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ABSTRACT 

These days, virtual screening is applied in systematic drug design process which reduces cost 

and time for drug discovery. Virtual screening is soft computing technique being used for 

docking ligands from huge databases in selecting protein-receptor, targeting to correct drug. Due 

to non-linear nature of big-biological data, it is difficult to classify dockable and non-dockable 

ligands. Therefore, a machine learning method is used to train the classifier for separating 

intractable drug-target pair. However, the existing machine learning approaches have their 

several limitations on recent non-linear feature space of biological data. These days, deep 

learning approaches show advantages over many state-of-the art machine learning methods in 

complex applications. So, in this thesis, a new approach called PDTI-DBN framework was 

proposed to predict the interaction between drug and targets efficiently. The DBN (Deep Belief 

Network) is used to extract the high level features from 2D chemical substructure represented in 

fingerprint format. DBN, Stack of Restricted Boltzmann Machines is being trained by a greedy 

layer-wise unsupervised fashion and the result from this pre-training phase is used to initialize 

the parameters prior to Back-propagation (BP) used for fine tuning. The fine-tuning phase is 

composed by Multi Layer Perception (MLP) which shares all forward weights with RBMs. 

Similarly, logistic regression layer is staked as output layer. Then it is fine-tuned using BP of 

error derivative to build classification model that directly predict whether a drug interact with a 

target of interest. Based on evaluation on gold standard data, it is shown that this DBN model 

improves the throughput by five folds with around 99% accuracy for drug and target interaction 

prediction and its maximum F1-score obtained 73% with good AUC value from ROC curve. 

Keywords: Predicting drug-target interaction, Virtual Screening, Deep Belief Network  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

In drug design and discovery, diverse computational chemistry approaches are used to calculate 

and predict drug binding to its target and the chemical properties for designing potential new 

drug. Protein-Ligands binding affinity is the principal component of many vital processes, such 

as cellular signaling, gene regulation and metabolism, which depend upon proteins binding to 

some substrate molecule. As shown in figure 1.1, For Drug discovery, there are three phases 1. 

HIT identification 2. HIT to LEAD formation and 3. LEAD optimization. HIT identification is 

first stage of drug discovery  where computation algorithm can be applied called virtual 

screening for finding drug–target binding (as shown in figure 1.2 ) [1]. 

 

                

 

                                                    Figure 1: Drug Discovery Pipeline                                                                                                                

                                                              

                                              

                                                    

Initially High throughput Screening (HTS) was being done for automation facility. However, due 

to the large number of ligands that need to be screened, HTS is not fast and cost effective enough 

as a lead identification method in the initial phases of drug discovery [2].  Drug development 

currently remains an expensive and time-consuming process with extremely low success rate: it 

typically takes 10–15 years and $800 million–1 billion to bring a new drug to market [3]. In 
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recent decades, the rate of the number of new drugs approved by the US Food and Drug 

Administration versus the amount of money invested in pharmaceutical research and 

development has significantly declined [4].  

 

 

                                                            

                                                                    

                              

 

 

 

                                        Figure 2: Crystal structure of protein in complex with drug 

 

Therefore, as seen figure 1.3, a computational methods referred to as virtual screening 

(Computer-aided design, In Silico) are employed to complement HTS by narrowing down the 

number of ligands to be physically screened, which reduces the time and cost of laboratory 

experiment ( In vitro) . In virtual screening, information such as structure and physicochemical 

properties of a ligand, protein, or both, are used to estimate binding affinity (or binding free 

energy), which represents the strength of association between the ligand (drug or molecule) and 

its receptor protein (target). The most popular approach to predicting binding affinity in virtual 
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screening is structure-based in which physicochemical interactions between a ligand and receptor 

are deduced from the 3D structures of both molecules [5, 6].          

 

                

    

Figure 3: A typical virtual screening protocol 
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In network pharmacology [7], the assumption of "one drug for one target for one disease" (on 

which traditional drug discovery is based) is challenged and the relationships between drugs and 

targets become complicated. One drug may act on multiple targets while there are also proteins 

that are targeted by two or more compounds. Therefore, In Silico Prediction, identification of the 

interactions between chemical compounds and proteins plays a critical role in network 

pharmacology, drug discovery, drug target identification, elucidation of protein functions, and 

drug repositioning [7].  

A strong support for the possibility of drug repositioning is the increasingly accepted concept of 

‗polypharmacology‘, i.e. individual drugs can interact with multiple targets rather than a single 

target. For Example, Drug Nicotine (DrugBank ID DB00184) interacts with 10 targets (UniProt 

ID, P17787, P30532, P30926, P32297, P43681, Q05901, Q15822, Q15825, Q9G226 and 

Q9UGM1) [8]. There is a challenge to reduce the side-effect as one drug interacts more than 

single targets. Therefore, a new approach for drug discovery is needed to minimize the side-

effects as well as maximizing the protein-ligand affinity that is indentifying the possible all drug-

target interactions.  

In particular, machine-learning based methods, which have been successfully applied to various 

prediction problems in biology, have the potential to effectively learn the relationships among 

compounds and target proteins to predict new drug-target interactions from the viewpoint of 

chemo genomics. In this thesis, a framework of ligand based virtual screening using Deep Belief 

Networks (DBN) is proposed. Employing multiple hidden layers and training the layers using 

both supervised and unsupervised learning creates a deep learning (belief) network [9].  

Deep learning networks are one of the latest and most powerful machine learning techniques for 

pattern recognition. DBN can be routinely applied to 1000 data sets of compound sub structure 

2D fingerprint compound 881 dimensional descriptors without and with feature reduction 

fashion. For reducing the feature dimension, only the sub structure feature which are present in 

more than 1000 compounds are selected. By doing so, feature dimension is reduced to 286 

features which is advantageous for time complexity. There are two phase trainings in DBN, one 

for pre-training phase which is in unsupervised learning based on only unlabeled 2D substructure 

fingerprint data. The pre-training phase extracts the low level sub structure features of drugs 

(compound) which initializes the weights for post supervised training. In pre-training, stack of 

RBM (Restricted Boltzmann machine) with greedy layer wise algorithm is applied in 3 to 4 
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hidden layers having 2000 neurons in each hidden layer. The second training phase is  supervised 

training which is employed for fine tuning using known drug and target dataset of the same drugs 

which are being used in pre-training phase. Back propagation method is used for fine tuning 

purpose. Also, logistic regression is stacked as output layer. Finally, different set of drugs are 

being taken for cross validation the model.    

 

1.2 Problem Statement 

 It is difficult to predict the interaction between new drugs and targets due to very low 

known drug-target interactions available. 

 It is challenge to optimize the drug design process that is there is no such a model which 

shows maximizing confidential in drug-target interaction with lowest side-effect 

provision. 

 The exiting applied machine learning approaches have several limitations due non-linear 

nature of biological data. For example, recently famous machine learning approach like 

Support vector machine has shallow architecture and also it does not capture nonlinear 

relationship among the exiting features. 

 

1.3 Objective of the study 

Based on the above background and concept, the objective of this thesis to build a DTI-DBN 

framework which fulfills the following sub-objectives: 

 

 To build PDTI-DBN framework using stack of RBM and a logistic layer at output layer. 

 

 To evaluate the model by applying cross-validation technique with gold standard dataset 

with prediction of new drug-target interaction.  
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1.4 Scope and Limitations 

This thesis work considers following scope and limitations. 

Scope of Thesis:  

 It is only feature based prediction applying Deep learning with Deep Belief Network 

(DBN) with fixed learning rate , drop out and momentum. 

 Only drug compound 2D substructure finger print is used as pre- training dataset. 

 Evaluation with several prediction evaluation approaches like ROC curve has been 

employed. 

 Limitations of Thesis: 

 Adaptation learning rate has not been employed. 

 Protein sequence feature domain profile has not been used in training purpose. 

1.5 Organization of the Thesis 

This report consists of the following five chapters 

Chapter 1 is an introductory chapter which includes background of the study, literature review 

related to the research, problem statement, objectives of thesis and scope and limitations of the 

work.  

Chapter 2 presents the general overview of the Deep Learning, its Concept and Components. It 

describes about Restricted Boltzmann Machine (RBM) and Contrastive Divergence for its 

training strategy. Also, The Deep Belief Network is described by constructing a stack of RBM. 

Chapter 3 presents details of Methodology used for Drug and Target Interaction. It contains 

Data summary, system overview with a block diagram. Also, Experimental Setup and System 

specification are tabulated in this chapter. Finally, one complete example from training to 

prediction is illustrated for a pair of drug and target prediction. 

Chapter 4 describes about the model evaluating guides and then it is discussed about the result 

obtained from this thesis on drug target interaction prediction. 

Chapter 5 lists the references used for this thesis completion and the future enhanced of the 

thesis. 
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CHAPTER 2: LITERATURE REVIEW 

A number of network-based approaches have been proposed for predicting unknown interactions 

between drugs and targets. A supervised learning framework was developed based on a bipartite 

graph, which integrates both chemical and genomic spaces by mapping them into a unified 

space. KRM (kernel regression-based method) was used to interaction prediction between drug 

and target [10]. Again, it was presented a new approach, called Bipartite Local Model (BLM), to 

predict unknown DTIs by combining independent drug-based and target-based prediction results 

using a supervised learning method called SVM (Support Vector Machine) [11].  Also, they 

combined KRM and SVM latter. However, for drug-candidate compounds or target-candidate 

proteins that currently has no sufficient known interactions available. BLM was extended as 

BLM-NII integrating neighbor-based interaction profile. It was shown that nuclear receptors 

interaction prediction worked well [12].  

 

Also, bipartite graph had difficulty for predicting interaction between new drugs or new target 

for which there are no known interaction. It was proposed two matrix factorization methods 

using graph regularization [13].  Similarly, a first machine learning method was used starting 

from a DTI network to predict new ones with high accuracy. The calculation of the new 

interactions was done through the regularized least squares algorithm. The regularized least 

squares algorithm is trained using a kernel (GIP—Gaussian interaction profile) that summarizes 

the information in the network [14].  

 

On the same data set (profiles) of similarity matrices (kernels) of drug and target proteins user  

were applied with supervised network inference algorithm added more heterogeneous  biological 

data such as chemical structure, drug side effects, amino acid sequences and protein domains. It 

is web server model which user can use known interaction data or own interaction data[15]. 

However, Network-based approaches can only predict binary interaction drug and target pair. 

This is overcome by incorporating additional information about drug and target interaction. 

Restricted Boltzmann machine was used in their experiment for time in DTI for better 

performance in unsupervised learning fashion [16]. 
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 Also, it was proposed such a prediction model as state of art performance method which used 

probabilistic soft logic (PSL) on online data sets to overcome drug‘s unexpected therapeutic or 

adverse side effects. However, evaluating interactions locally (i.e. ignoring substructures or 

domains), false positive estimation gets increased [17]. Likewise, GIFT model was proposed 

which evaluates the drug–target interaction globally. EM (Expectation maximization) algorithm 

was used for this model [18]. 

 

 For minimizing cost and risk, drug company used to design a ―follow –on‖ drug for the targets 

having more drugs already discovered. It was proposed similarity-rank-based predictor (SRP) 

which takes evidence from ―follow-on‖ drug observations. SRP is non-parametric as well as non 

statistical knowledge based model [19]. 

 

To overcome multi-target drugs and multi-drug targets nature, it was created a semi supervised-

based learning framework called NormMullnf using collaborative filtering theory. Both labeled 

and unlabeled interaction information integrating with similarity information were used for 

principal component analysis in NormMullnf model [20]. Similarly, recommended system with 

collaborative filtering was proposed  which uses both interaction matrix for drug–target and 

rating matrix of user-item. Also, evaluation was perform on four class of proteins effectively 

based on known interaction matrix [21]. However, Recommendation method (RM) does not take 

account important features in drug- target domain as it relies on Network-based inference (NBI). 

Again, it was presented new NBI method called DT-Hybrid which extended RM by adding drug 

and target similarity knowledge in tuned way [22]. 

 

Drug–target interaction depends on the factors which are based on the structural and 

physicochemical properties. Functional group or fragments are represented by the drug structure 

feature fingerprint. This fingerprint is used for training SVM for establishing drug-target 

interaction prediction model[23]. The model extended the structure-activity relationship 

methodology. To increase the performance, it was proposed a combination of support-vector 

machine and Random forest for solving DTI classification complexity. The model is based on 

feature of drug sub-structure fingerprint as well as physicochemical properties of the protein[24].  

Similarly, it was presented Bi-gram PSSM model which is based on bi-gram features extracted 
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from the position Specific method. (PSSM) they show improved performance specifically for 

enzymes and ion-channels. They have used Support Vector Machine [SVM] for training purpose. 

However, they noted that the number of non-interacting drug–target pairs are usually extremely 

large in comparison with the number of interacting ones in existing drug–target interaction data 

so, performance reduced [25]. 

 

Again, Dockable and non-dockable ligands classification is improved [26]. They used three ML 

techniques (Support vector machine, Artificial Neural Networks and Random Forest) on a single 

problem domain (a Protease receptor of HIV). However, there are practical issues (i.e.  slow on 

large problems, difficult to train, prone to over-fitting etc) occurring in methods like support 

vector method and random forest.  

 

To overcome above issues, deep learning is being used increasable way in this decade. This 

improved the training algorithm, prevented over-fitting problems with advanced in computer 

hardware. It was proved that DNN was better predicted than RF on large diverse QSAR data 

sets. (still computational intensive) [27]. Similarly, it was presented DL-CPI (the abbreviation of 

Deep Learning for Compound-Protein Interactions prediction) prediction method is based on 

deep learning which shows over many state-of the- machine learning method. DL-CPI employs 

deep neural network (DNN) to effectively learn the representations of compound-protein pairs. It 

overcomes limitations of other machine learning due to the non-linear and imbalanced nature of 

biological data [16]. 
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CHAPTER 3: METHODOLOGY 

3.1 System Methodology Overview 

 

                                        

                 Figure 4: System Methodology Overview 

                                                                                

                                                        

                                                 

 

As shown in figure 3.1, System Methodology goes are six stages: data collection, System 

Development, Experimental Setup, Result Analysis, Evaluation and Comparison and Changing 

Hyper-parameters. The details of each stage are explained in following sub-sections. 

3.1.1 Data Collection 

The PubChem System generates a binary substructure fingerprint for chemical structures. These 

fingerprints are used by PubChem for similarity neighboring and similarity searching. 

A substructure is a fragment of a chemical structure. A fingerprint is an ordered list of binary 

(1/0) bits. Each bit represents a Boolean determination of, or test for, the presence of, for 
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example, an element count, a type of ring system, atom pairing, atom environment (nearest 

neighbors), etc., in a chemical structure. The native format of the PubChem Substructure.  

Fingerprint property is binary data with a four byte integer prefix, where this integer prefix 

indicates the length of the bit list. For the ASN.1 and XML formatted data, this property is stored 

in a PC-InfoData container, as described by the PCSubstance ASN.1 definition or XML schema: 

ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/ 

For each compound, it is used basic substructures as features, and constructed a fingerprint (a 

binary vector where ''1'' indicates the presence of a certain feature) of features to represent the 

compound. The fingerprints were obtained from the PubChem database [28], and each 

compound is represented as a 881-dimension binary vector.  The feature vector composed of 

different seven sections which are described in below. 

Section 1: Hierarchic Element Counts - These bits test for the presence or count of individual 

chemical atoms represented by their atomic symbol. ( it runs from bit position 0 to 114) 

Bit Position        Bit Substructure  

0 >= 4 H  

1 1 >= 8 H 

2 2 >= 16 H 

Section 2: Rings in a canonic Extended Smallest Set of Smallest Rings (ESSSR) ring set - These 

bits test for the presence or count of the described chemical ring system. An ESSSR ring is any 

ring which does not share three consecutive atoms with any other ring in the chemical structure. 

For example, naphthalene has three ESSSR rings (two phenyl fragments and the 10-membered 

envelope), while biphenyl will yield a count of only two ESSSR rings.(Bit position 115 to 262) 

Bit Position      Bit Substructure 

115               >= 1 any ring size 3 

116              >= 1 saturated or aromatic carbon-only ring size 3 

117              >= 1 saturated or aromatic nitrogen-containing ring size 3 

Section 3: Simple atom pairs – These bits test for the presence of patterns of bonded atom pairs, 

regardless of bond order or count.(Bit position 263 to 326) 

Bit Position       Bit Substructure 

263                    Li-H   

64                      Li-Li 

ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/
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Section 4: Simple atom nearest neighbors – These bits test for the presence of atom nearest 

neighbor patterns, regardless of bond order (denoted by "~") or count, but where bond 

aromaticity (denoted by ":") is significant.(Bit position 327 to415) 

Bit Position      Bit Substructure 

327               C(~Br)(~C) 

328               C(~Br)(~C)(~C) 

329               C(~Br)(~H)  

Section 5: Detailed atom neighborhoods – These bits test for the presence of detailed atom 

neighborhood patterns, regardless of count, but where bond orders are specific, bond aromaticity 

matches both single and double bonds, and where "-", "=", and "#" matches a single bond, 

double bond, and triple bond order, respectively.(Bit 416 to 459) 

Bit Position  Bit Substructure 

416           C=C 

417           C#C 

Section 6: Simple SMARTS patterns – These bits test for the presence of simple SMARTS 

patterns, regardless of count, but where bond orders are specific and bond aromaticity matches 

both single and double bonds.(Bit 460 to 712) 

Bit Position   Bit Substructure 

460            C-C-C#C 

461            O-C-C=N 

Section 7: Complex SMARTS patterns – These bits test for the presence of complex SMARTS 

patterns, regardless of count, but where bond orders and bond aromaticity are specific.(Bit 713 to 

880) 

Bit Position    Bit Substructure 

713             Cc1ccc(C)cc1 

714             Cc1ccc(O)cc1  

Example: By means of above descriptors, each molecule can be described based on a set of 

fingerprints of structural keys, which is represented as a Boolean array. There is one-to-one 

correspondence between each pattern and bit in the finger print. For each pattern, if its 

corresponding substructure is present in the given molecule, the corresponding bit in the 

fingerprint is set to 1; conversely, it is set to 0 if the substructure is absent in the molecule. Two 

examples of substructure fingerprints generated with above descriptors are shown in Figure 3.2 

and Figure 3.3. 
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Figure 5: Representation of a molecular substructure as fingerprint                                    

                                                                                                                                                                           

.  

Summary of data sources:  

 Chemical data source: Drug and PubChem chemical substructures relationships: 

 It includes 122,022 associations between 1007 drugs and 881 PubChem chemical 

substructures. The descriptions of the 881 chemical substructures are represented in a file as 

shown in figure 3.4. 

 Protein data source: Drug and UniProt [8] target proteins relationships 

 It includes 3,152 associations between 1007 drugs and 775 target proteins. This has been 

generated from targets of DrugBank [29] and is represented in a matrix as shown in figure 

3.5.  

Above data can be downloaded from the URL: 

http://astro.temple.edu/~tua87106/drugreposition.html 

http://astro.temple.edu/~tua87106/drugreposition.html
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                      Figure 6: Representation for substructure  feature in fingerprint format. 

 

 

 

Figure 7: Screenshot of drug and substructure relationship fingerprint file 

 

Each row represents approved drugs by DrugBank and each column represents particular 

substructure presence or absence in terms of binary 1 or 0 respectively. There are total 1007 

drugs and 881 substructures in the fingerprint file named as drug_structure.csv.  As in above 

figure , all the rows having Pravastatin , Fluvoxamine , valsatan, Ramipril terms etc in first 

columns are drug names whereas all the columns except first having SUB0, SUB1,SUB2 etc are 

substructure features indices . As already described SUB0 is bit 0 substructure, SUB1 is bit 1 
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substructure and so on. The drug Pravastatin belongs to bit 0 and bit 1 position substructure 

features so that 1 is kept the corresponding cells where as 0 for other cells. 

 

Figure 8: Screenshot of drug and target (protein) interaction file 

 

Here rows represent drug names whereas column represents proteins represented by UniProtKB 

ID. There are total 1007 drugs and 775 proteins in the file. Each cell in file represents the 

interaction of corresponding drug and protein. For example, Lorazepam drug is associated with 

A82V4 so 1 is present in the corresponding cell of Lorazepam drug and A2A2V4 protein, 

whereas others cells contain 0 that is no association between corresponding drugs and proteins. 

For paravastin is not linked with A2A2V4 protein so there is 0 in its interaction cell. And so on 

for others. 
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3.1.2 System Flow Diagram 

 

 

Figure 9: System overview for Drug target interaction (PDTI-DBN) prediction Model. 

 

As shown in figure 3.6 , the system constists of pre-training , fine tuning and evaluation and 

comprasion sections. In pre-pretraining section, there is data input that it drug sub-structure 

finger print sequence as explained in dataset section in 3.1.1. Each drug sequence in binary code 

is fed the input layer of the deep belief Network(DBN) where first layer RBM takes it as visisble 

units. There are 881 dimentional feature vecotor in each drug. So that the number of inputs of the 

First RBM as visible units are 881. DBN is stack of 3 hidden layer of RBM and one logistic layer 

at output layer. First RBM samples the each drug suing equation 3.2.4 and sampled data is 

agained back to to visible units for re-sampling at visisble units using equation  3.2.5. After 

doing that, the paramers (weight between visible and hidden, visible uni bias and hidden unit 
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bias) are adjusted using equation 3.3.7, 3.3.10 and 3.3.11 accordingly. The  output of the first 

RBM is representation of feature detected from the drug substructure fingerprint in probabilic 

way. That the RBM is being trained by CD-1 algorithm as explained in section 3.1.3 ‗traning 

RBM‘ in chapter 3. First sampled output from the first  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Pre-training and Fine-tuning process Diagram 
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Figure 3.7 shows: The pre-training initializes the parameter of the fine-tuning phase, pre-training 

consists of a stack of RBMs with layer-wise unsupervised training and fine-tuning consists of a 

stack of multi-hidden layer MLP with regression as output layer with BP training. 

 

RBM is fed again another RBM as input. Second RBM again samples it for further abstract 

feature dectection in heirachical fashion. In this way , pretraing is being proceed for all RBM is 

the system which is in unsupervised manner.After finishing the pre-training for number of drugs 

using a set of minibatch (a set of drugs), the system goes to fine-tuning section. In fine tuning 

section , the system trains the DBN in supervised way in which labeled data is used. The labeled 

data  which is a simple two dimension matrix where row contains the drug and column contain 

the proteins. The cell coreponding the particular drug and particular protein (target) identifies for 

the drug and target interaction. ‗1‘ denotes interacton where as ‗0‘ denotes no interactthion. 

Based of this interaction output and corresponding drug feature fingerprint as input, the system is 

being trained using logistic regression at output layer and back propagation method in remaining 

hidden layers. The whole procedure for pre-training and fine tuning is illustrated in following 

figure 3.7. 

As shown in Figure 3.7, the weights and bias parameter adjusted by pre-training are shared by 

the fine-tuning process.  From diagram, it is clear that there are total 775 outputs which represent 

the targets (protein) to be interacted with drug which is fed at input. In fine tuning, the 

interacting target becomes ‗1‘ and missing target becomes ‗0‘ for corresponding drug input. For 

example, If Amoxicillin is taken as input then target Q8XJ01 has ‗1‘ and other has ‗0‘ at output 

layer.  At the time of pre-training, only feature vector is feed to the input layer and sampling 

output is taken at each layer. The detailed procedure is explained step by step in section 3.3 for 

one complete example. As soon as pre-training finished, bother input feature vector with 

corresponding output interaction target are fed to the system. The prediction is found at using 

feed forward calculation and then prediction output and actual output are compared for error 

calculation. The error obtained is back- propagated for parameter adjustment so that the accuracy 

is high. 
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For testing the system drug of corresponding feature vector is fed at input and prediction result is 

recorded. Finally, the prediction result is in the form of real number between 0 and 1. This real 

numbered prediction result is made binary by comparing with standard threshold 0.5 value. If the 

greater than 0.5 then output is considered as 1 otherwise 0. Further, result is compared with gold 

standard dataset and evaluation is done in following section in detail.  

 

3.1.3 Deep Learning 

Deep learning is one of the most cutting-edge machine learning techniques. Deep learning allows 

computational models that are composed of multiple processing layers to learn representations of 

data with multiple levels of abstraction. These methods have dramatically improved the state-of-

the-art in speech recognition, visual object recognition, object detection and many other domains 

such as drug discovery and genomics. Deep models and their learning algorithms are inspired by 

the structure and information processing mechanism of human brain. Each deep model has a 

deep structure that consists of a number of non-linear hidden feature layers and hierarchical 

feature abstraction mechanism. Deep learning is part of a broader family of machine 

learning methods based on learning representations of data. For example, an observation (e.g., an 

image) can be represented in many ways such as a vector of intensity values per pixel, or in a 

more abstract way as a set of edges, regions of particular shape, etc. In other words, deep 

learning essential to build deep architectures for extracting multiple levels of distributed features 

of the input automatically. There are several ways of generating deep architectures, such as 

Convolution Neural Network (CNNs), Stacked Autoencoders (SAs), Recursive Neural Network 

(RNNs) and Deep Belief Network (DBNs). [30] 

3.1.3.1 Restricted Boltzmann Machine 

A Boltzmann Machine (BM) is a generative stochastic neural network that can learn a 

probability distribution over its inputs. A Restricted Boltzmann Machine (RBM) is further 

restricted to abandon visible-visible and hidden–hidden connections. A RBM is a two layer 

probabilistic bipartite undirected graph model as illustrated in Figure 3.8, which is constructed 

with a number of visible and hidden nodes (random variables). Each node has a bias and a 

connection weight with the nodes in the different layer.  
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                                 Figure 11: Restricted Boltzmann Machine (RBM) 

 

As shown in figure, RBM consists of m visible units v = (v1,v2, . . . , vm) representing the 

observable data, and n hidden units h = (h1,h2, . . ,hn) to capture the dependencies between the 

observed variables.  In binary RBMs, focus in this thesis, the random variables (v, h) takes 

values (v, h) ∈ (0,1)
m+n

 . An RBM is an energy-based probabilistic model, in which the Gibbs 

probability distribution is defined through an energy function. Its probability is defined as 

 

 𝑃 𝑣 ,  ℎ =  
𝑒−𝐸 𝒗

 ,  𝒉 

𝑍
 

equation (3.1) 

 

 

Where the energy function is given by 

 

 𝐸 𝑣,ℎ =   𝑤𝑖,𝑗ℎ𝑖𝑣𝑗 − 𝑏𝑗𝑣𝑗
𝑗𝑗

− 𝑐𝑖ℎ𝑖
𝑖𝑖

 equation (3.2) 

 

And Z is partition function which is given by summing over all possible pair of visible and 

hidden vectors: 

c1 c2 cn c3 

b

1 

b

2 

b

3 

b

n 

h1 h2 h3 hn 

v1 v2 v3 vm 
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 𝑍 =  𝑒−𝐸 𝒗
 ,  𝒉 

𝒗,𝒉

 equation (3.3)  

 

In equation, 3.2, For all  i ∈ (1, . . . , n) and j ∈ (1, . . . ,m), wi,j is a real valued weight 

associated with the edge between the units vj and hi, and bj and ci are real valued bias terms 

associated with the jth visible and the ith hidden variable, respectively.  

The graph of an RBM has connections only between the layer of hidden and the layer of visible 

variables, but not between two variables of the same layer. In terms of probability, this means 

that the hidden variables are independent given the state of the visible variables and vice versa: 

 𝑃 ℎ 𝑣 =  
𝑃 𝑣,  ℎ  

𝑃 𝑣 
  

 

 

                     =
𝑃 𝑣,  ℎ  

 𝑃 𝑣,  ℎ  𝒉
 

 

                   =  𝑃 ℎ𝑖  𝑣 

𝑛

𝑖=1

 
 

 
 

 

 

Where,  

     𝑃 ℎ𝑖  𝑣 =  
𝑒 ℎ𝑖𝑊𝑖𝑣+ 𝑏𝑖ℎ𝑖 

 

1 + 𝑒 𝑏𝑖+
 ℎ𝑖𝑊𝑖𝑣 

  
 

 

 

 𝑃 ℎ𝑖 = 1 𝑣 =  
𝑒 𝑊𝑖𝑣

 + 𝑏𝑖 

1 + 𝑒 𝑏𝑖+
 𝑊𝑖𝑣 

  
 

 

 

                           =  
1

1 + 𝑒 −𝑏𝑖−
 𝑊𝑖𝑣 

  
 

 

 

 𝑃 ℎ𝑖 = 1 𝑣 = 𝑠𝑖𝑔𝑚 ( 𝑊𝑖 ,𝑗𝑣𝑗

m

𝑗=1

+  𝑐𝑖  
 

equation (3.4) 

 

And similarly,  

    𝑃 𝑣 𝒉  =  𝑃 𝑣𝑗  𝒉 

𝑚

𝑗=1
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 𝑃 𝑣𝑗 = 1 ℎ = 𝑠𝑖𝑔𝑚 ( 𝑊𝑖,𝑗ℎ𝑖

n

𝑖=1

+  𝑏𝑗   
 

equation (3.5) 

 

Thus, due to the absence of connections between hidden variables, the conditional distributions 

p(h | v) and p(v |h) factorize nicely. The conditional independence between the variables in the 

same layer makes Gibbs sampling especially easy: instead of sampling new values for all 

variables subsequently, the states of all variables in one layer can be sampled jointly. Thus, 

Gibbs sampling can be performed in just two steps: sampling a new state h for the hidden 

neurons based on p (h | v) and sampling a state v for the visible layer based on p (v |h). This is 

also referred to as block Gibbs sampling [31].  

3.1.3.2 Training RBM 

 

Unsupervised learning means learning an unknown distribution based on sample data. This 

includes finding new representations of data that foster learning, generalization, and 

communication. [24] . if it is assumed that the structure of the graphical model is known and that 

the energy function belongs to a known family of functions parameterized by Ɵ=(bj, ci, Wij) used 

in equation 3.2, unsupervised learning of a data distribution with an Markov Random Field 

(MRF) means adjusting the parameters Ɵ. It is considered the training data S=(x1,…..xL). The 

data samples are assumed to be independent and identically distributed (i.i.d.). That is, they are 

drawn independently from some unknown distribution. The Gibbs distribution of an MRF 

describes the joint probability distribution of (V,H) and one is usually interested in the marginal 

distribution of V, which is given by 

 𝑝 𝑣 =
1

𝑍
 𝑒−𝐸(𝑣,ℎ)

𝒉

 equation (3.6) 

 

 A standard way of estimating the parameters of a statistical model is maximum-likelihood 

estimation. Applied to MRFs, this corresponds to finding the MRF parameters that maximizes 

the maximum the probability of S under the MRF distribution, training corresponds to finding 

parameter Ɵ that maximizes the likelihood given training data.  

 Restricted Boltzmann machines are MRFs with hidden variables and RBM learning algorithms 

as based on gradient ascent on the log-likelihood. For a model of the for Equation 3.6 with 

parameter Ɵ, the log-likelihood given a single training example v is 
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 ln 𝑝(𝑣|Ɵ) = ln
1

𝑍
𝑒−𝐸 𝑣,ℎ  

 

 

 
 

 
 

 = ln 𝑒−𝐸(𝑣,ℎ)

𝒉

− ln 𝑒−𝐸(𝑣,ℎ)

𝒗,𝒉

 equation (3.7) 

 

   

   

And for the gradient, we get 

 
𝜕(ln 𝑝(𝑣|Ɵ))

𝜕Ɵ
=
𝜕(ln 𝑒−𝐸(𝑣,ℎ)

𝒉 )

𝜕Ɵ
−
𝜕(ln 𝑒−𝐸(𝑣,ℎ)

𝒗,𝒉 )

𝜕Ɵ
 

 

 

 

 =− 𝑝(ℎ|𝑣)
𝜕𝐸(𝑣,ℎ)

𝜕Ɵℎ +  𝑝(𝑣, ℎ)
𝜕𝐸(𝑣,ℎ)

𝜕Ɵ𝑣,ℎ  

 

equation (3.8)  

 

 
 

 
 

In above equation 3.8, it is used conditional probability which can be written as 

 

 𝑝 ℎ 𝑣 =
𝑝(𝑣,ℎ)

𝑝(𝑣)
 

  

 

                         =

1
𝑍 𝑒

−𝐸(𝑣,ℎ)

1
𝑧
 𝑒−𝐸(𝑣,ℎ)
ℎ

 
 

 

                       =
𝑒−𝐸(𝑣,ℎ)

 𝑒−𝐸(𝑣,ℎ)
ℎ

 

 

equation (3.9) 

 

For RBMs the first term (positive phase) of Equation 3.8 (i.e. the expectation of the energy 

gradient under the conditional distribution of the hidden variables given a training example v) 

can be computed efficiently because it factorizes nicely. For example, taking Ɵ= wi,j, we get: 
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𝜕𝐸 𝑣 ,  ℎ 

𝜕𝑊𝑖 ,𝑗
=  

𝜕

𝜕𝑊𝑖,𝑗
 − 𝑊𝑖,𝑗ℎ𝑖𝑣𝑗

𝑖 ,𝑗

−   𝑏𝑗
𝑗

𝑣𝑗 − 𝑏𝑖ℎ𝑖
𝑖

  

 

 

 

 

 

 = −
𝜕

𝜕𝑊𝑖𝑗
 𝑊𝑖𝑗 ℎ𝑖𝑣𝑗
𝑖𝑗

  

 

 

 =  −𝒉𝒊𝒗𝒋 
 

 

 ∇w𝐸 𝑣 ,  ℎ =  −𝒉𝒗𝑇 

 

equation (3.10) 

 

And  

  𝑝(ℎ|𝑣)
𝜕𝐸(𝑣, ℎ)

𝜕𝑤𝑖,𝑗
ℎ

= − 𝑝(ℎ|𝑣)𝒉𝒊𝒗𝒋
ℎ

  

 

 = −  𝑝(ℎ𝑘 |𝑣)𝒉𝒊𝒗𝒋

𝑛

𝑘=1ℎ

 
 

 

 

𝔼𝑝 ℎ 𝑣  
𝜕𝐸 𝑣,ℎ 

𝜕𝑤𝑖,𝑗
 = −  ℎ𝑖

ℎ𝑖∈ 0
 ,  1 

𝑣𝑗𝑃 ℎ𝑖  𝑣  

 

                            = −𝑣𝑗𝑃 𝐻𝑖 = 1|𝑣  

 

 

 

 𝔼𝑝 ℎ 𝑣  ∇𝑊𝐸 𝑣 ,  ℎ  = −𝑠𝑖𝑔𝑚 ( 𝑊𝑖,𝑗𝑣𝑗

m

𝑗=1

+  𝑐𝑖 .𝑣𝑗  
 

equation (3.11)  

 

 

Using the factorization trick in equation 3.11, the derivative of the log-likelihood of a single 

pattern v with respect to the weight wi,j becomes 

 

𝜕(ln𝑝(𝑣|Ɵ))

𝜕𝑤𝑖 ,𝑗
= − 𝑝(ℎ|𝑣)

𝜕𝐸(𝑣,ℎ)

𝜕𝑤𝑖,𝑗
ℎ

+ 𝑝(𝑣,ℎ)
𝜕𝐸(𝑣,ℎ)

𝜕𝑤𝑖,𝑗
𝑣,ℎ

 



25 

 

             =  𝑝(ℎ|𝑣)𝒉𝒊𝒗𝒋
ℎ

− 𝑝(𝑣)

𝑣

 𝑝(ℎ|𝑣)𝒉𝒊𝒗𝒋
ℎ

  

 

 = 𝑣𝑗𝑃 𝐻𝑖 = 1|𝑣 − 𝑝(𝑣)

𝑣

𝑣𝑗𝑃 𝐻𝑖 = 1|𝑣  equation (3.12)  

 

For the mean the mean of this derivative over a training set S= (v1,….,vL),often the following 

notations are used: 

 

1

𝐿
 

𝜕(ln𝑝(𝑣|Ɵ))

𝜕𝑤𝑖,𝑗
𝑣є𝑆

=
1

𝐿
   𝔼𝑝 ℎ 𝑣  

𝜕𝐸 𝑣,ℎ 

𝜕𝑤𝑖,𝑗
 

ℎ

+ 𝔼𝑝(ℎ,𝑣)  
𝜕𝐸 𝑣,ℎ 

𝜕𝑤𝑖,𝑗
 

𝑣,ℎ

 

𝑣є𝑆

 

 =
1

𝐿
   𝔼𝑝 ℎ 𝑣  𝒉𝒊𝒗𝒋 

ℎ

+ 𝔼𝑝(ℎ ,𝑣) 𝒉𝒊𝒗𝒋 

𝑣 ,ℎ

 

𝑣є𝑆

 
 

 

 =  𝒉𝒊   𝒗𝒋 𝑝 ℎ 𝑣 𝑞(𝑣) −  𝒉𝒊   𝒗𝒋 𝑝(ℎ ,𝑣) 
 

equation (3.13) 

 

With q denoting the empirical (data) distribution. The gives often stated rule 

 

  
𝜕(ln𝑝(𝑣|Ɵ))

𝜕𝑤𝑖,𝑗
𝑣є𝑆

∝  𝒉𝒊   𝒗𝒋 𝑑𝑎𝑡𝑎−  𝒉𝒊   𝒗𝒋 𝑚𝑜𝑑𝑒𝑙 
 

equation (3.14)  

 

 

Analogously to Equation 3.12, we get the derivative with respect to the bias parameter bj of j
th 

visible variable, 

 

 
𝜕(ln 𝑝(𝑣|Ɵ))

𝜕𝑏𝑗
= 𝑣𝑗 − 𝑝(𝑣)

𝑣

𝑣𝑗 
equation (3.15) 

 

and with respect to the bias parameter ci of the i
th

 hidden variable 

 
𝜕(ln𝑝(𝑣|Ɵ))

𝜕𝑐𝑖
= 𝑃 𝐻𝑖 = 1|𝑣 − 𝑝(𝑣)

𝑣

𝑃 𝐻𝑖 = 1|𝑣  
 

equation (3.16) 

 

 

In above Equations 3.12, 3.15 and 3.16, there is the difference between two expectations: the 

expected values of the energy function under the model distribution and under the conditional 

distribution of hidden variables given the training example. For calculating the second term 
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(negative phase) of each mentioned equations is difficult. Directly calculating this sums, which 

run over all values of the variables, leads to a computational complexity which is in general 

exponential in number of variables of the MRF. To avoid this computational burden, the 

expectations can be approximated by samples drawn from the corresponding distributions based 

on Markov Chain Monte Carlo (MCMC) techniques. This method has a low converging speed, 

and it is difficult to define an adequate step size during training stage [32]. Also, Obtaining 

unbiased estimates of the log-likelihood gradient using MCMC methods typically requires many 

sampling steps. These resulted in a long training time for RBM to reach steady state. Hinton et 

al. suggested using the Contrastive Divergence (CD-k) theory, which shortens the calculation 

time required while maintaining the same level of accuracy.  These days, CD has become a 

standard way to train RBMs.  

 

 

   Figure 12: Contrastive Divergence (CD-k) 

 

 

The idea of K-step contrastive divergence learning (CD-k) is quite simple instead of 

approximating the second term in the term in the likelihood gradient by a sample from the RBM-

distribution (which would require running a Markov chain until the stationary distribution is 

reached), a Gibbs chain is run for only k steps .A each step in the Markov chain, visible units are 

samples given hidden units, hidden units are sampled given visible units as illustrated in Figure 

….and in  equations 3.17 and 3.18. 

 ℎ(𝑘+1) ∼ 𝑝(ℎ 𝑘+1 |𝑣(𝑘))  

equation (3.17) 
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 𝑣(𝑘+1) ∼ 𝑝(𝑣 𝑘+1 |ℎ(𝑘+1)) 
equation (3.18) 

 

In the figure 3.9, when  k→∞, samples (v
(k)

,h
(k)

) are guaranteed to be accurate sample of p(v,h) 

but it is time-consuming. According to Hinton, The CD learning uses two tricks to speed up the 

sampling process. The first on it to initialize the Markov chain with a training example, and the 

second on is to obtain samples, after only k-steps of Gibbs sampling. A lot of experiments show 

that the performances of the approximations are still very good when k=1. It is also seen that CD 

learning provides an approximation of log-likelihood gradient that has been found to be a 

successful update rule for training probabilistic models. Variation justification can provide a 

theoretical proof to the convergence of the learning process. Conducting CD-1 learning by using 

Equations 3.4 and 3.5 namely v=v
(0)

→h
(0)

→v
(1)

→h
(1)

.  It is easy to get updating rules for 

parameter (wij, bj, ci) . The pseudo-code is demonstrated in Algorithm 1. 

   

Algorithm 1: Updating rules for RBM 

 

Input: v
 (0)

 is a training example form training distribution for RBM; 

           Є is the learning rate for updating the parameters. 

           Wi,j is the visible-hidden connection weight matrix. 

           bj is the bias vector for input  (visible) units. 

           Ci is the bias vector for hidden units. 

Output: The updated parameters in the RBM: Wi,j, bj and Ci 

 for all hidden units i do 

  Compute p(hi
(0)

=1|v
(0)

) using equation 3.4 ( positive phase)  

  Sample hi
(0)

є(0,1) from p(hi
(0)

=1|v
(0)

). 

   end for 

 for all visible units j do 

  Compute p(vj
(1)

=1|h
(0)

) using equation 3.5  

  Sample vj
(1)

є(0,1) from p(vj
(0)

=1|h
(0)

). 

   end for 

           for all hidden units i do 
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  Compute p(hi
(1)

=1|v
(1)

) using equation 3.4 ( negative phase) 

  Sample hi
(1)

є(0,1) from p(hi
(1)

=1|v
(1)

). 

   end for 

            Update: 

  Wij= Wij+ є(v
 (0)

* p(hi
(0)

=1|v
(0)

)- v
(1)

)* p(hi
(1)

=1|v
(1)

) 

  bj= bj + є(v
 (0)

- v
(1)

)) 

  ci= ci + є(p(hi
(0)

=1|v
(0)

)- p(hi
(1)

=1|v
(1)

) 

 return Wi,j, bj and Ci 

3.1.3.3 Deep Belief Network 

The DBN is a direct acyclic graph except from the top two layers that form an undirected 

bipartite graph. The top two layers is what gives the DBN the ability to unroll into a deep 

autoencoder (DA) and perform reconstructions of the input data[30]. The DBN consists of a 

visible layer, output layer and a number of hidden layers as shown in figure 3.10 (b) 

 

 

 

Figure 13: (a) and (b) The graphical model representations of an RBM and a DBN 
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Fig 3.10(a) shows undirected bipartite graphical model with one layer of stochastic visible units 

connected to one layer of stochastic hidden units.  An RBM can be considered as a density model 

which describes the distribution of visible units. Given training samples of visible units, the 

model parameters of an RBM can be estimated under maximum likelihood criterion using 

contrastive divergence (CD) algorithm explained 3.1.3.1 and 3.1.3.2 sections above. Figure 

3.10(b) shows the graphical representation of a DBN with three hidden layers. A DBN is a 

probabilistic generative model that contains many layers of hidden units. The top two layers 

form an undirected bipartite graph with the lower layers forming a directed sigmoid belief 

network as already defined.  DBN can be constructed from stack of RBMs. 

  The training process of the DBN is defined by two steps: pre-training and fine-tuning. In pre-

training the layers of the DBN are separated pair wise to form restricted Boltzmann machines 

(RBM). Each RBM is trained independently, such that the output of the lower RBM is provided 

as input to the next higher-level RBM and so forth. This way the layers of the DBN are trained as 

partly independent systems. The goal of the pre-training process is to achieve approximations of 

the model parameters (that is connection weight between visible and hidden unit, visible unit 

bias and hidden unit bias). 

 

Hinton showed that RBMs can be stacked and trained in a greedy manner to form so-called Deep 

Belief Networks (DBN) [9]. DBNs are graphical models which learn to extract a deep 

hierarchical representation of the training data. They model the joint distribution between 

observed vector v and the  hidden layers  as follows: 

 

 

 
𝑃(𝑣, ℎ1,… ,ℎ ) =   𝑝 ℎ𝑘  ℎ𝑘+1 

−2

𝑘=0

 𝑝(ℎ −1,ℎ ) 

 

equation (3.19) 

 

 

Where, v=h
(0)

, p(h
(k-1)

|h
(k)

)  is a conditional distribution for the visible units conditioned on the 

hidden units of the RBM at level  which can be easily calculated by using equation 3.4 and 3.5 

, and 𝑝(ℎ −1,ℎ )  is the visible-hidden joint distribution in the top-level RBM. This is illustrated 

in the figure 3.10 (b). 
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Thus, in pre-training DBN works like feed forward network. All hidden layers are independent to 

each other so each RBM are trained one after another i.e. the output of the first RBM is given to 

second RBM as input. Again the output of the second RBM is given to input of the third RBM as 

input and so on. Finally, the parameter of each hidden layers are initialized by pre-training which 

overcomes the limitation of gradient based learning. After the initializing DBN parameters by 

pre-training, the second stage of DBN that is fine tuning approach is applied in supervised 

fashion. The fine tuning is done by suing Back Propagation algorithm explained in Appendix: A.  

In the output of the first training result is compared with the actual output and then error is 

calculated and then error is propagated to back for re-updating the connection weight between 

visible layer and hidden layers in each RBM so that better accuracy is performed. This process is 

illustrated the figure 3.3 proposed by Hinton in 2006 [9]. 

 

Hinton showed that an image of high dimension data can be converted to low-dimension codes 

by training multilayer neural network with small central layer to reconstruct high-dimensional 

input vectors. So, for that a similar decoder network can be applied into recover the data from 

code as shown in figure 3.10 (b). Starting from with random weights in the two encoder and 

decoder networks, they can be trained together by minimizing the discrepancy. The required 

gradients are easily obtained by suing chain rule to propagate error derivatives first through the 

decode network and then though the encoder network. The whole system is called ―autoencoder‖ 

and is depicted in figure 3.11. 

 

A detail training algorithm for DBN is illustrated in Algorithm -2 .  
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Figure 14: Pre-training and Fine-tuning of stack of RBMs 

 

Pre-training consists of learning a stack of restricted Boltzmann machines (RBMs), each having 

only one layer of feature detectors. The learned feature activations of one RBM are used as the 

‗‗data‘‘ for training the next RBM in the stack. After the pre-training, the RBMs are ‗‗unrolled‘‘ 

to create a deep autoencoder, which is then fine-tuned using back propagation of error 

derivatives. [6] 

 

Algorithm 2: Training DBN 

Pre- training : 

            Input : take input v
(0)

 vector 

 for all hidden layers  do 
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  if first layer  

                                 input= v
(0) 

  
else

  

   
input= pre-input 

- train RBM using equations 3.4 and 3.5 and as mentions in                              

Algorithm 1 . 

              -find output sample from given input 

   -update parameters using equations 3.12, 3.15 and 3.16   

                          assign:  

   rep-input= output 

   end for 

Fine- training: 

 Find: error,  

                      for all output units i do 

                            dy[i] = actual output[i] –predicted output[i] 

    end for 

           for all hidden layers  to layer 1 do 

     if   layer 

   error = dy for all ‗k‘ output units. 

     else  

              error= pre-layer-dy (previous calculated) for all ‗k‘ output units 

                           find error correction term ‗del_y’ from previous hidden layer  

 for all pre-input j do 

    del[j]=0 

    for all pre-output k do 

     del[j]=del[j]+error[k]*pre-layer-w[k][j] 

    end for 

    del_y[j]= del[j]*pre-layer-input[j]*(1- pre-layer-input[j]) 

        end for  

       update the weight and bias for the current hidden layer for all units     
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                                              new_weight= old_weight + learning rate*del_y*current_input             

               new _bias = old bias + learning rate * del_y* current_ input  

   end for 

 

3.1.4 Experimental Design 

Form data set of 10007 drugs, randomly, training set of 997 drugs and testing set of 10 drugs is 

separated for every experiments. There were total 5 experiments performed.  The hyper-

parameters, training dataset and testing dataset are changed from experiment to experiment.  In 

this thesis , experiment 1 to experiment 3 were done by changing hyper-parameters and 

experiment 4 and experiment 5 were done by changing the training dataset and testing dataset 

with hyper-parameters of experiment 3.   

3.1.5 Evaluation Indices 

In this study, the confusion matrix, also known as a contingency table or an error matrix [33] is 

used to represent the prediction performance of a predictor. Figure 3.12 illustrates an exemplary 

confusion matrix, where TP, FP, TN and FN are abbreviations for true positives, false positives, 

true nega tives, and false negatives, respectively. For the convenience of subsequent descriptions,  

it is used to [TP FP; FN TN] to represent a confusion matrix.  

       

                          Figure 15: Confusion matrix for performance evaluation 
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Form a confusion matrix, five routinely used evaluation indices in this bio-informatics field, i.e. 

Specificity (Sp) , Precision (Pre) , Sensitivity (Sn) or Recall (Rec), Accuracy (Acc), F1-measure 

and Matthews correlation coefficient (MCC), can be computed as follows [ 27]: 

 𝑆𝑛 𝑜𝑟 𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

equation (3.20)  

 

 

 𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                     

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

equation (3.21) 

 

 

equation (3.22) 

   

 𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

equation (3.23)  

 

 

 

𝐹1 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒 ∗ 𝑅𝑒𝑐

𝑃𝑟𝑒 + 𝑅𝑒𝑐
 

 

equation (3.24) 

 

 

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

  𝑇𝑃 + 𝐹𝑃 ∗  𝑇𝑁 + 𝐹𝑃 ∗  𝑇𝑁 + 𝐹𝑃 ∗ (𝑇𝑁 + 𝐹𝑁)
 

 

 

equation (3.25)  

 

 

To evaluate drug-target interaction, the sensitivity, precision, specificity, accuracy and F1-score 

are calculated using equations 3.20. 3.21, 3.22, 3.23 and 3.24 respectively.  As accuracy is not 

perfect evaluating term because it is based on single point threshold value. So, ROC curve is 

used for evaluating the DTI-DBN model for evaluating efficient way. 

 

An ROC   curve demonstrates several things: 

- It shows the tradeoff between sensitivity and specificity (any increase in sensitivity 

will be accompanied by a decrease in specificity). 

- The closer the curve follows the left-hand border and then the top border of the ROC 

space, the more accurate the test. 

- The closer the curve comes to the 45-degree diagonal of the ROC space, the less 

accurate the test. 
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3.1.6 Predicting Drug-Target Interaction Example  

Let us consider one Nicotine drug form Table 3.1 which has chemical structure as shown in  

Drug Structure column. Its chemical sub-structure fingerprint is as shown in table 3.2. It is noted 

that the drug Nicotine has sub –structure SUB 9, SUB 10, SUB 11 but not others because there is 

presence of binary ‗1‘ in SUB 9, SUB 10 and SUB 11 columns whereas ‗0‘ in other columns.  

Also, from the third column of Table 3.1, it is clear that there Drug Nicotine (DB00184) is 

interacted with targets (proteins, Q15822, Q15825, Q9G226, Q9UGM1, P36544, P43681, 

Q05901). For simplicity the Interaction between ‗drug Nicotine and Q15822’ and ‗drug Nicotine 

and Q15822’ pairs are only taken from the dataset (drug and protein interaction table) as 

shown in Table 3.3.  The presence of ‘0’ in Nicotine row with targets P07451, P07477, P07510, 

P07550 and P07900 indicates that there is no missing interaction between them. 

Table 1: Drug, its structure and interacting Targets [DrugBank [27] and UniProt[5]] 

 

Drug Drug Structure Target 

Nicotine 

(DB00184) 

 

 

UniProtKB - Q15822  

UniProtKB - Q15825  

UniProtKB - Q9G226  

UniProtKB - Q9UGM1  

UniProtKB - P36544 

UniProtKB - P43681  

UniProtKB - Q05901  
 

Aspirin 

(DB00945) 

 

 

UniProtKB - P23219  

UniProtKB - P35354  

UniProtKB - Q04828  
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Erythromycin 

DB00199  

 

 

 

 

UniProtKB - P60725 

UniProtKB - P61177  
 

Amoxicillin 

DB01060  

 

 

 

UniProtKB - Q8XJ01  

 

                      

Table 2: Drug and Sub-Structure Fingerprint Sample 

 

SUB 0 SUB 8 SUB 9 SUB 10 SUB 11 SUB 12 SUB 13 SUB 16

Nicotine 0 0 1 1 1 0 0 0

Acetylsalicylic acid0 0 1 1 1 0 0 0

Erythromycin 1 0 1 1 1 1 1 0

Amoxicillin 1 0 1 1 1 1 0 0  
               

             Table 3: Drug and Target interaction Sample 

 

Q15822 P07451 Q15825 P07477 P07510 P07550 P07900

Nicotine 1 0 1 0 0 0 0

Erythromycin 0 0 0 0 0 0 0  

  

A step by step training example for Drug Nicotine having sub-structure feature (SUB9, SUB10, 

SUB11, SUB12, SUB13 and SUB16) is explained below. This each stepping result is traced 

from logs generated by system. 
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Step 1:  Initializing number of Hidden layers, Number of neurons per Hidden layer, Weight Wi,j, 

visible unit bias bj , hidden unit bias hi,  number of inputs and Number of outputs in each hidden 

Layer (RBMSs) and Logistic Layer. 

Initialization............ 

Total number of Hidden Layers =2 

Number of neurons in layer1=5 

Number of neurons in layer2=4 

RBM 0 

no of inputs= 6 

no of outputs= 5 

 Weight (Wij) between visual and Hidden Units 

 

Table 4: Initialization of Wij of RBM0 

 

V[0] V[1] V[2] V[3] V[4] V[5]

H[0] -0.14158 0.1489352 -0.021041 0.06460518 0.0587995 0.0429279

H[1] 0.0249014 -0.037343 -0.103624 0.15775947 -0.1561477 0.110136

H[2] 0.0800287 0.1471575 0.1086465 0.00473589 0.03135864 -0.090575

H[3] -0.06561 0.0650149 -0.023912 0.15515912 0.07514362 -0.054947

H[4] 0.1527631 -0.004892 -0.084809 0.06507426 -0.0935222 -0.129605

                        

    Hbias (hi) 

Table 5: Initialization of hi of RBM0 

 

                                      

              h0               h1                 h2              h3             h4

0 0 0 0 0       

    Vbias (bj) 

Table 6: Initialization of bj of RBM0 

 

                            

b0 b1 b2 b3 b4 b5

0 0 0 0 0 0  

 

RBM 1  

no of inputs= 5 
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no of outputs= 4 

Weight (wij) between visual and Hidden Units 

 

Table 7: Initialization of Wij of RBM1 

 

V[0] V[1] V[2] V[3] V[4]

H[0] -0.1301792 0.1845587 0.0459248 0.086398 -0.1674031

H[1] -0.0104486 -0.1203621 0.0246692 0.1414439 -0.1593327

H[2] 0.0673256 0.1677341 -0.0047118 0.0111143 0.0141208

H[3] 0.1461995 0.1312866 0.0920315 0.1107707 0.0651723  

Hbias (hi) 

Table 8: Initialization of hi of RBM1 

 

                                          

              h0               h1               h2               h3

0 0 0 0  

Vbias (bj) 

 

                                  

b0 b1 b2 b3 b4

0 0 0 0 0  

 

Logistic Layer...... 

no of inputs= 4 

no of outputs= 3 

weight  

Table 9: Initialization of Wij of Logistic Layer 

 

                                           

V[0] V[1] V[2]

H[0] 0 0 0

H[1] 0 0 0

H[2] 0 0 0  

Bias 

Table 10: Initialization of bj of Logistic Layer 
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b0 b1 b2

0 0 0  

 

Step 2:  Pre-training RBM0 with input Nicotine drug sub-structure feature 

Pre-training............ 

Total no of training data =1 

Pr-training Learning rate =0.1 

Total number of pre-training epochs =1 

 

RBM 0 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Positive hidden sampling of RBM0 

 

                                              

Input (vj) 

Table 11: Input feature of Nicotine Drug 

 

v0 v1 v2 v3 v4 v5

1 1 1 0 0 0  
 

positive hidden mean(p(Hi=1|v))( (using equation 3.4) 

 

                                       Table 12: positive hidden mean of RBM0 

Positive Hidden mean b0 

b1 

b2 

b3 

b4 

b5 

h0 

h1 

h2 

h3 

h4 

V0 

V1 

V2 

V3 

V4 

V5 

bj 

hi 

          ph0 0.49658

           ph1 0.47102

            ph2 0.58318

            ph3 0.49387

           ph4 0.51576

          ph'0 0

           ph'1 1

            ph'2 1

           ph'3 1

           ph'4 0

Positive Hidden sample 
v0 1

v1 1

v2 1

v3 0

v4 0

v5 0

Inputs 
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          ph0            ph1             ph2             ph3            ph4

0.49658 0.47102 0.58318 0.49387 0.51576  

 

Positive hidden sample (binomial output of hidden mean) 

 

                                Table 13: Positive hidden sample of RBM0 

 

                          

          ph'0            ph'1             ph'2           ph'3            ph'4

0 1 1 1 0  

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Negative visible sampling of RBM0 

 

Negative visible mean using equation 3.5) 

  

Table 14: Pegative visible mean output of RBM0 

 

                           

vn0 vn1 vn2 vn3 vn4 vn5

0.50983 0.5436 0.49528 0.50053 0.48759 0.49115  

 

negative visible sample (p(vj=1|h)) (binomial output of negative visible mean ) 

 

Table 15: Negative visible sample output of RBM0 

bj 

b

0 
b

1 
b

2 
b

3 
b

4 
b

5 

h

0 
h

1 
h

2 
h

3 
h

4 

Vn

0 

Vn

1 
Vn

2 
Vn

3 
Vn

4 
Vn

5 

hi 

          ph'0 0

           ph'1 1

            ph'2 1

           ph'3 1

           ph'4 0

Positive Hidden sample 

vn0 0.50983

vn1 0.5436

vn2 0.49528

vn3 0.50053

vn4 0.48759

vn5 0.49115

Negative visible mean 

vn'0 0

vn'1 1

vn'2 1

vn'3 0

vn'4 1

vn'5 1

Negative visible sample 
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                                   Figure 18: Negative hidden sampling of RBM0 

 

 

Negative hidden mean using equation 3.4) 

 

Table 16: Negative hidden mean output of RBM0  

 

                

nh0 nh1 nh2 nh3 nh4

0.557154462 0.4533911 0.548989194 0.515319931 0.42242  

 

Negative hidden sample (binomial output of negative hidden mean ) 

Table 17: Negative hidden sample output of RBM0 

 

                                        

nh'0 nh'1 nh'2 nh'3 nh'4

1 1 1 1 1  

 

Modified weight wij (using equation 3.12) 

Table 18: modified weight (Wij) of RBM0 

vn'0 vn'1 vn'2 vn'3 vn'4 vn'5

0 1 1 0 1 1

b0 

b1 

b2 

b3 

b4 

b5 

h0 

h1 

h2 

h3 

h4 

V0 

V1 

V2 

V3 

V4 

V5 

vn'0 0

vn'1 1

vn'2 1

vn'3 0

vn'4 1

vn'5 1

Negative visible sample 

nh0 0.557154462

nh1 0.453391105

nh2 0.548989194

nh3 0.515319931

nh4 0.422424516

nh'0 1

nh'1 1

nh'2 1

nh'3 1

nh'4 1

Negative Hidden mean 

Negative 
Hidden 

sample 

bj 

hi 
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V[0] V[1] V[2] V[3] V[4] V[5]

H[0] -0.0919 0.14288 -0.0271 0.06461 0.00308 -0.0128

H[1] 0.072 -0.0356 -0.1019 -0.1578 -0.2015 0.0648

H[2] 0.13835 0.15058 0.11207 0.00474 -0.0235 -0.1455

H[3] -0.0162 0.06287 -0.0261 0.15516 0.02361 -0.1065

H[4] 0.20434 0.00444 -0.0755 0.06507 -0.1358 -0.1718  
 

Modified h-bias  hi (using equation 3.15 ).......... 

Table 19 modified h-bias (hi) of RBM0 

 

              

              h0               h1               h2               h3             h4

-0.0557154 0.05466089 0.045101081 0.04846801 -0.042242452  

 

Modified v-bias (bj) (using equation 3.16).......... 

Table 20: modified v-bias (bj) of RBM0 

 

                                    

b0 b1 b2 b3 b4

0.1 0 0 0 -0.1  

 

Step 3: Pre-train RBM 1 using output of RBM0 as input to RBM1 (same as step 2) 

 

 

 

 

 

 

 

 

 

 

Figure 19: Positive hidden sampling of RBM1 

 

Input 

Table 21: Output of RBM0 as input to RBM1 

v0 1

v1 1

v2 1

v3 1

v4 1

Inputs 
          ph0 0.504824641

           ph1 0.469032109

            ph2 0.55807531

            ph3 0.633081759

          ph'0 1

           ph'1 1

            ph'2 1

           ph'3 1

Positive 

Hidden 

 sample Positive Hidden mean V0 

V1 

V2 

V3 

V4 

b0 

b1 

b2 

b3 

b4 

h0 

h1 

h2 

h3 

bj 

hi 
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v0 v1 v2 v3 v4

1 1 1 1 1  
 

Positive hidden mean 

Table 22: Positive hidden mean of RBM1 

 

                   

          ph0            ph1             ph2             ph3

0.504824641 0.469032109 0.55807531 0.633081759  

Positive hidden sample 

Table 23: Positive hidden sample of RBM1 

 

                                         

          ph'0            ph'1            ph'2            ph'3           ph'4

1 1 1 1 1  

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Negative visible sampling 

 

Negative visible mean 

 Table 24: Negative visible mean output of RBM1 

vn0 vn1 vn2 vn3 vn4

0.51821626 0.589819011 0.539396597 0.581150547 0.438453028  

Negative visible sample 

Table 25: Negative visible sample output of RBM1 

          ph'0 1

           ph'1 1
            ph'2 1

           ph'3 1

Positive Hidden sample 

vn0 0.51822

vn1 0.58982

vn2 0.5394

vn3 0.58115

vn4 0.43845

Negative visible mean 

vn'0 0

vn'1 1

vn'2 0

vn'3 0

vn'4 1

Negative visible sample 

Vn

0 

Vn

1 
Vn

2 
Vn

3 
Vn

4 bj 

hi 

b0 

b1 

b2 

b3 

b4 

h0 

h1 

h2 

h3 
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vn'0 vn'1 vn'2 vn'3 vn'4 vn'5

0 1 0 0 1  

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Negative hidden sampling 

 

Negative hidden mean 

Table 26: Negative hidden mean output 

 

                     

nh0 nh1 nh2 nh3

0.5042888 0.430528594 0.545338835 0.548957345  

 

Negative hidden sample 

Table 27: Negative hidden sample output 

 

                                       

nh'0 nh'1 nh'2 nh'3

1 0 1 1  

 

Modified weight (Wij)  

 

Table 28: modified weight (Wij) in RbM1 

 

vn'0 0

vn'1 1

vn'2 0

vn'3 0

vn'4 1

Inputs 
          nh0 0.5042888

           nh1 0.430528594

           nh2 0.545338835

            nh3 0.548957345

          nh'0 1

           nh'1 0

            nh'2 1

           nh'3 1

Negative 

Hidden 

 sample Negative Hidden mean V0 

V1 

V2 

V3 

V4 

b0 

b1 

b2 

b3 

b4 

h0 

h1 

h2 

h3 

bj 

hi 
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V[0] V[1] V[2] V[3] V[4]

H[1] -0.07969678 0.184612297 0.096407271 0.136880444 -0.1673495

H[2] 0.036454639 -0.116511758 0.071572438 0.188347063 -0.1554824

H[3] 0.123133156 0.169007717 0.051095762 0.044693245 0.01539445

H[4] 0.209507673 0.139698998 0.155339636 0.174078916 0.07358472  
 

modified hbias.......... 

Table 29: modified h-bias hi in RbM1 

 

                           

              h0               h1               h2               h3

0.04957112 0.056947141 0.045466117 0.045104265  

modified vbias..........  

Table 30: Modified v-bias vj in RbM1 

 

                             

b0 b1 b2 b3 b4

0.1 0 0.1 0.1 0  

 

 Step 4: fine tuning using feed forward calculation as given Alogorithm 2 

Fine-training............ 

Total no of training data =1 

Fine-training Learning rate =0.1 

Total number of fine-training epochs =1 

 

Forward layer wise calculation...(exactly like pre-training ) 

Layer 1 

Input 

                                          Table 31: Fine-tuning: input to RBM0 

 

                        

v0 v1 v2 v3 v4 v5

1 1 1 0 0 0  

 

Output (Using Equation 2.2.4) 

Table 32: Fine-tuning: output of RBM0 
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ph'0 ph'1 ph'2 ph'3 ph'4

0 1 0 1 1  
 

Layer 2 (Taking output of Layer1 as input to Layer 2) 

Input 

Table 33: Fine-tuning: output of RBM0 as input to RBM0 

 

                                

v0 v1 v2 v3 v4

0 1 0 1 1  

 

Output (Using Equation 2.2.4) 

 

Table 34: Fine-tuning: output of RBM1 

 

                                          

ph'0 ph'1 ph'2 ph'3

0 1 1 0  

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Pre-training: Forward layer wise calculation 

 

Step 6: Logistic Layer training at output Layer...(detail algorithm is in APPENDX B) 

Logistic Layer Training...  

 Y given x before softmax 

      Table 35: Output given input in logistic layer before softmax function 

bj 

h1i 

 

b0 

b1 

b2 

b3 

b4 

b5 

h0 

h1 

h2 

h3 

h4 

V0 

V1 

V2 

V3 

V4 

V5 

h0 

h1 

h2 

h3 

h1 

h2 

h0 
y0 

y1 

y2 

h2i 

RBM0 

RBM1 

Logistic Regression 
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y'0 y'1 y'2

0 0 0  

 

Y given x  After softmax 

 

Table 36: Output given input in logistic layer after softmax function 

 

                                         

y0 y1 y2

0.333333333 0.33333333 0.33333333  

 

Actual  output  

Table 37: Nicotine interacting with  target t0 and t1 output 

 

                                                  

t0 t1 t2

1 0 1  

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Fine-tuning: Layer wise calculation 

 

Change in output 

Table 38: calculated error in output layer 

 

bj 

V0 

V1 

V2 

V3 

V4 

V5 h1i 

RBM0 

RBM1 

Logistic Regression 

dy0 

dy1 

dy2 

h2i 

h0 

h1 

h2 

h3 

h1 

h2 

h0 h0 

h1 

h2 

h3 

h4 

b0 

b1 

b2 

b3 

b4 

b5 
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t0-y0 t1-y1 t2-y2

0.666666667 -0.333333333 0.66666667  

 

Modified weight in Logistic Layer  

 Table 39: Updated weight in logistic layer 

 

V[0] V[1] V[2] V[3]

H[0] 0 0.066666667 0.066666667 0

H[1] 0 -0.03333333 -0.033333333 0

H[2] 0 0.066666667 0.066666667 0  

 

Modified bias in Logistic Layer 

 

Table 40: Updated bias in logistic layer 

 

                                 

b0 b1 b2

0.066666667 -0.033333333 0.066666667  

 

Step 7: Update the weight in each hidden layer by back propagating the error calculated 

from Logistic Layer as given in algorithm 2. 

Back Propagation... 

In layer 2 (RBM1) 

Del error calculation.. 

Table 41: ∆error calculation in RBM1 

 

                                                

dy0 dy1 dy2 dy3

0 0 0 0  

 

Modified Weight  

Table 42: Fine-tuning: Updated weight in RBM1 due to back propagation 
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V[0] V[1] V[2] V[3] V[4]

H[0] -0.079697 0.184612297 0.0964073 0.1368804 -0.16735

H[1] 0.0364546 -0.1165118 0.0715724 0.1883471 -0.155482

H[2] 0.1231332 0.16900772 0.0510958 0.0446932 0.015394

0.2095077 0.139699 0.1553396 0.1740789 0.073585  

Bias  

Table 43: Fine-tuning: Updated bias in RBM1 due to back propagation 

 

                            

b0 b1 b2 b3

0.04957112 0.05694714 0.045466117 0.045104265  

In RBM 0  

 del calculation.. by error propagating from RBM1. 

 

 Table 44: ∆error calculation.. By error propagating from layer RBM1 to layer RBM0 

 

 

 

Modified Weight  

Table 45: Fine-tuning: Updated weight in RBM0 due to back propagation 

 

V[0] V[1] V[2] V[3] V[4] V[5]

H[0] -0.091923 0.142877633 -0.0271 0.064605 0.0031 -0.0127876

H[1] 0.072003 -0.03558026 -0.1019 -0.15776 -0.2015 0.06479689

H[2] 0.1383465 0.150576333 0.11207 0.004736 -0.0235 -0.1454741

H[3] -0.016223 0.062870283 -0.0261 0.155159 0.0236 -0.1064794

H[4] 0.2043391 0.004441674 -0.0755 0.065074 -0.1358 -0.1718479  

 

Bias   

Table 46: Fine-tuning: Updated bias in RBM0 due to back propagation 

 

b0 b1 b2 b3

-0.055715446 0.05466089 0.045101081 0.048468007 -0.042242452  

 

Step 8:  checking the prediction result using a same drug used in training 

Testing........... 

dy0 dy1 dy2 dy3 dy4

0 0 0 0 0
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The of testing data=1 

Testing Drug sub-structure fingerprint input........... 

Table 47: Testing Nicotine Drug sub-structure feature input 

 

                        

v0 v1 v2 v3 v4 v5

1 1 1 0 0 0  

Predicted Drug-Target interaction..... 

Table 48: Predicted output of Nicotine drug with targets after first iteration training 

 

                                    

y0 y1 y3

0.35561256 0.288774879 0.221937198  

 

Actual Drug-Target interaction..... 

Table 49: Actual Nicotine Drug interaction with targets 

 

                                    

t0 t1 t2

1 0 1  

This is prediction error more as it this is only result after one epoch. So there is need of 

increasing number of epochs to update the parameters for good result. 

 

After 1000 epochs in pre-training and 500 epochs in fine training we get  

Predicted Drug-Target interaction..... 

 

Table 50: Predicted output for Nicotine drug with proteins 

 

                                          

y0 y1 y2

0.5 7.31E-54 0.5  

 

Step 9: converting the result in binaries form suing threshold of 0.5 we get 100% prediction 

in this case Nicotine drug. 
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False 

Start 

Initialize: No of Hidden Layers n_layers 

 Non of Neurons per Layer 

 Weight Wij (connection between hidden & visible unit) 

 Hidden unit bias hi and visible unit bias bj 

 No of inputs and no of outputs in each layer & logistic 

layer 

 

Pre-training: 

 Total Number of input data (N) 

 Pre-training learning rate 

 Total no of pre-training epochs (epoch_no)  

Initialize i=0 

i<n_layers 

Initialize epoch=0 

epoch< epoch_no 

<n_layers 

Initialize data, n=0 

n<N 

n=n+1 

 Train RBM [ i ] 

epoch=epoch+1 

i=i+1 

True 

False 

True 

True 

False 

3.2 System Design Overview    

3.2.1 Flowchart 
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False 

n=n+1 

End 

Epoch=epoch+1 

False 

Initialize: 

 Fine tuning epochs(epoch_no) 

 Fine tuning learning rate 

 Total no of data (N) 

epoch=0 

epoch<epoch_n

o 

Data, n=0 

Read V[n] & Y[n] 

Layer, i=0 

n<N 

i<n_layer

s 

for RBM[i] 

Sample_hidden_given_visible-

data 

  
i=i+1 

Logistic Regression train 

Back Propagation 

 

True 

False 

True 

True 
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Figure 24: Flowchart Development for PDTI-DBN framework 

3.2.2 Dimension Reduction  

As training time taken for 881-dimensional feature training is very high, there is need of feature 

reduction. Although, DBN oneself is feature detector in feature reducing fashion, it was tried to 

check the performance by removing the features who is not present in more than 100 drugs.  For 

better performance, it has been also planned to cascade PCA (principal component Analysis) for 

feature reduction purpose. 

Read input data feature vector 

Find positive/negative hidden mean 

(phi) using Equation 2.2.4 

Find positive/negative hidden 

sample (phi') using Binomial 

Find Negative visible mean (vni) 

using Equation 2.2.5 

Find Negative visible sample 

(vni') using Binomial 

Train RBMi for K=1 

Negative 

Positive  

Negative Samples Positive Samples 

Update: 

 Weight Wij using Eqation 2.3.7 

 Hbias hi using equation 2.3.10 

 Vbias bj using Equation 2.3.11 

Return 
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3.2.3 Learning 

For learning features form drug-structure component, the drug-substructure feature is encoded in 

binary fingerprint. Using this fingerprint, DBN is used for feature learning using both supervised 

and unsupervised way. Initially, unsupervised is used which extracts the feature from drug as 

fingerprint and RBM of DBN is used to encode the finger print features.  

The learning component using in DBN are listed below: 

I. The weight between visible layer and hidden layer, Wi,j .   

II. The visible bias (offset) bj 

III. Hidden layer bias (offset ) hi 

The dimension of learning parameters depends on the input feature dimension, number of hidden 

layers and number of neurons hidden layers. For example: the following table illustrates the 

parameter dimension while using 881 dimension feature or 286 feature dimensions and 3 hidden 

layers of each 2000 neurons.  

Table 51: Learning Parameter Dimension 

 

 RBM 0 RBM 1 RBM 2 

881 feature inputs bj of size 881  

(j=0,1,2,----,880) 

hi of size 2000 

(i=0,1,2,…..,1999) 

Wi,j of 881×2000 

bj of size 2000  

(j=0,1,2,----,1999) 

hi of size 2000 

(i=0,1,2,…..,1999) 

Wi,j of 2000×2000 

bj of size 2000 

(j=0,1,2,----,1999) 

hi of size 2000 

(i=0,1,2,…..,1999) 

Wi,j of 2000×2000 

286 feature inputs bj of size 286  

(j=0,1,2,----,285) 

hi of size 2000 

(i=0,1,2,…..,1999) 

Wi,j of 881×2000 

bj of size 2000  

(j=0,1,2,----,1999) 

hi of size 2000 

(i=0,1,2,…..,1999) 

Wi,j of 2000×2000 

bj of size 2000  

(j=0,1,2,----,1999) 

hi of size 2000 

(i=0,1,2,…..,1999) 

Wi,j of 2000×2000 

 

 

All above learning parameters are initially assigned by random value and then update by training 

features of each drug one by one in iterative way. After finishing the pre-training, fine turning is 

done using pre-trained adjusted parameter and known interaction (drug-target interaction profile 
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dataset) in supervised way. Finally, the system goes in equilibrium stage, by updated parameters. 

This is the case of fully learned stage. 

 

3.2.4 Modules Developed 

The total eight different modules with unique algorithms have been implemented in this thesis 

which is as tabulated below: 

Table 52: List of implemented modules 

 

MODULE Programming Language Source

Input/output  Java  Own Algorithm+ Self Implementation

RBM  Java Hinton Algorithm+Self Implemention

DBN  Java Hinton Algorithm+Self Implemention

Logistic Layer  Java Algorithm +self Implementation

Back Propagation Java Algorithm +self Implementation

Binarizing output  VBA Own algorithm integrating with Excel

Evaluation Module  VBA Own algorithm integrating with Excel

Visualization Module Excel Excel framework  
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CHAPTER 4: RESULT AND EVALUATION 

4.1 Results 

There are altogether 5 experiments performed using different hyper-parameters and using cross-

fold techniques. The obtained results with corresponding parameters are listed with experiment 

wise below: 

Experiment 1: 

  Table 53: hyper parameter for experiment1. 

 

                                

Patameters  Values
No of Hidden Layers 3

Total number of Neurongs per layer {1000, 1000, 1000 }

Activation Function                    Sigmoid

size of minibatch 50

Total number of input data 1000

pre-training epchos 1000

pre-training learning rate 0.1

fine-tuning ecphos 500

fine-tuning learning rate 0.1                                        

 

Table 54 : Predicted Output table (row: drug and column UniProt Protein ID) 

 

Experiment 2 and 3: Changing number of hidden units per layer in experiment2 and changing 

number of sub-structure features from 881 to 286 in experiment 3.  

 

Table 55: hyper-parameter for experiment 2 and 3.  

      

A2A2V4 A8MPY1 A9UF02 B8DCL9 B8DD61 …………… O00305

Pravastatin 9.81E-04 9.81E-04 9.81E-04 9.81E-04 9.81E-04 …………… 9.81E-04

Fluvoxamine 1.90E-04 1.90E-04 1.90E-04 1.90E-04 1.90E-04 …………… 1.90E-04

Valsartan 5.63E-05 5.63E-05 5.63E-05 5.63E-05 5.63E-05 …………… 5.63E-05

Ramipril 0.00122 0.00122 0.00122 0.00122 0.00122 …………… 0.00122

Masoprocol 0.001285 0.001285 0.001285 0.001285 0.001285 …………… 0.001285

Flunisolide 0.001274 0.001274 0.001274 0.001274 0.001274 …………… 0.001274

Baclofen 0.001025 0.001025 0.001025 0.001025 0.001025 …………… 0.001025
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Patameters Exp 2 Values Exp 3 Values

No of Hidden Layers 3 1

Total number of Neurongs per layer {2000, 2000, 2000 }            {2000,2000,2000}

Activation Function                    Sigmoid                            Sigmoid

size of minibatch 50 50

Total number of input data 1000 1000

pre-training epchos 1000 1000

pre-training learning rate 0.1 0.1

fine-tuning ecphos 500 500

fine-tuning learning rate 0.1 0.1

no of input drug data features 881 286  
       

The output of above three experiments using single threshold 0.5 for binary classification and 

using equation 3.20, 3.21, 3.22, 3.23 and 3.24 between actual interaction and predicted 

interaction, are tabulated in Table 4.4 and Table 4.5 respectively as below:  

 

Table 56: Experiment wise output of PDTI-DBN framework 

 

  Exp1 Exp2 Exp3 Exp 4 Exp5 

True Positive (TP) 3 14 13 13 12 

True Negative (TN) 7727 7726 7725 7720 7723 

False positive (FP) 0 2 2 7 4 

False Negative (FN) 20 8 10 10 11 

 

Using the same hyper-parameters of experiment 3 (Exp3), additional experiment 4(Exp4) and 

experiment 5(Exp5) were performed by exchanging the training and testing data for 3 cross-fold 

experiments. 

4.2 Evaluation 

Evaluation has been performed using the evaluation technique from previous sections, 

 

 

                      Table 57: Prediction outputs of Experiment 1, 2, 3, 4 and 5. 

 Exp 1 Exp2 Exp 3 Exp4 Exp5 
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4.2.1 Using threshold 0.5 

Table 4.5 shows the output performed from experiments 1-5 i.e. (Exp1-Exp5) . From the table , 

prediction can evaluated by indices sensitivity (Sn) , Precision (Pre), Specificity (Spc), Accuracy 

(Acc) , F1-Score( F1). As the single point threshold is not efficient for binary classification for 

predicting the model, there is need of taking variable threshold values for binary classification on 

the prediction output. Taking threshold 0.35, 0.45 and 0.5, result and evaluations are done in next 

section 4.2.2. 

4.2.2 Using threshold 0.35, 0.45, 0.5 and 0.75 

Taking threshold 0.35, 0.45, 0.5 and 0.75, we get the following results in each experiment 2 to 

experiment 5. Experiment 1 result has not been included as it was worse due to less number of 

neurons i.e. non-adjustment of hyper-parameters. 

 

       Table 58: Sensitivity and Specificity of from predicted output with multipoint threshold 

 

Experiments Threshold Sensitivity (Sn) Specificity(Spc) 1-Secificity 

 

 

Experiment 2 

0.35 0.5612 0.99922 0.00078 

0.45 0.6120 0.992 0.008 

0.5 0.63636 0.99741 0.009 

0.75 0.7321 0.98 0.02 

 

Experiment 3 

0.35 0.0434 0.99904 0.00096 

0.45 0.0524 0.99353 0.00647 

0.5 0.5621 0.991741 0.008249 

0.75 0.6122 0.97292 0.02708 

Sn 0.130435 0.636364 0.565217391 0.565217 0.521739 

Pre 1 0.875 0.866666667 0.65 0.75 

Spc 1 0.999741 0.991741 0.991094 0.991482 

Acc 0.997419 0.99871 0.998451613 0.997806 0.998065 

F1 0.230769 0.736842 0.684210526 0.604651 0.615385 
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Experiment 4 

0.35 0.0434 0.99904 0.0096 

0.45 0.0434 0.99353 0.00647 

0.5 0.565217 0.991094 0.008906 

0.75 0.60991 0.9812 0.0188 

 

 

Experiment 5 

0.35 0.0312 0.9992 0.0008 

0.45 0.1241 0.9991 0.0009 

0.5 0.5621 0.991482 0.00029 

0.75 0.62121 0.98013 0.01987 

4.3 Result Summary and Comparison with existing prediction methods 

4.3.1 Result Summary 

In Figure 4.1, it is clearly seen that the True positive (TP), False positive (FP), False Negative 

(FN) and TN negative   result of all experiments. Form figure, it is clearly seen that number of 

True positive of Experiment 2 is better than others. It is due to presence of 881 features in 

experiment 2 . 

 

 

Figure 25: Bar chart graph of drug-target interaction prediction result 

 

 

For drawing ROC curve of PDTI-DBN framework, the average sensitivity and specificity of five 

experiments with multi threshold are calculated as given in table 4.7 and its corresponding ROC 

curve is as shown in figure 4.2. 
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                        Table 59: Average of five experiment results from table  

 

   Sensitivity Specificity 1-Spcificity 

0.35 0.1698 0.999125 0.000875 

0.45 0.207975 0.99454 0.00546 

0.5 0.58144425 0.99293175 0.00706825 

0.75 0.643855 0.9785625 0.0214375 

   

                              

 

Figure 26: ROC curve of Five Experiment‘s average result 

 

Form above ROC curve, the AUC can be easily calculated which numerically better value than 

existing drug-target interaction model. 
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1-specificity 
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Figure 27: Time versus minibatch graph of 881 features and 286 features pre-training 

 

 

From the figure 4.3 , it is shown that time taken by minibatch of 50 drugs is more when 881 drug 

features are present in compare to 286  feature presence. For one mini-batch training in 881 –

dimensional feature space, it takes 5 hours where as for reduced features to 286 mini-batches 

training takes only 4 hours. It saves the time for training but result is worse than 881 dimensional 

feature. 

 

From figure 4.4, by comparing the results obtained from experiments, it is clear that experiment 

2 has better performance than other experiments. One more important point is that the PDTI-

DBN framework predicts well even the less important feature are removed from feature space. 
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Figure 28:  Bar chart of prediction result in terms of Sn, Pre, Spc, Acc and F1 

 

 

4.3.2 Comparison with Existing Prediction Methods 

As shown in above result, it can be said that the accuracy of PDTI-DBN is more than 99% which 

is comparatively between than existing approaches for drug target interaction. All the existing 

systems even in different dataset and using different other machine learning approaches have 

maximum 98% accuracy. Similarly, as sheen ROC curves, there is curve above the 45 degree 

angle line which shows DTI-DBN predicts well.  

                                          

One more this is analyzed that DTI-DBN takes 7days to train 1000 drug features, there is 

difficult to get adjusted hyper-parameter frequently  to get better performance. To reduce the 

training time period, it is seen that there is need of some parallel computation technique for 

better hyper-parameter adjusting. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In this thesis, Drug-target interaction prediction was performed efficiently using deep belief 

network. The drug sub-structure finger print was used as pre-training data set for the DBN and 

with known corresponding drug-target interaction profile was used for fine tuning of DBN using 

back-propagation method. Also logistic layer was stacked at output layer for better update of  

 Parameters initialized by pre-training. From the five experiments with different hyper-

parameters and different random training and testing data set of 1007 drugs, it is concluded as: 

- PDTI-DBN framework predicts the drug-target interaction efficiently with good AUC 

value and 99% efficiency for gold standard data.  

- The maximum F1-score of this framework was obtained as 73% in experiment 2 with 

881 dimensional features and it get little bit declined when the feature is reduced to 

286 dimensional features. 

 

5.2 Future Work 

o As deep learning has high computation complexity, there is need of parallel programming 

approach to reduce the training time.  DTI-DBN framework developed using sequential 

programming is to be converted into parallel using CUDA programming which is 

executed on GPU for better performance on different hyper-parameters..  

 

o PDTI-DBN framework will be extended with adapting Deep Belief Network with hyper-

parameters. 
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APPENDIX A 

Back Propagation Algorithm 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the above, there is input layer, one hidden layer and one output layer. x1, x2,-------, xk are input 

of k units. Hidden layer has j units and there are i outputs. Wk,j is weight between input and 

hidden layer and wj,i is the weight between hidden layer and output layer. Using forward 

calculation output y calculated at first and then error is obtained and expressed as : 
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Now, above equation reduced to 
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 ∴ 𝑊𝑘 ,𝑗 ← 𝑊𝑘 ,𝑗 + 𝛼𝑎𝑘∆𝑗  Equation(A.1) 

                                        Where,  

                                                        ∆𝑗= ∆𝑖𝑊𝑗 ,𝑖𝑔′ 𝑖𝑛𝑘  and 𝛼  is learning rate. 

 

APPENDIX B 

Protein ID with Complete name 

 

Target Organism Name 

UniProtKB - Q15822 ACHA2_HUMAN Neuronal acetylcholine receptor subunit alpha-2 

UniProtKB - Q15825 ACHA6_HUMAN Neuronal acetylcholine receptor subunit alpha-6 

UniProtKB - Q9G226 Q9G226_RANSY ATP synthase subunit A 

UniProtKB - Q9UGM1 ACHA9_HUMAN Neuronal acetylcholine receptor subunit alpha-9 

UniProtKB - P36544 ACHA7_HUMAN Neuronal acetylcholine receptor subunit alpha-7 

UniProtKB - P43681 ACHA4_HUMAN Neuronal acetylcholine receptor subunit alpha-4 

UniProtKB - Q05901 ACHB3_HUMAN Neuronal acetylcholine receptor subunit alpha-3 

UniProtKB - P23219 PGH1_HUMAN Prostaglandin G/H synthase 1 

UniProtKB - P35354 PGH2_HUMAN Prostaglandin G/H synthase 2 
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UniProtKB - Q04828 AK1C1_HUMAN Aldo-keto reductase family 1 member C1 

UniProtKB - P60725 RL4_ECO57 50S ribosomal protein L4 

UniProtKB - P61177 RL22_ECO57 50S ribosomal protein L22 

UniProtKB - Q8XJ01 PBPA_CLOPE Penicillin-binding protein 1A 

Source: http://www.uniprot.org/uniprot/ 

 

Drug Description 

 

Nicotine 

Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic 

cholinergic receptors where it dramatically stimulates neurons and 

ultimately blocks synaptic transmission. Nicotine is also important 

medically because of its presence in tobacco smoke. [PubChem] 

 

 

Aspirin 

 

The prototypical analgesic used in the treatment of mild to moderate pain. 

It has anti-inflammatory and antipyretic properties and acts as an inhibitor 

of cyclooxygenase which results in the inhibition of the biosynthesis of 

prostaglandins. Acetylsalicylic acid also inhibits platelet aggregation and 

is used in the prevention of arterial and venous thrombosis. (From 

Martindale, The Extra Pharmacopoeia 

Erythromycin Erythromycin is a macrolide antibiotic produced by Streptomyces 

erythreus. It inhibits bacterial protein synthesis by binding to bacterial 

50S ribosomal subunits; binding inhibits peptidyl transferase activity and 

interferes with translocation of amino acids during translation and 

assembly of proteins. Erythromycin may be bacteriostatic or bactericidal 

depending on the organism and drug concentration 

Amoxicillin A broad-spectrum semisynthetic antibiotic similar to ampicillin except 

that its resistance to gastric acid permits higher serum levels with oral 

administration. Amoxicillin is commonly prescribed with clauvanic acid 

(a beta lactamase inhibitor) as it is susceptible to beta-lacatamase 

degradation. [PubChem] 

Source: http://www.drugbank.ca/drugs 
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