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ABSTRACT  
 

Today, Big Data is a hot issue both in industrial and academic fields. The need of data 

processing is changing with the gradual increase in data volume and with the mass of 

sources leading to a diversity of structures. Although relational database management 

system (RDBMS) remaining the primary technology for data management of structured 

data and been proven best for more than 40 years, it has reached its limit, and the reason is 

massive growth in the diverged volume of data. Several researchers and organizations now 

focused on MapReduce and Spark framework that has discovered huge success in 

processing and analyzing a large volume of data on several clusters. In this study, the 

performance of MapReduce, RDBMS, and Spark with various comparison measures are 

evaluated. To conduct a comparison and analysis, three processes are computed: (a) 

developed recommendation system with all three algorithms, (b) run that system on various 

data networks and data sizes, and (c) the output is then analyzed and compared on the basis 

of time computation, memory consumption, and CPU usage. Moreover, statistical 

validation of the observed results from all the algorithms with respective node and network 

configuration using Friedman rank test and Holm post-hoc test are performed. Overall, 

observations show that Spark is about 2.5x and 5x faster than MapReduce, and 10/20 times 

faster than RDBMS. The reason for these speedups is the efficiency of the alternative least 

square algorithm and reduced CPU and disk overheads due to RDD caching in spark. 

 

Keywords: Cloud Computing, Hadoop, MapReduce, Multi-node cluster, RDBMS, Spark, 

and Single-node cluster     
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1. INTRODUCTION 

1.1 Background Theory 

Big Data is a characterization of the huge volume of various data type, mostly unstructured 

[1]. This entails data, which is too vast and huge that relational database management 

systems will not be able to analyze, because of its size, volume and unstructured in nature. 

So there should be a tool that is capable of making use of data fusing from various sources 

in the best way to generate value that can create better financial output for the company and 

better experiences for the end user and the customers. The tool that can be considered as 

effective if it can provide higher efficiency with limited resources. Big Data Analytics is 

that tool which provides precise solutions to analysts and researchers making use of the 

huge volume of previously unknown raw and unusable data. Using such analytics along 

with various data mining, machine learning, and natural language processing techniques, it 

is easier to find valuable and convenient insight, which aids enterprises and business to 

make the right decision at the right time. Open source technology like Hadoop/Mapreduce 

and Spark provides an effective solution for Big Data Analytics. In this study comparison 

of recommendations by RDBMS, Spark and Mapreduce framework on Hadoop Distributed 

File System are studied.  

 

Recommendation systems are part of information filtering system, which predicts the 

preference; the user might give to an item. Eliminating the static experience that 

needs searching for static information for purchasing any products, recommendation 

systems have generated a new experience to the user interacting with the websites by 

collective interaction among users dynamically. These systems calculate 

recommendations for each user based on their past experiences, searches and other 

users‟ preferences and search behaviors. Unlike search engines, recommendation 

engines try to present people with relevant content that they did not necessarily search 

for or that they might not even have heard of. Typically, a recommendation engine tries 

to model the connections between users and some type of item. Even if people do not 

know exactly what a recommendation engine is, they have most likely experienced one 

through the use of popular websites such as Facebook, Twitter, LinkedIn, and Amazon, etc. 

Recommendation systems can be extremely effective on a large scale if they are 
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implemented correctly. These systems are a core part of all these businesses, and in some 

cases, they drive significant percentages of their revenue. 

 

Collaborative filtering is one of the most popular and successful algorithmic approaches of 

recommendation algorithms. It is used in many websites and recognized as the most 

successful recommendation systems. The system calculates predicted preferences of users 

for items with which they have not yet interacted with using the set of preferences of many 

other users concerning items. So the algorithm is based on the notion of similarity. There 

are two popular approaches to perform this similarity, user and item based, and are referred 

to as nearest-neighbor models since the predicted values are calculated based on the set of 

most similar users or items. 

 

In a user-based approach, two users are considered similar if they have similar preferences 

and taste, that is, interacting pattern matched for the same item. So preference of another 

user that has a similar interacting pattern with target user can be used to calculate 

recommendations for unknown items. This can be done by selecting a set of similar users, 

known as neighbor formation, and calculating the score based on the items they have 

shown a preference for. The overall logic is that if others have tastes similar to a set of 

items, these items will tend to be good candidates for recommendation. 

 

In an item-based approach, the similarity between two items is calculated. This is usually 

based on the existing user-item preferences or ratings. Items that tend to be rated the same 

by similar users will be classed as similar under this approach. Once getting these 

similarities, it can represent a user regarding the items they have interacted with and find 

items that are similar to these known items, which can then recommend to the user. Again, 

a set of items similar to the known items is used to generate a combined score to estimate 

for an unknown item. 

 

The goal of collaborative filtering algorithms is to either make suggestions about 

new items or to make a prediction about the acceptance of a certain item for 

recommendations when providing opinions about various items. Also, it even 
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aims to either make suggestions of new items or to make a prediction about the 

acceptance of a certain item for a particular user based on users past 

experiences and similarity with others users.  

 

Moreover, Big Data analytics using data mining algorithms possess high computing 

requirements, which require high-performance processors to accomplish the task. The 

cloud provides a good platform for big data storage, processing, and analysis, addressing 

two of the main requirements of big data analytics, high storage, and high-performance 

computing [2]. 

 

The cloud-computing environment offers development, installation, and implementation 

of software and data applications „as a service.' Three services that exist are, namely, 

platform as a service (PaaS), software as a service (SaaS), and infrastructure as a 

service (IaaS). Infrastructure-as-a-service is a model that provides computing and storage 

resources as a service. Similarly, PaaS provides a software platform as a service whereas 

SaaS provides software itself to its clients. Also, the notion of commodity hardware and the 

„pay-as-you-go‟ model creates an efficient way of processing of huge volume data in a 

timely fashion, giving the conception of „big data as a service‟ justice. Google Cloud 

Dataproc can be taken as an example, which provides real-time vision in a cloud 

environment for big data.  

 

A relational database management system (RDBMS) is a database management system 

(DBMS) that is based on a relational model in which data and relationship among the data 

is stored in the form of tables. Relational databases are powerful in the sense that they 

require few assumptions about how data is related or how it will be extracted from the 

database. As a result, the same database can be viewed in many different ways. An 

important feature of relational systems is that a single database can be spread across several 

tables. These are used to store information like financial records, personal data, 

manufacturing information and other applications [3]. Despite receiving a challenge by 

object-oriented database system and XML database management system, RDBMS possess 

most of the market. Nearly all full-sized database systems are RDBMS's. 
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However, this traditional data management tools cannot be used for Big Data Analytics for 

the large volume and complexity of the datasets because of its limited capacity to support 

variety and volume of data. 

 

1.2  Hadoop Mapreduce Framework 

Hadoop is an open source software framework that supports distributed storage and 

processing of big data using the Mapreduce Programming Model. The cluster is maintained 

here using commodity hardware [4] and is designed in such a way that the hardware 

failures are automatically handled [5]. It processes Big Data in parallel and a fault tolerant 

manner. Hadoop splits files into some chunks and distributes them across nodes in a cluster 

along with the packaged code for processing of data in parallel. As data is processed in the 

local system, i.e., on every node of the cluster, the data manipulation is faster and more 

efficient. This is the reason why the system is faster and efficient in Hadoop system than it 

would be in conventional super-computer architecture where processing and data are 

distributed through high-speed networking. 

The base Apache Hadoop framework is composed of the following modules: 

  Hadoop Common – contains libraries and utilities needed by other Hadoop 

modules; 

 Hadoop Distributed File System (HDFS) – a distributed file-system that stores data 

on commodity machines, providing very high aggregate bandwidth across the 

cluster [6]; 

 Hadoop YARN  – a platform responsible for managing computing resources in 

clusters [7] and using them for scheduling users' applications; and 

 Hadoop Mapreduce  – an implementation of the Mapreduce programming model 

for large-scale data processing. 

Mapreduce library is written in many programming languages, so the Hadoop framework 

supports different languages. 

 

The architecture of Hadoop consists of a storage part, known as Hadoop Distributed File 

System (HDFS), and a processing part which is a Mapreduce programming model as 

shown in Figure 1. Hadoop cluster includes master and worker nodes. If the cluster is a 

https://en.wikipedia.org/wiki/Big_data
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small cluster, then there exists single master and multiple worker nodes. If the cluster is a 

larger cluster, then the cluster may consist more than one number of masters having 

secondary name node for replication of name node's memory to prevent loss of data and file 

corruption. A master node consists of task tracker, name node, and resource manager 

whereas worker node contains job tracker and data node. The detail of architecture is 

illustrated in Figure 2. 

 

Master Slave

Task tracker

Job tracker

Name node

Data node

Task tracker

Data node

Map reduce layer

HDFS layer

 

 

Figure 1 Architectural view of Hadoop. 

 

HDFS Layer 

HDFS contains name node and data node in master/slave architecture. A NameNode is a 

master server that manages the file system namespace and regulates access to files by 

clients. NameNode only stores the metadata of HDFS – the directory tree of all files in the 

file system, and tracks the files across the cluster. It does not store the actual data or the 

dataset. The data itself is actually stored in the DataNodes. Namenode knows the list of the 

blocks and its location for any given file in HDFS. With this information, NameNode 

knows how to construct the file from blocks. The NameNode executes the operations like 
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opening, renaming and closing files and directories. It also calculates the mapping of blocks 

to DataNodes. 

Client

Name node
Secondary 

name node
Job tracker

Data node

Data blocks

Data node

HDFS Map reduce

Task tracker

Map Reduce

Task tracker

Map Reduce

 

 

Figure 2 The detail architecture of Hadoop. 

There are some DataNodes in HDFS cluster, usually one per node in the cluster, which 

manages data storage on the nodes on which they are running. The DataNode is responsible 

for storing the actual data in HDFS. A file is split into a number of chunks/blocks, and 

these blocks are stored in a set of such DataNodes. When a DataNode starts up it announce 

itself to the NameNode along with the list of blocks it is responsible for. The DataNodes 

performs read and write requests from the file system’s clients and creation, deletion, and 

replication of blocks upon instruction from the NameNode. When a DataNode is down, it 

does not affect the availability of data or the cluster. NameNode will arrange replication for 

the blocks managed by the DataNode that is not available. 

 

The NameNode and DataNode are pieces of software designed to run on commodity 

machines. These machines typically run a GNU/Linux operating system (OS). HDFS is 

built using the Java language; any machine that supports Java can run the NameNode or the 

DataNode software.  
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Mapreduce Layer 

This layer contains two trackers, job tracker and task tracker for implementing the 

Mapreduce job. Job tracker to which a Mapreduce job is submitted is responsible for 

pushing work to the task tracker available in the node in the cluster, to keep the work as 

close to the data as possible. If the task tracker fails to work, then the work is rescheduled. 

The allocation of work to TaskTrackers is very simple. Every TaskTracker has a number of 

available slots (such as "4 slots"). Every active map or reduce task takes up one slot. The 

Job Tracker allocates work to the tracker nearest to the data with an available slot.  

Likewise, Mapreduce is a programming model that is capable of processing huge dataset 

with parallel, distributed algorithm on a cluster. Mapreduce program is composed of map() 

and reduce() function where map function is responsible for filtering and sorting and reduce 

function is responsible for summarizing. So this model is based on the split-apply-combine 

strategy for data analysis. It takes advantage of the locality of data, processing it near the 

place it is stored to minimize communication overhead. The parallelism that a Mapreduce 

provides offers the possibility of recovery from partial failure of storage units during 

operations. Similarly, the data replication prevents the data loss due to any failure.  Three 

different stages of Mapreduce are Map, Shuffle and Reduce.  

 "Map" step: Each worker node applies the "map()" function to the local data, and 

writes the output to a temporary storage. A master node ensures that only one copy 

of redundant input data is processed. 

 "Shuffle" step: Worker nodes redistribute data based on the output keys (produced 

by the "map()" function), such that all data belonging to one key is located on the 

same worker node. 

 "Reduce" step: Worker nodes now process each group of output data, per key, in 

parallel 

 

1.3  Spark 

The third technology Spark is an open source big data processing framework built around 

speed, ease of use, and sophisticated analytics.  It gives us a comprehensive, unified 

framework to manage big data processing requirements with a variety of datasets that are 

diverse in nature (text data, graph data, etc.) as well as the source of data (batch v. real-time 
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streaming data). It enables applications in Hadoop clusters to run up to 100 times faster in 

memory and ten times faster even when running on disk and lets quickly write applications 

in Java, Scala, or Python. It comes with a built-in set of over 80 high-level operators. In 

addition to Map and Reduce operations, it supports SQL queries, streaming data, and 

machine learning and graph data processing. 

 

Spark takes Mapreduce to the next level with less expensive shuffles in the data processing. 

With capabilities like in-memory data storage and near real-time processing, the 

performance can be several times faster than other big data technologies. It also supports 

lazy evaluation of big data queries, which helps with optimization of the steps in data 

processing workflows. It provides a higher-level API to improve developer productivity 

and a consistent architect model for big data solutions. It holds intermediate results in 

memory rather than writing them to disk, which is very useful especially when you need to 

work on the same dataset multiple times. It‟s designed to be an execution engine that works 

both in-memory and on-disk. Spark operators perform external operations when data does 

not fit in memory. It can be used for processing datasets that is larger than the aggregate 

memory in a cluster. It will attempt to store as much as data in memory and then will spill 

to disk. It can store part of a data set in memory and the remaining data on the disk. With 

this in-memory data storage, Spark comes with a performance advantage. 

 

The architecture of Spark consists of Driver, Master, and Executer as shown in Figure 3. 
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Driver

Val sc = new sparkConvext ( )

SparkContext

Master 

Executor

Task Task

 Worker

Executor

Task Task

 Worker

Executor

Task Task

Worker

 

 

Figure 3 Architectural view of Spark. 

Spark uses a master/worker architecture. It consists of Driver, Master, and Executer. 

A driver that talks to a single coordinator called master manage workers in which 

executers run. The driver and the executors run in their Java processes and can be run on 

the same or separate machines or in a mixed machine configuration. A Spark Driver is a 

master node in spark application that hosts spark context for spark application. Spark 

context establishes a connection to a spark execution environment which when created is 

used to create RDD, accumulators, access spark services and, run jobs. Specifically, to run 

on a cluster, the SparkContext can connect to several types of cluster managers (either 

Spark’s standalone cluster manager, Mesos or YARN [8]), which allocate resources across 

applications. Once connected, Spark acquires executors on nodes in the cluster, which are 

processes that run computations and store data for the application. Next, it sends 

application code (defined by JAR or Python files passed to SparkContext) to the executors. 

And finally, SparkContext sends tasks to the executors to run. Because the driver schedules 

tasks on the cluster, it should be run close to the worker nodes, preferably on the same local 

area network.  
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RDD graph

DAGSchedular

TaskSchedular

SchedularBackend

Cluster 

manager
Threads

Block 

manager

User manager Driver Executor

val rawData = sc.textFile("file:///

home/hduser/dataThesis/u.data")

rawData.first()

val rawRatings = 

rawData.map(_.split("\t").take(3))

rawRatings.first()

 

Figure 4 Detail architecture of Spark. 

As the Figure 5 entails, the spark application is split into several stages by DAG Scheduler 

which is scheduled to run on executors by the task scheduler that lives inside the driver [9]. 

The executor is a distributed agent that is responsible for executing tasks. It provides in-

memory storage for RDDs that are cached in Spark applications. When an executor starts it 

first registers with the driver and communicates directly to execute tasks. It can run 

multiple tasks over its lifetime, both in parallel and sequential manner. They track running 

tasks and send metrics (and heartbeats) using the internal heartbeat. 

 

1.4  Purpose 

The purpose of this research is to analyze the performance of different big data analytics 

system on the cloud. 

 

1.5  Problem Statement 

Acquiring a solution to improve the accuracy of any Big-data system is a big issue while 

implementing a huge and complex data, with minimum cost and infrastructure. Moreover, 

the selection of Big-data analytics tools for different areas is a complicated task for the 

learner. The comparative study along with could computing paradigm will enable an easier 

way to apply machine-learning algorithm with an efficient data processing.  
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1.6  Objective  

1. To build a recommendation system using Mapreduce, Spark, and RDBMS. 

2. To perform the comparative analysis of Mapreduce, Spark and RDBMS based on 

computational time, memory utilization, and CPU usage. 
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2. LITERATURE REVIEW 

Hongyong Yu, Deshuai Wang [10] proposed a system for data processing and mining log 

data of SaaS cloud using Hadoop. The results given in this thesis proved that Hadoop 

data processing performance is very high as compare to RDBMS, i.e., 28% improvement 

in the data processing. Apriori algorithm is used for data mining in the cloud which is 

the best to find association rules from big data. It uses tree structure and bottom-up 

approach to counting item sets efficiently from data. Parallel computing approach is used 

in adaptive Apriori algorithm to improve the performance of the system having large data 

size. 

 

Similarly, Kong Xiangsheng [11] proposed a system for processing and mining scientific 

data using Mapreduce in cloud environments. It states that the traditional supercomputing 

centers consisting only of petascale computing resources are not sufficient to tackle the 

broad range of e-Science challenges. The cloud computing model, based on scientific data 

centers that scale well enough to support extremely large on-demand loads, are needed to: 

 

Support large numbers of science gateways and their users. 

Provide a platform that can support the creation of collaboration and data & application 

sharing spaces that can be used by virtual organizations.  

Manage the computations that are driven by streams of scientific instrument data.  

 

The [12] study of data mining in cloud computing gives the depth knowledge of algorithm 

for data mining in cloud computing using Mapreduce. 

 

Similarly, [13] MRDS data processing and mining using Hadoop in cloud depict the data 

processing of mineral resources all over the world. The system is for processing and mining 

a big mineral resources data system‟s data. To enhance the performance of data processing 

Hadoop‟s Mapreduce architecture is used. For better improvement in data mining for 

MRDS, Apriori algorithm is used and improves the performance of the existing system 

more than 30%. This shows that, by grouping a good and open source technology such as 

Hadoop and Apriori algorithm together, we can achieve a better data processing and mining 
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for any system. 

 

Every day, 2.5 quintillion bytes of data are created and 90 percent of the data in the 

world today were produced within the past two years [14]  [15] . The commonly used 

software technology cannot cope with massive data, and the big challenge is to extract 

important information from it. Big data has a large volume, heterogeneous format, and 

decentralized data control. The example of big data applications is Facebook, Twitter, 

and Google. It is a big challenge to manage and mining a massive data because of its 

volume, different file formats and growth rate of the data in the world. There are many 

challenges with big data such as storage, processing, variety, and cost. 

 

There are several practical simulation-enabled analytics systems. One such system is given 

by Li, Calheiros, Lu, Wang, Palit, Zheng and Buyya, which is a Direct Acrylic 

Graph (DAG) form analytical application used for modeling and predicting the outbreak 

of Dengue in Singapore. 

 

It was in the 1980s that artificial intelligence-based algorithms were developed for data 

mining. Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Yu, Zhou, 

Steinbach, Hand and Steinberg mention the ten most influential data mining algorithms k-

means, C4.5, Apriori, Expectation Maximization (EM), PageRank, SVM (support vector 

machine), AdaBoost, CART, Nave Bayes and kNN (k-nearest neighbors). Most of these 

algorithms have been used commercially as well. 

 

Aaron N. Richter, Taghi M. Khoshgoftaar, Sara Landset, and Tawfiq Hasanin proposed a 

complete multidimensional examination of different open source devices likes Mahout, 

MLlib, H2O, and SAMOA for machine learning with huge information. An assessment 

standard is proposed alongside correlations of the structures talked about these open source 

technologies.  

 

Satish Gopalani and Rohan Arora [16] gives the analysis between Hadoop Map Reduce and 

the as of late presented Apache Spark utilizing a standard machine learning calculation for 
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K-Means clustering.  

 

Juwei Shi,  unjie iu, Umar Farooq Minhas,  imei Jiao, Chen  ang, Berthold Reinwald, 

and Fatma     zcan [17]assess the major compositional segments in Mapreduce and Spark 

systems including merging, execution time, and storing, by utilizing an arrangement of 

critical investigative workloads.  

 

Sara Landset, Taghi M. Khoshgoftaar, Aaron N. Richter and Tawfiq Hasanin, [18] gives a 

rundown of criteria to making determinations of devices for Big Data Analytic alongside an 

investigation of the focal points and downsides of each.  

Jai Prakash Verma, Bankim Patel, and Atul Patel, [19] give execution of information 

investigation utilizing Hadoop Framework for the content dataset.  
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3. METHODOLOGY 

Here the recommendation list is computed by using three approaches, a traditional 

approach using RDBMS, Mapreduce programming paradigm, and spark programming 

paradigm. The performance is analyzed and compared by the execution time by all the 

approaches to perform. Figure 5 shows a basic block diagram of methodology, which 

includes processing, analysis and comparison units. The system begins with input dataset, 

which is a data set of songs from Yahoo. The processing and analysis section comes under 

Cloud. Data will be processed with three different processing tools, Hadoop, Spark and the 

RDBMS. The processed dataset will be analyzed with a fixed recommendation filter, for 

which Collaborative filtering is used. The collaborative is a standardized filter and widely 

used in research works. To verify the comparison analysis study, a standard filter is taken 

as reference. However, any kinds of recommendation filter can be used. Moreover, finally, 

the filtering result of individual processing methods will be compared by execution time. 

MapReduce

Spark

Traditional

method

Result1

Result2

Result3

Collaborative

Filtering
Input 

data
Output

Processing Analysis Comparison

Cloud

MapReduce

Spark

Traditional 

method

 

 

Figure 5 Basic block of methodology. 

 

Mapreduce jobs run in parallel in Hadoop cluster. The large dataset file is divided into 

several blocks and distributed across several data nodes, and Mapreduce job uses the 

dataset relevant to that node and performs the required action specified on the job. Each 
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map task process the input and generates the required intermediate data value as output and 

then the reduce task takes those output as its input and process it according to the reduce 

job specified to give an output with key-value pair of the unique key.  

 

Similarly, the spark runs the job in parallel. It revolves around the concept of a resilient 

distributed dataset (RDD) [20], which is a fault-tolerant collection of elements that can be 

operated on in parallel [21]. RDDs support two types of operations: transformations, which 

create a new dataset from an existing one, and actions, which return a value to the driver 

program after running a computation on the dataset. Spark translates the RDD 

transformations into something called DAG (Directed Acyclic Graph) and starts the 

execution. At high level, when any action is called on the RDD, Spark creates the DAG and 

submits to the DAG scheduler. The DAG scheduler divides operators into stages of tasks. 

A stage is comprised of tasks based on partitions of the input data. The DAG scheduler 

pipelines operators together. E.g., Many map operators can be scheduled in a single stage. 

The final result of a DAG scheduler is a set of stages. The Stages are passed on to the Task 

Scheduler.The task scheduler launches tasks via cluster manager. However, task scheduler 

will not know about dependencies of the stages. Moreover, finally, the Worker executes the 

tasks on the Slave. 

 

The working procedure of the RDBMS is different from that of technologies described 

above; it differs largely in data processing. The parallel processing of data is not as more 

comfortable as on two other technologies, and the storage and processing of unstructured 

data are also not possible because of its presentation of data in row and column format. For 

big data, what is needed is, storing data in different systems and copying code into those 

systems and processing it in parallel with taking advantage of locality. This is not possible 

in RDBMS, the working of which starts with copying data from storage to the RAM and 

then processing it there, which is inefficient and time-consuming task while considering big 

data.  

 

3.1  Computing Similarities between Item Pairs 

To compare three different techniques, the comparison is made by recommendation system 
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using those approaches. So firstly the calculation of similarities is computed on all the three 

technologies. There are many ways to formalize this calculations, such as the similarity 

metrics of cosine and Pearson correlation. For this research, cosine similarity measure has 

been chosen.  In an item-based approach, the similarity between two items is calculated.  

   ( )  
   

‖ ‖‖ ‖
 

∑      
 
   

√∑ (  )
  

    √∑ (  )
  

   

 

 

(1) 

It is a measure of similarity between two non-zero vectors of an inner product space that 

measures the cosine of the angle between them. The cosine of 0° is 1, and it is less than 1 

for any other angle. It is thus a judgment of orientation and not magnitude: two vectors with 

the same orientation have a cosine similarity of 1, two vectors at 90° have a similarity of 0, 

and two vectors opposed have a similarity of -1, independent of their magnitude. So if two 

items, i.e., songs are similar, then the cosine similarity is equal to 1 and a value of 0 if they 

are not similar, and if they are opposite (dissimilar) then the cosine value will be -1. So the 

similarity score will always be in the range -1 to 1. 

 

3.1.1 Calculation using RDBMS 

To obtain the required output, the similar item needs to be calculated, for which 

neighborhood formation is done. Neighborhood formation consists of finding the most 

similar items to the item preferred by the active user based on their past agreement on 

ratings. Items that tend to be rated the same by similar users will be classed as similar under 

this approach. After getting these similarities, it can represent a user regarding the items 

they have interacted with and find items that are similar to these known items, which they 

can recommend to the user.  

 

The cosine formula (1) above is used to calculate similarity score which gives the list of 

scores for item pair. This can be done using any languages, but this research had used java 

as front end and MySQL as backend for RDBMS implementation. Moreover, all the 

process is done on the same machine especially carried out on RAM.  
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3.1.2 Calculation using Mapreduce 

The similarity computation of recommendation system is divided into 2 Mapreduce jobs. 

The first job takes input from a yahoo dataset having each row of data separated by a tab as 

shown in Figure 6.  

 

 

Figure 6 Input to Mapreduce-1. 

The output of this job is a key-value pair of a key representing userid and the value with the 

set of all the songs with their ratings given by that user. This output will be the input to the 

next Mapreduce job, which is responsible for computing a similarity between items. The 

overall process is illustrated in Figure 7. 
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Figure 7 Process of Mapreduce for similarity calculation. Here, U, S, and M represent userid, songid, and Mapper, 

respectively. 

Finally, the output is represented in the form of key-value pair, where the key represents the 

pair of items and value gives the similarity score for those items. 

 

First Mapreduce Job  

As mentioned earlier, the first Mapreduce job computes the input to give a set of songs with 

ratings by every single user. Each row of data is processed by the mapper-1 where the 

output pair is generated by splitting the input data by a tab‟ /t'. This output intermediate 

key-value pair contains the key that is a userid and value that represents a set of songid and 

rating. Finally, the output from the first mapper is now an input to the reducer-1. Reducer-1 

collects all the songs along with rating given by the user, where the key is a unique user and 

value is a collection of songs with ratings by that user.  

 

Second Mapreduce Job  

Here the output from the reducer-1 from a first Mapreduce job is input to the mapper-2 

where mapper-2 splits the value field of the input data by tab „/t‟ and delimiter „,‟ and 
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generates an intermediate pair of the item-item pair as key and rating-rating pair as value. 

This intermediate pair is given to the final reducer, which is responsible for computing 

similarity calculation using cosine similarity (1).  

 

Finally, the output from the reducer-2 is a pair of item-item pair of the song as key and 

similarity score between them as a value, which will be the output from the similarity 

calculation phase. 

 

3.1.3 Calculation using Spark 

The Spark‟s recommendation system is based on the matrix factorization model, which is 

easier to compute recommendation. These models are often called latent feature models, as 

it discovers some form of hidden features which are represented by the factor matrices. 

While the latent features or factors are not directly interpretable, they might, perhaps, 

represent things such as the tendency of a user to like songs from a certain singer, genre, 

musician, or group of artists, for example. Matrix factorization models a user-item matrix 

by representing it as a product of two smaller matrices of lower dimension as shown in 

Figure 8 and 9. Thus, it is a dimensionality-reduction technique. For a user-item matrix 

with the dimension k, the two matrices are one for users of size U x k and one for items of 

the size I x k as presented. Moreover, these are known as factor matrices. The 

multiplication of these two-factor matrices reconstructs an approximate version of the 

original rating matrix.  
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Figure 8 Users Item Rating Matrix. 
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Figure 9 Calculation of a recommendation. 

 

To find out the similarity between two items, the same measures of similarity as in the 

nearest-neighbor models can be used, except the use of the factor vectors directly by 

computing the similarity between two item-factor vectors. 

However, these models are relatively more complicated to understand and interpret 

compared to nearest-neighbor models. So to solve the problem of this model spark 

implements an algorithm called alternative least square which is powerful technique and 

has proven to be relatively easy to implement in a parallel fashion. ALS works by 

iteratively solving a series of least squares regression problems. In each iteration, one of the 

user- or item-factor matrices is treated as fixed, while the other one is updated using the 

fixed factor and the rating data [22]. Then, the factor matrix that was solved for is, in turn, 

treated as fixed, while the other one is updated. This process continues until the model has 

converged.  

 

Computing similarity between items has two processes, one, training a model that generates 

user and item factors and the other, cosine similarity calculation for similarity computation. 

To train the model, Mllib library of spark is used that makes use of ALS algorithm. The 

training method of this algorithm returns a MatrixFactorizationModel object, which 

contains user and item factors in the form of an RDD of (id, factor) pairs. Operations used 

in MLlib's ALS implementation are lazy transformations, so the actual computation will 

only be performed once some action on the resulting RDDs of the user and item factors are 

called.  

 

Now to compute the similarity score, jblas linear algebra library is used to compute the 
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required vector dot product for cosine similarity. Cosine similarity is a measure of the 

angle between two vectors in an n-dimensional space. It is computed by first calculating the 

dot product between the vectors and then dividing the result by a denominator, which is the 

norm (or length) of each vector multiplied together (specifically, the L2-norm is used in 

cosine similarity) which is given by the equation below. 

             
                (           )

                  ()                    ()
 

(2) 

The cosine similarity measure takes on values between -1 and 1. A value of 1 implies 

completely similar, while a value of 0 implies independence (that is, no similarity). This 

measure is useful because it also captures negative similarity, that is, a value of -1 implies 

that not only are the vectors not similar, but they are also completely dissimilar. 

 

3.2  Deriving Recommendation 

The final part of the recommendation system is to derive a recommendation list.  

 

3.2.1 Deriving recommendation list using RDBMS 

The list generated after calculating cosine similarity is sorted by similarity score for item 

pairs in descending order, which gives the final list of recommendation for the item. 

This process is carried out on a single machine using MySQL for data storage and 

processing purpose. MySQL falls into the category of relational database management 

system, so it stores data in row-column format and process data on RAM taking it from its 

original storage. So the sorting of data from the list is carried out on RAM, and final output 

after processing is only then stored on the storage.    

 

3.2.2 Deriving recommendation list using MapReduce 

The derivation of recommendation list is accomplished by MapReduce-3, which is based 

on the similarity value calculated for the item pair as illustrated in Figure 11. The pair 

having highest similarity value will have the highest priority rank for that item.  
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Figure 10 Deriving Recommendation list. 

The output from the MapReduce-2 is given to the input of MapReduce-3 where the 

merging and sorting are done to accomplish desired output of recommendation list. 

Mapper-3 will process the data coming from MapReduce-2 by splitting each row of data by 

a tab „\t‟ and a delimiter „,‟. The output from the mapper-3 is now an intermediate key-

value pair of songid as key and value having a pair of song and similarity scores with that 

key. Finally, the output from mapper-3 is given to the final reducer, which processes data to 

give a final list of recommendation. The data is merged and sorted based on the similarity 

score.   So the final recommendation list output will be the key value pair of songid as key 

and similar songs to that key as a value in descending order of similarity metrics as shown 

in Figure 12.  

 

3.2.3 Deriving recommendation list using Spark 

Finally, the recommendation list is generated after calculating similarity measures. This list 

is the list of item pairs and similarity value sorted in descending order of similarity.  

This is achieved by using the top method of ALS algorithm, which automatically sorts the 
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list in the required format as shown in Figure 13. 

 

3.3  Cloud computing 

To overcome the need for large-scale computing, processing, and its infrastructure 

maintenance Cloud computing would be the best service. So the Cloud Dataproc is chosen as 

well suited service that is matched with the requirement of this research.  Cloud Dataproc 

supports Spark and Hadoop clustering with faster processing where operations that used to 

take hours or days take seconds or minutes giving a powerful and complete platform for data 

processing, analytics, and machine learning [23]. „Pay as you go‟ is available in this service 

along with initial free service of value $300. Creating Cloud Dataproc clusters is quicker and 

can be resized them at any time—from three to hundreds of nodes so no need to be worried 

about data pipelines outgrowing clusters. With each cluster action taking less than 90 seconds 

on average, more time can be focused on insights, with less time lost to infrastructure.  

 

Creating a cluster is the easiest task in Cloud Dataproc. The specification of the size and 

quantity of node and master is only the requirement to accomplish it. The list of clusters 

can be visible with the option of update to resize a cluster in future need. 

 

After creating a cluster, job or a program can be run using the interface with specifying the 

cluster name, job type, i.e., whether it is spark or Hadoop and a jar file of that program. Just 

a click on the submit button will then give the required output of desire. 

 

3.4  Execution time calculation  

The execution time of every system is calculated to compare the performance. Moreover, 

this time is calculated by considering starting point and end point of execution of a task. 

Subtracting the start value with an end value of execution period gives overall execution 

time taken by the system to complete its task, which is as below: 

Execution Time = (starting time-end time) in sec (3) 

  

This value is considered as a metric to calculate the performance of every system.  



 

25 

 

4 RESULT ANALYSIS AND COMPARISION 

Different technologies with their algorithms are designed to compute recommendations 

based on the similarity between two items. To derive recommendations, yahoo dataset is 

used as input data for the experiments, which is a collection of rating data by the user for 

their preferred song. Experiments are performed on three of the algorithms for a single 

node and multi-node clusters on both cloud-based and non-cloud based system, and 

performance metrics of each are recorded. For the cloud-based experiment, Cloud Dataproc 

is used as a cloud system where the single node and multi-node clusters are created and 

performed an experiment for all the three algorithms. In case of RDBMS, it always 

experiments on single machine whether it is cloud or non-cloud.  The hardware and 

software configuration for the system is listed in Table 1. 

 

Table 1 System hardware and software configurations for experiments. 

SN Cloud/Non-cloud Single/Multi Cluster Name Specification 

1 Both Single Primary Disk Size 27GB 

2 Both Single Memory 3GB 

3 Non-cloud Single Operating System Ubuntu (64bit) 

4 Cloud Multi (Worker node) Primary Disk Size 50GB 

5 Cloud Multi (Worker node) Memory 7.5GB 

6 Cloud Multi (master node) Primary Disk Size 100GB 

7 Cloud Multi (master node) Memory 7.5GB 

8 Apache Spark: version 2.2.0 

9 Apache Hadoop: version 2.8.1 in cloud 

10 Apache Hadoop: version 2.7.3 noncloud 

11 MySQL Database: version 2.2.0 

12 Number of Nodes in multi-node cluster: 3  

 

4.1 The Evaluation of Results  

4.1.1 Dataset Selection 

One important component of evaluation is the dataset used to perform experiment. It is 
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essential to use a constant and easy to reproduce dataset. Since the goal, it is to perform 

analysis on recommendation output from different framework; information about music 

preferences from different people is needed.  Here dataset of the song with different data 

size from yahoo is used that stores information related to music preferences from millions 

of songs and users which are listed in Table 2. So the same dataset is used for performance 

analysis too. The sample input dataset is shown in Figure 11. 

Table 2 Dataset Specifications. 

No of songs No of users Total ratings

1682 943 100000

127771 200000 2000000

1639720 2988761 6231790

9086238 13565203 16231790  

 

 

Figure 11 Sample input dataset. 
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4.1.2 Performance Measurement and Metrics 

For the three case studies, on single node cluster in local mode and single node and multi-

node cluster in the cloud, performance in RDBMS, Hadoop and Spark are compared by 

running time, memory consumption and CPU usage. To keep a fair comparison, the 

following metrics are guaranteed, which are applied, to RDBMS, Hadoop, and Spark: 

 RDBMS, Hadoop, and Spark run on the same machine and configuration for single 

node and multi-node cluster environment on cloud and single cluster on non-cloud 

based system 

 Hadoop and Spark platforms run on the same cluster machines 

 Both Hadoop and Spark use HDFS as the file storage system 

 Case studies implemented in all systems are based on the same programing 

language  

 Start Time and Finish Time are listed to calculate the elapsed time of all three 

applications, as shown in the Figures 12, 13, and 14 for cloud-based and non-cloud 

based environments respectively: 

 At last memory consumption and CPU usage is recorded for all applications in all 

environments, as shown in Figure 15 and 16. 

 

 
Figure 12 Spark Application Web UI in the non-cloud based environment. 
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Figure 13 Hadoop Application Web UI in the non-cloud based environment. 

 

 
 

Figure 14 Hadoop Application Web UI in cloud-based environment. 

 
 

Figure 15. CPU utilization by Spark in the cloud. 
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Figure 16 Monitoring memory utilization. 

 

4.1.3 The Comparison of Results 

Case studies carried out consist of the evaluation of three different recommendation 

algorithms with a different configuration of data networks. Each algorithm with each node 

configuration of data networks is evaluated individually with four different sizes of 

datasets. Each of the case studies was repeated three times to obtain the average running 

results. Sometimes because of unstable network traffic, there are a few seconds of error 

band for a small dataset or tens of seconds of error band for a big dataset. Tables 3 shows 

the average running time, memory utilization and CPU usage based comparison on 

different sizes of data for each case study in RDBMS, Hadoop and in Spark. The 

observations are as follows: 
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Table 3 Experiments carried out on various recommendation algorithms at different configurations of data networks with 

various sizes of datasets. 

SN

Case Studies C.Time %Memory %CPU C.Time %Memory %CPU C.Time %Memory %CPU C.Time %Memory %CPU

1 37.3 18.2 97.2 90.144 26.2 98.3 118.18 41.8 98.7 293.7 43 98.7

2 31.75 17.8 96.7 90.484 26.8 98.3 121.421 42.7 98.7 278.56 43.6 98.7

3 36.52 18.3 95 90.737 26.3 98.3 118.875 39.5 98.3 299.3 43.5 98.6

1 27.52 5.11 56 67.24 15.3 80.9 102.08 19.7 80.44 135.64 25.8 92.16

2 27.53 5.9 53.29 73.01 12.7 80.2 109.88 19 81.2 138.642 26.4 90.24

3 27.36 6.2 51 64.59 15.7 79.4 115.04 19.8 83.45 132.628 27.5 92.87

1 25.73 4.525 17.05 52.67 11.6 51.84 85.01 16.85 63.65 116.7 23.04 85.01

2 26.079 5.16 24.2 55.07 9.7 55.6 90.04 15.02 69.02 116.98 22.87 86.28

3 26.02 5.78 23.4 48.28 9.2 53.48 89.01 12.01 66.78 116.96 24.5 84.2893

1 267.98 6.193 87.68 312.487 7.3 90.67 379.34 7.425 81.6625 936.66 8.55 63.881

2 260.34 6.01 86.82 296.3 7.61 89.362 336.39 8.6 84.98 1080.8 8.2 67.467

3 255.21 5.98 87.09 298.76 7.01 89.04 398 7.89 80.67 964.45 9.1 66.98

1 224.45 5.2 41.77 251.67 7.1 50.07 290.732 9.8 50.51 458.519 12.1 56.87

2 227.673 5.6 42.07 251.79 6.9 51.22 295.37 9.8 51.23 460.231 12.3 54.23

3 223.23 5.1 41.2 248.512 7.5 50.7 296.026 9.6 51 460.42 12 54.87

1 211.29 4.7375 50.1175 233.534 5.25 60.6875 262.64 6.7687 59.18 388.814 9.031 65.544

2 213.45 4.123 52.324 233.62 5.08 56.04 260.76 6.245 58.0232 301.558 8.79 68.61

3 211.598 4.87 51.09 233.01 6.01 58.97 258.975 7.02 61.089 308.357 9.867 69.345

1 684.33 56.72 63.57 1421.23 63.33 76.42 2001.25 64.9 81.53 3301.2 71.45 92.46

2 685.1 55.89 61.4 1256.77 63.67 78.2 1866.12 65.76 81.01 3111.43 70.62 91.9

3 684.61 56.02 62.9 1330 62.9 78.01 1903.72 64.02 81.78 3032.01 70.1 91.05

1 593.389 51.07 23.32 1189 54.32 46.3 1698.32 58.3 42.3 2985.23 63.2 67.32

2 591.49 50.23 26.7 1208 52.01 44.3 1687.34 58.9 45.67 3001.34 64.01 68.9

3 592.83 49.89 29.3 1191.2 53.98 30.2 1690.94 58.02 43.98 2989.01 63.9 63.56

Hadoop-single node(non-cloud based)

spark-single node(cloud based)

spark-multi node(cloud based)

Hadoop-single node(cloud based)

Hadoop-multi node(cloud based)

100000 ratings 2000000 ratings 6231790 ratings 16231790 ratings

spark-single node(non-cloud based)

RDBMS(non-cloud based)

RDBMS(cloud based)

 

Moreover, all the configurations mentioned above are realized to publish three different 

kinds of evaluation results namely: computational time, the percentage of memory 

utilization, and percentage of CPU usage during the operation. The computational time 

required by Spark, Hadoop, and RDBMS with a single node and multi-node configurations 

are illustrated in Figure 17. 
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Figure 17. The computational time required by various recommendation algorithms at different configurations of data 

networks with various sizes of datasets: (a) 100000 ratings, (b) 2000000 ratings, (c) 6231790 ratings, and (d) 16231790 

ratings. 

 

As shown in Figure 17, Since, Spark utilizes memory-based storage for RDDs but 

MapReduce in Hadoop processes disk-based operations, and RDBMS not supporting 

parallelism and memory-based processing, it stands to reason that the performance of Spark 

with all the node configurations outperforms other methods at the computational time. 

Moreover, the computational time of all the methods has increased gradually with the 

increase in the size of datasets. Also, it is also seen that the cloud-based approach is 

effective at maintaining lesser computational time than the non-cloud based when the 

datasets are gradually increased. The performance ratio value shown in Table 4 over 

RDBMS by the Spark is higher than that by Hadoop because of larger number of iterations 

and calculations. Also, this ratio is decreasing in Hadoop and fluctuating in Spark for 

increasing dataset size, with the highest value of 22.057 for the fourth dataset on cloud-

based single node cluster. Similarly, the Spark has better performance than Hadoop, with 

maximum speedup up to 8.17 in a multi-node cluster environment in the cloud. However, 

the advantage decreased as the input size increases and reached to 2.84 as shown in Table 

5. 
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Table 4 Spark's and Hadoop's Speedup over RDBMS. 

Input/DataSize(ratings) 100000 2000000 6231790 16231790 100000 2000000 6231790 16231790

Hadoop 261.18 302.52 371.24 993.97 225.12 250.66 294.04 459.72

Spark 35.19 90.455 119.49 290.52 27.47 68.282 109 135.64

RDBMS 684.61 1336 1923.72 3148.21 592.83 1196.07 1692.2 2991.9

Hadoop's Speedup 7.42199488 3.3444254 3.10687087 3.42134793 8.19512195 3.67095281 2.69761468 3.3892657

Spark's Speedup 19.4546746 14.769775 16.0994225 10.8364656 21.5809975 17.5166222 15.5247706 22.0576526

Single node cluster- Non-Cloud Single node cluster- Cloud

 

Table 5 Spark's Speedup over Hadoop. 

Input/Data Size(ratings) 100000 2000000 6231790 16231790

Hadoop 212.11 233.39 260.79 332.91

Spark 25.943 52.007 88.02 116.88

Speedup over spark 8.17600123 4.48766512 2.96284935 2.84830595

Multi node cluster- Cloud

 

 

Based on the same memory usage, Spark performs better than RDBMS and Hadoop. The 

reasons mainly result from the following factors: 

1) Spark workloads have a higher number of disk accesses per second than Hadoop 

and RDBMS 

2) Spark has better memory bandwidth utilization than other two 

3) RDBMS have many read and write operations on disk while Mapreduce have many read 

but single write, in which Spark perform read and write operation on disk once a time. 

Also, in Spark, task scheduling is based on an event-driven mode, but Hadoop employs 

heartbeat to tracking tasks, which periodically causes a few seconds delays. For some 

applications involved in the iterative algorithm, Hadoop is overwhelmed entirely by Spark 

because multiple jobs in Hadoop cannot share data and have to access HDFS frequently. 

Next evaluation of the recommendation is done by the memory utilization. The observed 

result is presented in Figure 18. 
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Figure 18 Percentage of memory utilization by various recommendation algorithms at different configurations of data 

networks with various sizes of datasets: (a) 100000 ratings, (b) 2000000 ratings, (c) 6231790 ratings, and (d) 16231790 

ratings. 

 

Here, Hadoop and RDBMS have less effect on memory utilization with an increase in the 

size of datasets where former and later approaches are best and least efficient among the 

three approaches concerning the memory utilization. However, memory utilization with 

Spark has been significantly increased with increase in the size of datasets. Because of 

more number of iterations, spark occupies more memory for newly created RDD, which 

effect spark‟s performance and also increase the CPU consumption as shown in Figure 19. 

At all the algorithms, a configuration with the cloud-based multi-node is best with memory 
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utilization as compared with non-cloud based because of its memory capacity and 

parallelism of task computation on different clusters.  

 

The third evaluation of the recommendation algorithms in this study is done by percentage 

use of CPU during the operation.  The obtained result is illustrated in the following Figure 

19. 
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Figure 19 Percentage of CPU usage by various recommendation algorithms at different configurations of data networks 

with various sizes of datasets: (a) 100000 ratings, (b) 2000000 ratings, (c) 6231790 ratings, and (d) 16231790 ratings. 

 

It is seen from Figure 19 that the amount of CPU usage is increased gradually with the 

increase in the size of datasets. The CPU usage of Hadoop with cloud-based single node is 

lesser compared to other configurations of it at all sizes of datasets. At Spark and RDBMS, 
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the use of cloud-based configuration has helped to reduce the amount of CPU usage at all 

the configurations. Overall, all the compared algorithms have mixed result with the change 

in network configurations and increase in size of datasets.  

 

Lastly, the observation is done by disk I/O operations per second. It is done only on cloud 

environment after noticing cloud-based as more efficient than non-cloud based. This is 

done only between Hadoop and Spark, to compare their disk I/O for task completion. 

It is seen from the Figure 20 that, Spark has a higher number of disk accesses (read 

operation per second) per second than Hadoop on every experiment. However, write 

operation per second in Hadoop is slightly higher than that in spark. Overall, considering 

disk I/O operations as a performance metric, spark on multi-node cluster environment have 

faster access. 

 

Figure 20 Graph plot of Disk I/O read and write by Spark and Hadoop on cloud-based single node and multi-node cluster 

with various sizes of datasets. 

 

4.2  Accuracy of recommendation system 

Experiments test whether the algorithms are useful for predicting relevant song for any 

item. For every item in the dataset, 10% song was randomly removed and the algorithms 

were used to try to recommend that removed song. This “ eave one out” methodology has 

been used in CF offline experiments.  
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The dataset is divided into training and test datasets at a 90% to 10% ratio. Ten different 

training and testing datasets were created for 10-fold cross validation. This method of 

experimentation has some limitations. These algorithms could recommend song that are 

very similar to or even better than the removed song and this might diminish the 

algorithms‟ performance, since these song will appear in the recommendation list before 

than the removed song. Even though this is a possibility, it is expected the removed song to 

be recommended. In order to do this, “Hit-percentage” is taken as a metric. “Hit-

percentage” (HP) is defined as a metric to measure the percentage of the time the 

recommender algorithm correctly recommends the removed song. Here, Spark is taken as 

the base system for calculating accuracy of algorithm which is shown in Table 6 below. 

 

Table 6 Accuracy of Recommendation System where hit-percentage is accuracy. 

 

As seen in Table 6, the minimum and maximum accuracy on a hit-percentage scale is 

88.70% and 90.18%, respectively. At most of the times, nearly similar hit-percentage was 

observed with overall accuracy being 89.248%. 

 

4.3  Statistical validation of the experimental results 

To validate the reported result, Friedman as the ranking test [24] [25] and Holm [26] as the 

post-hoc test is performed. For the test, the null hypothesis (  ) is set as: 

a. Ranking: The means of the results of two or more algorithms are the same. 

b. Post-hoc: The mean of the results of the control method and against each other 

groups is equal (compared in pairs). 

The following tests are applied to the STAC web platform where it is assumed that the 

lower the result of an algorithm on a problem, the better of such algorithm [27] [28]. Here, 

a combination of a node configuration and network configuration in a recommendation 

method is assumed as an individual algorithm or a group. Hence there are eight algorithms 

for the ranking and post-hoc test. For example, a non-cloud based Spark with a single node 

is assumed an algorithm among the eight. For an evaluation measure, each algorithm has 

round-1 round-2 round-3 round-4 round-5 round-6 round-7 round-8 round-9 round-10

Hit-percentage 89.09% 89.12% 90.18% 89.31% 89.20% 89.17% 89.86% 88.70% 88.79% 89.06%
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three samples of output in one dataset. Hence, a number of the group for the test ( ) is eight 

and number of samples ( ) is 96 (12 samples per algorithm). The significance level (α) is 

assumed as 0.05 for all the tests. 

 Computational time 

The null hypothesis for ranking was rejected by the Friedman test with  -value of 

0.0021. In addition, the null hypothesis for the post-hoc test with multi node cloud 

based Spark as a control method yielded the following result. 

1. Spark (multi node/cloud based) vs. RDBMS (non-cloud):    is rejected with  -

value of 0.0012. 

2. Spark (multi node/cloud based) vs. RDBMS (cloud based):    is rejected with 

 -value of 0.0054. 

3. Spark (multi node/cloud based) vs. Hadoop (single node/non-cloud):    is 

rejected with  -value of 0.0013. 

4. Spark (multi node/cloud based) vs. Hadoop (single node/cloud based):    is 

rejected with  -value of 0.00398. 

5. Spark (multi node/cloud based) vs. Hadoop (multi node/cloud based):    is 

accepted with  -value of 0.08342. 

6. Spark (multi node/cloud based) vs. Spark (single node/non-cloud):    is 

accepted with  -value of 0.35257. 

7. Spark (multi node/cloud based) vs. Spark (single node/cloud based):    is 

accepted with  -value of 0.55098. 

The result of the rank test suggests that the computational time required by every individual 

algorithm differs from each other. Moreover, post-hoc test signifies that the computational 

time required by multi-node cloud-based Hadoop is statistically similar to multi-node 

cloud-based Spark with  -value very close to the significance level (0.05). The post-hoc 

test for remaining Hadoop configurations and RDBMS is rejected. 

 Memory utilization 

The null hypothesis for ranking was rejected by the Friedman test with  -value of 

0.0021. Since, Hadoop seems efficient at memory utilization as shown in Figure 21, 

the multi node cloud based Hadoop is set as a control method in the null hypothesis 
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for the post-hoc test on memory utilization by different algorithms. The result of the 

post-hoc test is presented as follows: 

1. Hadoop (multi node/cloud based) vs. RDBMS (non-cloud):    is rejected with 

 -value of 0.0011. 

2. Hadoop (multi node/cloud based) vs. RDBMS (cloud based):    is rejected with 

 -value of 0.0012. 

3. Hadoop (multi node/cloud based) vs. Spark (single node/non-cloud):    is 

rejected with  -value of 0.0021. 

4. Hadoop (multi node/cloud based) vs. Spark (single node/cloud based):    is 

rejected with  -value of 0.0023. 

5. Hadoop (multi node/cloud based) vs. Spark (multi node/cloud based):    is 

accepted with  -value of 0.06829. 

6. Hadoop (multi node/cloud based) vs. Hadoop (single node/non-cloud):    is 

accepted with  -value of 0.41024. 

7. Hadoop (multi node/cloud based) vs. Hadoop (single node/cloud based):    is 

accepted with  -value of 0.23953. 

Since the null hypothesis for the rank test is rejected, it is clear that the memory utilization 

by every individual algorithm is different. Furthermore, as in computational time, the post-

host test compared with multi-node cloud-based Spark is accepted by the  -value very 

close to the significance level. Test with remaining Spark configurations and RDBMS is 

rejected.  

 CPU usage 

Similar to the computational time and memory utilization, the Friedman ranking test 

is rejected with  -value 0.0020. In addition, as the CPU usage among the 

recommendation algorithms in Figure 22 shows the mixed result, cloud based 

RDBMS have set as a control method in the null hypothesis in the post-hoc test. 

The obtained statistical result is reported as follows: 

1. RDBMS (cloud-based) vs. Spark (single node/non-cloud):    is rejected with  -

value of 0.0050. 
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2. RDBMS (cloud based) vs. Spark (single node/cloud-based):    is rejected with 

 -value of 0.00276. 

3. RDBMS (cloud-based) vs. Spark (multi node/cloud-based):    is accepted with 

 -value of 0.41024. 

4. RDBMS (cloud-based) vs. Hadoop (single node/non-cloud):    is rejected with 

 -value of 0.00303. 

5. RDBMS (cloud-based) vs. Hadoop (single node/cloud-based):    is rejected 

with  -value of 0.00150. 

6. RDBMS (cloud-based) vs. Hadoop (multi node/cloud-based):    is accepted 

with  -value of 0.40420. 

7. RDBMS (cloud-based) vs. RDBMS (non-cloud):    is rejected with  -value of 

0.00243. 

The Friedman rank test signifies that the CPU usages by various algorithms are different. 

Moreover, the post-hoc test suggests that the CPU usage of cloud-based RDBMS is 

statistically similar to multi-node cloud based Spark/Hadoop. 

  

4.4  Analysis of the Result  

As from all the observations, the performance of the spark technology is best among all. 

The Hadoop lies on second and RDBMS technology on third. The characteristics of 

dividing up of the single task into multiple tasks and executing those tasks from individual 

clusters make the performance of the system faster, which can be seen from the 

performance of Spark and Mapreduce in every experiment, and this is not found in 

RDBMS as it is not its property. Similarly the processing of a task on memory rather than 

on a disk again improves the performance, which is proven by the performance of Spark 

that is not available on Hadoop, where Hadoop have number of data in and out from disk 

while processing data causing a delay. RDBMS having property of processing data on 

memory taking from disk is not much significant because of its higher disk I/O overhead, 

memory utilization and CPU usage, making the process slower for huge data.  

The use of cloud has also a prominent impact on the performance of the system, which can 

be seen from the cloud-based output in every graph of experimentally observed. The result 
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value (time in second) from all the system for the cloud-based environment is least among 

them all. Moreover, from memory usage, multi-node cluster in the cloud have the best 

result for every algorithm.   
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5 CONCLUSION 
 

By comparing the experimental results for running different case studies, it is found that 

processing of data in-memory led spark to outperform Hadoop as Hadoop MapReduce 

persists back to the disk after a map or reduce action. Nonetheless, Spark needs much 

memory. The memory in the Spark cluster should be at least as large as the amount of data 

that need to process because the data has to fit into the memory for optimal performance. 

So, if it is to process really Big Data, Hadoop will definitely be the cheaper option since 

hard disk space comes at a much lower rate than memory space. On the other hand, 

considering Spark‟s benchmarks, it should be more cost-effective since less hardware can 

perform the same tasks much faster, especially on the cloud where compute power is paid 

per use.  

 

Overall, if there is no sufficient memory and the speed is not a demanding requirement, 

Hadoop is a better choice. In addition, if the speed is not an important constraint and data 

volume is less and structured in nature then RDBMS is the best choice. For those 

applications, which are, time sensitive or involved in iterative algorithms and there is 

abundant memory available, Spark sure to be a best fit. Moreover, Spark running on cloud 

system having high compute power and pay per use property will be the most requirement 

fulfilling system. 

 

As for future work, setting up of recommendation system on a bigger cluster with large 

volume of data to test the scalability of each platform will be the first priority. Also, 

increasing the memory capacity of the clusters to explore the influence of memory 

restriction on running time of Spark will be the other work. And planned to design an 

intelligent system that can help to choose a platform and the configuration parameters 

based on the applications and input data sizes to get optimized performance.  
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APPENDICES 

Appendix A - Creating a cluster in google cloud 

 
 

 

Appendix B - List of clusters  
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Appendix C - Running a Job in google cloud 

 
 

 

Appendix D - List of MySQL Instance 
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Appendix E - Creating a database in MySQL in Google cloud 

 
 

Appendix F - Mapreduce on cloud with single cluster  
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Appendix G - Mapreduce on cloud with multi-node cluster 
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Appendix H - Mapreduce on Non-cloud based system 
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Appendix I - Spark on cloud  

 
 

Appendix J - Spark on non-cloud 
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Appendix K – Output recommendation list from all the methods 
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