

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

THESIS NO.: 072/MSCS/667

NETWORK INTRUSION DETECTION USING RESILIENT

BACKPROPAGATION

by

Shyam Dahal

A THESIS

SUBMITTED TO DEPARTMENT OF ELECTRONICS AND COMPUTER

ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SYSTEM

AND KNOWLEDGE ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

LALITPUR, NEPAL

NOVEMBER, 2017

NETWORK INTRUSION DETECTION USING RESILIENT

BACKPROPAGATION

BY:

SHYAM DAHAL

072/MSCS/667

SUPERVISED BY:

Er. BABU RAM DAWADI

ATHESIS SUBMITTED TO DEPARTMENT OF ELECTRONICS AND

COMPUTER ENGINEERING IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN

COMPUTER SYSTEM AND KNOWLEDGE ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

PULCHOWK CAMPUS

INSTITUTE OF ENGINEERING

TRIBHUVAN UNIVERSITY

LALITPUR, NEPAL

NOVEMBER, 2017

iii

COPYRIGHT

The author has agreed that the library, Department of Electronics and Computer

Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis report

freely available for inspection. Moreover, the author has agreed that the permission

for extensive copying of this thesis work for scholarly purpose may be granted by the

professors, who supervised this work recorded herein or, in their absence, by the Head

of Department, wherein this thesis was done. It is understood that the recognition will

be given to the author of this thesis and to the Department of Electronics and

Computer Engineering, Pulchowk Campus in any use of the material of this thesis.

Copying of publication or other use of this thesis for financial gain without approval

of the Department of Electronics and Computer Engineering, Institute of Engineering,

Pulchowk Campus and author’s written permission is prohibited.

Request for permission to copy or to make any use of the material in this thesis in

whole or part should be addressed to:

Head of Department

Department of Electronics and Computer Engineering

Institute of Engineering

Pulchowk Campus

Lalitpur, Nepal

iv

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

APPROVAL PAGE

The undersigned certify that it has been read and recommended to the Department of

Electronics and Computer Engineering for acceptance, a report of thesis entitled

“Network Intrusion Detection using Resilient Backpropagation”, submitted by

Mr. Shyam Dahal in partial fulfillment of the requirement for the award of the

degree of “Master of Science in Computer System and Knowledge Engineering”.

Er. Babu Ram Dawadi

Supervisor,

Department of Electronics and Computer Engineering,

Pulchowk Campus,

Institute of Engineering.

Er. Manoj Ghimire

External Examiner,

Chief Executive Officer,

nLocate Pvt. Ltd.

Prof. Dr. Subarna Shakya

Committee Chairperson,

Department of Electronics and Computer Engineering,

Pulchowk Campus,

Institute of Engineering.

Date of Approval: 10th November, 2017

v

DEPARTMENTAL ACCEPTANCE

The thesis entitled “Network Intrusion Detection using Resilient

Backpropagation”, submitted by Mr. Shyam Dahal in partial fulfillment of the

requirement for the award of the degree of “Master of Science in Computer System

and Knowledge Engineering” has been accepted as a bonafide record of work

independently carried out by him in the department.

Dr. Dibakar Raj Pant

Head of Department,

Department of Electronics and Computer Engineering,

Pulchowk Campus,

Institute of Engineering,

Tribhuvan University,

Pulchowk, Nepal.

vi

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisor Er. Babu Ram Dawadi

for providing precious knowledge and suggestions about the thesis. I would also like

to thank Dr. Aman Shakya, Coordinator, MSCSKE, for his constant guidance on

research activity.

I am highly indebted to Prof. Dr. Subarna Shakya, Prof. Dr. Shashidhar Ram

Joshi, Dr. Dibakar Raj Pant, Dr. Sanjeeb Pandey, Er. Dinesh Baniya Kshatri,

Er. Sharad Chandra Joshi for teaching and assisting me with different resources

and skills required for my thesis work. Last but not least, I am always grateful to

everyone for their direct and indirect support to complete this thesis successfully.

vii

ABSTRACT

Information is one of the most valuable possessions today. As the Internet expands

both in number of hosts connected and number of services provided, security has

become a key issue for the technology developers. With the growth of smart devices

and internet technologies, anomalous traffic detection has become a major concern.

This thesis is focused on the detection of attacks in a network by using Multilayer

Perceptron (MLP) trained with Resilient Backpropagation. NSL-KDD dataset, an

intrusion detection attacks database is used as an input dataset for network intrusion

detection. In each record of the NSL-KDD dataset, there are 42 attributes, 41

attributes unfolding different features and a label assigned to each either as an attack

type or as normal. The 2nd (Protocol_type), 3rd (Services), and 4th (Flag) attributes are

converted into numerical format. The 42nd attribute is first classified under different

category of attacks (DoS, Probe, R2L, U2R) or normal, then assigned a numerical

value and finally, 5 bit code are assigned to each of them. Architecture of MLP is

determined to have 41 neurons in the input layer, 30 neurons in the hidden layer, and

5 neurons in the output layer. The number of neurons in the hidden layer was fixed

selecting that value for which Performance (MSE) was best. In this thesis, a

Multilayer Perceptron is trained with Resilient Backpropagation algorithm and the

research evaluates the performance of the algorithm. Out of the 47735 records, 40%

of it is used for training neural network, 50% of it is used for validation, and 10% is

used for testing. Different parameters (TP, FP, FN) are noted from the confusion

matrix and recall rate, precision rate were calculated for each. The result showed

overall recall rate and precision rate to be 99.8% and 99.83%. The overall detection

rate of the system is found to be 96.7% which is better than any other existing

backpropagation algorithms.

 Keywords: Resilient, Backpropagation, Dataset, Intrusion detection, NSL-KDD,

Multilayer Perceptron, Performance, MSE.

viii

TABLE OF CONTENTS

COPYRIGHT ..iii

APPROVAL PAGE .. iv

DEPARTMENTAL ACCEPTANCE .. v

ACKNOWLEDGEMENT .. vi

ABSTRACT ... vii

TABLE OF CONTENTS ..viii

LIST OF FIGURES ... x

LIST OF TABLES .. xi

LIST OF ABBREVIATIONS .. xii

1. INTRODUCTION .. 1

1.1 Background ... 1

1.1.1 Artificial Neural Networks .. 3

1.1.2 Learning in Neural Networks .. 4

1.1.3 Training and Testing of MLP .. 5

1.1.4 Backpropagation (BP) ... 5

1.1.5 Transfer (Activation) Function .. 7

1.1.6 Resilient Backpropagation ... 8

1.2 Problem Statement .. 12

1.3 Objectives .. 12

2 LITERATURE REVIEW ... 13

3 METHODOLOGY ... 16

3.1 Conceptual Design .. 16

ix

3.2 Input Dataset Collection .. 16

3.3 Preprocessing .. 22

3.4 Determining Architecture of MLP .. 26

3.5 Tools Used... 27

4 RESULTS ANALYSIS .. 29

5 CONCLUSION .. 37

REFERENCES .. 38

x

LIST OF FIGURES

Figure 1.1: Multilayer Backpropagation. ... 4

Figure 1.2: Backpropagation Algorithm .. 6

Figure 1.3: Bipolar sigmoid function ... 8

Figure 1.4: Partial derivatives and the gradient ... 9

Figure 3.1: Block diagram of the proposed system ... 16

Figure 4.1 Architecture of MLP... 30

Figure 4.2: Summary of execution of Resilient Backpropagation 31

Figure 4.3: Mean square error versus no. of epochs .. 32

Figure 4.4 Graph demonstrating training states ... 32

Figure 4.5 Histogram showing errors .. 33

Figure 4.6 Regression .. 34

Figure 4.7: Predicted output by neural network ... 34

Figure 4.8 Confusion matrix. ... 35

xi

LIST OF TABLES

Table 3.1: Different features and its types of NSL-KDD dataset 17

Table 3.2: Description of different types of attributes in NSL-KDD dataset. 18

Table 3.3:Protocol types and corresponding numeric values assigned. 22

Table 3.4: Numerical values assigned to different types of services 23

Table 3.5:Numeric values assigned to different types of flags 24

Table 3.6: Different types of attacks in NSL-KDD dataset ... 25

Table 3.7 Five digits binary code assigned to normal and four attacks. 26

Table 4.1 Mean squared error values for different number of hidden neurons. For 30

hidden neurons, performance is best. ... 30

Table 4.2 Evaluation results of each attack classes ... 36

Table 4.3 Simulation results. ... 36

xii

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

BFGS Broyden-fletcher-Goldfarb-Shanno

BP Backpropagation

DOS Denial of Service

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IP Internet Protocol

KDD Knowledge Discovery in Database

MLP Multilayer Perceptron

MSE Mean Squared Error

NIDS Network based IDS

NSL Network Socket Layer

R2L Remote to Local

SOM Self Organizing Map

TCP Transmission Control Protocol

U2R User to Root

UDP User Datagram Protocol

1

1. INTRODUCTION

1.1 Background

With the growth of smart devices and internet technologies, anomalous traffic

detection has become a major concern. Attacks on computer infrastructure are

becoming an increasingly serious problem nowadays, therefore several information

security techniques are available today to protect information systems against

unauthorized use, duplication, alteration, destruction, and viruses attacks. The number

of intrusions into computer systems is growing. The reason is that new automated

hacking tools are appearing every day, and these tools with variety of system

vulnerability information are easily available on the web [1].

The word “intrusion” means the act of wrongfully entering upon, seizing, or taking

possession of the property of another [2]. The attack detection tools are very

important for providing safety in computer and network system. These tools fully

depend on accuracy of attack detection. Moreover, the detection is mandatory for

prevention of any attack. Therefore, accurate detection of an attack is very important.

Several attempts have been done in the field of attack detection but they suffered

many limitations such as time consuming statistical analysis, regular updating, non

adaptivity, lack of accuracy, and flexibility. Therefore, an Artificial Neural Network

(ANN) supports an ideal specification of an attack detection system and is a solution

to the problems of previous systems. As a result, an Artificial Neural Network

inspired by nervous system has become an interesting tool in the applications of

attack detection systems due to its promising features. Attack detection by artificial

neural networks is an ongoing area and thus interest in this field has increased among

the researchers. Neural networks have the ability to classify patterns, and thus can be

used in other aspects of intrusion detection systems such as attack classification and

alert validation [1].

An unauthorized user who tries to enter in network or computer system is known as

intruder. A system that detects and logs inappropriate activities is called as intrusion

detection system (IDS). The intrusion detection systems can be classified into three

categories: host based, network based and vulnerability assessment based. A host

2

based intrusion detection system evaluates information found on a single or multiple

host systems, including contents of operating systems, system files and application

files. While network based intrusion detection system evaluates information captured

from network communications, analyzing the stream of packets traveling across the

network. Packets are captured through a set of sensors. Vulnerability assessment

based intrusion detection system detects vulnerabilities on internal networks and

firewall [2].

There are two general methods of detecting intrusions into computer and network

systems: anomaly detection and signature recognition. Anomaly detection techniques

establish a profile of the subject's normal behavior (norm profile), compare the

observed behavior of the subject with its norm profile, and signal intrusions when the

subject’s observed behavior differs significantly from its norm profile. Signature

recognition techniques recognize signatures of known attacks, match the observed

behavior with those known signatures, and signal intrusions when there is a match [2].

Attacks can be classified into four main categories:

1) Denial of Service Attack (DoS): In computing, a denial of service attack is an

attack where the perpetrator seeks to make a machine or network resource unavailable

to its intended users by temporarily or indefinitely disrupting services of a host

connected to the Internet. Denial of service is typically accomplished by flooding the

targeted machine or resource with superfluous requests in an attempt to overload

systems and prevent some or all legitimate requests from being fulfilled. There are

many varieties of denial of service (DoS) attacks. Some DoS attacks (like a

mailbomb, Neptune, or smurf attack) abuse a perfectly legitimate feature. Others

(teardrop, Ping of Death) create malformed packets that confuse the TCP/IP stack of

the machine that is trying to reconstruct the packet. Still others (apache2, back,

syslogd) take advantage of bugs in a particular network detection.

2) User to Root Attack (U2R): User to root exploits are a class of exploits in

which the attacker starts out with access to a normal user account on the system

(perhaps gained by sniffing passwords, a dictionary attack, from social

engineering) and is able to exploit some vulnerability to gain root access to the

system. There are several types of user to root attacks. The most common is the

buffer overflow attack. Buffer overflows occur when a program copies too much

3

data into a static buffer without checking to make sure that the data will fit.

Another example is the loadmodule attack which exploits programs that make

assumptions about the environment in which they are running.

3) Remote to Local Attack (R2L): A remote to local attack occurs when an

attacker who has the ability to send packets to a machine over a network but who

does not have an account on that machine exploits some vulnerability to gain local

access as a user of that machine. There are many possible ways an attacker can

gain unauthorized access to a local account on a machine. Some of the attacks

exploit buffer overflows in network server software (imap, named, sendmail). The

Dictionary, Ftp-Write, Guest, and Xsnoop attacks all attempt to exploit weak or

misconfigured system security policies. In the Xlock attack, a remote attacker

gains local access by fooling a legitimate user who has left their X console

unprotected, into revealing their password.

4) Probing Attack: In recent years, a growing number of programs have been

distributed that can automatically scan a network of computers to gather

information or find known vulnerabilities. An attacker with a map of which

machines and services are available on a network can use this information to look

for weak points. Some of these scanning tools (satan, saint, mscan) enable even a

very unskilled attacker to very quickly check hundreds or thousands of machines

on a network for known vulnerabilities. Other examples of probing attack includes

inside sniffer, Ipsweep, resetscan, etc.

1.1.1 Artificial Neural Networks

Artificial Neural Networks or simply “Neural Nets” go by many names such as

connectionist models, parallel distributed processing models, and neuromorphic

systems [3]. Whatever the name, all these models attempt to achieve good

performance via dense interconnection of simple computational elements. In this

respect, artificial neural net structure is based on our understanding of biological

nervous system. Neural net models have greatest potential in areas such as speech and

image recognition. Instead of programming with sequential instructions, neural net

models explore many competing hypotheses simultaneously using massively parallel

4

nets composed of many computational elements connected by links with variable

weights [3].

Artificial Neural Networks (ANN) offer a different approach for analyzing data, and

for recognizing patterns within that data, than traditional computing methods,

therefore Artificial Neural Networks have been used in many applications such as:

classification (Medical diagnosis, target recognition, character recognition, fraud

detection, intruder detection and speech recognition), Function Approximation

(machine diagnostics), and Data Mining (Clustering, data visualization and data

extraction). Neural network is a universal classifier and with the proper choosing of

its architecture it can solve any, even very complicated, classification task [3].

Feed forward neural network is an artificial neural network where connections

between the units or nodes do not form a directed cycle [3]. The feed forward neural

network was the first and simplest type of artificial neural network devised. In this

network, the information moves in only one direction, forward, from input nodes,

through the hidden node (if any) and to the output nodes.

Multilayer Perceptron (MLP) is a feed forward neural network. Figure 1.1 below

shows the input layer, hidden layer(s) and output layer of Multilayer Perceptron.

Figure 1.1: Multilayer Backpropagation.

(Source: Copied form [3])

1.1.2 Learning in Neural Networks

One of the powerful features of neural networks is learning. Learning in neural

networks is carried out by adjusting the connection weights among neurons. It is

5

similar to a biological nervous system in which learning is carried out by changing

synapses connection strengths among cells. The operation of a neural network is

determined by the values of the interconnection weights. There is no algorithm that

determines how the weights should be assigned in order to solve specific problems.

Hence, the weights are assigned by a learning process.

Learning may be classified into two categories: Supervised Learning and

Unsupervised Learning [3]. Supervised learning is the method in which every input

pattern that is used to train the network is associated with an output pattern, which is

the target or desired pattern. In simple word, supervised learning is the process where

network is trained to produce/recognize the output given that it is fed with inputs

along with the same output [3]. In unsupervised learning, in the other hand, the target

output is not presented to the network. It is as if there is no teacher to present the

desired output and hence, the system learns of its own by discovering and adapting to

features of the input vectors/pattern [3].

1.1.3 Training and Testing of MLP

In ANN, generally initial weights and biases are set randomly with small values.

Once, these values are set, the network becomes ready to be trained. Training a

network generally means feeding the network with the training sequence. The training

sequences are simply the vectors of input combinations along with the required

output. The network processes the input vector, changes its internal weights and

biases to give the result near to the output. After certain epochs of the training, the

weights and biases are kept constant and real environment data is fed to the network

to test the network. There are quite a few training algorithms developed during the

years of time which provides good result in terms of how fast network converges to

problem, how much memory does the network uses to produce the output etc. In this

thesis, resilient backpropagation algorithm is used to train multilayer perceptron.

1.1.4 Backpropagation (BP)

Backpropagation is the most widely used neural network system. The MLP network is

usually learned using the Backpropagation algorithm (BP). It uses the

backpropagation rule for training. The backpropagation training algorithm is an

6

iterative gradient algorithm designed to minimize the mean square error between the

actual output of a multilayer feed-forward perceptron and the desired output.

Figure 1.2 represents the flowchart of backpropagation algorithm.

Figure 1.2: Backpropagation Algorithm

Backpropagation Algorithm Steps:

Step 0: Initialize the weights to small random values.

Step 1: Feed the training sample through the network and determine the final output.

Step 2: Compute the error for each output unit, for unit k it is:

)(')(yyt inkkkk
f ……………….. (1.1)

Step 3: Calculate the weight correction term for each output unit, for unit k if it is:

Initialize weights W, V

Stop

Submit Input X and compute

layer’s outputs Y, O

Compute cycle error E

Calculate error term

Adjust weights of output layer

Adjust weights of hidden layer

More Input

ssPattern

E < Emax

E = 0

Yes

Yes

No

No

Start

7

jkjk
Zw 

…………………………. (1.2)

Step 4: Propagate the delta terms (error) back through the weights of the hidden units

where the delta input for the jth hidden unit is:

 



m

k

jkkinj W
1


……………………...….. (1.3)

The delta term for the jth hidden unit is:

)(' injinjj zf 
………………………… (1.4)

Step 5: Calculate the weight correction term for the hidden units:

 XiV jij 
……………….………….. (1.5)

Step 6: Update the weights:

)__()()(layeroutputforWoldWnewW jkjkJK 
…………… (1.6)

)__()()(layerhiddenforVoldVnewV ijijij 
 …………….… (1.7)

Step 7: Test for stopping (maximum cycles, small changes, etc).

Resilient backpropagation algorithm is used for training of multilayer perceptron.

1.1.5 Transfer (Activation) Function

A neuron may sum its inputs, or average them, or something entirely more

complicated. Each of these behaviors can be represented mathematically, and that

representation is called the transfer (activation) function [3].

MLP networks typically use sigmoid transfer functions in the hidden layers. These

functions are often called "squashing" functions, because they compress an infinite

input range into a finite output range.

The bipolar sigmoid function: f(x) = 1 +
2

 1+e-x ……………….. (1.8)

which has derivative of: f(x) = 0.5 × [1 + f(x)] × [1 – f(x)] .…………… (1.9)

8

Figure 1.3: Bipolar sigmoid function

1.1.6 Resilient Backpropagation

Resilient backpropagation method is a learning heuristic for supervised learning in

feedforward artificial neural networks. This is a first-order optimization algorithm.

This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992.

Resilient back propagation (Rprop), an algorithm that can be used to train a neural

network, is similar to the more common (regular) back-propagation. But it has two

main advantages over back propagation: First, training with Rprop is often faster than

training with back propagation. Second, Rprop doesn't require us to specify any free

parameter values, as opposed to back propagation which needs values for the learning

rate (and usually an optional momentum term). The main disadvantage of Rprop is

that it's a more complex algorithm to implement than back propagation.

Understanding Gradients and the Rprop Algorithm

Many machine learning algorithms, including Rprop, are based on a mathematical

concept called the gradient. In order to understand gradient, its wise to observe the

graph in Figure 1.4 in which the curve plots error vs. the value of a single weight. The

idea here is that we must have some measure of error (there are several), and that the

value of the error will change as the value of one weight changes, assuming we hold

-4 0

-1

10 -10 -2 -6 -8 2 4 6 8

1

o.2

.2

0.4

0.6

0.8

-0.2

-0.4

-0.6

-0.8

9

the values of the other weights and biases the same. For a neural network with many

weights and biases, there'd be graphs like the one in Figure 1.4 for every weight and

bias.

Figure 1.4: Partial derivatives and the gradient

(Source:https://visualstudiomagazine.com/articles/2015/03/01/resilientbackpropagatio

n.aspx)

A gradient is made up of several "partial derivatives". A partial derivative for a weight

can be thought of as the slope of the tangent line (the slope, not the tangent line itself)

to the error function for some value of the weight. For example, in the figure, the

"partial derivative of error with respect to weight" at weight = -5.0 is -0.90. The sign

of the slope/partial derivative indicates which direction to go in order to get to a

smaller error. A negative slope means go in the positive weight direction, and vice-

versa. The steepness (magnitude) of the slope indicates how rapidly the error is

changing and gives a hint at how far to move to get to a smaller error.

10

Partial derivatives are called partial because they only take one weight into account;

the other weights are assumed to be constant. A gradient is just a collection of the all-

partial derivatives for all the weights and biases. Note that although the word gradient

is singular, it has several components. Also, the terms gradient and partial derivative

(or just "the partial," for brevity) are often used interchangeably when the meaning is

clear from the context.

During training, regular back propagation uses the magnitudes of the partial

derivatives to determine how much to adjust a weight value. This seems very

reasonable, but if we look at Figure 1.4 we can see a drawback to this approach.

Suppose a weight has a current value of -5.0 and regular back propagation sees a

fairly steep gradient and calculates a weight delta of +7.0. The new weight value will

be -5.0 + 7.0 = 2.0 and so the weight has gone well past the optimum value at -3.0. On

the next iteration of training, the weight could swing wildly back and overshoot again

but in the other direction. This oscillation could continue and the weight for the

minimum error would never be found.

With regular back-propagation algorithm, normally a small learning rate (0.0001 to 1)

is used, which, along with the magnitude of the gradient, determines the weight delta

in a training iteration. This means we likely won't overshoot an optimal answer, but it

means training will be very slow as we creep closer and closer to a weight that gives

minimum error.

The Rprop algorithm makes two significant changes to the back-propagation

algorithm. First, Rprop doesn't use the magnitude of the gradient to determine a

weight delta; instead, it uses only the sign of the gradient. Second, instead of using a

single learning rate for all weights and biases, Rprop maintains separate weight deltas

for each weight and bias, and adapts these deltas during training.

Similarly to the Manhattan update rule, Resilient backpropagation takes into account

only the sign of the partial derivative over all patterns (not the magnitude), and acts

independently on each "weight". For each weight, if there is a sign change of the

partial derivative of the total error function compared to the last iteration, the update

value for that weight is multiplied by a factor η−, where η− < 1. If the last iteration

produces the same sign, the update value is multiplied by a factor of η+, where

https://en.wikipedia.org/w/index.php?title=Manhattan_update_rule&action=edit&redlink=1
https://en.wikipedia.org/wiki/Sign_(mathematics)
https://en.wikipedia.org/wiki/Partial_derivative

11

η+ > 1. The update values are calculated for each weight in the above manner, and

finally each weight is changed by its own update value, in the opposite direction of

that weight's partial derivative, so as to minimize the total error function. η+ is

empirically set to 1.2 and η− to 0.5.

Wk+1 = η−. Wk if sign change. …………………….. (1.10)

Wk+1 = η+. Wk if sign do not change. ………….……. (1.11)

where η− and η+ are the learningrate factors. These determine how much of a jump the

update values will take in either the positive or negative direction.

Resilient Backpropagation Algorithm

while epoch < maxEpochs loop

 calculate gradient over all training items

 for each weight (and bias) loop

 if prev and curr partials have same sign

 increase the previously used delta

 update weight using new delta

 else if prev and curr partials have different signs

 decrease the previously used delta

 revert weight to prev value

 end if

 prev delta = new delta

 prev gradient = curr gradient

 end-for

 ++epoch

end-while

return curr weights and bias values

Actually, training a neural network is the process of finding values for the weights

and biases so that, for a set of training data with known input and output values, the

computed outputs of the network closely match the known outputs. The most

common technique used to train neural networks is the back-propagation algorithm.

Back propagation requires a value for a parameter called the learning rate. The

effectiveness of back propagation is highly sensitive to the value of the learning rate.

12

Rprop was developed by researchers in 1993 in an attempt to improve upon the back-

propagation algorithm.

1.2 Problem Statement

IDS is Rule Based Monitoring and Controlling System, therefore, selection of

algorithm used to define standard rule base is a major challenge. The selection of

improper algorithm and model can maximize the occurrence of false alarm rate, high

resource consumption, and low intrusion detection rate and may result inefficiency to

entire system and may even lead to security vulnerabilities. The proper selection of

classifier algorithm leads to increase in efficiency of IDS being implemented.

One of the most commonly used approaches in Intrusion Detection System’s expert

system is rule-based analysis. Rule-based analysis relies on sets of predefined rules

that are provided by an administrator or created by the system.

Unfortunately, expert systems require frequent updates to remain sync to knowledge

of different intrusions. This design approach usually results in an inflexible detection

system that is unable to detect an attack if the sequence of events is even slightly

different from the predefined profile. The problem may lie in the fact that the intruder

is an intelligent and flexible agent while the rule based IDSs obey fixed rules. This

problem can be tackled by the application of soft computing techniques (for example,

Artificial Neural Network) in IDSs. Accuracy of detecting intrusion is also another

major problem since a little deviation from the detection would affect the

confidentiality, integrity, and availability of information.

1.3 Objectives

Objectives of the thesis are as follows:

 To detect and classify intrusion using Resilient Backpropagation algorithm

and evaluate its performance.

13

2 LITERATURE REVIEW

Several research works have already been carried out and many research papers have

been published regarding improvement on intrusion detection system (IDS) [1, 2, 4-

13]. Each of the papers has focused on different algorithmic techniques being

implemented in IDS with their resulted output in simulation tools as well.

The research work done by XiaoHang Yao [1] put forward an IDS combining with

genetic algorithm and backpropagation. The intrusion detection system model

presented in this paper adopts anomaly detection and misuse detection means. The

system is composed of eight different modules. Five kinds of Neural Network

technologies are described in this paper. The result of experiment shows that

combining genetic algorithm with backpropagation efficiently enhances the learning

speed of backpropagation neural network and improves the detection accuracy rate of

IDS. Finally, a discussion of the future neural network technologies, which guarantee

to enhance the detection efficiency of IDS is provided.

There is another research work performed by Farah Jemili, Montaceur Zaghdoud and

Mohamad Ben Ahmed [2], in which Bayesian Network was used to build automatic

intrusion detection system based on signature recognition. The goal of this work is to

propose a method to propagate both the stochastic and the epistemic uncertainties,

coming respectively from the uncertain and imprecise character of information,

through the Bayesian model, in an intrusion detection context. However, some

challenges in attack plan recognition were pointed and to minimize the risk, they have

planned to apply their algorithms to alert streams collected from live networks and to

integrate an expert system which can provide recommendations based on attack

scenarios prediction.

Fred Cohen noted in 1984 that it is impossible to detect an intrusion in every case, and

that the resources needed to detect intrusions grow with the amount of usage [4].The

research work performed by Anderson, James P. [4] put forward the research on

computer security threat monitoring and surveillance. The balance of this report

outlines the considerations and general design of a system which provides an initial

set of tools to computer system security officers for use in their jobs. The discussion

does not suggest the elimination of any existing security audit data collection and

14

distribution. Rather it suggests augmenting any such schemes with information for the

security personnel directly involved.

A system that can detect network intrusion at the time of attack is called a real-time

Intrusion Detection System. A real-time Intrusion Detection System (IDS) captures

the present network traffic data which is on-line data. There are only few papers on

on-line (real-time) network IDS which are discussed below.

The research work performed in [6] put forward the research on an analysis of

Intrusion Detection System using backpropagation neural network. In this paper,

authors proposed a new learning methodology towards developing a novel intrusion

detection system by backpropagation neural networks. The main function of Intrusion

Detection System is to protect the resources from threats. It analyzes and predicts the

behaviors of users, and then these behaviors will be considered an attack or a normal

behavior.

There are several techniques which exist at present to provide more security to the

network, but most of these techniques are static. We can test the proposed method by

a benchmark intrusion dataset such as NSL-KDD to verify its feasibility and

effectiveness. Results show that choosing good attributes and samples will not only

have impact on the performance, but also on the overall execution efficiency. The

proposed method can significantly reduce the training time required. Additionally, the

training results are good. It provides a powerful tool to help supervisors analyze,

model and understand the complex attack behavior of electronic crime.

Labib and Vemuri [7] developed a real-time IDS using Self Organizing Maps (SOM)

to detect normal network activity and DoS attack. They preprocessed their dataset to

have 10 features for each data record. Each record contained information of 50

packets. The system uses a structured SOM to classify real-time Ethernet network

data. The authors were able to classify simulated DoS network attacks graphically as

opposed to normal traffic by showing that the clustering of neurons was very different

between the two. Puttini et al. [8] used a Bayesian classification model for anomaly

detection to classify normal network activity and attack using a 3-month training

dataset and a 1-month test dataset. In this paper, design and development of the IDS

are considered in 3 main stages: normal behavior construction, anomaly detection,

and model update. Detection and update algorithms for the special case of Gaussian

15

parametrical model are designed and evaluated with respect to their real-time features

in a PC-like platform without any special hardware requirements. Amini et al. [9]

designed a real-time IDS using two unsupervised neural network algorithms which

are Adaptive Resonance Theory (ART) and Self-Organizing Map (SOM). They

classified two attack types plus normal data during a 4-day experiment with a 27-

feature dataset, where each feature captures number of occurrences of an event in

each time interval. The detection results showed that the ART-2 gave higher detection

speed and detection rate than the SOM. However, the attacks were not classified into

types or categories. Su et al. [10] created a real-time network IDS using fuzzy

association rules and conducted their experiments by using four computers with DoS

attack types in WIN32. They could separate the normal network activity from

network attacks but they did not identify the attack type.

In the research work carried by [15], the highest detection rate was found to be

99.794% but with reduction of features from 41 to 22. In the research paper [16], the

detection rate was found to be 79.9% using BFGS quasi-Newton Backpropagation

taking number of hidden layers 21. The detection rate from [17] using NSL-KDD is

found to be 85.7% using Decision Tree (DT) based CART (Classification and

Regression Tree) algorithm.

An intrusion detection tool called SNORT is described in [11]. SNORT has now

become a commercial tool. Its attack signature rules are available only to their

registered customers. The signature rules or patches have to be frequently updated and

installed in order to detect current attack types.

16

3 METHODOLOGY

3.1 Conceptual Design

The proposed system is under study in two phases. Training, validation, and testing of

multilayer perceptron is carried out using NSL-KDD Dataset (2009). Also, testing is

performed using real-time data captured from an organization. These two major parts

can also be explained with the help of block diagram that follows.

Figure 3.1: Block diagram of the proposed system

3.2 Input Dataset Collection

In this thesis, the source of data is NSL-KDD (2009). NSL-KDD is a dataset

suggested to solve some of the inherent problems of the KDD'99 dataset. Although,

this new version of the KDD dataset still suffers from some of the problems and may

not be a perfect representative of existing real networks, because of the lack of public

17

datasets for network-based IDSs, it still can be applied as an effective benchmark data

set to help researchers compare different intrusion detection methods.

The NSL-KDD data set has the following advantages over the original KDD data set:

 It does not include redundant records in the train set, so the classifiers will not

be biased towards more frequent records.

 There is no duplicate records in the proposed test sets; therefore, the

performance of the learners are not biased by the methods which have better

detection rates on the frequent records.

 The number of selected records from each difficulty level group is inversely

proportional to the percentage of records in the original KDD data set. As a

result, the classification rates of distinct machine learning methods vary in a

wider range, which makes it more efficient to have an accurate evaluation of

different learning techniques.

 The number of records in the train and test sets are reasonable, which makes it

affordable to run the experiments on the complete set without the need to

randomly select a small portion. Consequently, evaluation results of different

research works will be consistent and comparable.

In each record of the NSL-KDD dataset, there are 41 attributes unfolding different

features and a label assigned to each either as an attack type or as normal.

Table 3.1: Different features and its types of NSL-KDD dataset

Type Features

Nominal Protocol_type(2), service(3), flag(4)

Binary Land(7), logged_in(12), root_shell(14), su_attempted(15),

is_host_login(21), is_guest_login(22)

Numeric Duration (1), src_bytes(5), dst_bytes(6), wrong_fragment(8),

urgent(9), hot(10), num_failed_logins(11), num_compromised(13),

num_root(16), num_file_creations(17), num_shells(18),

18

num_access_files(19), num_outbound_cmds(20), count(23),

srv_count(24), serror_rate(25), srv_serror_rate(26), rerror_rate(27),

srv_rerror_rate(28), same_srv_rate(29), diff_srv_rate(30),

srv_diff_host_rate(31), dst_host_count(32), dst_host_srv_count(33),

dst_host_same_srv_rate(34), dst_host_diff_srv_rate(35),

dst_host_same_src_port_rate(36), dst_host_srv_diff_host_rate(37),

dst_host_serror_rate(38), dst_host_srv_serror_rate(39),

dst_host_rerror_rate(40), dst_host_srv_rerror_rate(41)

The details of the attributes namely the attribute name and their description are listed

in the Table 5.2.

Table 3.2: Description of different types of attributes in NSL-KDD dataset.

Attribute

No.

Attribute Name Description

1 Duration Length of time duration of the

connection

2 Protocol_type Protocol used in the connection

3 Service Destination network service used

4 Flag Status of the connection Normal

or error

5 Src_bytes Number of data bytes transferred

from source to destination in single

connection

6 Dst_bytes Number of data bytes transferred

from destination to source in single

connection

7 Land If source and destination IP

addresses and port numbers are

equal, then this variable takes value

1 else 0

8 Wrong_fragment Total number of wrong fragments

19

in this connection

9 Urgent Number of urgent packets in this

connection (Urgent packets are

packets with the urgent bit

activated

10 Hot Number of ‘hot’ indicators in the

content such as entering a system

directory, creating programs and

executing programs

11 Num_failed_logins Count of failed login attempts

12 Logged_in Login status 1 if successfully

logged in otherwise 0

13 Num_compromised Number of ‘compromised’

conditions

14 Root_shell This variable takes value 1 if root

shell is obtained otherwise 0

15 Su_attempted 1 if “su root” command is

attempted or used otherwise 0

16 Num_root Number of ‘root’ accesses or

number of operations performed as

a root in the connection

17 Num_file_creations Number of file creation operations

in the connection

18 Num_shells Number of shell prompts

19 Num_access_files Number of operations on access

control files

20 Num_outbound_cmds Number of outbound commands in

an ftp session

21 Is_hot_login 1 if the login belongs to the ‘hot’

list i.e., root or admin, else 0

22 Is_guest_login 1 if the login is a ‘guest’ login

otherwise 0

20

23 Count Number of connections to the same

destination host as the current

connection in the past two seconds

24 Srv_count Number of connections to the same

service (port number) as the current

connection in the past two seconds

25 Serror_rate The percentage of connections that

have activated the flag (4) among

the connections aggregated in count

(23)

26 Srv_serror_rate The percentage of connections that

have activated the flag (4) among

the connections aggregated in

srv_count (24)

27 Rerror_rate The percentage of connections that

have activated the flag (4) REJ,

among the connections aggregated

in count (23)

28 Srv_rerror_rate The percentage of connections that

have activated the flag (4) REJ,

among the connections aggregated

in srv_count (24)

29 Same_srv_rate The percentage of connections that

were to the same service among the

connections aggregated in count

(23)

30 Diff_srv_rate The percentage of connections that

were to different services among

the connections aggregated in count

(23)

31 Srv_diff_host_rate The percentage of connections that

were to different destination

machines among the connections

21

aggregated in srv_count (24)

32 Dst_host_count Number of connections having the

same destination host IP addresses

33 Dst_host_srv_count Number of connections having the

same port number

34 Dst_host_same_srv_rate The percentage of connecctions that

were to the same service among the

connections aggregated in

dst_host_count (32)

35 Dst_host_diff_srv_rate The percentage of connections that

were to different services among

the connections aggregated in

dst_host_count (32)

36 Dst_host_same_src_port_rate The percentage of connections that

were to the same source port among

the connections aggregated in

dst_host_srv_count (33)

37 Dst_host_srv_diff_host_rate The percentage of connections that

were to different destination

machines among the connections

aggregated in dst_host_srv_count

(33)

38 Dst_host_serror_rate The percentage of connections that

have activated the flag (4) among

the connections aggregated in

dst_host_count (32)

39 Dst_host_srv_serror_rate The percentage of connections that

have activated the flag (4) among

the connections aggregated in

dst_host_srv_count (33)

40 Dst_host_rerror_rate The percentage of connections that

have activated the flag (4) REJ,

among the connections aggregated

22

in dst_host_count (32)

41 Dst_host_srv_rerror_rate The percentage of connections that

have activated the flag (4) REJ,

among the connections aggregated

in dst_host_srv_count (33)

3.3 Preprocessing

Data preprocessing is the most time consuming and complex task of preparing for

subsequent analysis as per requirement for IDS model. The objectives of data

preprocessing is to transform the raw input data into an appropriate format for

subsequent analysis. The various steps involved in data preprocessing include

merging data from data repositories, cleaning data to remove noise and duplicate

observations and then selecting relevant observations as per the requirement at hand

[12].

The 2nd, 3rd, and 4th attributes are only needed to be converted into numerical format

as they are nominal in nature while other attributes are already numerical in nature.

The 2nd attribute (protocol_type) are converted to numeric values as listed in the Table

5.3.

Table 3.3:Protocol types and corresponding numeric values assigned.

Protocol_type Numeric Values

TCP 1

UDP 2

ICMP 3

Similarly, the 3rd attribute (service) and 4th attribute (flag) are converted to numeric

values as shown in the Table 5.4 and Table 5.5 respectively.

23

Table 3.4: Numerical values assigned to different types of services

Service Numeric Values Service Numeric Values

http 1 supdup 35

http_443 2 systat 36

http_8001 3 telnet 37

imap4 4 tim_i 38

IRC 5 time 39

iso_tsap 6 urh_i 40

Klogin 7 urp_i 41

Kshell 8 uucp 42

Ldap 9 uucp_path 43

Link 10 vmnet 44

Login 11 whois 45

Mtp 12 X11 46

name 13 Z39_50 47

netbios_dgm 14 auth 48

netbios_ns 15 bgp 49

netbios_ssn 16 courier 50

netstat 17 csnet_ns 51

Nnsp 18 ctf 52

nntp 19 day39 53

24

ntp_u 20 discard 54

other 21 domain 55

pm_dump 22 domain_u 56

pop_2 23 echo 57

pop_3 24 eco_i 58

printer 25 ecr_i 59

private 26 efs 60

red_i 27 exec 61

remote_job 28 finger 62

rje 29 ftp 63

Shell 30 ftp_data 64

Smtp 31 gopher 65

sql_net 32 host13S 66

Ssh 33 S12 67

Sunrpc 34

Table 3.5:Numeric values assigned to different types of flags

Flag Numeric Values

OTH 1

REJ 2

RSTO 3

25

RSTOS0 4

RSTR 5

S0 6

S1 7

S2 8

S3 9

SF 10

SH 11

The 42nd attribute contains data that are categorized as normal or one of the four

attack types. The Table 5.6 shows this detail.

Table 3.6: Different types of attacks in NSL-KDD dataset

Attack Class Attack Type

DoS Back, Land, Neptune, Pod, Smurf, Teardrop, Apache2, Udpstorm,

Processtable, Worm, Mailbomb

Probe Satan, Ipsweep, Nmap, Portsweep, Mscan, Saint

R2L Guess_passwd, Ftp_write, Imap, Phf, Multihop, Warezmaster,

Warezclient, Spy, Xlock, Xsnoop, Snmpguess, Snmpgetattack,

Httptunnel, Sendmail, Named

U2R Buffer_overflow, Loadmodule, Rootkit, Perl, Sqlattack, Xterm, Ps,

Snmpguess, Worm

26

Normal is assigned a value of ‘1’ ; DoS, Probe, R2L, and U2R are replaced with ‘2’,

‘3’, ‘4’, and ‘5’ respectively. Since these outputs are of five types, they are further

assigned values as shown in the Table 5.7.

Table 3.7 Five digits binary code assigned to normal and four attacks.

Attack Class Code Assignment

Normal 00001

DoS 00010

Probe 00100

R2L 01000

U2R 10000

3.4 Determining Architecture of MLP

A fully connected neural network with m inputs, h hidden nodes, and n outputs has (m

 h) + h + (h  n) + n weights and biases. For example, a neural network with 4

inputs, 5 hidden nodes, and 3 outputs has (4 * 5) + 5 + (5 * 3) + 3 = 43 weights and

biases.

As there are 41 different attributes of each record, we have 41 neurons in the input

layer. Similarly, we require 5 neurons in the output layer because there are 5 different

categories of attacks including normal.

The number of hidden layers is nearly always one. There is a lot of empirical weight

behind this presumption--in practice very few problems that cannot be solved with a

single hidden layer become soluble by adding another hidden layer. Likewise, there is

a consensus in the performance difference from adding additional hidden layers: the

situations in which performance improves with a second (or third, etc.) hidden layer

are very small. One hidden layer is sufficient for the large majority of problems.

The number of hidden neurons is based on a complex relationship between

27

1. Number of input and output nodes

2. Amount of training data available

3. Complexity of the function that is trying to be learned

4. The training algorithm

To minimize the error and have a trained network that generalizes well, we need to

pick an optimal number of hidden layers, as well as nodes in each hidden layer.

 Too few nodes will lead to high error for our system as the predictive factors

might be too complex for a small number of nodes to capture

 Too many nodes will overfit to our training data and not generalize well

Overfiitting means that the error (number of incorrectly classified patterns) on the

training set is driven to a very small value, however, when new data is presented, the

error is large. In these cases, the ANN has memorized the training examples;

however, it has not learnt to generalize the solution to new situations.

In most situations, there is no way to determine the best number of hidden units

without training several networks and estimating the generalization error of each. If

too few hidden units are chosen, there will be high training error and high

generalization error due to underfitting and high statistical bias. If too many hidden

units are chosen, there may be low training error but still have high generalization

error due to overfitting and high variance.

So, performance (mean squared error, in this case) of multilayer perceptron with

different number of hidden layers is first calculated and then the optimal value of

hidden neurons is selected.

3.5 Tools Used

MATLAB 2013

MATLAB (Matrix Laboratory) is a programming environment for algorithm

development, data analysis, visualization, and numerical computation. MATLAB can

solve technical computing problems faster than with traditional programming

languages such as C, C++, and FORTRAN. MATLAB can be used in a wide range of

applications including signal and image processing, communications, control design,

28

test and measurement, financial modeling and analysis, and neural networks. For a

million engineers and scientists in industry and academia, MATLAB is the language

of technical computing (MathWorks Matlab Help, 2013).

Neural Network Toolbox supports supervised learning with feedforward, radial basis,

and dynamic networks. It also supports unsupervised learning with self-organizing

maps and competitive layers. With the toolbox, we can design, train, visualize, and

simulate neural networks. Simulation is done using Neural Network toolbox in Matlab

2013.

29

4 RESULTS ANALYSIS

To access the results of the proposed intrusion detection approach, the simulation is

performed in Matlab 2013. The totoal number of records used for system evaluation

using NSL-KDD is 47735 out of which, 40% of total is used for training, 50% of total

is used for testing, and remaining 10% is used for validation.

Following parameters are calculated after training and testing of MLP.

True Positive (TP): Situation in which a signature is fired properly when an attack is

detected and an alarm is generated.

False Positive (FP): Situation in which normal traffic causes the signature to raise an

alarm.

True Negative (TN): Situation in which normal traffic does not cause the signature to

raise an alarm.

False Negative (FN): Situation in which a signature is not fired when an attack is

detected.

Recall Rate: Recall rate measures the proportion of actual positives which are

correctly identified.

Recall Rate =
TP

TP + FN

Precision Rate: Precision rate is the ratio of true positives to combined true and false

positives.

 Precision Rate =
TP

TP + FP

30

Table 4.1 Mean squared error values for different number of hidden neurons. For 30

hidden neurons, performance is best.

No. of Neurons in the Hidden Layer Performance (MSE)

10 0.00175

16 0.000346

23 0.00101

30 0.000268

The final architecture of neural network will be as shown in the figure below.

Figure 4.1 Architecture of MLP

The figure below shows the number of epochs required for training the neural

network with Resilient Backpropagation algorithm, time required, gradient and

performance.

31

Figure 4.2: Summary of execution of Resilient Backpropagation

The training stopped when the validation error increased for six iterations, which

occurred at iteration 602.

A plot of the training errors, validation errors, and test errors is shown in figure 4.3,

the best validation is achieved at 596 epoch with validation value 0.011833. The

result is reasonable because of the following considerations:

 The final mean squared error is small.

 The test set error and the validation set error have similar characteristics.

32

 No significant overfitting has occurred by iteration 596 (where the best

validation performance occurs).

Figure 4.3: Mean square error versus no. of epochs

Similarly, training state of neural network the gradient valued decreases with

increasing the number of epoch as shown in figure below.

Figure 4.4 Graph demonstrating training states

33

Similarly, the figure below shows the error histogram in training, validation, and

testing stages. In error histogram, 20 bins are taken in consideration. To “bin” the

range of values means to divide the entire range of values into a series of intervals –

and then count how many values fall into each interval. The bins are usually specified

as consecutive, non-overlapping intervals of a variable. The bins (intervals) must be

adjacent, and are often (but are not required to be) of equal size.

The blue bars represent training data, the green bars represent validation data, and the

red bars represent testing data.

``

Figure 4.5 Histogram showing errors

The graph that follows demonstrates regression curve for training, validation, and

testing for different values of R. In all cases, plot is between output and target. The

regression plots display the network outputs with respect to targets for training,

validation, and test set. Thus, regression is used to validate the network performance.

For a perfect fit, the data should fall along a 45 line, where the network outputs are

equal to the targets. For this problem, the fit is reasonably good for all data sets, with

R values in each case of 0.96 or above.

34

Figure 4.6 Regression

The predicted output by the neural network is shown below in the figure.

Figure 4.7: Predicted output by neural network

35

Figure 4.8 Confusion matrix.

From the confusion matrix, following parameters are calculated. Observing ‘all

confusion matrix’, it is noted that the diagonal elements other than first and last

diagonal elements represent TP of DoS, Probe, R2L, and U2R. To enlist the values of

FP for different attacks, the values from first column (other than first and last

elements of first column) are noted. Now, the values of first row beside first and last

elements of first row are noted for FN for different attacks namely DoS, Probe, R2L,

and U2R.

36

Table 4.2 Evaluation results of each attack classes

Attack TP FP FN Recall Rate Precision Rate

DoS 5783 26 24 99.59% 99.55%

Probe 4988 0 0 100% 100%

R2L 15492 4 0 100% 99.97%

U2R 19823 40 26 99.87% 99.79%

Total 46086 70 50 99.86% 99.83%

The table below shows simulation results of NSL-KDD dataset.

Table 4.3 Simulation results.

SN Performance

(MSE)

Epoch Recall Rate Precision Rate

1 0.0109 602
99.86% 99.83%

The overall detection rate achieved in this research classifying the attack is found to

be 96.7% using 30 number of hidden layers.

37

5 CONCLUSION

The NSL-KDD dataset (47735 records) was preprocessed and all attributes were

converted into numerical format. Out of the total sample records taken, 40% of it was

used to train neural network using Resilient Backpropagation algorithm, 50% was

used for testing, and 10% was used for validation. The simulation results showed

recall rate to be 99.8% and precision rate to be 99.83%. The overall detection rate in

detecting intrusion was found to be 96.7%. The result was also nearly consistent when

200 number of datas from an organization was tested.

Network intrusion detection system model can be further enhanced to deal with online

real-time traffic so that immediate classification of attack can be done and real-time

preventive response can be carried out to prevent confidentiality, integrity, and

availability of data.

38

REFERENCES

[1] XiaoHang Yao, “A Network Intrusion Detection Approach combined with

Genetic Algorithm and Back Propagation Neural Network”, IEEE-

International Conference on E-Health Networking, Digital Ecosystems and

Technologies, 2010.

[2] Farah Jemili, Montaceur Zaghdoud and Mohamad Ben Ahmed, “Intrusion

Detection based on Hybrid Propagation in Bayesian Networks”, IEEE ISE

2009, Richardson, TX, USA, June 8-11, 2009.

[3] Dr. Richard Spillman, “Artificial Intelligence”.

http://www.cs.plu.edu/courses/csce330/notes.html

[4] Anderson, James P., "Computer Security Threat Monitoring and

Surveillance", Washing, PA, James P. Anderson Co., 1980.

[5] Reyadh Shaker Naoum, Namh Abdula Abid, Zainab Namh Al-Sultani, " An

Enhanced Resilient Backpropagation Artificial Neural Network”, IJCSNS

International Journal of Computer Science and Network Security, VOL. 12

No. 3, March 2012.

[6] V. Jaiganesh, Dr. P. Sumathi and S. Mangayarkarasi, “ An Analysis of

Intrusion Detection System using Back Propagation Neural Network”, Dr.

N.G.P. Arts and Science College, Coimbatore, India.

[7] K. Labib, R. Vemuri, “NSOM: A Real-time Network-based Intrusion

Detection System using Self-organizing Maps, Networks and Security”, 2002.

[8] R. S. Puttini, Z. Marrakchi, L. Me, “ A Bayesian Classification Model for

Real-time Intrusion Detection, vol. 659, 2003.

[9] M. Amini, A. Jalili, H. Reza Shahriari, “RT-UNNID: A Practical Solution to

Real-time Network-based Intrusion Detection using Unsupervised Neural

Networks, Computer and Security”, 2005.

[10] M-Y. Su, G-J. Yu, C-Y. Lin, “A Real-time Network Intrusion Detection

System for Large-scale Attacks based on an Incremental Mining Approach,

2009.

39

[11] S. Chakrabarti, M. Chakraborty, I. Mukhopadhyay, “Study of Snort-based

IDS”, IEEE International Advance Computing Conference, 2010.

[12] S. Sahu, S. Sarangi, S. Kumar Jena, “A Detail Analysis on Intrusion Detection

Datasets”, 2014.

[13] L. Dhanabal, Dr. S. P. Shantharajah, “A Study on NSL-KDD Dataset for

Intrusion Detection System based on Classification Algorithms”, International

Journal of Advanced Research in Computer and Communication Engineering,

Vol. 4, Issue 6, June 2015.

[14] NSL-KDD dataset (2009) available on:

http://www.unb.ca/cic/research/datasets/nsl.html

[15] Hee-Su Chae, Byung –Oh Jo, Sang Hyun Choi, Twae-Kung Park; "Feature

Selection for Intrusion Detection using NSL-KDD " Department of

Information Security Management, Department of Management Information

System, Chugbuk National University in Korea, 2014.

[16] Bhupendra Ingre, Anamika Yadav ; "Performance Analysis of NSL-KDD

Dataset using ANN" Department of Electrical Engineering,National Institute

of Technology, Raipur; 2015.

[17] Bhupendra Ingre, Anamika Yadav, and Atul Kumar Soni; "Detection Tree

based Intrusion Detection System for NSL-KDD Dataset" Department of

Electrical Engineering, National Institute of Technology, Raipur; March,

2017.

http://www.unb.ca/cic/research/datasets/nsl.html

