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ABSTRACT 

 

Information is one of the most valuable possessions today. As the Internet expands 

both in number of hosts connected and number of services provided, security has 

become a key issue for the technology developers. With the growth of smart devices 

and internet technologies, anomalous traffic detection has become a major concern. 

This thesis is focused on the detection of attacks in a network by using Multilayer 

Perceptron (MLP) trained with Resilient Backpropagation. NSL-KDD dataset, an 

intrusion detection attacks database is used as an input dataset for network intrusion 

detection. In each record of the NSL-KDD dataset, there are 42 attributes, 41 

attributes unfolding different features and a label assigned to each either as an attack 

type or as normal. The 2nd (Protocol_type), 3rd (Services), and 4th (Flag) attributes are 

converted into numerical format. The 42nd attribute is first classified under different 

category of attacks (DoS, Probe, R2L, U2R) or normal, then assigned a numerical 

value and finally, 5 bit code are assigned to each of them. Architecture of MLP is 

determined to have 41 neurons in the input layer, 30 neurons in the hidden layer, and 

5 neurons in the output layer. The number of neurons in the hidden layer was fixed 

selecting that value for which Performance (MSE) was best.  In this thesis, a 

Multilayer Perceptron is trained with Resilient Backpropagation algorithm and the 

research evaluates the performance of the algorithm. Out of the 47735 records, 40% 

of it is used for training neural network, 50% of it is used for validation, and 10% is 

used for testing. Different parameters (TP, FP, FN) are noted from the confusion 

matrix and recall rate, precision rate were calculated for each. The result showed 

overall recall rate and precision rate to be 99.8% and 99.83%. The overall detection 

rate of the system is found to be 96.7% which is better than any other existing 

backpropagation algorithms. 

 

 Keywords: Resilient, Backpropagation, Dataset, Intrusion detection, NSL-KDD, 

Multilayer Perceptron, Performance, MSE.   
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1. INTRODUCTION 

 

1.1 Background 

With the growth of smart devices and internet technologies, anomalous traffic 

detection has become a major concern. Attacks on computer infrastructure are 

becoming an increasingly serious problem nowadays, therefore several information 

security techniques are available today to protect information systems against 

unauthorized use, duplication, alteration, destruction, and viruses attacks. The number 

of intrusions into computer systems is growing. The reason is that new automated 

hacking tools are appearing every day, and these tools with variety of system 

vulnerability information are easily available on the web [1]. 

The word “intrusion” means the act of wrongfully entering upon, seizing, or taking 

possession of the property of another [2]. The attack detection tools are very 

important for providing safety in computer and network system. These tools fully 

depend on accuracy of attack detection. Moreover, the detection is mandatory for 

prevention of any attack. Therefore, accurate detection of an attack is very important. 

Several attempts have been done in the field of attack detection but they suffered 

many limitations such as time consuming statistical analysis, regular updating, non 

adaptivity, lack of accuracy, and flexibility. Therefore, an Artificial Neural Network 

(ANN) supports an ideal specification of an attack detection system and is a solution 

to the problems of previous systems. As a result, an Artificial Neural Network 

inspired by nervous system has become an interesting tool in the applications of 

attack detection systems due to its promising features. Attack detection by artificial 

neural networks is an ongoing area and thus interest in this field has increased among 

the researchers. Neural networks have the ability to classify patterns, and thus can be 

used in other aspects of intrusion detection systems such as attack classification and 

alert validation [1]. 

An unauthorized user who tries to enter in network or computer system is known as 

intruder. A system that detects and logs inappropriate activities is called as intrusion 

detection system (IDS). The intrusion detection systems can be classified into three 

categories: host based, network based and vulnerability assessment based. A host 
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based intrusion detection system evaluates information found on a single or multiple 

host systems, including contents of operating systems, system files and application 

files. While network based intrusion detection system evaluates information captured 

from network communications, analyzing the stream of packets traveling across the 

network. Packets are captured through a set of sensors. Vulnerability assessment 

based intrusion detection system detects vulnerabilities on internal networks and 

firewall [2].  

There are two general methods of detecting intrusions into computer and network 

systems: anomaly detection and signature recognition. Anomaly detection techniques 

establish a profile of the subject's normal behavior (norm profile), compare the 

observed behavior of the subject with its norm profile, and signal intrusions when the 

subject’s observed behavior differs significantly from its norm profile. Signature 

recognition techniques recognize signatures of known attacks, match the observed 

behavior with those known signatures, and signal intrusions when there is a match [2]. 

Attacks can be classified into four main categories: 

1) Denial of Service Attack (DoS): In computing, a denial of service attack is an 

attack where the perpetrator seeks to make a machine or network resource unavailable 

to its intended users by temporarily or indefinitely disrupting services of a host 

connected to the Internet. Denial of service is typically accomplished by flooding the 

targeted machine or resource with superfluous requests in an attempt to overload 

systems and prevent some or all legitimate requests from being fulfilled. There are 

many varieties of denial of service (DoS) attacks. Some DoS attacks (like a 

mailbomb, Neptune, or smurf attack) abuse a perfectly legitimate feature. Others 

(teardrop, Ping of Death) create malformed packets that confuse the TCP/IP stack of 

the machine that is trying to reconstruct the packet. Still others (apache2, back, 

syslogd) take advantage of bugs in a particular network detection. 

2) User to Root Attack (U2R): User to root exploits are a class of exploits in 

which the attacker starts out with access to a normal user account on the system 

(perhaps gained by sniffing passwords, a dictionary attack, from social 

engineering) and is able to exploit some vulnerability to gain root access to the 

system. There are several types of user to root attacks. The most common is the 

buffer overflow attack. Buffer overflows occur when a program copies too much 



3  

data into a static buffer without checking to make sure that the data will fit. 

Another example is the loadmodule attack which exploits programs that make 

assumptions about the environment in which they are running.  

3) Remote to Local Attack (R2L): A remote to local attack occurs when an 

attacker who has the ability to send packets to a machine over a network but who 

does not have an account on that machine exploits some vulnerability to gain local 

access as a user of that machine. There are many possible ways an attacker can 

gain unauthorized access to a local account on a machine. Some of the attacks 

exploit buffer overflows in network server software (imap, named, sendmail). The 

Dictionary, Ftp-Write, Guest, and Xsnoop attacks all attempt to exploit weak or 

misconfigured system security policies. In the Xlock attack, a remote attacker 

gains local access by fooling a legitimate user who has left their X console 

unprotected, into revealing their password. 

4) Probing Attack: In recent years, a growing number of programs have been 

distributed that can automatically scan a network of computers to gather 

information or find known vulnerabilities. An attacker with a map of which 

machines and services are available on a network can use this information to look 

for weak points. Some of these scanning tools (satan, saint, mscan) enable even a 

very unskilled attacker to very quickly check hundreds or thousands of machines 

on a network for known vulnerabilities. Other examples of probing attack includes 

inside sniffer, Ipsweep, resetscan, etc.  

 

1.1.1 Artificial Neural Networks 

Artificial Neural Networks or simply “Neural Nets” go by many names such as 

connectionist models, parallel distributed processing models, and neuromorphic 

systems [3]. Whatever the name, all these models attempt to achieve good 

performance via dense interconnection of simple computational elements. In this 

respect, artificial neural net structure is based on our understanding of biological 

nervous system. Neural net models have greatest potential in areas such as speech and 

image recognition. Instead of programming with sequential instructions, neural net 

models explore many competing hypotheses simultaneously using massively parallel 
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nets composed of many computational elements connected by links with variable 

weights [3]. 

Artificial Neural Networks (ANN) offer a different approach for analyzing data, and 

for recognizing patterns within that data, than traditional computing methods, 

therefore Artificial Neural Networks have been used in many applications such as: 

classification (Medical diagnosis, target recognition, character recognition, fraud 

detection, intruder detection and speech recognition), Function Approximation 

(machine diagnostics), and Data Mining (Clustering, data visualization and data 

extraction). Neural network is a universal classifier and with the proper choosing of 

its architecture it can solve any, even very complicated, classification task [3].  

Feed forward neural network is an artificial neural network where connections 

between the units or nodes do not form a directed cycle [3]. The feed forward neural 

network was the first and simplest type of artificial neural network devised. In this 

network, the information moves in only one direction, forward, from input nodes, 

through the hidden node (if any) and to the output nodes. 

Multilayer Perceptron (MLP) is a feed forward neural network. Figure 1.1 below 

shows the input layer, hidden layer(s) and output layer of Multilayer Perceptron. 

 

Figure 1.1: Multilayer Backpropagation. 

(Source: Copied form [3]) 

 

1.1.2 Learning in Neural Networks 

One of the powerful features of neural networks is learning. Learning in neural 

networks is carried out by adjusting the connection weights among neurons. It is 
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similar to a biological nervous system in which learning is carried out by changing 

synapses connection strengths among cells. The operation of a neural network is 

determined by the values of the interconnection weights. There is no algorithm that 

determines how the weights should be assigned in order to solve specific problems. 

Hence, the weights are assigned by a learning process. 

Learning may be classified into two categories: Supervised Learning and 

Unsupervised Learning [3]. Supervised learning is the method in which every input 

pattern that is used to train the network is associated with an output pattern, which is 

the target or desired pattern. In simple word, supervised learning is the process where 

network is trained to produce/recognize the output given that it is fed with inputs 

along with the same output [3]. In unsupervised learning, in the other hand, the target 

output is not presented to the network. It is as if there is no teacher to present the 

desired output and hence, the system learns of its own by discovering and adapting to 

features of the input vectors/pattern [3]. 

 

1.1.3 Training and Testing of MLP 

In ANN, generally initial weights and biases are set randomly with small values. 

Once, these values are set, the network becomes ready to be trained. Training a 

network generally means feeding the network with the training sequence. The training 

sequences are simply the vectors of input combinations along with the required 

output. The network processes the input vector, changes its internal weights and 

biases to give the result near to the output. After certain epochs of the training, the 

weights and biases are kept constant and real environment data is fed to the network 

to test the network. There are quite a few training algorithms developed during the 

years of time which provides good result in terms of how fast network converges to 

problem, how much memory does the network uses to produce the output etc. In this 

thesis, resilient backpropagation algorithm is used to train multilayer perceptron. 

1.1.4 Backpropagation (BP) 

Backpropagation is the most widely used neural network system. The MLP network is 

usually learned using the Backpropagation algorithm (BP). It uses the 

backpropagation rule for training. The backpropagation training algorithm is an 
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iterative gradient algorithm designed to minimize the mean square error between the 

actual output of a multilayer feed-forward perceptron and the desired output.  

Figure 1.2 represents the flowchart of backpropagation algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Backpropagation Algorithm 

  

Backpropagation Algorithm Steps: 

Step 0: Initialize the weights to small random values. 

Step 1: Feed the training sample through the network and determine the final output. 

Step 2: Compute the error for each output unit, for unit k it is: 

 )(')( yyt inkkkk
f ……………….. (1.1)

 

Step 3: Calculate the weight correction term for each output unit, for unit k if it is: 

Initialize weights W, V 

Stop 

Submit Input X and compute 

layer’s outputs  Y, O 

Compute cycle error E 

Calculate error term 

Adjust weights of output layer 

Adjust weights of hidden layer 

More Input 
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E < Emax 

E = 0 

Yes 

Yes 

No 

No 

Start 
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jkjk
Zw 

…………………………. (1.2)
 

Step 4: Propagate the delta terms (error) back through the weights of the hidden units 

where the delta input for the jth hidden unit is: 

 



m

k

jkkinj W
1


……………………...….. (1.3)

 

The delta term for the jth hidden unit is:  

)(' injinjj zf 
………………………… (1.4)

 

Step 5: Calculate the weight correction term for the hidden units: 

 XiV jij 
……………….………….. (1.5)

 

Step 6: Update the weights: 

)__()()( layeroutputforWoldWnewW jkjkJK 
…………… (1.6)

 

)__()()( layerhiddenforVoldVnewV ijijij 
 …………….… (1.7)

 

Step 7: Test for stopping (maximum cycles, small changes, etc). 

Resilient backpropagation algorithm is used for training of multilayer perceptron. 

 

1.1.5 Transfer (Activation) Function 

A neuron may sum its inputs, or average them, or something entirely more 

complicated. Each of these behaviors can be represented mathematically, and that 

representation is called the transfer (activation) function [3]. 

MLP networks typically use sigmoid transfer functions in the hidden layers. These 

functions are often called "squashing" functions, because they compress an infinite 

input range into a finite output range.  

The bipolar sigmoid function: f(x) = 1 +  
2

 1+e-x                  ……………….. (1.8) 

which has derivative of: f(x) = 0.5 × [1 + f(x)] × [1 – f(x) ] .…………… (1.9) 
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Figure 1.3: Bipolar sigmoid function 

1.1.6 Resilient Backpropagation 

Resilient backpropagation method is a learning heuristic for supervised learning in 

feedforward artificial neural networks. This is a first-order optimization algorithm. 

This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992.  

Resilient back propagation (Rprop), an algorithm that can be used to train a neural 

network, is similar to the more common (regular) back-propagation. But it has two 

main advantages over back propagation: First, training with Rprop is often faster than 

training with back propagation. Second, Rprop doesn't require us to specify any free 

parameter values, as opposed to back propagation which needs values for the learning 

rate (and usually an optional momentum term). The main disadvantage of Rprop is 

that it's a more complex algorithm to implement than back propagation. 

Understanding Gradients and the Rprop Algorithm 

Many machine learning algorithms, including Rprop, are based on a mathematical 

concept called the gradient. In order to understand gradient, its wise to observe the 

graph in Figure 1.4 in which the curve plots error vs. the value of a single weight. The 

idea here is that we must have some measure of error (there are several), and that the 

value of the error will change as the value of one weight changes, assuming we hold 
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the values of the other weights and biases the same. For a neural network with many 

weights and biases, there'd be graphs like the one in Figure 1.4 for every weight and 

bias. 

 

Figure 1.4: Partial derivatives and the gradient 

(Source:https://visualstudiomagazine.com/articles/2015/03/01/resilientbackpropagatio

n.aspx) 

A gradient is made up of several "partial derivatives". A partial derivative for a weight 

can be thought of as the slope of the tangent line (the slope, not the tangent line itself) 

to the error function for some value of the weight. For example, in the figure, the 

"partial derivative of error with respect to weight" at weight = -5.0 is -0.90. The sign 

of the slope/partial derivative indicates which direction to go in order to get to a 

smaller error. A negative slope means go in the positive weight direction, and vice- 

versa. The steepness (magnitude) of the slope indicates how rapidly the error is 

changing and gives a hint at how far to move to get to a smaller error. 
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Partial derivatives are called partial because they only take one weight into account; 

the other weights are assumed to be constant. A gradient is just a collection of the all-

partial derivatives for all the weights and biases. Note that although the word gradient 

is singular, it has several components. Also, the terms gradient and partial derivative 

(or just "the partial," for brevity) are often used interchangeably when the meaning is 

clear from the context. 

During training, regular back propagation uses the magnitudes of the partial 

derivatives to determine how much to adjust a weight value. This seems very 

reasonable, but if we look at Figure 1.4 we can see a drawback to this approach. 

Suppose a weight has a current value of -5.0 and regular back propagation sees a 

fairly steep gradient and calculates a weight delta of +7.0. The new weight value will 

be -5.0 + 7.0 = 2.0 and so the weight has gone well past the optimum value at -3.0. On 

the next iteration of training, the weight could swing wildly back and overshoot again 

but in the other direction. This oscillation could continue and the weight for the 

minimum error would never be found. 

With regular back-propagation algorithm, normally a small learning rate (0.0001 to 1) 

is used, which, along with the magnitude of the gradient, determines the weight delta 

in a training iteration. This means we likely won't overshoot an optimal answer, but it 

means training will be very slow as we creep closer and closer to a weight that gives 

minimum error. 

The Rprop algorithm makes two significant changes to the back-propagation 

algorithm. First, Rprop doesn't use the magnitude of the gradient to determine a 

weight delta; instead, it uses only the sign of the gradient. Second, instead of using a 

single learning rate for all weights and biases, Rprop maintains separate weight deltas 

for each weight and bias, and adapts these deltas during training. 

Similarly to the Manhattan update rule, Resilient backpropagation takes into account 

only the sign of the partial derivative over all patterns (not the magnitude), and acts 

independently on each "weight". For each weight, if there is a sign change of the 

partial derivative of the total error function compared to the last iteration, the update 

value for that weight is multiplied by a factor η−, where η− < 1. If the last iteration 

produces the same sign, the update value is multiplied by a factor of η+, where 

https://en.wikipedia.org/w/index.php?title=Manhattan_update_rule&action=edit&redlink=1
https://en.wikipedia.org/wiki/Sign_(mathematics)
https://en.wikipedia.org/wiki/Partial_derivative
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η+ > 1. The update values are calculated for each weight in the above manner, and 

finally each weight is changed by its own update value, in the opposite direction of 

that weight's partial derivative, so as to minimize the total error function. η+ is 

empirically set to 1.2 and η− to 0.5. 

Wk+1 =  η−. Wk   if sign change. …………………….. (1.10) 

Wk+1 =  η+. Wk   if sign do not change.   ………….……. (1.11) 

where η− and η+ are the learningrate factors. These determine how much of a jump the 

update values will take in either the positive or negative direction. 

Resilient Backpropagation Algorithm 

while epoch < maxEpochs loop 

  calculate gradient over all training items 

  for each weight (and bias) loop 

    if prev and curr partials have same sign 

      increase the previously used delta 

      update weight using  new delta 

    else if prev and curr partials have different signs 

      decrease the previously used delta 

      revert weight to prev value 

    end if 

    prev delta = new delta 

    prev gradient = curr gradient 

  end-for 

  ++epoch 

end-while 

return curr weights and bias values 

Actually, training a neural network is the process of finding values for the weights 

and biases so that, for a set of training data with known input and output values, the 

computed outputs of the network closely match the known outputs. The most 

common technique used to train neural networks is the back-propagation algorithm. 

Back propagation requires a value for a parameter called the learning rate. The 

effectiveness of back propagation is highly sensitive to the value of the learning rate. 
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Rprop was developed by researchers in 1993 in an attempt to improve upon the back-

propagation algorithm. 

 

1.2 Problem Statement 

IDS is Rule Based Monitoring and Controlling System, therefore, selection of 

algorithm used to define standard rule base is a major challenge. The selection of 

improper algorithm and model can maximize the occurrence of false alarm rate, high 

resource consumption, and low intrusion detection rate and may result inefficiency to 

entire system and may even lead to security vulnerabilities. The proper selection of 

classifier algorithm leads to increase in efficiency of IDS being implemented. 

One of the most commonly used approaches in Intrusion Detection System’s expert 

system is rule-based analysis. Rule-based analysis relies on sets of predefined rules 

that are provided by an administrator or created by the system. 

Unfortunately, expert systems require frequent updates to remain sync to knowledge 

of different intrusions. This design approach usually results in an inflexible detection 

system that is unable to detect an attack if the sequence of events is even slightly 

different from the predefined profile. The problem may lie in the fact that the intruder 

is an intelligent and flexible agent while the rule based IDSs obey fixed rules. This 

problem can be tackled by the application of soft computing techniques (for example, 

Artificial Neural Network) in IDSs. Accuracy of detecting intrusion is also another 

major problem since a little deviation from the detection would affect the 

confidentiality, integrity, and availability of information. 

 

1.3 Objectives 

Objectives of the thesis are as follows: 

 To detect and classify intrusion using Resilient Backpropagation algorithm 

and evaluate its performance. 
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2 LITERATURE REVIEW 

 

Several research works have already been carried out and many research papers have 

been published regarding improvement on intrusion detection system (IDS) [1, 2, 4-

13]. Each of the papers has focused on different algorithmic techniques being 

implemented in IDS with their resulted output in simulation tools as well.  

The research work done by XiaoHang Yao [1] put forward an IDS combining with 

genetic algorithm and backpropagation. The intrusion detection system model 

presented in this paper adopts anomaly detection and misuse detection means. The 

system is composed of eight different modules. Five kinds of Neural Network 

technologies are described in this paper. The result of experiment shows that 

combining genetic algorithm with backpropagation efficiently enhances the learning 

speed of backpropagation neural network and improves the detection accuracy rate of 

IDS. Finally, a discussion of the future neural network technologies, which guarantee 

to enhance the detection efficiency of IDS is provided. 

There is another research work performed by Farah Jemili, Montaceur Zaghdoud and 

Mohamad Ben Ahmed [2], in which Bayesian Network was used to build automatic 

intrusion detection system based on signature recognition. The goal of this work is to 

propose a method to propagate both the stochastic and the epistemic uncertainties, 

coming respectively from the uncertain and imprecise character of information, 

through the Bayesian model, in an intrusion detection context. However, some 

challenges in attack plan recognition were pointed and to minimize the risk, they have 

planned to apply their algorithms to alert streams collected from live networks and to 

integrate an expert system which can provide recommendations based on attack 

scenarios prediction. 

Fred Cohen noted in 1984 that it is impossible to detect an intrusion in every case, and 

that the resources needed to detect intrusions grow with the amount of usage [4].The 

research work performed by Anderson, James P. [4] put forward the research on 

computer security threat monitoring and surveillance. The balance of this report 

outlines the considerations and general design of a system which provides an initial 

set of tools to computer system security officers for use in their jobs. The discussion 

does not suggest the elimination of any existing security audit data collection and 
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distribution. Rather it suggests augmenting any such schemes with information for the 

security personnel directly involved.  

A system that can detect network intrusion at the time of attack is called a real-time  

Intrusion Detection System. A real-time Intrusion Detection System (IDS) captures 

the present network traffic data which is on-line data. There are only few papers on 

on-line (real-time) network IDS which are discussed below. 

The research work performed in [6] put forward the research on an analysis of 

Intrusion Detection System using backpropagation neural network. In this paper, 

authors proposed a new learning methodology towards developing a novel intrusion 

detection system by backpropagation neural networks. The main function of Intrusion 

Detection System is to protect the resources from threats. It analyzes and predicts the 

behaviors of users, and then these behaviors will be considered an attack or a normal 

behavior.  

There are several techniques which exist at present to provide more security to the 

network, but most of these techniques are static. We can test the proposed method by 

a benchmark intrusion dataset such as NSL-KDD to verify its feasibility and 

effectiveness. Results show that choosing good attributes and samples will not only 

have impact on the performance, but also on the overall execution efficiency. The 

proposed method can significantly reduce the training time required. Additionally, the 

training results are good. It provides a powerful tool to help supervisors analyze, 

model and understand the complex attack behavior of electronic crime. 

Labib and Vemuri [7] developed a real-time IDS using Self Organizing Maps (SOM) 

to detect normal network activity and DoS attack. They preprocessed their dataset to 

have 10 features for each data record. Each record contained information of 50 

packets. The system uses a structured SOM to classify real-time Ethernet network 

data. The authors were able to classify simulated DoS network attacks graphically as 

opposed to normal traffic by showing that the clustering of neurons was very different 

between the two. Puttini et al. [8] used a Bayesian classification model for anomaly 

detection to classify normal network activity and attack using a 3-month training 

dataset and a 1-month test dataset. In this paper, design and development of the IDS 

are considered in 3 main stages: normal behavior construction, anomaly detection, 

and model update. Detection and update algorithms for the special case of Gaussian 
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parametrical model are designed and evaluated with respect to their real-time features 

in a PC-like platform without any special hardware requirements. Amini et al. [9] 

designed a real-time IDS using two unsupervised neural network algorithms which 

are Adaptive Resonance Theory (ART) and Self-Organizing Map (SOM). They 

classified two attack types plus normal data during a 4-day experiment with a 27-

feature dataset, where each feature captures number of occurrences of an event in 

each time interval. The detection results showed that the ART-2 gave higher detection 

speed and detection rate than the SOM. However, the attacks were not classified into 

types or categories. Su et al. [10] created a real-time network IDS using fuzzy 

association rules and conducted their experiments by using four computers with DoS 

attack types in WIN32. They could separate the normal network activity from 

network attacks but they did not identify the attack type. 

In the research work carried by [15], the highest detection rate was found to be 

99.794% but with reduction of features from 41 to 22. In the research paper [16], the 

detection rate was found to be 79.9% using BFGS quasi-Newton Backpropagation 

taking number of hidden layers 21. The detection rate from [17] using NSL-KDD is 

found to be 85.7% using Decision Tree (DT) based CART (Classification and 

Regression Tree) algorithm. 

An intrusion detection tool called SNORT is described in [11]. SNORT has now 

become a commercial tool. Its attack signature rules are available only to their 

registered customers. The signature rules or patches have to be frequently updated and 

installed in order to detect current attack types.  
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3 METHODOLOGY 

 

3.1 Conceptual Design 

The proposed system is under study in two phases. Training, validation, and testing of 

multilayer perceptron is carried out using NSL-KDD Dataset (2009). Also, testing is 

performed using real-time data captured from an organization. These two major parts 

can also be explained with the help of block diagram that follows. 

  

 

Figure 3.1: Block diagram of the proposed system 

3.2 Input Dataset Collection 

In this thesis, the source of data is NSL-KDD (2009). NSL-KDD is a dataset 

suggested to solve some of the inherent problems of the KDD'99 dataset. Although, 

this new version of the KDD dataset still suffers from some of the problems and may 

not be a perfect representative of existing real networks, because of the lack of public 
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datasets for network-based IDSs, it still can be applied as an effective benchmark data 

set to help researchers compare different intrusion detection methods. 

The NSL-KDD data set has the following advantages over the original KDD data set: 

 It does not include redundant records in the train set, so the classifiers will not 

be biased towards more frequent records. 

 There is no duplicate records in the proposed test sets; therefore, the 

performance of the learners are not biased by the methods which have better 

detection rates on the frequent records. 

 The number of selected records from each difficulty level group is inversely 

proportional to the percentage of records in the original KDD data set. As a 

result, the classification rates of distinct machine learning methods vary in a 

wider range, which makes it more efficient to have an accurate evaluation of 

different learning techniques. 

 The number of records in the train and test sets are reasonable, which makes it 

affordable to run the experiments on the complete set without the need to 

randomly select a small portion. Consequently, evaluation results of different 

research works will be consistent and comparable. 

In each record of the NSL-KDD dataset, there are 41 attributes unfolding different 

features and a label assigned to each either as an attack type or as normal.  

Table 3.1: Different features and its types of NSL-KDD dataset 

Type Features 

Nominal Protocol_type(2), service(3), flag(4) 

Binary Land(7), logged_in(12), root_shell(14), su_attempted(15), 

is_host_login(21), is_guest_login(22) 

Numeric Duration (1), src_bytes(5), dst_bytes(6), wrong_fragment(8), 

urgent(9), hot(10), num_failed_logins(11), num_compromised(13), 

num_root(16), num_file_creations(17), num_shells(18), 
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num_access_files(19), num_outbound_cmds(20), count(23), 

srv_count(24), serror_rate(25), srv_serror_rate(26), rerror_rate(27), 

srv_rerror_rate(28), same_srv_rate(29), diff_srv_rate(30), 

srv_diff_host_rate(31), dst_host_count(32), dst_host_srv_count(33), 

dst_host_same_srv_rate(34), dst_host_diff_srv_rate(35), 

dst_host_same_src_port_rate(36), dst_host_srv_diff_host_rate(37), 

dst_host_serror_rate(38), dst_host_srv_serror_rate(39), 

dst_host_rerror_rate(40), dst_host_srv_rerror_rate(41) 

 

The details of the attributes namely the attribute name and their description are listed 

in the Table 5.2. 

Table 3.2: Description of different types of attributes in NSL-KDD dataset. 

Attribute 

No. 

Attribute Name Description 

1 Duration Length of time duration of the 

connection 

2 Protocol_type Protocol used in the connection 

3 Service Destination network service used 

4 Flag Status of the connection Normal 

or error 

5 Src_bytes Number of data bytes transferred 

from source to destination in single 

connection 

6 Dst_bytes Number of data bytes transferred 

from destination to source in single 

connection 

7 Land If source and destination IP 

addresses and port numbers are 

equal, then this variable takes value 

1 else 0 

8 Wrong_fragment Total number of wrong fragments 
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in this connection 

9 Urgent Number of urgent packets in this 

connection (Urgent packets are 

packets with the urgent bit 

activated 

10 Hot Number of ‘hot’ indicators in the 

content such as entering a system 

directory, creating programs and 

executing programs 

11 Num_failed_logins Count of failed login attempts 

12 Logged_in Login status 1 if successfully 

logged in otherwise 0 

13 Num_compromised Number of ‘compromised’ 

conditions 

14 Root_shell This variable takes value 1 if root 

shell is obtained otherwise 0 

15 Su_attempted 1 if “su root” command is 

attempted or used otherwise 0 

 

16 Num_root Number of ‘root’ accesses or 

number of operations performed as 

a root in the connection 

17 Num_file_creations Number of file creation operations 

in the connection 

18 Num_shells Number of shell prompts 

19 Num_access_files Number of operations on access 

control files 

20 Num_outbound_cmds Number of outbound commands in 

an ftp session 

21 Is_hot_login 1 if the login belongs to the ‘hot’ 

list i.e., root or admin, else 0 

22 Is_guest_login 1 if the login is a ‘guest’ login 

otherwise 0 
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23 Count Number of connections to the same 

destination host as the current 

connection in the past two seconds 

24 Srv_count Number of connections to the same 

service (port number) as the current 

connection in the past two seconds 

25 Serror_rate The percentage of connections that 

have activated the flag (4) among 

the connections aggregated in count 

(23) 

26 Srv_serror_rate The percentage of connections that 

have activated the flag (4) among 

the connections aggregated in 

srv_count (24) 

27 Rerror_rate The percentage of connections that 

have activated the flag (4) REJ, 

among the connections aggregated 

in count (23) 

28 Srv_rerror_rate The percentage of connections that 

have activated the flag (4) REJ, 

among the connections aggregated 

in srv_count (24) 

29 Same_srv_rate The percentage of connections that 

were to the same service among the 

connections aggregated in count 

(23) 

30 Diff_srv_rate The percentage of connections that 

were to different services among 

the connections aggregated in count 

(23) 

31 Srv_diff_host_rate The percentage of connections that 

were to different destination 

machines among the connections 
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aggregated in srv_count (24) 

32 Dst_host_count Number of connections having the 

same destination host IP addresses 

33 Dst_host_srv_count Number of connections having the 

same port number  

34 Dst_host_same_srv_rate The percentage of connecctions that 

were to the same service among the 

connections aggregated in 

dst_host_count (32) 

35 Dst_host_diff_srv_rate The percentage of connections that 

were to different services among 

the connections aggregated  in 

dst_host_count (32) 

36 Dst_host_same_src_port_rate The percentage of connections that 

were to the same source port among 

the connections aggregated in 

dst_host_srv_count (33) 

37 Dst_host_srv_diff_host_rate The percentage of connections that 

were to different destination 

machines among the connections 

aggregated in dst_host_srv_count 

(33) 

38 Dst_host_serror_rate The percentage of connections that 

have activated the flag (4) among 

the connections aggregated in 

dst_host_count (32) 

39 Dst_host_srv_serror_rate The percentage of connections that 

have activated the flag (4)  among 

the connections aggregated in 

dst_host_srv_count (33) 

40 Dst_host_rerror_rate The percentage of connections that 

have activated the flag (4) REJ, 

among the connections aggregated 



22  

in dst_host_count (32) 

41 Dst_host_srv_rerror_rate The percentage of connections that 

have activated the flag (4) REJ, 

among the connections aggregated 

in dst_host_srv_count (33) 

 

3.3 Preprocessing 

Data preprocessing is the most time consuming and complex task of preparing for 

subsequent analysis as per requirement for IDS model. The objectives of data 

preprocessing is to transform the raw input data into an appropriate format for 

subsequent analysis. The various steps involved in data preprocessing include 

merging data from data repositories, cleaning data to remove noise and duplicate 

observations and then selecting relevant observations as per the requirement at hand 

[12]. 

The 2nd, 3rd, and 4th attributes are only needed to be converted into numerical format 

as they are nominal in nature while other attributes are already numerical in nature. 

The 2nd attribute (protocol_type) are converted to numeric values as listed in the Table 

5.3. 

Table 3.3:Protocol types and corresponding numeric values assigned. 

Protocol_type Numeric Values 

TCP 1 

UDP 2 

ICMP 3 

 

Similarly, the 3rd attribute (service) and 4th attribute (flag) are converted to numeric 

values as shown in the Table 5.4 and Table 5.5 respectively. 
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Table 3.4: Numerical values assigned to different types of services 

Service Numeric Values Service Numeric Values 

http 1 supdup 35 

http_443 2 systat 36 

http_8001 3 telnet 37 

imap4 4 tim_i 38 

IRC 5 time 39 

iso_tsap 6 urh_i 40 

Klogin 7 urp_i 41 

Kshell 8 uucp 42 

Ldap 9 uucp_path 43 

Link 10 vmnet 44 

Login 11 whois 45 

Mtp 12 X11 46 

name 13 Z39_50 47 

netbios_dgm 14 auth 48 

netbios_ns 15 bgp 49 

netbios_ssn 16 courier 50 

netstat 17 csnet_ns 51 

Nnsp 18 ctf 52 

nntp 19 day39 53 
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ntp_u 20 discard 54 

other 21 domain 55 

pm_dump 22 domain_u 56 

pop_2 23 echo 57 

pop_3 24 eco_i 58 

printer 25 ecr_i 59 

private 26 efs 60 

red_i 27 exec 61 

remote_job 28 finger 62 

rje  29 ftp 63 

Shell 30 ftp_data 64 

Smtp 31 gopher  65 

sql_net 32 host13S 66 

Ssh 33 S12 67 

Sunrpc 34   

 

Table 3.5:Numeric values assigned to different types of flags 

Flag Numeric Values 

OTH 1 

REJ 2 

RSTO 3 
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RSTOS0 4 

RSTR 5 

S0 6 

S1 7 

S2 8 

S3 9 

SF 10 

SH 11 

 

The 42nd attribute contains data that are categorized as normal or one of the four 

attack types. The Table 5.6 shows this detail. 

Table 3.6: Different types of attacks in NSL-KDD dataset 

Attack Class Attack Type 

DoS Back, Land, Neptune, Pod, Smurf, Teardrop, Apache2, Udpstorm, 

Processtable, Worm, Mailbomb 

Probe Satan, Ipsweep, Nmap, Portsweep, Mscan, Saint 

R2L Guess_passwd, Ftp_write, Imap, Phf, Multihop, Warezmaster, 

Warezclient, Spy, Xlock, Xsnoop, Snmpguess, Snmpgetattack, 

Httptunnel, Sendmail, Named 

U2R Buffer_overflow, Loadmodule, Rootkit, Perl, Sqlattack, Xterm, Ps, 

Snmpguess, Worm 
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Normal is assigned a value of ‘1’ ; DoS, Probe, R2L, and U2R are replaced with ‘2’, 

‘3’, ‘4’, and ‘5’ respectively. Since these outputs are of five types, they are further 

assigned values as shown in the Table 5.7. 

Table 3.7 Five digits binary code assigned to normal and four attacks. 

Attack Class Code Assignment 

Normal 00001 

DoS 00010 

Probe 00100 

R2L 01000 

U2R 10000 

 

3.4 Determining Architecture of MLP 

A fully connected neural network with m inputs, h hidden nodes, and n outputs has (m 

 h) + h + (h  n) + n weights and biases. For example, a neural network with 4 

inputs, 5 hidden nodes, and 3 outputs has (4 * 5) + 5 + (5 * 3) + 3 = 43 weights and 

biases. 

As there are 41 different attributes of each record, we have 41 neurons in the input 

layer. Similarly, we require 5 neurons in the output layer because there are 5 different 

categories of attacks including normal.  

The number of hidden layers is nearly always one. There is a lot of empirical weight 

behind this presumption--in practice very few problems that cannot be solved with a 

single hidden layer become soluble by adding another hidden layer. Likewise, there is 

a consensus in the performance difference from adding additional hidden layers: the 

situations in which performance improves with a second (or third, etc.) hidden layer 

are very small. One hidden layer is sufficient for the large majority of problems. 

The number of hidden neurons is based on a complex relationship between 
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1. Number of input and output nodes 

2. Amount of training data available 

3. Complexity of the function that is trying to be learned 

4. The training algorithm 

To minimize the error and have a trained network that generalizes well, we need to 

pick an optimal number of hidden layers, as well as nodes in each hidden layer. 

 Too few nodes will lead to high error for our system as the predictive factors 

might be too complex for a small number of nodes to capture 

 Too many nodes will overfit to our training data and not generalize well 

Overfiitting means that the error (number of incorrectly classified patterns) on the 

training set is driven to a very small value, however, when new data is presented, the 

error is large. In these cases, the ANN has memorized the training examples; 

however, it has not learnt to generalize the solution to new situations. 

In most situations, there is no way to determine the best number of hidden units 

without training several networks and estimating the generalization error of each. If  

too few hidden units are chosen, there will be high training error and high 

generalization error due to underfitting and high statistical bias. If too many hidden 

units are chosen, there may be low training error but still have high generalization 

error due to overfitting and high variance. 

So, performance (mean squared error, in this case) of multilayer perceptron with 

different number of hidden layers is first calculated and then the optimal value of 

hidden neurons is selected. 

 

3.5 Tools Used 

MATLAB 2013 

MATLAB (Matrix Laboratory) is a programming environment for algorithm 

development, data analysis, visualization, and numerical computation. MATLAB can 

solve technical computing problems faster than with traditional programming 

languages such as C, C++, and FORTRAN. MATLAB can be used in a wide range of 

applications including signal and image processing, communications, control design, 
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test and measurement, financial modeling and analysis, and neural networks. For a 

million engineers and scientists in industry and academia, MATLAB is the language 

of technical computing (MathWorks Matlab Help, 2013). 

Neural Network Toolbox supports supervised learning with feedforward, radial basis, 

and dynamic networks. It also supports unsupervised learning with self-organizing 

maps and competitive layers. With the toolbox, we can design, train, visualize, and 

simulate neural networks. Simulation is done using Neural Network toolbox in Matlab 

2013.  
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4 RESULTS ANALYSIS 

 

To access the results of the proposed intrusion detection approach, the simulation is 

performed in Matlab 2013. The totoal number of records used for system evaluation 

using NSL-KDD is 47735 out of which, 40% of total is used for training, 50% of total 

is used for testing, and remaining 10% is used for validation. 

Following parameters are calculated after training and testing of MLP. 

True Positive (TP): Situation in which a signature is fired properly when an attack is 

detected and an alarm is generated. 

False Positive (FP): Situation in which normal traffic causes the signature to raise an 

alarm. 

True Negative (TN): Situation in which normal traffic does not cause the signature to 

raise an alarm. 

False Negative (FN): Situation in which a signature is not fired when an attack is 

detected. 

Recall Rate: Recall rate measures the proportion of actual positives which are 

correctly  identified. 

Recall Rate = 
TP

TP + FN
  

Precision Rate: Precision rate is the ratio of true positives to combined true and false 

positives. 

 Precision Rate =  
TP

TP + FP
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Table 4.1 Mean squared error values for different number of hidden neurons. For 30 

hidden neurons, performance is best. 

No. of Neurons in the Hidden Layer Performance (MSE) 

10 0.00175 

16 0.000346 

23 0.00101 

30 0.000268 

 

The final architecture of neural network will be as shown in the figure below. 

 

 

Figure 4.1 Architecture of MLP 

The figure below shows the number of epochs required for training the neural 

network with Resilient Backpropagation algorithm, time required, gradient and 

performance. 



31  

 

Figure 4.2: Summary of execution of Resilient Backpropagation 

The training stopped when the validation error increased for six iterations, which 

occurred at iteration 602. 

A plot of the training errors, validation errors, and test errors is shown in figure 4.3, 

the best validation is achieved at 596 epoch with validation value 0.011833. The 

result is reasonable because of the following considerations: 

 The final mean squared error is small. 

 The test set error and the validation set error have similar characteristics. 
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 No significant overfitting has occurred by iteration 596 (where the best 

validation performance occurs). 

 

Figure 4.3: Mean square error versus no. of epochs 

Similarly, training state of neural network the gradient valued decreases with 

increasing the number of epoch as shown in figure below. 

 

Figure 4.4 Graph demonstrating training states 
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Similarly, the figure below shows the error histogram in training, validation, and 

testing stages. In error histogram, 20 bins are taken in consideration. To “bin” the 

range of values means to divide the entire range of values into a series of intervals – 

and then count how many values fall into each interval. The bins are usually specified 

as consecutive, non-overlapping intervals of a variable. The bins (intervals) must be 

adjacent, and are often (but are not required to be) of equal size. 

The blue bars represent training data, the green bars represent validation data, and the 

red bars represent testing data. 

``  

Figure 4.5 Histogram showing errors 

The graph that follows demonstrates regression curve for training, validation, and 

testing for different values of R. In all cases, plot is between output and target. The 

regression plots display the network outputs with respect to targets for training, 

validation, and test set. Thus, regression is used to validate the network performance.  

For a perfect fit, the data should fall along a 45 line, where the network outputs are 

equal to the targets. For this problem, the fit is reasonably good for all data sets, with 

R values in each case of 0.96 or above. 
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Figure 4.6 Regression 

 

The predicted output by the neural network is shown below in the figure. 

 

Figure 4.7: Predicted output by neural network 
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Figure 4.8 Confusion matrix. 

From the confusion matrix, following parameters are calculated. Observing ‘all 

confusion matrix’, it is noted that the diagonal elements other than first and last 

diagonal elements represent TP of DoS, Probe, R2L, and U2R. To enlist the values of 

FP for different attacks, the values from first column (other than first and last 

elements of first column) are noted. Now, the values of first row beside first and last 

elements of first row are noted for FN for different attacks namely DoS, Probe, R2L, 

and U2R. 
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Table 4.2 Evaluation results of each attack classes 

Attack TP FP FN Recall Rate Precision Rate 

DoS 5783 26 24 99.59% 99.55% 

Probe 4988 0 0 100% 100% 

R2L 15492 4 0 100% 99.97% 

U2R 19823 40 26 99.87% 99.79% 

Total 46086 70 50 99.86% 99.83% 

 

The table below shows simulation results of NSL-KDD dataset. 

Table 4.3 Simulation results. 

SN Performance 

(MSE) 

Epoch Recall Rate Precision Rate 

1 0.0109 602 
99.86% 99.83% 

 

The overall detection rate achieved in this research classifying the attack is found to 

be 96.7% using 30 number of hidden layers. 
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5 CONCLUSION 

 

The NSL-KDD dataset (47735 records) was preprocessed and all attributes were 

converted into numerical format. Out of the total sample records taken, 40% of it was 

used to train neural network using Resilient Backpropagation algorithm, 50% was 

used for testing, and 10% was used for validation. The simulation results showed 

recall rate to be 99.8% and precision rate to be 99.83%. The overall detection rate in 

detecting intrusion was found to be 96.7%. The result was also nearly consistent when 

200 number of datas from an organization was tested.  

Network intrusion detection system model can be further enhanced to deal with online 

real-time traffic so that immediate classification of attack can be done and real-time 

preventive response can be carried out to prevent confidentiality, integrity, and 

availability of data. 
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