 304 5 883698581
223 274 4 891550094
189 512 4 893277702
243 15 3 879987440
92 1049 1 89@251826
246 416 3 884923047
194 165 4 879546723
241 690 2 887249482
178 248 4 882823954
254 1444 3 886475558
293 5 3 888906576
127 229 5 884364867
225 237 5 879539643

Figure 11 Sample input dataset.
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4.1.2 Performance Measurement and Metrics

For the three case studies, on single node cluster in local mode and single node and multi-
node cluster in the cloud, performance in RDBMS, Hadoop and Spark are compared by
running time, memory consumption and CPU usage. To keep a fair comparison, the
following metrics are guaranteed, which are applied, to RDBMS, Hadoop, and Spark:

% RDBMS, Hadoop, and Spark run on the same machine and configuration for single
node and multi-node cluster environment on cloud and single cluster on non-cloud
based system

¢+ Hadoop and Spark platforms run on the same cluster machines

+«+ Both Hadoop and Spark use HDFS as the file storage system

¢ Case studies implemented in all systems are based on the same programing
language

+« Start Time and Finish Time are listed to calculate the elapsed time of all three
applications, as shown in the Figures 12, 13, and 14 for cloud-based and non-cloud
based environments respectively:

¢+ At last memory consumption and CPU usage is recorded for all applications in all

environments, as shown in Figure 15 and 16.

Completed Jobs (12)

Jobld v Description Submitted Duration Stages: Succeeded/Total Tasks (for all stages): Succeeded/Total
11 take at <console>:44 2017/10/29 15:22:03 02s 1/1 (23 skipped) 1/1 (23 skipped)
10 collect at <console>:37 2017/10/28 15:22:00 39 ms 1/1 (23 skipped) 1/1 (23 skipped)
9 first at MatrixFactorizationModel.scala:67 2017/10/29 15:21:58 24 ms 1/1 (23 skipped) 1/1 (23 skipped)
8 first at MatrixF actorizationModel.scala:67 2017/10/29 15:21:58 62ms 1/1 (24 skipped) 1/1 (24 skipped)
7 count at ALS.scala:280 2017/10/29 15:21:57 04s 1/1 (23 skipped) 1/1 (23 skipped)
6 count at ALS.scala:279 2017/10/29 15:21:51 7s 22/22 (3 skipped) 22/22 (3 skipped)
5 count at ALS. scala:365 2017/10/28 15:21:49 03s 2/2 (1 skipped) 22 (1 skipped)
4 count at ALS.scala:857 2017/10/29 15:21:47 2s 313 313

3 isEmpty at ALS.scala:843 2017/10/29 15:21:47 28 ms m 171

2 isEmpty at ALS.scala:240 2017/10/29 15:21:47 32ms mn n

1 first at <console>:36 2017/10/29 15:21:47 45 ms 11 1n

0 first at <console>:32 2017/10/29 15:21:43 06s 1 171

Figure 12 Spark Application Web Ul in the non-cloud based environment.
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Cluster Metrics
ps Apps

A

Containers

Ap| Apps pps Memory Memory Memory VCores VCores VCores Active = Dec issi Lost L y
Submitted Pending Running Completed Running Used Total Reserved Used Total Reserved = Nodes Nodes Nodes Nodes Nodes
‘ 6 0 0 6 0 0B 8GB 0B ] 8 0 1 0 ] ] 0
Scheduler Metrics
Scheduler Type Scheduling Resource Type Minimum Allocation Maximum Allocation
‘ Capacity Scheduler [MEMORY] <memory:1024, vCores:1> <memory:8192, vCores:8>
‘shcw 20 +entries search:
ID ~ User¢ Name ¢ Beplicaten Typf Queue & StartTimeA FinishTimeﬁ State ¢ FinalStatus ¢ Progress ¢ EEekiny UAI Bllva:;:::md
1509255588375 0001 hduser CFThesisjar MAPREDUCE default Sun Oct29  Sun Oct 29 FINISHED SUCCEEDED | | History N/A
14:41:38 14:42:41
+0900 +0900 2017
2017
1509255588375 0002 hduser CFThesisjar MAPREDUCE default Sun Oct29  Sun Oct 29 FINISHED SUCCEEDED | | History N/A
14:42:45 14:45:07
+0900 +0900 2017
2017
application_1509255588375_0003 hduser CFThesisjar MAPREDUCE default Sun Oct29  Sun Oct 29 FINISHED SUCCEEDED | | History N/A
14:45:10 14:46:23
+0900 +0900 2017
2017
Figure 13 Hadoop Application Web Ul in the non-cloud based environment.
& Cloud Dataproc Jobs SUBMIT JOB C REFRESH REGIONS ¥
Clusters 1, Search jobs, press Ente
Jobs Job ID Type Cluster Start time Elapsed time Status
@& d59a32b2-834c-4ca2-b437-3d2411461d58 Hadoop cluster-d0d3 Nov 1,2017, 1:55:35 AM 7 min 43 sec Succeeded
& aabd72fb-43b5-4ca6-a58f-foaedb6d7818 Hadoop cluster-d0d3 Nov 1, 2017, 1:46:58 AM 5 min 5 sec Succeeded
& 93131161-316d-493b-9ce1-d5675900815¢ Hadoop cluster-d0d3 Nov 1, 2017, 1:36:19 AM 4 min 0 sec Succeeded
& 952de534-b008-445f-be2f-a7b33cd31182 Hadoop  cluster-d0d3 Nov 1, 2017, 1:26:36 AM 3min43sec  Succeeded
@& af35cade-144e-4a1c-9fd7-fef8c8elcdBa Hadoop multinode Oct 31,2017, 3:47:20 PM 5 min 5 sec Succeeded
@ 106ecb51-c458-4cd6-bbdd-16b2d64556ef Hadoop multinode Oct 31,2017, 3:35:05 PM 4 min 30 sec Succeeded
Q 82c86769-92a4-44a0-9cb0-aac3b48e7f66 Hadoop multinode Oct 31,2017, 3:21:11 PM 4 min 4 sec Succeeded
& ©9524511-41c-4196-a026-30521575b4b1 Hadoop multinode Oct 31,2017, 3:08:29 PM 3 min 51 sec Succeeded
& b646f148-7eac-42d4-adb5-f131d42154e1 Hadoop multinode Oct 30,2017, 3:58:41 PM 4 min 18 sec Succeeded
& 6c71794e-6566-4bd1-bad9-f68705494fcf Hadoop cluster-dod3 Oct 29,2017, 7:17:.06 PM 5min 13 sec Succeeded
@& 9dfofdaf-00fa-48ed-9e0e-30b97¢95b343 Hadoop multinode Oct 29,2017, 5:51:58 PM 1 min 40 sec Succeeded
Figure 14 Hadoop Application Web Ul in cloud-based environment.
& multinode-w-1
CPU utilization ~ Thour | 6hours 12hours 1day 2days 4days 7days 14days 30days
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Figure 15. CPU utilization by Spark in the cloud.
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Figure 16 Monitoring memory utilization.

4.1.3 The Comparison of Results

Case studies carried out consist of the evaluation of three different recommendation
algorithms with a different configuration of data networks. Each algorithm with each node
configuration of data networks is evaluated individually with four different sizes of
datasets. Each of the case studies was repeated three times to obtain the average running
results. Sometimes because of unstable network traffic, there are a few seconds of error
band for a small dataset or tens of seconds of error band for a big dataset. Tables 3 shows
the average running time, memory utilization and CPU usage based comparison on
different sizes of data for each case study in RDBMS, Hadoop and in Spark. The

observations are as follows:
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Table 3 Experiments carried out on various recommendation algorithms at different configurations of data networks with
various sizes of datasets.

SN 100000 ratings 2000000 ratings 6231790 ratings 16231790 ratings
Case Studies C.Time |%Memory [%CPU |C.Time |%Memory|%CPU |C.Time |%Memory [%CPU [C.Time [%Memory|%CPU
1 313 182 97.2] 90.144 262 983 11818 418 987 2937 431 987
2] 3175 17.8]  96.7| 90.484 268  98.3[ 121421 427|  98.7] 27856 436 987
spark-single node(non-cloud based) 3| 3652 18.3 95| 90.737 26.3]  98.3] 118.875 395 983 2993 435  98.6
1] 2752 5.11 56| 67.24 153|809 102.08 19.7) 8044 13564 258  92.16
2| 27153 59| 5329 7301 127  802] 109.88 19|  81.2] 138.642 264 90.24
spark-single node(cloud based) 3| 21.36 6.2 51  64.59 157 794 11504 19.8] 8345 132.628 215 9287
1l 2573 4525 17.05] 5267 116 51.84] 85.01 16.85| 63.65 1167 23.04] 85.01
2| 26.079 516 242| 5507 97|  556] 90.04 15.02] 69.02] 116.98 2287 86.28
spark-multi node(cloud based) 3 26.02 578 234] 4828 92| 5348 89.01 1201 66.78] 116.96 24.5] 84.2893
1| 267.98 6.193] 87.68| 312.487 73] 90.67| 379.34 7.425| 816625 936.66 8.55| 63.881
2| 260.34 6.01] 86.82] 296.3 7.61] 89.362] 336.39 8.6] 8498 1080.8 8.2| 67.467
Hadoop-single node(non-cloud based) 3| 25521 5.98] 87.09] 298.76 7.01]  89.04 398 789]  80.67] 964.45 9.1]  66.98
1| 22445 52| 41.77] 25167 71| 50.07| 290.732 9.8] 50.51) 458519 12.1] 56.87
2| 221.673 56| 4207] 25179 69| 5122 29537 98] 51.23] 460.231 12.3]  54.23
Hadoop-single node (cloud based) 3| 22323 51  412| 248512 7.5 50.7] 296.026 9.6 51|  460.42 12| 54.87
1] 21129 4.7375| 50.1175| 233534 5.25| 60.6875 262.64 6.7687| 59.18) 388.814 9.031] 65.544
2| 21345 4123] 52.324] 23362 508 56.04 260.76 6.245| 58.0232| 301.558 8.79] 6861
Hadoop-multi node(cloud based) 3| 211.598 487| 5109 233.01 6.01] 58.97| 258.975 7.02] 61.089 308.357 9.867) 69.345
1] 684.33 56.72|  63.57| 1421.23 63.33]  76.42| 2001.25 649 8153] 33012 7145 9246
2] 685.1 55.89]  61.4] 1256.77 63.67)  78.2| 1866.12 65.76) 81.01] 311143 7062 919
RDBMS(non-cloud hased) 3| 684.61 56.02] 629 1330 629 78.01] 1903.72 64.02] 81.78] 3032.01 701]  91.05
1| 593.389 5107) 2332] 1189 5432  46.3| 169832 583  42.3| 2985.23 632 67.32
2] 59149 5023  26.7| 1208 52.01)  44.3| 1687.34 58.9] 45.67| 300134 64.01 689
RDBMS(cloud based) 3| 592.83 49.89 29.3] 1191.2 53.98 30.2| 1690.94 58.02| 43.98] 2989.01 63.9] 63.56)

Moreover, all the configurations mentioned above are realized to publish three different

kinds of evaluation results namely: computational time, the percentage of memory

utilization, and percentage of CPU usage during the operation. The computational time

required by Spark, Hadoop, and RDBMS with a single node and multi-node configurations

are illustrated in Figure 17.
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Figure 17. The computational time required by various recommendation algorithms at different configurations of data
networks with various sizes of datasets: (a) 100000 ratings, (b) 2000000 ratings, (c) 6231790 ratings, and (d) 16231790
ratings.

As shown in Figure 17, Since, Spark utilizes memory-based storage for RDDs but
MapReduce in Hadoop processes disk-based operations, and RDBMS not supporting
parallelism and memory-based processing, it stands to reason that the performance of Spark
with all the node configurations outperforms other methods at the computational time.
Moreover, the computational time of all the methods has increased gradually with the
increase in the size of datasets. Also, it is also seen that the cloud-based approach is
effective at maintaining lesser computational time than the non-cloud based when the
datasets are gradually increased. The performance ratio value shown in Table 4 over
RDBMS by the Spark is higher than that by Hadoop because of larger number of iterations
and calculations. Also, this ratio is decreasing in Hadoop and fluctuating in Spark for
increasing dataset size, with the highest value of 22.057 for the fourth dataset on cloud-
based single node cluster. Similarly, the Spark has better performance than Hadoop, with
maximum speedup up to 8.17 in a multi-node cluster environment in the cloud. However,
the advantage decreased as the input size increases and reached to 2.84 as shown in Table
5.
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Table 4 Spark's and Hadoop's Speedup over RDBMS.

Single node cluster- Non-Cloud Single node cluster- Cloud
Input/DataSize(ratings) 100000f  2000000{ 6231790 16231790]  100000] 2000000f 6231790| 16231790
Hadoop 261.18 302.52 3711.24 993.97 225.12 250.66 294.04 459.72
Spark 35.19 90.455 119.49 290.52 2147 68.282 109 135.64
RDBMS 684.61 1336]  1923.72| 314821 592.83|  1196.07 1692.2 2991.9
Hadoop's Speedup 7.42199488| 3.3444254| 3.10687087| 3.42134793| 8.19512195| 3.67095281| 2.69761468| 3.3892657
Spark's Speedup 19.4546746] 14.769775| 16.0994225] 10.8364656| 21.5809975| 17.5166222| 15.5247706| 22.0576526

Table 5 Spark's Speedup over Hadoop.
Multi node cluster- Cloud

Input/Data Size(ratings) 100000 2000000 6231790| 16231790

Hadoop 212.11 233.39 260.79 332.91

Spark 25.943 52.007 88.02 116.88

Speedup over spark 8.17600123| 4.48766512| 2.96284935| 2.84830595

Based on the same memory usage, Spark performs better than RDBMS and Hadoop. The
reasons mainly result from the following factors:

1) Spark workloads have a higher number of disk accesses per second than Hadoop
and RDBMS

2) Spark has better memory bandwidth utilization than other two

3) RDBMS have many read and write operations on disk while Mapreduce have many read
but single write, in which Spark perform read and write operation on disk once a time.
Also, in Spark, task scheduling is based on an event-driven mode, but Hadoop employs
heartbeat to tracking tasks, which periodically causes a few seconds delays. For some
applications involved in the iterative algorithm, Hadoop is overwhelmed entirely by Spark
because multiple jobs in Hadoop cannot share data and have to access HDFS frequently.
Next evaluation of the recommendation is done by the memory utilization. The observed

result is presented in Figure 18.
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Figure 18 Percentage of memory utilization by various recommendation algorithms at different configurations of data
networks with various sizes of datasets: (a) 100000 ratings, (b) 2000000 ratings, (c) 6231790 ratings, and (d) 16231790

ratings.

Here, Hadoop and RDBMS have less effect on memory utilization with an increase in the

size of datasets where former and later approaches are best and least efficient among the

three approaches concerning the memory utilization. However, memory utilization with

Spark has been significantly increased with increase in the size of datasets. Because of

more number of iterations, spark occupies more memory for newly created RDD, which

effect spark’s performance and also increase the CPU consumption as shown in Figure 19.

At all the algorithms, a configuration with the cloud-based multi-node is best with memory
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utilization as compared with non-cloud based because of its memory capacity and

parallelism of task computation on different clusters.

The third evaluation of the recommendation algorithms in this study is done by percentage

use of CPU during the operation. The obtained result is illustrated in the following Figure

19.
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Figure 19 Percentage of CPU usage by various recommendation algorithms at different configurations of data networks
with various sizes of datasets: (a) 100000 ratings, (b) 2000000 ratings, (c) 6231790 ratings, and (d) 16231790 ratings.

It is seen from Figure 19 that the amount of CPU usage is increased gradually with the
increase in the size of datasets. The CPU usage of Hadoop with cloud-based single node is

lesser compared to other configurations of it at all sizes of datasets. At Spark and RDBMS,
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the use of cloud-based configuration has helped to reduce the amount of CPU usage at all
the configurations. Overall, all the compared algorithms have mixed result with the change

in network configurations and increase in size of datasets.

Lastly, the observation is done by disk 1/0 operations per second. It is done only on cloud
environment after noticing cloud-based as more efficient than non-cloud based. This is
done only between Hadoop and Spark, to compare their disk 1/O for task completion.
It is seen from the Figure 20 that, Spark has a higher number of disk accesses (read
operation per second) per second than Hadoop on every experiment. However, write
operation per second in Hadoop is slightly higher than that in spark. Overall, considering
disk 1/0O operations as a performance metric, spark on multi-node cluster environment have

faster access.
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Figure 20 Graph plot of Disk I/O read and write by Spark and Hadoop on cloud-based single node and multi-node cluster
with various sizes of datasets.

4.2 Accuracy of recommendation system

Experiments test whether the algorithms are useful for predicting relevant song for any
item. For every item in the dataset, 10% song was randomly removed and the algorithms
were used to try to recommend that removed song. This “Leave one out” methodology has

been used in CF offline experiments.
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The dataset is divided into training and test datasets at a 90% to 10% ratio. Ten different
training and testing datasets were created for 10-fold cross validation. This method of
experimentation has some limitations. These algorithms could recommend song that are
very similar to or even better than the removed song and this might diminish the
algorithms’ performance, since these song will appear in the recommendation list before
than the removed song. Even though this is a possibility, it is expected the removed song to
be recommended. In order to do this, “Hit-percentage” is taken as a metric. “Hit-
percentage” (HP) is defined as a metric to measure the percentage of the time the
recommender algorithm correctly recommends the removed song. Here, Spark is taken as
the base system for calculating accuracy of algorithm which is shown in Table 6 below.

Table 6 Accuracy of Recommendation System where hit-percentage is accuracy.

round-1 |round-2 |round-3 |round-4 |round-5 |[round-6 |round-7 [round-8 [round-9 |round-10

Hit-percentage | 89.09%| 89.12%| 90.18%| 89.31%| 89.20%| 89.17%| 89.86%| 88.70%| 88.79%| 89.06%

As seen in Table 6, the minimum and maximum accuracy on a hit-percentage scale is
88.70% and 90.18%, respectively. At most of the times, nearly similar hit-percentage was

observed with overall accuracy being 89.248%.

4.3 Statistical validation of the experimental results
To validate the reported result, Friedman as the ranking test [24] [25] and Holm [26] as the
post-hoc test is performed. For the test, the null hypothesis (H,) is set as:

a. Ranking: The means of the results of two or more algorithms are the same.

b. Post-hoc: The mean of the results of the control method and against each other

groups is equal (compared in pairs).

The following tests are applied to the STAC web platform where it is assumed that the
lower the result of an algorithm on a problem, the better of such algorithm [27] [28]. Here,
a combination of a node configuration and network configuration in a recommendation
method is assumed as an individual algorithm or a group. Hence there are eight algorithms
for the ranking and post-hoc test. For example, a non-cloud based Spark with a single node

Is assumed an algorithm among the eight. For an evaluation measure, each algorithm has
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three samples of output in one dataset. Hence, a number of the group for the test (k) is eight

and number of samples (n) is 96 (12 samples per algorithm). The significance level (o) is

assumed as 0.05 for all the tests.

Computational time

The null hypothesis for ranking was rejected by the Friedman test with p-value of

0.0021. In addition, the null hypothesis for the post-hoc test with multi node cloud

based Spark as a control method yielded the following result.

1.

Spark (multi node/cloud based) vs. RDBMS (non-cloud): H, is rejected with p-
value of 0.0012.

Spark (multi node/cloud based) vs. RDBMS (cloud based): H, is rejected with
p-value of 0.0054.

Spark (multi node/cloud based) vs. Hadoop (single node/non-cloud): H, is
rejected with p-value of 0.0013.

Spark (multi node/cloud based) vs. Hadoop (single node/cloud based): H, is
rejected with p-value of 0.00398.

Spark (multi node/cloud based) vs. Hadoop (multi node/cloud based): H, is
accepted with p-value of 0.08342.

Spark (multi node/cloud based) vs. Spark (single node/non-cloud): H, is
accepted with p-value of 0.35257.

Spark (multi node/cloud based) vs. Spark (single node/cloud based): H, is
accepted with p-value of 0.55098.

The result of the rank test suggests that the computational time required by every individual

algorithm differs from each other. Moreover, post-hoc test signifies that the computational

time required by multi-node cloud-based Hadoop is statistically similar to multi-node

cloud-based Spark with p-value very close to the significance level (0.05). The post-hoc

test for remaining Hadoop configurations and RDBMS is rejected.

Memory utilization

The null hypothesis for ranking was rejected by the Friedman test with p-value of

0.0021. Since, Hadoop seems efficient at memory utilization as shown in Figure 21,

the multi node cloud based Hadoop is set as a control method in the null hypothesis
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for the post-hoc test on memory utilization by different algorithms. The result of the

post-hoc test is presented as follows:

1.

Hadoop (multi node/cloud based) vs. RDBMS (non-cloud): H, is rejected with
p-value of 0.0011.

Hadoop (multi node/cloud based) vs. RDBMS (cloud based): H, is rejected with
p-value of 0.0012.

Hadoop (multi node/cloud based) vs. Spark (single node/non-cloud): H, is
rejected with p-value of 0.0021.

Hadoop (multi node/cloud based) vs. Spark (single node/cloud based): H, is
rejected with p-value of 0.0023.

Hadoop (multi node/cloud based) vs. Spark (multi node/cloud based): H, is
accepted with p-value of 0.06829.

Hadoop (multi node/cloud based) vs. Hadoop (single node/non-cloud): H, is
accepted with p-value of 0.41024.

Hadoop (multi node/cloud based) vs. Hadoop (single node/cloud based): H, is

accepted with p-value of 0.23953.

Since the null hypothesis for the rank test is rejected, it is clear that the memory utilization

by every individual algorithm is different. Furthermore, as in computational time, the post-

host test compared with multi-node cloud-based Spark is accepted by the p-value very

close to the significance level. Test with remaining Spark configurations and RDBMS is

rejected.

e CPU usage

Similar to the computational time and memory utilization, the Friedman ranking test

is rejected with p -value 0.0020. In addition, as the CPU usage among the

recommendation algorithms in Figure 22 shows the mixed result, cloud based

RDBMS have set as a control method in the null hypothesis in the post-hoc test.

The obtained statistical result is reported as follows:

1.

RDBMS (cloud-based) vs. Spark (single node/non-cloud): H, is rejected with p-
value of 0.0050.
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2. RDBMS (cloud based) vs. Spark (single node/cloud-based): H, is rejected with
p-value of 0.00276.

3. RDBMS (cloud-based) vs. Spark (multi node/cloud-based): H, is accepted with
p-value of 0.41024.

4. RDBMS (cloud-based) vs. Hadoop (single node/non-cloud): H, is rejected with
p-value of 0.00303.

5. RDBMS (cloud-based) vs. Hadoop (single node/cloud-based): H, is rejected
with p-value of 0.00150.

6. RDBMS (cloud-based) vs. Hadoop (multi node/cloud-based): H, is accepted
with p-value of 0.40420.

7. RDBMS (cloud-based) vs. RDBMS (non-cloud): H, is rejected with p-value of
0.00243.

The Friedman rank test signifies that the CPU usages by various algorithms are different.
Moreover, the post-hoc test suggests that the CPU usage of cloud-based RDBMS is

statistically similar to multi-node cloud based Spark/Hadoop.

4.4 Analysis of the Result

As from all the observations, the performance of the spark technology is best among all.
The Hadoop lies on second and RDBMS technology on third. The characteristics of
dividing up of the single task into multiple tasks and executing those tasks from individual
clusters make the performance of the system faster, which can be seen from the
performance of Spark and Mapreduce in every experiment, and this is not found in
RDBMS as it is not its property. Similarly the processing of a task on memory rather than
on a disk again improves the performance, which is proven by the performance of Spark
that is not available on Hadoop, where Hadoop have number of data in and out from disk
while processing data causing a delay. RDBMS having property of processing data on
memory taking from disk is not much significant because of its higher disk 1/0O overhead,
memory utilization and CPU usage, making the process slower for huge data.

The use of cloud has also a prominent impact on the performance of the system, which can

be seen from the cloud-based output in every graph of experimentally observed. The result
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value (time in second) from all the system for the cloud-based environment is least among
them all. Moreover, from memory usage, multi-node cluster in the cloud have the best

result for every algorithm.
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5 CONCLUSION

By comparing the experimental results for running different case studies, it is found that
processing of data in-memory led spark to outperform Hadoop as Hadoop MapReduce
persists back to the disk after a map or reduce action. Nonetheless, Spark needs much
memory. The memory in the Spark cluster should be at least as large as the amount of data
that need to process because the data has to fit into the memory for optimal performance.
So, if it is to process really Big Data, Hadoop will definitely be the cheaper option since
hard disk space comes at a much lower rate than memory space. On the other hand,
considering Spark’s benchmarks, it should be more cost-effective since less hardware can
perform the same tasks much faster, especially on the cloud where compute power is paid

per use.

Overall, if there is no sufficient memory and the speed is not a demanding requirement,
Hadoop is a better choice. In addition, if the speed is not an important constraint and data
volume is less and structured in nature then RDBMS is the best choice. For those
applications, which are, time sensitive or involved in iterative algorithms and there is
abundant memory available, Spark sure to be a best fit. Moreover, Spark running on cloud
system having high compute power and pay per use property will be the most requirement

fulfilling system.

As for future work, setting up of recommendation system on a bigger cluster with large
volume of data to test the scalability of each platform will be the first priority. Also,
increasing the memory capacity of the clusters to explore the influence of memory
restriction on running time of Spark will be the other work. And planned to design an
intelligent system that can help to choose a platform and the configuration parameters

based on the applications and input data sizes to get optimized performance.
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APPENDICES

Appendix A - Creating a cluster in google cloud

Google Cloud Platform SparkMapreduce ~

& Cloud Dataproc & Create a cluster
Clusters Name
| cluster-2d13
Jobs
Region Zone
global “ ‘europe-west1-d -
Master node

Contains the YARN Resource Manager, HDFS NameNode, and all job drivers
Machine type Cluster mode
nl-standard-4 (4 vCPU, 15.0GB .. ~ Standard (1 master, N workers) ~ ~

Primary disk size (minimum 10 GB)
500 GB

Worker nodes

Each contains a YARN NodeManager and a HDFS DataNode.
The HDFS replication factor is 2.

Machine type Nodes (minimum 2)
n1-standard-4 (4 vCPU,15.0GB .. ~ 2

Primary disk size (minimum 10 GB) Local $5Ds (0-8)
500 GB 0 x375GB
YARN cores YARN memory
8 24.0GB

Preemptible workers, bucket, network, version, initialization, & access options

Equivalent REST or command line

Appendix B - List of clusters

Google Cloud Platform parkMapreduce ~ Q
& Cloud Dataproc Clusters CREATE CLUSTER C REFRESH REGIONS ¥
Clusters Search clusters, press E
Jobs e -
Name ~ Region  Zone Total worker nodes  Cloud Storage staging bucket Created Status
@ cluster7dea  global  asizeastih 3 dataproc-216ceadf-340a-4b11-ab4f-67227842a212-asia  Aug 25,2017,32606 PM  Running
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Appendix C - Running a Job in google cloud

Google Cloud Platform $e SparkMapreduce ~

cﬁ: Cloud Dataproc < Submit ajob

é»  Clusters Region
— global -
= Jobs
Cluster
Select a cluster -
Job type
Hadoop -

Jar files (Optional)

Enter file path, for example, hdfs://example/example.jar

Main class or jar

Enter class name or select a jar file -

Arguments (Optional)

Press <Return> to add more arguments

Properties (Optional)

| + Add item }

Labels (Optional)

| 4+ Add item ‘

Equivalent REST

Appendix D - List of MySQL Instance

= Google Cloud Platform 3e SparkMapreduce ~ Q
9., sqQL Instances CREATE INSTANCE
= Filter instances Columns ~
Instance 10 Type IP address Instance connection name High availability Location. Storage used
& myrecommendersgl MySQL 2nd Gen 5.7 104.199.249.205 sparkmapreduce asia-eastl:myrecommendersql Add asia-eastl-b - 1GBef10GB
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Appendix E - Creating a database in MySQL in Google cloud

Create a database

Database name
Must follow MySQL schema object name rules.

[1
Character set Gollation (0101}
utfa Default collation

CANCEL CREATE

Appendix F - Mapreduce on cloud with single cluster

Google Cloud Platform musicrec ~

&, Cloud Dataproc & Cluster details CREFRESH | DELETE
Clusters @ cluster-d0d3
Jobs Overview  Jobs VM Instances Configuration

Q Search jobs, press Ente

Job ID Type Start time Elapsed time Status

@ 6c71794e-6566-4bd1-bad9-f68705494fcf Hadoop Oct 29, 2017, 7:17:06 PM 5 min 13 sec Succeeded [ I}
& e62b7350-7e1a-420a-bb46-67c9e7b5b0aa Hadoop 0Oct 29, 2017, 2:15:29 PM 4 min 40 sec Succeeded L )
) 879f7692-0576-4a50-b4b7-6chbodeae?d7a Hadoop Oct 29, 2017, 1:56:27 AM 37 sec Canceled LB
& 3932753d-64cc-4516-9162-c2ff3ebIcd8b Hadoop 0ct 29,2017, 12:40:31 AM 10 min 20 sec Succeeded L ]
& 89413f81-a75f-4d55-92c3-b74da1d92156 Hadoop Oct 29,2017, 12:24:12 AM 4 min 59 sec Succeeded [ I}
] 7fb5-49ed-8daS- Hadoop  Oct29,2017,12:22:49 AM 7 sec Succeeded W W
& 1d853ea3-5be0-408a-8313-8360c179 1 eaf Hadoop Oct 29,2017, 12:12:41 AM 6 min 25 sec Succeeded L I}
& 7342022e-aaa?-dele-bB21-a831B095200b Hadoop Oct 28,2017,11:23:15 PM 7 sec Succeeded L I}
& fbSa7ded-be7t-dcle-b916-d9caee?479b6 Hadoop Oct 28,2017, 11:12:45 PM 4 min 56 sec Succeeded L )
& 375f52ca-3665-4Be6-bf48 Hadoop  Oct28,2017,11:10:58PM B sec Succeeded M W
& 5c3d2c07-ff6c-4601-a446-b5549d4c621d Hadoop Oct 28, 2017, 10:57:30 PM 7 min 36 sec Succeeded L B}
& 2fc6dB2c-8d81-44c9-b687-a19562¢40649 Hadoop Oct 28,2017, 8:10:34 PM 28 min 22 sec Succeeded L B}
@ bb2ab082-a7df-4eBc-8561-a7fBdB10ff7a Hadoop  Oct 28,2017, 4:41:31 PM 3 min 40 sec Succeeded MW W
& ccal3c26-5e4f-4215-95e6-53eedbe9s107 Hadoop Oct 28,2017, 4:39:21 PM 13 sec Succeeded L]
& 2dc20d97-4911-4952-a00d-3d77celad10c Hadoop Oct 28, 2017, 4:23:29 PM 4 min 6 sec Succeeded L B}
Q 50a7-427b-b495- Hadoop Oct 28, 2017, 2:08:43 AM 3 min 56 sec Succeeded B}
@ 53272104-0c49-42b8-95e2-49b6389df14f Hadoop  Oct 28,2017, 1:59:13 AM 1 min 13 sec Succeeded L )
& cf0cdaet-5454-4e06-8125-a52faaB428¢] Hadoop Oct 28,2017, 1:08:24 AM 1 min 25 sec Succeeded L I}
6 4d2-45ch-bbaf-cde644e3f87d Hadoop Oct 27, 2017, 8:47:21 PM 4 min 14 sec Succeeded [ B}
@ 64a32f12-0951-4c4e-9634-8d2fB4121ddc Hadoop Oct 27,2017, 8:01:48 PM 20 sec Succeeded | |
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= Google Cloud Platform 2 myhadoopspark ~ Q

g S10rage Browser F UPLOAD FILES # UPLOAD FOLDER 3 CREATE FOLDER C REFRESH

Browser
- Q, Filter by prefix..

2 Transfer Buckets / mybuckeths / hadoopfile / outputThesis2

£ Settings
Name size  Type Storage class Last modified
[ _sUccEss 0B application/octet-stream Regional 9/7/17,3:23 AM
[ part-00000 522.58KB  application/octet-stream Regional 9/7/17,3:23 AM
[ part-00001 519.14KB  application/octet-stream Regional 9/7/17,3:23 AM

Google Cloud Platform &8s myhadoopSpark ~

& Ccloud Dataproc & Job details CREFRESH I CLONE

Clusters @ 51ae174b-b40f-4a49-8550-fa2ffd23114c

= one Start time: Sep 7,2017,3:18:45AM  Elapsed time: 5min 8 sec  Status: Succeeded

Output Configuration

Line wrapping
1otal vcore-m1111Seconas taken Dy all reauce tasks=4/¢2y
Total megabyte-milliseconds taken by all map tasks=161845248
Total megabyte-milliseconds taken by all reduce tasks=96315392
Map-Reduce Framework
Map input records=591873
Map output records=591873
Map output bytes=12228196
Map output materialized bytes=13412014
Input split bytes=618
Combine input records=@
Combine output records=0
Reduce input groups=1577
Reduce shuffle bytes=13412014
Reduce input records=591873
Reduce output records=1577
Spilled Records=1183746
Shuffled Maps =12
Failed Shuffles=@
Merged Map outputs=12
GC time elapsed (ms)=1975
CPU time spent (ms)=25340
Physical memory (bytes) snapshot=3859062784
Virtual memory (bytes) snapshot=27954860032
Total committed heap usage (bytes)=3545759744
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO0_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=12248676
File Output Format Counters
Bytes Written=1066718
Job took 30147@milliseconds

< Job output is complete
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Appendix G - Mapreduce on cloud with multi-node cluster

Google Cloud Platform & musicrec ~

&% Cloud Dataproc & Cluster details CREFRESH i DELETE
Lt @ multinode
Jobs Overview Jobs VM Instances Configuration

Q, Search jobs, press Ente

Job ID Type Start time Elapsedtime  Status
@& af35cdde-14de-dalc-9fd7-fef8cBelcdda Hadoop Oct 31,2017, 3:47:20 PM 5 min 5 sec Succeeded L 1
@ 106ech51-c458-4cdb-bbdd-16b2d64556ef Hadoop Oct 31,2017, 3:35:05 PM 4 min 30 sec Succeeded [
& B2cB6769-92a4-44a0-9cb0-aac3b4Be766 Hadoop Oct 31,2017, 3:21:11 PM 4 min 4 sec Succeeded [
@ ©9524511-41fc-4f96-a026-30521575b4b1 Hadoop  Oct31,2017,3:08:29PM  3min51sec  Succeeded W W
@ b646f148-7eac-42d4-adb5-131d42154e1 Hadoop Oct 30,2017, 3:58:41 PM 4 min 18 sec Succeeded L 1
0 9df0fd4f-00fa-48ed-9e0e-30b97c95b343 Hadoop Oct 29,2017, 5:51:58 PM 1 min 40 sec Succeeded | B}
@ 1986caf6-Ocaa-473f-852¢-b29e55406ch6 Hadoop  Oct 29,2017,2:28:48 PM 5min 12 sec Succeeded L ]
@ 12591c72-2651-4244-a6f2-914b0c2b33f3 Hadoop  Oct29,2017,2:21:50 PM 5 min 6 sec Succeeded M W
@ 7813a2d4-5499-4694-8dl 90aB9d6b182 Hadecop Oct 29,2017, 2:10:08 PM 3 min 58 sec Succeeded L
@& 06bf7a7e-f180-4228-9045-b56c64e480f7 Hadoop 0Oct 29,2017, 2:04:41 PM 3 min 59 sec Succeeded | 1
@ fb7fffdb-2e78-4e18-8Bc9d-c6f74ad5928¢c Hadoop Oct 29,2017, 1:56:40 PM 4 min 30 sec Succeeded [
& 9b73d710-289b-4be8-8499-86e99626e915  Hadoop  Oct29,2017,1:49:38PM  4min28sec  Succeeded W W
@ 1643bffd-5560-4683-90ad-93b8be7dcBba Hadoop Oct 29,2017, 1:44:44 PM 10 sec Succeeded L 1
@& 5223a2d3-1ba0-4b65-ac35-beBactchf7d Hadoop 0Oct 29,2017, 1:41:28 PM 1 min 22 sec Succeeded L 1
0 ba271béb-b4ad-4552-a731-c336837af90b Hadoop Oct 29,2017, 1:37:31 PM 1 min 25 sec Succeeded | I}
& f675fd55e681-4455-bb83-e1aeb699f62e Hadoop  Oct29,2017,1:22:36 PM 4 min 4 sec Succeeded MW W
@ 0285adac-d476-4bf7-BcB84-da057d3aTe19 Hadoop Oct 29,2017, 1:15:51 PM 3 min 49 sec Succeeded [ B
0 78903c74-f932-439¢c-947¢-069f9ad15117 Hadoop Oct 29,2017, 1:09:08 PM 4 min 7 sec Succeeded | I}
(/] £5f1-4048-ac18 Hadoop 0Oct 29,2017, 2:28:32 AM 6 min 37 sec Succeeded |
& 8b43051d-dbBa-4b03-b787-4471badb2c21 Hadoop Oct 29,2017, 2:21:31 AM 5 min 18 sec Succeeded [
<l
Google Cloud Platform SparkMapreduce ~
= Storage Browser ¥ UPLOAD FILES E3 CREATE FOLDER C REFRESH
@  Browser =
= Transfer Buckets / hadoopfile / outputThesis2
E-3 Settings
Name Size Type Storage class Last modified
3 _success oB application/octet-stream Regional 9/6/17, 8:43 PM
51 part-00000 19.79K8  application/octet-stream Reglonal 9/6/17, 8:43 PM
£3 part-00001 17.08KB  application/octet-stream Regional 9/6/17, 8:43 PM
1 part-00002 18.53K8  application/octet-stream Regional 9/6/17, 8:43 PM
£ part-00003 19KB  application/octet-stream Regional 9/6/17,8:43 PM
£1 part-00004 18.47KB  application/octet-stream Regional 9/6/17,8:43 PM
] part-00005 16.69 KB application/octet-stream Regional 9/6/17, 8:43 PM
£ part-00006 1552KB  application/octet-stream Regional 9/6/17,8:43 PM
£ part-00007 18.08 KB  application/octet-stream Regional 9/6/17, 8:43 PM
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Google Cloud Platform

2e SparkMapreduce ~

Jobs

<l

Appendix H - Mapreduce on Non-cloud based system

Cloud Dataproc

Clusters

- Cluster
About

Nodes

NEW
NEW_SAVING
SUBMITTED
EINISHED
EAILED

KILLED
Scheduler

+ Tools

Cluster Metrics

Ps Apps

A Apps
Submitted | Pending

Running

9 0
Scheduler Metrics

Scheduler Type
| capacity scheduler

‘Shcw 20 entries
1D -
application 1509434563421 0009
NI FT LR L ERELET LOTE
i ion, 434 L)
T TE Y P LR LT

application_1509434563421_0005

application_1509434563421_0004

(E_

Job details

C REFRESH 0} CLONE

& 9f47b2d7-41b5-4eb8-a398-7ed6ea3d813f

Output

Start time: Sep 6,2017, 8:38:42 PM LElapsed time: 4 min 49 sec Status: Succeeded

Configuration

Line wrapping

lotalt
Total
Total
Total
Total
Total
Total
Total

Time
time
time
time

spent oy
spent by

aiL
all

maps 1n occupled SLOts (mS)=113b39v8
reduces in occupied slots (ms)=645148
spent by all map tasks (ms)=284@77

spent by all reduce tasks (ms)=161287
vcore-milliseconds taken by all map tasks=284877
vecore-milliseconds taken by all reduce tasks=161287
megabyte-milliseconds taken by all map tasks=581789696
megabyte-milliseconds taken by all reduce tasks=330315776

Map-Reduce Framework

Shuffle

Map input records=10527@

Map output records=10527@

Map output bytes=189837@

Map output materialized bytes=2102062

Input split bytes=2208

Combine input records=e

Combine output records=@

Reduce input groups=1458

Reduce shuffle bytes=2102062

Reduce input records=18527@

Reduce output records=1458

Spilled Records=210540

Shuffled Maps =192

Failed Shuffles=o@

Merged Map outputs=192

GC time elapsed (ms)=7239

CPU time spent (ms)=46270

Physical memory (bytes) snapshot=13446688768
Virtual memory (bytes) snapshot=111886096240
Total committed heap usage (bytes)=11775508480
Errors

BAD_ID=0

CONNECTION=0

TO_ERROR=0

WRONG_LENGTH=@

WRONG_MAP=@

WRONG_REDUCE=0

File Input Format Counters

Bytes Read=1984578

File Output Format Counters

Bytes Written=147507

Job took 275168milliseconds

Job output is complete

Longed in as crvno
FINISHED Applications
Apps Containers Memory Memory Memory VCores VCores VCores Active Decommissioned Lost Unhealthy Rebooted
Completed Running Used Total Reserved Used Total Reserved Nodes Nodes Nodes Nodes
9 0B 8GB oB 0 s 0 1 o [ o Q J
Scheduling Resource Type Minimum Allocation Maximum Allocation
[MEMORY ] <memory:1024, vCores: 1> <memory:8192, vCores: 8> \
search: ‘
Usero Name o APPlicationType oo, StartTime  FinishTime g0 o Fnaistatus ¢ Progress o Tracking Ul Blacklisted R
hduser CFThesis.jar MAPREDUCE default Tue Oct 31 Tue Oct 31 FINISHED SUCCEEDED [ | History N/A
16:59:18 18:39:00
+0900 +0900 2017
2017
hduser CFThesis.jar MAPREDUCE default Tue Oct 31 Tue Oct 31 FINISHED SUCCEEDED [ | History N/A
16:56:13 16:59:15
+0900 +0900 2017
2017
hduser CFThesis.jar MAPREDUCE default Tue Oct 31 Tue Oct 31 FINISHED SUCCEEDED [ | Histor N/A
16:55:12 16:56:10
+0900 +0900 2017
2017
hduser CFThesisjar MAPREDUCE default Tue Oct 31 Tue Oct 31 FINISHED SUCCEEDED | | Histor: N/A
16:40:45 16:41:26
+0900 +0900 2017
2017
hduser CFThesis.jar MAPREDUCE default Tue Oct 31 Tue Oct 31 FINISHED SUCCEEDED | History N/A
16:39:27 16:40:42
+0900 +0900 2017
2017
hduser CFThesis.jar MAPREDUCE default Tue Oct 31 Tue Oct 31 FINISHED SUCCEEDED ! | History N/A
16:38:52 16:39:23
+0900 +0900 2017
2017
hduser CFThesisjar MAPREDUCE default Tue Oct 31 Tue Oct 31 FINISHED SUCCEEDED [ | History N/A
16:26:31 16:27:38
+0900 +0900 2017
2017
hduser CFThesisjar MAPREDUCE default Tue Oct 31 Tue Oct 31 FINISHED SUCCEEDED [ | History N/A
16:25:06 16:26:29
+0900 +0900 2017
2017
hduser CFThesisjar MAPREDUCE default Tue Oct 31 Tue Oct 31 FINISHED SUCCEEDED [ | History N/A
16:24:19 16:25:02
+0900 +0900 2017
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File System Counters
FILE: Number bytes read=37689932
FILE: Number bytes written=75736089
FILE: Number read operations=0
FILE: Number large read operations=0
FILE: Number write operations=0
HDFS: Number bytes read=34543390
HDFS: Number bytes written=3207589
HDFS: Number read operations=9
HDFS: Number large read operations=0
HDFS: Number write operations=2
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=38828
Total time spent by all reduces in occupied slots (ms)=10657
Total time spent by all map tasks (ms)=38828
Total time spent by all reduce tasks (ms)=10657
Total vcore-milliseconds taken by all map tasks=30828
Total vcore-milliseconds taken by all reduce tasks=10657
Total megabyte-milliseconds taken by all map tasks=31567872
Total megabyte-milliseconds taken by all reduce tasks=10912768
Map-Reduce Framework
Map input records=1575414
Map output records=1575414
Map output bytes=34539098
Map output materialized bytes=37689938
Input split bytes=196
Combine input records=0
Combine output records=0
Reduce input groups=1682
Reduce shuffle bytes=37689938
Reduce input records=1575414
Reduce output records=1682
Spilled Records=31560828
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=900
CPU time spent (ms)=18830
Physical memory (bytes) snapshot=591147008
Virtual memory (bytes) snapshot=5814398976
Total committed heap usage (bytes)=392306688
Shuffle Errors
BAD_ID=0
CONMECTION=0
I0_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=34543194
File Output Format Counters
Bytes Written=3207509
Job took 452288milliseconds
hduser@master:~/ThesiscCode/CFMapreduce$ |
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Appendix I - Spark on cloud
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Appendix K — Output recommendation list from all the methods

LY=0 - B - T S PV N

0~

ORI

- . 0 -
(o oo looiolooiolooiollolofofloloooooofooofoofoRofcfloRofcjonon-]

w
@

i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
i
1

.9995959599999999
.9487373941786248
.9132997212006829
.9429068878509639
.9613638498709224
.9551193973874768
.948915528162488

.9600459451420741
.9387445181517423

.943039377274702

.9573860685968381
.960866623892328

.9265809768445675
.9373408420349089
.9456641485556644
.9446651742249216
.940529134897858

.8837209302325583
.9333110679927804
.9062803873487921
.9254588973428826
.9675425840658004
.9593277108297823
.9445706635952916
.9396933787226742
.9473091158522402
.9191908352058211
.9723951205383821
.9352010898538022
.9424204132773988
.9643669449985898
.9223941966146801
.9378785237170711
.8601793595076359
.8918244238879707
.9395834997845066
.9133691346759317
.9515646322979401
.9527600899802233
.93132484524256006
.9471477966965145
.9386701957784107
.9287386430320962
.9518082739429662
.9652445408881114

767 1337
1407 1021
543 1001
1157 734
424 400
974 1210
1074 1267
345 13
93 475
871 864
84 235
118 185
451 40
1090 279
1263 239
147 844
521 39
246 590
1326 233
952 280
596 792
170 293
26 846
772 4
628 237
1397 695
448 527
334 181
558 99
1203 493

680
574
624
473
1540
422
309
563
307
428
682
347
55@
62
468
12@9
756
556
794
316
457
1098
165
660
110
505
831
291
77
154

752
1135
370
989
1227
455
1128
284
552
763
271
220
408
33
749
66
244
1070
15
518
943
321
332
190
642
211
310
486
82
578

253
1029
312
1034
394
93e
17
554
873
895
242
51
1012
42
880
48
248
213
934
60
859
378
1089
226
420
1113
150
949
484
510

688
299
325
149
976
365
697
464
721
259
824
433
477
288
1283
266
121
789
1063
200
932
125
833
112
194
765
1188
514
1036
97

52

369
769
262
1061
103
53
886
1160
143
462
1115
286
592
295
567
790
538
86
1065
358
815
718
376
956
619
725
217
709
549
273

1009
547
20
950
406
231
107
338
679
1045
783
219
415
662
419
123
808
840
990
727
202
637
127
134
583
11
88
215
163
714

1067
585
985
572
444
396
145
240
787
343
541
741
431
761
363
1014
116
745
73
941
525
1007
356
55
921
866
516
196
501
222

413
743
305
826
877
91
1245
565
109

268
491
411
640
675
620
1315
255
167
277
820
1016
1052
613
879
392
509
204
156
631

24
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