

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

CENTRAL CAMPUS

THESIS NO: 069/ MSCS/ 669

 Task Scheduling in Grid Computing Using Genetic Algorithm

by

Ujjwal Prajapati

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND

COMPUTER ENGINEERING IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN

COMPUTER SYSTEM AND KNOWLEDGE ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

LALITPUR, NEPAL

NOVEMBER, 2014

i

Task Scheduling in Grid Computing Using Genetic Algorithm

by

Ujjwal Prajapati

069/MSCS/669

Thesis Supervisor

Prof. Dr. Subarna Shakya

Department of Electronics and Computer Engineering

Institute of Engineering

Central Campus

A thesis submitted to the Department of Electronics and Computer Engineering in

partial fulfillment of the requirements for the degree of Master of Science in

Computer System and Knowledge Engineering

Department of Electronics and Computer Engineering

Institute of Engineering, Central Campus

Tribhuvan University

Lalitpur, Nepal

November, 2014

ii

COPYRIGHT ©

The author has agreed that the library, Department of Electronics and Computer

Engineering, Institute of Engineering, Central Campus, may make this thesis freely

available for inspection. Moreover the author has agreed that the permission for

extensive copying of this thesis work for scholarly purpose may be granted by the

professor(s), who supervised the thesis work recorded herein or, in their absence, by

the Head of the Department, wherein this thesis was done. It is understood that the

recognition will be given to the author of this thesis and to the Department of

Electronics and Computer Engineering, Central Campus in any use of the material of

this thesis. Copying of publication or other use of this thesis for financial gain without

approval of the Department of Electronics and Computer Engineering, Institute of

Engineering, Central Campus and author‟s written permission is prohibited.

Request for permission to copy or to make any use of the material in this thesis in

whole or part should be addressed to:

Head

Department of Electronics and Computer Engineering

Institute of Engineering, Central Campus

Pulchowk, Lalitpur, Nepal

iii

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

CENTRAL CAMPUS

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certify that they have read and recommended to the Institute of

Engineering for acceptance, a thesis entitled “Task Scheduling in Grid Computing

Using Genetic Algorithm” submitted by Mr. Ujjwal Prajapati in partial fulfillment

of the requirement for the award of the degree of “Master of Science in Computer

System and Knowledge Engineering”

………………………………………

Supervisor: Prof. Dr. Subarna Shakya

Department of Electronics and Computer Engineering

Institute of Engineering

Central Campus

……………………………………………

External Examiner:

iv

DEPARTMENTAL ACCEPTANCE

The thesis entitled “Task Scheduling in Grid Computing using Genetic

Algorithm” submitted by Ujjwal Prajapati in partial fulfillment of the requirement

for the award of the degree of “Master of Science in Computer System and

Knowledge Engineering” has been accepted as a bonafide record of work

independently carried out by him in the department.

Dr. Diwakar Raj Panta

Head of the Department

Department of Electronics and Computer Engineering,

Central Campus,

Institute of Engineering,

Tribhuvan University,

Nepal.

v

ACKNOWLEDGEMENT

I would like to express my gratitude to all the faculty members of Electronics and

Computer Engineering Department who are directly/indirectly involved in inspiring

and motivating me to carry out this thesis. I am very grateful to my thesis Supervisor

Professor Dr. Subarna Shakya for his guidance and encouragement throughout the

thesis. This would be never succeeded without his support and inspiration. A special

word of gratitude to my program co-ordinator Dr. Sanjeeb Prasad Panday and

Professor Dr. Shashidhar Ram Joshi whose continuous support and guidance has

led me to come up with this title of thesis.

Also, I would like to express a word of thanks to all my classmates for their

continuous idea sharing and discussion, which have definitely paved the path to

undertake this thesis.

vi

ABSTRACT

Task scheduling is a key problem in Grid computing in order to benefit from the large

computing capacity of such systems. The need of allocating a number of tasks to

different resources for the efficient utilization of resources with minimal completion

time and economic cost is the essential requirement in such systems. The problem is

multi-objective in its general formation, with the objectives being the minimization of

makespan and flowtime of the system along the economic cost. An optimal

scheduling could be achieved minimizing the completion time and economic cost

using the heuristic approach, which is chosen to be Genetic Algorithm. The ability of

Genetic Algorithm to simultaneously search different regions of a solution space

makes it possible to find a diverse set of solutions for difficult problems. Each

individual is represented as possible solution. The solutions are the schedulers for

efficiently allocating jobs to resources in a Grid system.

Keywords

Task Scheduling, Grid Computing, Distributed Computing, Makespan, Economic

Cost, Genetic Algorithm

vii

TABLE OF CONTENTS

TITLE PAGE

COPYRIGHT…………………………………………………………. ii

APPROVAL PAGE ….………………………………………………. iii

DEPARTMENTAL ACCEPTANCE.……………………………….. iv

ACKNOWLEDGEMENT …………………………………………… v

ABSTRACT………………………………………………………….. vi

LIST OF TABLES……………………………………………..…….. x

CHAPTER ONE – INTRODUCTION ………………………………. 1

1.1. Introduction ……………………………………………....... 2

1.2. Problem Statement ………………………………………… 3

1.3. Objectives …………………………………………………. 3

1.4. Scope of Work ……………………………………………... 3

CHAPTER TWO – LITERATURE REVIEW ……………………….. 4

2.1. Literature Review ………………………………………….. 5

CHAPTER THREE – RESEARCH METHODOLOGY ………………. 7

3.1. Methodology ………………………………………………. 8

 3.1.1 Schedule Encoding ………………………………….......... 9

3.1.2 Initialization ……………………………………………… 9

3.1.3 Fitness Function …………………………………………… 9

 3.1.3.1 Execution Cost ……………………………………10

viii

 3.1.3.2 Communication Cost …………………………... 10

 3.1.3.3 System Cost ……………………………………. 10

 3.1.3.4 Expected Time to Compute ……………………. 10

 3.1.4. Crossover …………………………………….…………. 11

 3.1.4.1 One-point Crossover ……………………………. 11

 3.1.5. Mutation ………………………………………………… 12

 3.1.6. Selection ………………………………………………… 12

 3.1.7. Stopping Criteria …………………………………............ 13

3.2. Data Collection …………………………………………………… 14

 3.2.1 Data Set 1 ……………………………………………….. 14

 3.2.2 Data Set 2 ……………………………………………… 15

CHAPETER FOUR – RESULT ANALYSIS AND COMPARISON… 16

4.1. Result …………..………………………………………………… 17

 4.1.1. Test Dataset 1…………………………………………… 17

 4.1.1.1. Parameter Set 1 ………………………………… 17

 4.1.1.2. Parameter Set 2 ………………………………… 19

 4.1.2. Test Dataset 2 …………………………………………… 20

 4.1.2.1. Parameter Set 1 ………………………………… 20

 4.1.2.2. Parameter Set 2 ………………………………… 22

4.2. Result Analysis…………………………………………………… 24

CHAPTER FIVE – CONCLUSION AND RECOMMENDATION … 27

5.1 Conclusion ……..……………………………………………….. 28

ix

5.2. Recommendation………………………………………………… 29

REFERENCES…..…………………………………………………… 30

x

LIST OF TABLES

TABLE PAGE

Table 1: Task Allocation in the form of chromosome ………….…… 9

Table 2: One-point Crossover ……………………………….…..…… 11

Table 3: Mutation ……………………….…………………………… 12

Table 4: Roulette Wheel Selection …………………………..……….. 13

Table 5: Data-set 1: Execution Cost Matrix …………………………. 14

Table 6: Data-set 1: The Inter Task Communication Cost Matrix 14

Table 7: Data-set 1: Excepted Time to Compute Matrix …………….. 15

Table 8: Data-set 2: Execution Cost Matrix …………………………. 15

Table 9: Data-set 2: The Inter Task Communication Cost Matrix 15

Table 10: Data-set 2: Excepted Time to Compute Matrix ……........... 15

Table 11: Parameter Set 1: GA Parameters ………………………….. 17

Table 12: Program Run 3: Output Solution.. 17

Table 13: Program Run 3: Task Allocation …………………………. 17

Table 14: Program Run 4: Output Solution ... 18

Table 15: Program Run 4: Task Allocation …………………………. 18

Table 16: Program Run 15: Output Solution .. 18

Table 17: Program Run 15: Task Allocation ………………………… 18

Table 18: Program Run 34: Output Solution .. 18

Table 19: Program Run 34: Task Allocation ………………………… 18

Table 20: Parameter Set 2: GA Parameters .. 19

xi

Table 21: Program Run 6: Output Solution ………………………….. 19

Table 22: Program Run 6: Task Allocation …………………………... 19

Table 23: Program Run 17: Output Solution………………………….. 19

Table 24: Program Run 17: Task Allocation …………………………. 19

Table 25: Program Run 25: Output Solution …………………………. 19

Table 26: Program Run 25: Task Allocation …………………............. 20

Table 27: Program Run 42: Output Solution …………………............. 20

Table 28: Program Run 42: Task Allocation ………………………. … 20

Table 29: Parameter Set 1: GA Parameters …………………………… 20

Table 30: Program Run 1: Output Solution... 21

Table 31: Program Run 1: Task Allocation …………………………… 21

Table 32: Program Run 3: Output Solution .. 21

Table 33: Program Run 3: Task Allocation …………………………… 21

Table 34: Program Run 4: Output Solution .. 21

Table 35: Program Run 4: Task Allocation …………………………… 21

Table 36: Program Run 15: Output Solution .. 21

Table 37: Program Run 15: Task Allocation ………………………….. 22

Table 38: Parameter Set 2: GA Parameters ...22

Table 39: Program Run 1: Output Solution …………………………….22

Table 40: Program Run 1: Task Allocation …………………………... 22

Table 41: Program Run 2: Output Solution ……………………………22

Table 42: Program Run 2: Task Allocation …………………………….22

xii

Table 43: Program Run 5: Output Solution …………………………… 23

Table 44: Program Run 5: Task Allocation ………………………….. 23

Table 45: Program Run 7: Output Solution …………………………… 23

Table 46: Program Run 7: Task Allocation …………………………… 23

Table 47: Summary of Output Solution for Test Data Set 1 …………. 24

Table 48: Optimal Solution for Test Data Set 1 ……………………… 24

Table 49: Comparison of Parameter Sets for Test Data Set 1 …............ 25

Table 50: Summary of Output Solution for Test Data Set 2 ………….. 25

Table 51: Optimal Solution for Test Data Set 2 ……………………… 25

Table 52: Comparison of Parameter Sets for Test Data Set 2 ……….. 26

1

CHAPTER ONE

INTRODUCTION

2

1.1 Introduction

 A computational grid is a large scale, heterogeneous collection of autonomous

systems, geographically distributed and interconnected by heterogeneous networks. A

computational grid contains resource management, task scheduling, security

problems, and information management and so on. Task scheduling is one of the

fundamental issues which play an important role in the operation of distributed

computing systems. Task scheduling in distributed computing systems is defined as

the process of assigning the tasks of a distributed application into the available

processors, and specifying the start execution time of the tasks assigned to each

processor [1]. The problem of task allocation in distributed computing system is the

need to allocate a number of tasks to different processors for execution.

A task is an atomic unit to be scheduled by the scheduler and assigned to a resource.

A task scheduling is the mapping of tasks to a selected group of resources which may

be distributed in multiple administrative domains. In the case of static scheduling,

information regarding all resources in the Grid as well as all the tasks in an

application is assumed to be available by the time the application is scheduled. The

application centric objective function in Grid computing could be either make span,

which is the time spent from the beginning of the first task in a job at the end of the

last task of the job, or economic cost that an application needs to pay for resource

utilization [2].

Job Scheduling is known to be NP-complete; therefore the use of heuristics is the de

facto approach in order to cope in practice with its difficulty [3]. The meta-heuristics

run on static instances of the problem and therefore in this approach static schedulers

are obtained. A Genetic Algorithm is a meta-heuristic search technique which allows

for large solution spaces to be partially searched in polynomial time, by applying

evolutionary techniques from nature.

3

1.2 Problem Statement

Job sharing is one of the major difficult tasks in a computational grid environment.

Unlike scheduling problems in conventional distributed systems, this problem is much

more complex as new features of Grid systems such as its dynamic nature and the

high degree of heterogeneity of jobs and resources must be tackled. When there are

more tasks than available resources, the problems arises for the minimization of the

completion time and utilize the resources effectively with minimum cost.

1.3 Objectives

 To implement Genetic Algorithm for the multi-objective optimization of make

span, flow time and economic cost of the system

 To see and compare the possible performance change considering different

encoding schemes, operators and parameter tuning

1.4 Scope of Work

In any of the Grid computing where task scheduling is a necessarily complicated, this

solution could be implemented. The solution could be run in Grid Scheduler or Grid

Resource Manager which provides the functionality for discovery and publishing of

resources along with scheduling, submission and monitoring of jobs.

4

CHAPTER TWO

LITERATURE REVIEW

5

2.1 Literature Review

In Distributed Computing System, an allocation policy may be either static or

dynamic, depending upon the time at which the allocation decisions are made. In a

static task allocation, the information regarding the tasks and processor attributes is

assumed to be known in advance, before the execution of the tasks. Distributed

Computing Systems have become a key platform for the execution of hydrogenous

applications. The major problem encountered when programming such a system is the

problem of task allocation. Task allocation problem is known to be NP-hard problem

in complexity, where required an optimal solution to the problem. The easiest way to

finding an optimal solution to the problem is an exhaustive enumerative approach.

But it is impractical, because there are n
m
 ways of allocation m-tasks to n-processors.

Ahmed Younes. Hamed [4] presents a genetic algorithm, considering distributed

computing system with heterogeneous processors in order to achieve optimal cost by

allocating the tasks to the processors, in such a way that the allocated load on each

processor is balanced. The algorithm is based on the execution cost of a task running

on different processors and the task communication cost between two tasks to obtain

the optimal solution. The proposed algorithm tries to minimize the processor

execution cost and inter processor communication.

Javier Carretero, Fatos Xhafa [3] presents an extensive study on the usefulness of

Genetic Algorithms for designing efficient Grid Schedulers when makespan and

flowtime are minimized under hierarchic and simultaneous approaches. Two encoding

schemes have been considered and most of GA operators for each of them are

implemented and empirically studied.

Mohammad I. Daoud and Nawwaf Kharma [1] proposed customized genetic

algorithm to produce high-quality task schedules for Heterogeneous Distributed

Computing Systems. Also, the performance of the scheduling algorithm is compared

to two leading scheduling algorithms which is based on both randomly generated task

graphs and task graphs of certain real-world numerical applications, exhibits the

supremacy of the new algorithm over the older ones, in terms of schedule length,

speedup and efficiency.

6

Prateek Kumar Singh, Neelu Sahu [5] proposed compact genetic algorithm, which

aims to generate an optimal schedule so as to get the minimum completion time while

completing the tasks.

7

CHAPTER THREE

RESEARCH METHODOLOGY

8

3.1 Methodology

A Genetic Algorithm is a meta-heuristic search technique which allows for large

solution spaces to be partially searched in polynomial time, by applying evolutionary

techniques from nature. Genetic Algorithm is high level algorithms that integrate

other methods and genetic operators, therefore in order to implement it for a problem,

we have to use the template for the method and design the inner methods, operators

and appropriate data structures.

begin

Initialization: Generate the initial population P (t=0) of n individuals

Fitness: Evaluate the fitness of each of the population.

 Evaluate (P (t))

while (not termination condition) do

 Selection: Select a subset of m pairs from P (t).

Let P1 (t) = Select (P (t))

 Crossover: With probability pc, cross each of the m chosen pairs.

Let P2 (t) = Cross (P1 (t)) be the set of offspring.

 Mutation: With probability Pm, mutate each offspring in P2 (t).

Let P3 (t) = mutate (P2 (t))

 Fitness: Evaluate the fitness of each offspring. Evaluate (P3 (t))

 Replacement: Create a new generation from individuals in P (t) and P3

(t).

Let P (t+1) = Replace (P (t), P3 (t)); t = t+1

fwhile

return Best found solution;

end

9

3.1.1 Schedule Encoding

In grid scheduling, we have a set of tasks and a set of resources as input and a

sequence, which informs that which task is to be operated on which resource and in

which order as output. So, a population approach is acceptable with each individual in

a population representing the scheduling solution.

If we represent a set of task as X = {t1, t2, t3,….tn} and set of resources as P = {P1, P2,

P3,… Pn}, then the sequence can be represented as:

t1 t2 t3 t4 tm

P1 P3 P1 P2 Pn

Table 1 Task Allocation in the form of chromosome

The chromosome is represented as string of integers. The length of chromosome is

given by the number of tasks that should be allocated. Every gene in the chromosome

represents the processor or resource which the task is running on.

From the allocation as shown, it is known that task t1 should be run on resource P1,

task t2 should be run on resource P3 and so on.

3.1.2 Initialization

The initial population is generated randomly. Given the population size, the random

strings of integers are formed of definitive chromosome length evaluated from the

number of task set to form the initial population.

3.1.3 Fitness Function

The execution cost of a task running on different processors are different and it is

given in the form a matrix of order m * n, named as execution cost matrix ECM.

Similarly, the inter task communication cost between two tasks is given in the form of

a symmetric matrix named as inter task communication cost matrix ITCCM, of order

m * m. The makespan is expressed in terms of Expected Time to compute matrix

(ETC) of size m*n.

10

3.1.3.1 Execution Cost (EC)

The execution cost (ecik) of a task ti , running on a processor Pk is the amount of the

total cost needed for the execution of ti on that processor during the execution process.

If a task is not executable on a particular processor, the corresponding execution cost

is taken to be infinite.

3.1.3.2 Communication Cost (CC)

The communication cost ccij incurred due to the inter task communication is the

amount of total cost needed for exchanging data between ti and tj residing at separate

processor during the execution process. If two tasks executed on the same processor

then ccij = 0

3.1.3.3 System Cost

Given a task allocation X = {xik}, i = 1,2,3,….m, k=1,2,3,.. n, the execution cost of all

processors can be computed by the following equation:

PEC(X) = ∑
n

k=1∑
m

i=1 ecik xik

The inter processor communication cost for all processors can be computed as

follows:

IPEC(X) = ∑
n

k=1∑
m

i=1∑j>i∑b≠k ecik xik xjb

The system cost which is defined as the sum of the execution and communication cost

is computed as follows:

C(X) = PEC(X) + IPEC(X)

3.1.3.4 Expected Time to Compute

An Expected Time to compute makes an estimation of the computational load of each

job, the computing capacity of each resource, and an estimation of the prior load of

each one of the resources. Each position in ETC[t][m] indicates the expected time to

compute job t in resource m.

M(X) = min {∑ {j ε jobs | schedule[j] = m} ETC[j][m] }

11

Thus, we need to minimize the system cost and the makespan which is to allocate

each of the m tasks to one of the n processors. Hence our fitness function is:

Min {C(X) + M(X) = PEC(X) + IPEC(X) + M(X)}

3.1.4. Crossover

Crossover provides the important operation in evolutionary algorithm. The crossover

operation is used to obtain new individuals (descendants) by selecting individuals

from the parental generation and interchanging their genes. The aim is to obtain

descendants of better quality that will feed the next generation and enable the search

to explore new regions of solution space not yet explored.

3.1.4.1. One-point crossover

Given two parent solutions, this operator, first chooses a position between 1 and n;

where n is the chromosome length of a chosen individual. The resulting position

serves as a „cutting point‟ splitting each parent into two segments. Then, the two first

parts of the parents are interchanged yielding two new descendants. Also, the first part

and the later part of the parents could be exchanged to form two new descendants; the

converse is true.

 ↓ Cutting point

Parent 1 1 2 1 1 2 1 2 3

Parent 2 2 3 1 2 1 3 2 1

Child 1 1 2 1 1 1 3 2 1

Child 2 2 3 1 2 2 1 2 3

Table 2 One-point Crossover

12

3.1.5 Mutation

The mutation operation is performed on a single gene strand basis. The mutation

operation will perform if the mutation ratio (Pm) is verified. The point to be mutated is

selected randomly.

Parent 1 3 2 1 2 3

Child 1 3 3 1 2 3

Table 3 Mutation

3.1.6 Selection

Selection operators are used to select the individuals to which the crossover operators

will be applied. The fitness proportionate selection, also known as roulette wheel

selection is chosen for recombination.

In fitness proportionate selection, as in all selection methods, the fitness function

assigns fitness to possible solutions or chromosomes. The fitness level is used to

associate a probability of selection with each individual chromosome.

If fi is the fitness of individual i in the population, its probability of being selected is

 𝑝𝑖 =
𝑓𝑖

∑ 𝑁 𝑓𝑗
𝑗 = 1

where N is the number of individuals in the population.

This could be imagined similar to a Roulette wheel. Usually a proportion of the wheel

is assigned to each of the possible selections based on their fitness value. This could

be achieved by dividing the fitness of a selection by the total fitness of all the

selections, thereby normalizing them to 1.

13

Table 4 Roulette Wheel Selection

3.1.7. Stopping Criteria

Stopping Criteria is fulfilled from either one of the below:

i. Generation

ii. Required Fitness

The generation is set at some fixed value like 100, 1000 for example on fulfillment of

which the algorithm stops.

Since we don‟t have fix value of required fitness, a minimum arbitrary value could be

set on fulfillment of which the algorithm stops.

Chromosome 1

Chromosome 2

Chromosome 3

Chromosome 4

14

3.2 Data Collection

I have considered a typical program made up by 9-executable tasks {t1, t2, t3, t4, t5,

t6, t7, t8, t9} and 4 executable tasks {t1, t2, t3, t4} to be executed on the Distributed

Computing System having three processors {P1, P2, P3}. I have taken the execution

cost of each task on different processors and inter task communication cost between

the tasks in the form of matrices Execution Cost Matrix and Inter-Task

Communication Cost Matrix. Also, the expected time to compute matrix is

formulated. All the matrices are shown in table below.

3.2.1 Data Set 1

Processor P1 P2 P3

Task

t1 174 176 110

t2 95 15 134

t3 196 79 156

t4 148 215 143

t5 44 234 122

t6 241 225 27

t7 12 28 192

t8 215 13 122

t9 211 11 208
Table 5 Data-set 1: Execution Cost Matrix [4]

Tasks t1 t2 t3 t4 t5 t6 t7 t8 t9

t1 0 8 10 4 0 3 4 0 0

t2 8 0 7 0 0 0 0 3 0

t3 10 7 0 1 0 0 0 0 0

t4 4 0 1 0 6 0 0 8 0

t5 0 0 0 6 0 0 0 12 0

t6 3 0 0 0 0 0 0 0 12

t7 4 0 0 0 0 0 0 3 10

t8 0 3 0 8 12 0 3 0 5

t9 0 0 0 0 0 12 10 5 0
Table 6 Data-Set 1: The Inter Task Communication Cost Matrix [4]

15

Processor P1 P2 P3

Task

t1 25137.5 52468 150206

t2 30802.6 42744.5 49578.3

t3 242727.1 661498.5 796048.1

t4 68050.1 303515.9 324093.1

t5 6480.2 42396.7 98105.4

t6 175953.8 210341.9 261825.0

t7 116821.4 240577.6 241127.9

t8 36760.6 111631.5 150926

t9 383709.7 442605.7 520276.8
Table 7 Data-set 1: Expected Time to Compute Matrix

3.2.2. Data Set 2

Processor P1 P2 P3

Task

t1 9 2 6

t2 3 8 7

t3 7 10 3

t4 3 4 9

Table 8 Data-set 2: Execution Cost Matrix [4]

Tasks t1 t2 t3 t4

t1 0 1 4 6

t2 1 0 2 0

t3 4 2 0 8

t4 6 0 8 0
Table 9 Data-set 2: The Inter Task Communication Cost Matrix [4]

Processor P1 P2 P3

Task

t1 392348.2 399562.1 441485.5

t2 58268.1 58987.9 85213.2

t3 915235.9 925875.6 978057.6

t4 841877.3 856312.9 861314.8
Table 10 Data-set 2: Expected Time to Compute Matrix

16

CHAPTER FOUR

RESULT ANALYSIS AND COMPARISON

17

4.1. Result

The collected dataset is fed to the algorithm which outputs the solution which is the

schedulers for the grid computing. Multiple solutions are shown with different cost

and make span which enables users to chose one among the others which fit best to

their requirement.

4.1.1. Test Dataset 1:

For a given input dataset 1 as shown in Table 5, 6 and 7, we feed the input to the

algorithm with multiple test parameters as shown in Table 11 and 20. The population

size is chosen different to test the output solution. Given the variant population size,

the output solution space varies giving the larger solution set. The output solution is

tabulated at different run of the program to provide optimal values. From the output

solution derived, task allocation is performed giving the system cost and make span.

4.1.1.1. Parameter Set 1

GA Parameters Value

Population Count 10

Crossover Probability 0.8

Mutation Probability 0.01

Chromosome Length 9

Chromosome 123

Processor Count 3

Task Count 9

Generation 100

Table 11 Parameter Set 1: GA Parameters

i. Program Run 3

t1 t2 t3 t4 t5 t6 t7 t8 t9

1 2 1 1 1 3 1 2 2
Table 12 Program Run 3: Output Solution

Task Allocation System Cost Make span

Tasks Processors

t1, t3, t4,t5, t7 P1 640 1318023

t2, t8, t9 P2

t6 P3

Table 13 Program Run 3: Task Allocation

18

ii. Program Run 4

t1 t2 t3 t4 t5 t6 t7 t8 t9

2 1 2 1 1 3 1 2 2

Table 14 Program Run 4: Output Solution

Task Allocation System Cost Make span

Tasks Processors

t2, t4, t5, t7 P1 605 1752183

t1, t3, t6, t8, t9 P2

t6 P3
Table 15 Program Run 4: Task Allocation

iii. Program Run 15

t1 t2 t3 t4 t5 t6 t7 t8 t9

1 2 1 1 1 1 1 1 1

Table 16 Program Run 15: Output Solution

Task Allocation System Cost Make span

Tasks Processors

t1, t3, t4, t5, t6, t7, t8, t9 P1 1256 1098384.9

t2 P2

 P3

Table 17 Program Run 15: Task Allocation

iv. Program Run 34

t1 t2 t3 t4 t5 t6 t7 t8 t9

3 2 2 1 1 3 1 2 2
Table 18 Program Run 34: Output Solution

Task Allocation System Cost Make span

Tasks Processors

t4, t5, t7 P1 459 1861862.9

t2, t3, t8, t9 P2

t1, t6 P3

Table 19 Program Run 34: Task Allocation

19

4.1.1.2. Parameter Set 2

GA Parameters Value

Population Count 20

Crossover Probability 0.8

Mutation Probability 0.01

Chromosome Length 9

Chromosome 123

Processor Count 3

Task Count 9

Generation 100

Table 20 Parameter Set 2: GA Parameters

i. Program Run 6

t1 t2 t3 t4 t5 t6 t7 t8 t9

2 2 1 1 1 3 1 2 2
Table 21 Program Run 6: Output Solution

Task Allocation System Cost Make span

Tasks Processors

t3, t4,t5, t7 P1 642 1345353.5

t1, t2, t8, t9 P2

t6 P3

Table 22 Program Run 6: Task Allocation

ii. Program Run 17

t1 t2 t3 t4 t5 t6 t7 t8 t9

1 2 1 1 1 1 1 1 1
Table 23 Program Run 17: Output Solution

Task Allocation System Cost Make span

Tasks Processors

t1, t3,t4, t5, t6, t7, t8, t9 P1 1256 1098384.9

t2 P2

 P3

Table 24 Program Run 17: Task Allocation

iii. Program Run 25

t1 t2 t3 t4 t5 t6 t7 t8 t9

3 2 2 1 1 3 2 3 2

Table 25 Program Run 25: Output Solution

20

Task Allocation System Cost Make span

Tasks Processors

t4, t5 P1 584 2024913.6

t2, t3, t7, t9 P2

t1, t6, t8 P3

Table 26 Program Run 25: Task Allocation

iv. Program Run 42

t1 t2 t3 t4 t5 t6 t7 t8 t9

3 2 2 3 1 3 2 2 2
Table 27 Program Run 42: Output Solution

Task Allocation System Cost Make span

Tasks Processors

t5 P1 470 2241662.1

t2, t3, t7, t8, t9 P2

t1, t4, t6 P3

Table 28 Program Run 42: Task Allocation

4.1.2. Test Dataset 2:

For a given input dataset 1 as shown in Table 8, 9 and 10, we feed the input to the

algorithm with multiple test parameters as shown in Table 29 and 38. The population

size is chosen different to test the output solution. Given the variant population size,

the output solution space varies giving the larger solution set. The output solution is

tabulated at different run of the program to provide optimal values. From the output

solution derived, task allocation is performed giving the system cost and make span.

4.1.2.1. Parameter Set 1

GA Parameters Value

Population Count 10

Crossover Probability 0.8

Mutation Probability 0.01

Chromosome Length 4

Chromosome Gene 123

Processor Count 3

Task Count 4

Generation 100
Table 29 Parameter Set 1: GA Parameters

21

i. Program Run 1

t1 t2 t3 t4

1 1 1 1

Table 30 Program Run 1: Output Solution

Task Allocation System Cost Make span

Tasks Processors

t1, t2, t3, t4 P1 22 2207729.5

 P2

 P3
Table 31 Program Run 1: Task Allocation

ii. Program Run 3

t1 t2 t3 t4

2 1 1 2

Table 32 Program Run 3: Output Solution

Task Allocation System Cost Make span

Tasks Processors

t2, t3 P1 16 2229379

t1,t4 P2

 P3
Table 33 Program Run 3: Task Allocation

iii. Program Run 4

t1 t2 t3 t4

2 1 3 2

Table 34 Program Run 4: Output Solution

Task Allocation System Cost Make span

Tasks Processors

t2 P1 12 2292200.7

t1, t4 P2

t3 P3

Table 35 Program Run 4: Task Allocation

iv. Program Run 15

t1 t2 t3 t4

2 1 3 1
Table 36 Program Run 15: Output Solution

22

Task Allocation System Cost Make span

Tasks Processors

t2, t4 P1 11 2277765.1

t1 P2

t3 P3

Table 37 Program Run 15: Task Allocation

4.1.2.2. Parameter Set 2

GA Parameters Value

Population Count 20

Crossover Probability 0.8

Mutation Probability 0.01

Chromosome Length 4

Chromosome Gene 123

Processor Count 3

Task Count 4

Generation 100
Table 38 Parameter Set 2: GA Parameters

i. Program Run 1

t1 t2 t3 t4

2 1 3 2

Table 39 Program Run 1: Output Solution

Task Allocation System Cost Make span

Tasks Processors

t2 P1 12 2292200

t1, t4 P2

T3 P3
Table 40 Program Run 1: Task Allocation

ii. Program Run 2

t1 t2 t3 t4

2 1 3 1

Table 41 Program Run 2: Output Solution

Task Allocation System Cost Make span

Tasks Processors

t2, t4 P1 11 2277765.1

t1 P2

t3 P3

Table 42 Program Run 2: Task Allocation

23

iii. Program Run 5

t1 t2 t3 t4

2 1 1 1

Table 43 Program Run 5: Output Solution

Task Allocation System Cost Make span

Tasks Processors

t2, t3, t4 P1 15 2214943.4

t1 P2

 P3
Table 44 Program Run 5: Task Allocation

iv. Program Run 7

t1 t2 t3 t4

1 1 1 1

Table 45 Program Run 7: Output Solution

Task Allocation System Cost Make span

Tasks Processors

 P1 22 2207729.5

t2, t3 P2

t1, t4 P3

Table 46 Program Run 7: Task Allocation

24

4.2 Result Analysis

The result set shows the optimal solution for the input data set using the genetic

algorithm. The solutions are derived using different parameter set. Each parameter set

comprises of the necessary parameters for the algorithm. The variant population size

in the parameter set provides the variant solution space which enables the algorithm to

find a diverse set of solutions from the larger solution space. The solutions of the

algorithm are actually the schedulers for efficiently allocating jobs to resources in a

grid system.

For the input data set 1, we can tabulate the summarized output as follows:

Run Cost Make span

3 640 1318023

4 605 1752183

15 1256 1098384.9

34 459 1861862.9

Table 47 Summary of Output Solution for Test Data set 1

As we can see, we have the diverse set of solutions with the optimal values. The

optimum could be from cost perspective or make span perspective. If we see for cost

values, then we achieve the cost of 640 at the make span of 1318023, now if we

further optimize the cost to 605, the make span increment to 1752183. If we try to

optimize make span, we have the make span of 1098384.9, and our cost increments to

1256 which is quite drastic if we try to achieve both cost and make span. One other

solution with the cost 459 and make span 186186.9 seems quite optimal in

comparison to other solutions as the cost is quite low and we don‟t have to sacrifice

much for make span as well. We can consider this as our optimal solution for the

input data set 1.

t1 t2 t3 t4 t5 t6 t7 t8 t9

3 2 2 1 1 3 1 2 2

Table 48 Optimal Solution for Test Data Set 1

Using different parameter set provides variant optimal solutions. With the increase in

population size, the solution space increases which provides more efficient and

optimal solutions. The population size herein is doubled in case of second parameter

set. With the larger solution space, it is more likely to find the diverse set of solutions,

which enables more optimality and efficiency.

With the increase in crossover probability, it is likely to find the diverse set of

solutions as individuals undergoes interchanging their genes. The more interchange

takes place, the more diversity is achievable. With crossover, it does not only

guarantee the optimality but also could decrease it. It is likely to find the fit individual

after crossover but sometimes, the fit individual could undergo crossover and end up

25

in worst or unfit individual. So, the best individual needs to be preserved with

generations which guarantee elitism. The crossover probability is chosen between 60-

80% to guarantee the best individual is preserved. The comparison between parameter

sets can be shown in the chart below:

Table 49 Comparison of Parameter Sets for Test Data Set 1

For the input data set 2, we can tabulate the summarized output as follows:

Run Cost Make span

1 12 2292200

2 11 2277765.1

5 15 2214943.4

7 22 2207729.5
Table 50 Summary of Output Solutions for Test Data Set 2

From the diverse set of solutions for data set 2, we tabulated the optimal values both

from cost and make span perspectives. We have the make span of 2277765.1 at the

cost of 11 and make span of 2207729.5 at the cost of 22 which seems double from

cost perspective but only few decrement for make span. From both cost and make

span, we can see the cost of 15 at the make span of 2214943.4 which seems feasible

and optimal. We can consider this solution as our optimal solution.

t1 t2 t3 t4

2 1 1 1

Table 51 Optimal Solution for Data Set 2

0

500000

1000000

1500000

2000000

2500000

0 200 400 600 800 1000 1200 1400

Parameter Set 1 Parameter Set 2

26

The variant population size and crossover probability provides the diverse set of

solutions. The diversity and large solution space enables more efficient and optimal

solutions. Comparing the output with different parameters, it is likely to find the more

diverse solutions with the larger population size and crossover probability. With more

diverse set of solutions, it is likely to find more optimal and efficient solutions. The

comparison between the parameter sets can be shown in the chart below:

Table 52 Comparison of Parameter Sets for Test Data set 2

From the analysis we saw that, the optimality can be seen from different perspectives

in case of multiple objectives and there isn‟t a single fixed optimal solution. We

suggested the pool of optimal solutions and chose the best among them to be optimal.

Also, with parameter tuning we formed the larger solution space to find the diversity

which enables to find more diverse optimal solutions. The users are allowed to choose

one solution among the others which meet their requirement and necessity. It isn‟t

essential to have only one solution in case of multi-objective optimization.

2200000

2220000

2240000

2260000

2280000

2300000

0 5 10 15 20 25

Parameter Set 1 Parameter Set 2

27

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

28

5.1 Conclusion

Task scheduling problem in grid computing could be addressed by implementing

genetic algorithm in order to find the efficient solution to the problem. The need of

allocating a number of tasks to different resources for the efficient utilization of

resources with minimal completion time and economic cost formulate the problem in

multi-objective fashion. Given the problem in multi-objective formulation, use of the

algorithm seems efficient enough to provide the solution. Optimizing the problem

both from time and cost perspective and providing the multiple solutions seems

possible using the algorithm.

Using genetic algorithm for multi-objective optimization of the task scheduling

problem seems to be possible and efficient. Given the ability of genetic algorithm to

simultaneously search different regions of a solution space makes it possible to find a

diverse set of solutions for task scheduling problem. The solutions are the schedulers

for efficiently allocating jobs to resources in a grid system.

29

5.2 Recommendation

The algorithm only considered static schedulers. The algorithm could be extended to

use for dynamic schedulers in future. The algorithm does not consider grid

characteristics such as consistency of computing, heterogeneity of resources and jobs.

The algorithm only considered the input data set which is feed statically into the code.

There is always a place for performance improvement and enhancement.

30

REFERENCES

[1] Mohammad I. Daoud and Nawwaf Kharma, “An Efficient Genetic Algorithm for

Task Scheduling in Heterogeneous Distributed Computing Systems”, July 2006

[2] Fangpeng Dong and Selim G. Akl “Scheduling Algorithms for Grid Computing:

State of the Art and Open Problems”, January 2006

[3] Javier Carretero, Fatos Xhafa “Genetic Algorithm Based Schedulers for Grid

Computing Systems”, Vol 3, No. 6, December 2007

[4] Ahmed Younes. Hamed “Task Allocation for Minimizing Cost of Distributed

Computing Systems using Genetic Algorithms”, Vol 2, Issue 9, September 2012

[5] Prateek Kumar Singh, Neelu Sahu “Task Scheduling in Grid Computing

Environment Using Compact Genetic Algorithm”, Vol3, Issue 1, January 2014

