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ABSTRACT

Abstract- In recent years, internet and computers have been utilized by many people

all over the world in several fields. On the other hand, network intrusion and

information safety problems are ramifications of using internet. The growing network

intrusions have put companies and organizations at a much greater risk of loss. This

thesis proposes a new learning methodology towards developing a novel Intrusion

Detection System (IDS) by Back Propagation Neural Networks (BPN) and Self

Organizing Map (SOM) and compares the performance between them. The main

function of Intrusion Detection System is to protect the resources from threats. It

analyzes and predicts the behaviors of users and then these behaviors resemble either

an attack or the normal behavior. There are several existing techniques that provide

more security to the network, but most of these techniques are static. This thesis tests

the proposed method by a benchmark intrusion dataset to verify its feasibility and

effectiveness. Results show that choosing good hidden layers network and input data

will not only have impact on the performance, but also on the overall execution

efficiency. The proposed method can significantly reduce the training time and epoch

time. It provides a powerful tool to help supervisors analyze, model and understand

the complex attack behavior of electronic crime. The proposed methodology

implemented in sampled data from KddCup99 data set so that intrusion detection

attacks database  is standard for the evaluation of intrusion detection systems.

Keywords - Intrusion Detection, Neural Network, Back Propagation Neural Network,

Intrusion Attacks, Self Organizing Map



vii

TABLE OF CONTENTS

COPYRIGHT © ........................................................................................................ii

DEPARTMENTAL ACCEPTANCE........................................................................ iv

ACKNOWLEDGEMENT ......................................................................................... v

ABSTRACT.............................................................................................................vi

LIST OF FIGURES.................................................................................................. ix

LIST OF TABLES ....................................................................................................x

LIST OF ABBREVIATION .....................................................................................xi

1. INTRODUCTION ................................................................................................ 1

1.1 Background...................................................................................................... 1

1.2. Problem Statement .......................................................................................... 4

1.3. Objective......................................................................................................... 5

1.4. Organization of Report .................................................................................... 5

2. LITERATURE REVIEW...................................................................................... 6

3. RESEARCH METHODOLOGY........................................................................... 8

3.1 Back Propagation Algorithm ............................................................................ 8

3.2 Self Organizing Map ...................................................................................... 11

3.2.1. Mapping Precision ............................................................................... 13

3.2.2. Topology Preservation ......................................................................... 13

3.2.3 SOM Implementation to Intrusion Detection System ............................ 13

4. DATA ANALYSIS............................................................................................. 17

4.1 Input Dataset Analysis.................................................................................... 17

4.2 Pre Processing................................................................................................ 18

4.3 Determining Architecture of MLP.................................................................. 24

4.4 Training and Testing of MLP ......................................................................... 24

4.5 Back Propagation Algorithm .......................................................................... 25

4.6 Performance Parameters ................................................................................. 26

4.7 Tool ............................................................................................................... 27

5. SIMULATION RESULTS AND DISCUSSIONS............................................... 29

5.1 Determining Hidden Layer Neurons ............................................................... 29

5.2 Intrusion Detection......................................................................................... 30



viii

5.3 Determining Hidden Layer Neurons  in Scale Conjugate Gradient (SCG):34

5.2 Performance Assessment of Back Propagation Algorithms............................. 36

5.2.1 Scale Conjugate Gradient (SCG):.......................................................... 36

5.2.2 Determining Hidden Layer Neurons  in  Self Organizing Map .............. 40

6. CONCLUSIONS AND RECOMMENDATIONS ............................................... 43

6.1 Conclusions.................................................................................................... 43

6.2 Future Recommendations ............................................................................... 43

7. References .......................................................................................................... 44

8. Bibliography ....................................................................................................... 46

Appendix A ............................................................................................................. 47

Appendix B ............................................................................................................. 51



ix

LIST OF FIGURES

Figure 1.1:The Intrusion Detection System and External/Internal Network Intrusion

Attacks ...................................................................................................................... 2

Figure 1.2:Multilayer Perceptron ............................................................................... 3

Figure 1.3: Bipolar Sigmoid Function........................................................................ 4

Figure 3.1:A Back Propagation Training Set.............................................................. 8

Figure 3.2: Applying a Training Pair to a Network .................................................... 9

Figure 3.3: A Single Connection Learning in a Back Propagation network. ............... 9

Figure 3.4: General SOM topology .......................................................................... 12

Figure 3.5:Structure of an Automated  User Behavior Anomaly Detection System .. 14

Figure 3.6: Form of the designed SOM architecture................................................. 16

Figure 4.1: Block diagram of the proposed system................................................... 17

Figure 4.2: Backpropagation Algorithm Diagram .................................................... 25

Figure 5.1: MLP Architecture of the System............................................................ 30

Figure 5.2: MLP Architecture of Back Propagation ................................................. 34

Figure 5.3: Performance of MLP with 10 neurons in hidden layer............................ 35

Figure 5.4: Performance of MLP with 5 neurons in hidden layer.............................. 35

Figure 5.5: Performance of SCG Algorithm............................................................. 36

Figure 5.6: Confusion matrix of Scaled Conjugate Gradient algorithm..................... 37

Figure 5.7: Relationship of Attack Types versus True Positive................................. 38

Figure 5.8: Relationship of Attack Types versus False Positive................................ 38

Figure 5.9: Relationship of Attack types Versus False Negative............................... 39

Figure 5.10: Relationship of Attack Types Versus Recall Rate................................. 39

Figure 5.11: Relationship of Attack Types Versus Precision Rate ............................ 40

Figure 5.12: SOM Network Layer of Size 10. .......................................................... 41

Figure 5.13: Performance of SOM with 5 neurons in hidden layer. .......................... 41

Figure 5.14: Performance of SOM with 10 neurons in hidden layer. ........................ 42



x

LIST OF TABLES

Table 4.1:KDD feature columns name and type ...................................................... 19

Table 4.2:Protocol Type .......................................................................................... 20

Table 4.3: Service Type ........................................................................................... 20

Table 4.4: Flag Types .............................................................................................. 22

Table 4.5: Attacks Classification.............................................................................. 22

Table 4.6: Label Transformation.............................................................................. 23

Table 4.7: Feature Column Before Transformation .................................................. 23

Table 4.8: Feature Column  After Transformation.................................................... 23

Table 4.9: Selection of Number of Neurons in Hidden Layer ................................... 24



xi

LIST OF ABBREVIATION

ANN Artificial Neural Network

DARPA Defense Advance Research Project Agency

DOS Denial of Service

FN False Negative

FP False Positive

IDS Intrusion Detection System

IEDS               Intrusion Detection Expert System

MIT Massachusetts Institute of Technology

MLP                Multi-Layer Perception

NIDS Network based IDS

R2L Remote to Local

TN True Negative

TP True Positive

U2R User to Root



1

1. INTRODUCTION

1.1 Background

The problem of protecting information has existed since information has been

managed. However, as technology advances and information management systems

become more and more powerful, the problem of enforcing information security also

becomes more critical. The enlargement of this electronic environment comes with a

corresponding growth of electronic crime where the computer is used either as a tool

to commit the crime or as a target of the crime [1].

In past years, numerous computers was hacked because of not consider the necessary

of precautions to protect against network attacks. The failure to secure their systems

puts many companies and organizations at a much greater risk of loss. Usually, a

single attack can cost millions of dollars in potential revenue. Moreover, that's just the

beginning. The damages of attacks include not only loss of intellectual property and

liability for compromised customer data (the time/money spent to recover from the

attack) but also customer confidence and market advantage. There is a need to

enhance the security of computers and networks for protecting the critical

infrastructure from threats.  Accompanied by the rise of electronic crime, the design

of safe-guarding information infrastructure such as the intrusion detection system

(IDS) for preventing and detecting incidents becomes increasingly challenging. Figure

1.1 illustrates the intrusion detection system and external/internal network intrusion

attacks. The intrusion detector learning task is to build a predictive model (i.e. a

classifier) capable of distinguishing between bad intrusions and normal connections.

Recently, an increasing amount of research has been conducted on applying neural

networks to detect intrusions. An artificial neural network consists of a collection of

processing elements that are highly interconnected. Give a set of inputs and a set of

desired outputs, the transformation from input to output is determined by the weights

associated with the interconnections among processing elements. By modifying these

interconnections, the network is able to adapt to the desired outputs. The ability of

high tolerance for learning-by-example makes neural networks flexible and powerful

in IDS. However, the time required to induce the model from a large dataset is long. It

can accurately predict probable attack behavior in IDS.
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Figure 1.1:The Intrusion Detection System and External/Internal Network Intrusion

Attacks[1].

There are two general methods of detecting intrusions into computer and network

systems, namely Anomaly detection and Signature recognition.

Anomaly detection techniques establish a profile of the subject's normal behavior

(norm profile), compare the observed behavior of the subject with its norm profile,

and signal intrusions when the subject’s observed behavior differs significantly from

its norm profile. Signature recognition techniques recognize signatures of known

attacks, match the observed behavior with those known signatures, and signal

intrusions when there is a match [2].

Neural network is an universal classifier and with the proper choosing of its

architecture it can solve any, even very complicated, classification task [3].
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Figure 1.2:Multilayer Perceptron[2]

Here above figure 1.2 shows the input layer, hidden layer(s) and output layer of

Multilayer Perceptron (MLP).

Attacks can be gathered in four main categories:

1) Denial of Service Attack (DoS): is an attack in which the attacker makes some

computing or memory resource too busy or too full to handle legitimate requests, or

denies legitimate users access to a machine.

2) User to Root Attack (U2R): is a class of exploit in which the attacker starts out

with access to a normal user account on the system (perhaps gained by sniffing

passwords, a dictionary attack, or social engineering) and  is able to exploit some

vulnerability to gain root access to the system.

3) Remote to Local Attack (R2L): occurs when an attacker who has the ability to

send packets to a machine over a network but who does not have an account on that

machine exploits some vulnerability to gain local access as a user of that machine.

4) Probing Attack: Attacker tries to gain information about the target host [2].
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Activation Function:

Multilayer perceptron networks typically use sigmoid transfer functions in the hidden

layers. These functions are often called "squashing" functions, because they compress

an infinite input range into a finite output range.

The bipolar sigmoid function: f(x) = -1 + 2/ [1+e-x]

which has derivative of: f’(x) = 0.5 * [1 + f(x)] * [1 – f(x) ]

In this research, multilayer perception is trained with various Backpropagation

algorithms. Based on the evaluation result, the proposed research is able to suggest

the best model for network based attack detection.

1.2. Problem Statement

IDS is Rule Based Monitoring and Controlling System, therefore, selection of

algorithm used to define standard rule base is a major challenge. The selection of

improper algorithm and model can maximize the occurrence of false alarm rate, high

resource consumption, and low intrusion detection rate and may result inefficiency to

entire system and may even lead to security vulnerabilities. The proper selection of

classifier algorithm leads to increase in efficiency of IDS being implemented.
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Figure 1.3: Bipolar Sigmoid Function
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1.3. Objective

Objectives of the proposed research are as follows:

 To detect intrusion using multilayer perception with Back Propagation and

Self Organizing Map.

 To analyze the performance of Back Propagation algorithms and Self

Organizing Map and suggest the efficient model for network intrusion

detection based on the evaluation result.

1.4. Organization of Report

The report contains six chapters. Chapter 1 provides in detail about the background,

statements of problems, objectives of research. Chapter 2 explains about literature

review of intrusion detection system. Chapter 3 explains about different research

methodology on intrusion detection using Backpropagation system and Self

Organizing Map. Chapter 4 explains in detail about the  input data analysis, hidden

layer network architecture and performance parameters. Chapter 5 explains about the

analysis of simulation results and discussions. Chapter 6 provides brief conclusions of

simulation results and suggests the most efficient model for intrusion detection along

with the future enhancements.
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2. LITERATURE REVIEW

At first the concept of intrusion detection system was suggested by Anderson (1980)

[1]. He applied statistic method to analyze user’s behavior and to detect those

attackers who accessed system in an illegal manner. In [2] proposed a prototype of

IDES (intrusion detection expert system) in 1987, subsequently, the idea of intrusion

detection system was known progressively, and paper was regarded as significant

landmark in this area. In [4] the author proposed a data mining framework for

constructing intrusion detection models. The key idea is to apply data mining

programs namely, classification, meta-learning, association rules, and frequent

episodes to audit data for computing misuse and anomaly detection models that

accurately capture the actual behavior (i.e., patterns) of intrusions and normal

activities. Although, proposed detection model can detect a high percentage of old and

new PROBING and U2R attacks, it missed a large number of new DOS and R2L

attacks. Reference [5] is mostly focused on data mining techniques that are being used

for such purposes, and then presented a new idea on how data mining can aid IDSs by

utilizing biclustering as a tool to analyze network traffic and enhance IDSs. Reference

[6] proposed a new weighted support vector clustering algorithm and applied it to the

anomaly detection problem. Experimental results show that mentioned method

achieves high detection rate with low false alarm rate. Intrusion detection attacks are

segmented into two groups,

• Host-based attacks [3-5] and

• Network-based attacks [6, 7].

In case of host-based attacks, the intruders aim at a particular machine and attempt to

get access to privileged services or resources on that particular machine. Detection of

these kinds of attacks typically uses routines that acquire system call data from an

audit-process which monitors all system calls made with the support of each user. In

case of network-based attacks, it is extremely complicated for legitimate users to use

various network services by purposely occupying or disrupting network resources and

services. Intruders attack these systems by transmitting huge amounts of network

traffic, utilizing familiar faults in networking services, overloading network hosts, etc.
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Detection of these kinds of attacks uses network traffic data (i.e., tcpdump) to look at

traffic addressed to the machines being monitored.
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3. RESEARCH METHODOLOGY

3.1 Back Propagation Algorithm

The back propagation algorithm is a quite essential one of the neural network. The

algorithm is the training or learning algorithm rather than the network itself. The

network used is generally of the simple type shown in figure 3.1, and in the examples

up until now. The network operates in exactly the same way as the others have seen.

Now, let’s consider what Back Propagation is and how to use it. A Back Propagation

network learns by example. You give the algorithm examples of what you want the

network to do and it changes the network’s weights so that, when training is finished,

it will give you the required output for a particular input. Back Propagation networks

are ideal for simple Pattern Recognition and Mapping Tasks4. As just mentioned, to

train the network you need to give it examples of what you want  the output you want

(called the Target) for a particular input as shown in Figure 3.1.

Figure 3.1:A Back Propagation Training Set[1].

So, if the first pattern to the network, we would like the output to be 0 1 as shown in

figure 3.1 (a black pixel is represented by 1 and a white by 0 as in the previous

examples). The input and its corresponding target are called a Training Pair.
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Figure 3.2: Applying a Training Pair to a Network[1]

Once the network is trained, it will provide the desired output for any of the input

patterns. Let’s now look at how the training works. The network is first initialized by

setting up all its weights to be small random numbers – say between –1 and +1. Next,

the input pattern is applied and the output calculated (this is called the forward pass).

The calculation gives an output which is completely different to what you want (the

Target), since all the weights are random. Then calculate the Error of each neuron,

which is essentially: Target – Actual Output (i.e. what you want – What you actually

get). This error is then used mathematically to change the weights in such a way that

the error will get smaller. In other words, the Output of each neuron will get closer to

its Target (this part is called the reverse pass). The process is repeated again and again

until the error is minimal. Let's do an example with an actual network to see how the

process works. Just look at one connection initially, between a neuron in the output

layer and one in the hidden layer, figure 3.2.

Figure 3.3: A Single Connection Learning in a Back Propagation network[1].
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The connection interested in is between neuron A (a hidden layer neuron) and neuron

B (an output neuron) and has the weight WAB. The diagram also shows another

connection, between neuron A and C, but we’ll return to that later. The algorithm

works like this:

1. First apply the inputs to the network and work out the output – remember this

initial output could be anything, as the initial weights were random numbers.

2. Next work out the error for neuron B. The error is what you want – What you

actually get, in other words: ErrorB = OutputB (1-OutputB) (TargetB – OutputB) The

“Output (1-Output)” term is necessary in the equation because of the Sigmoid

Function – if we were only using a threshold neuron it would just be (Target –

Output).

3. Change the weight. Let W+AB be the new (trained) weight and WAB be the initial

weight. W+AB = WAB + (ErrorB x OutputA) Notice that it is the output of the

connecting neuron (neuron A) we use (not B). We update all the weights in the output

layer in this way.

4. Calculate the Errors for the hidden layer neurons. Unlike the output layer we can’t

calculate these directly (because we don’t have a Target), so we Back Propagate them

from the output layer (hence the name of the algorithm). This is done by taking the

Errors from the output neurons and running them back through the weights to get the

hidden layer errors. For example if neuron A is connected as shown to B and C then

we take the errors from B and C to generate an error for A. ErrorA = Output A (1 -

Output A) (ErrorB WAB + ErrorC WAC) Again, the factor “Output (1 - Output)” is

present because of the sigmoid squashing function.

5. Having obtained the Error for the hidden layer neurons now proceed as in stage 3 to

change the hidden layer weights. By repeating this method we can train a network of

any number of layers. This may well have left some doubt in your mind about the

operation, so let’s clear that up by explicitly showing all the calculations for a full

sized network with 2 inputs, 3 hidden layer neurons and 2 output neurons as shown in

figure 3.3. W+ represents the new, recalculated weight, where as W (without the
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superscript) represents the old weight. Reverse process is done in the same way.

Hence the attackers are calculated.

3.2 Self Organizing Map

The Self-Organizing Map [9] is a neural network model for analyzing and visualizing

high dimensional data. It belongs to the category of competitive learning network.

The SOM Fig 3.4 defines a mapping from high dimensional input data space onto a

regular two-dimensional array of neurons.  In designed architecture is input vector

with six input values and output is realized to 2 dimension space. Every neuron i of

the map is associated with an n-dimensional reference vector.

Mi [M1…………Mn]
T ……………………………………………………………(3.1)

Where, n denotes the dimension of the input vectors. The reference vectors together

form a codebook. The neurons of the map are connected to adjacent neurons by a

neighborhood relation, which dictates the topology, or the structure, of the map.

Adjacent neurons belong to the neighborhood Ni of the neuron i. In the SOM

algorithm, the topology and the number of neurons remain fixed from the beginning.

The number of neurons determines the granularity of the mapping, which has an

effect on the accuracy and generalization of the SOM. During the training phase, the

SOM forms elastic net that is formed by input data. The algorithm controls the net so

that it strives to approximate the density of the data. The reference vectors in the

codebook drift to the areas where the density of the input data is high. Eventually,

only few codebook vectors lie in areas where the input data is sparse.  The learning

process of the SOM goes as follows:

1. One sample vector x is randomly drawn from the input data set and its similarity

(distance) to the codebook vectors is computed by using Euclidean distance measure:

||x-mc||=min {||x-mi||}…………………………….…….………………………(3.2)
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2. After the BMU( Best Matching Unit) has been found, the codebook vectors are

updated. The BMU itself as well as its topological neighbors are moved closer to the

input vector in the input space i.e. the input vector attracts them. The magnitude of the

attraction is governed by the learning rate. As the learning proceeds and new input

vectors are given to the map, the learning rate gradually decreases to zero according

to the specified learning rate function type. Along with the Intrusion Detection

System, Using Self Organizing Map learning rate, the neighborhood radius decreases

as well. The update rule for the reference vector of unit i is the following:

mi(t+1) = {  mi(t) + α(t) [x(t) – mi(t)] , I € Nc(t)

mi(t+1)={mi(t),I € Nc(t) ……………………………………………………….(3.3)

3. The steps 1 and 2 together constitute a single training step and they are repeated

until the training ends. The number of training steps must be fixed prior to training the

SOM because the rate of convergence in the neighborhood function and the learning

rate are calculated accordingly.

Figure 3.4: General SOM topology[2]
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After the training is over, the map should be topologically ordered. This means that n

topologically close input data vectors map to n adjacent map neurons or even to the

same single neuron.

3.2.1. Mapping Precision

The mapping precision measure describes how accurately the neurons respond to the

given data set. If the reference vector of the BMU calculated for a given testing vector

xi is exactly the same xi, the error in precision is then 0. Normally, the number of data

vectors exceeds the number of neurons and the precision error is thus always different

from 0. A common measure that calculates the precision of the mapping is the

average quantization error over the entire data set:

Eq = 1/N ∑ || xi + mc ||…………………………………………….……..(3.4)

3.2.2. Topology Preservation

The topology preservation measure describes how well the SOM preserves the

topology of the studied data set. Unlike the mapping precision measure, it considers

the structure of the map. For a strangely twisted map, the topographic error is big

even if the mapping precision error is small. A simple method for calculating the

topographic error:

Eq = 1/N ∑ u(xx)…………………………………………………….…..(3.5)

Where u(xx) is 1 if the first and second BMUs of xk are not next to each other.

Otherwise u(xk) is 0.

3.2.3 SOM Implementation to Intrusion Detection System

The goal of the proposed architecture is to investigate effectiveness of application a

neural network SOM figure.3.6 at modeling user behavioral patterns so they can
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distinguish between normal and abnormal behavior. In order to model user behavior

identified and isolated the system logs that were required as sources of information

for the networks. These logs being common log data provided the required user

activity information from where system derived the following behavioral

characteristics which typifies users on the system:

 User activity times- The time at which a user is normally active.

 User login hosts- The set of hosts from which a user normally logs in from.

 User foreign hosts - The set of hosts which a user normally accesses via

commands on the system (FTP hosts).

 Command set - The set of commands which a user normally uses.

 CPU usage - The typical CPU usage patterns of a user.

 Memory usage – The typical usage of memory for a user.

Figure 3.5:Structure of an Automated  User Behavior Anomaly Detection System[3]
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Figure 3.5 illustrates how a complete system for the detection of user behavioral

anomalies is structured. The coordination process is responsible for channeling

system information to the neural networks. Each of the behavioral characteristics are

both modeled by a SOM network, as well as checked by a limited static rule filter for

easy breaches of security.  Data acquired from the system logs is required to filter

through input data preprocessor Fig. 3.5, separating selected data from audit data. The

input to the neural network Fig. 3.6 represents data vector consisting from data

controlled on the monitored system. Before input vector processing it is needed to

normalize input data. The input to neural network is data vector, which consists from

six properties representing User activity times, User login hosts, User foreign hosts,

Command set CPU usage and Memory Usage. According to large numbers of

variations of this data it is necessary to normalize every input vector to be value in

range of values [-1, 1]. This range comes out from the previous applications of neural

network to system IDS realized within research activity on the Department of

Computers and Inforatics in Košice . This normalization is more suitable for

implementation in proposed SOM network. The architecture uses normalization given

by:

nv[i]=
[ ][ ] ………………………………………………………………(3.6)

Where nv[i] is the normalized value of feature (i), v[i] is the feature value of i, and K

is the number of features in a vector. The processing realized by the SOM network

consequently produces results for every user characteristic gives as input to the SOM

network. Expected network reply is the value close to-for user, which behavior does

not divert from normal behavior. If the value for given user exceeds specified

threshold value obtained through the SOM network representing its intrusion behavior

denotes raising alarm. If the output value of network is above specified threshold

value, alarm is raised. It is necessary to remark that basic request for this detection

mechanism is to setup threshold value to specific system whereby make it possible to

adapt sensitivity directly to computer system.
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Figure 3.6: Form of the designed SOM architecture[2]
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4. DATA ANALYSIS

Methodology of the proposed system is shown in the Figure 4.1 below.

4.1 Input Dataset Analysis

Under the sponsorship of Defense Advanced Research Projects Agency (DARPA)

and Air Force Research Laboratory (AFRL), the MIT Lincoln laboratory has

established a network and captured the packets of different attack types and

distributed the data sets for the evaluation of researches in computer network intrusion

detection systems. The KDDCup99 data set is a subset of the DARPA benchmark

data set [10]. Each KDDCup99 training connection record contains 41 features and is

labeled as either normal or an attack, with exactly one specific attack type. This

dataset will be taken as training data for performing the proposed research work. The

result thus obtained will be compared with the rest of test data set. One of the reasons

for choosing this data set is that the data set is standard. Another reason is that it is

difficult to get another data set which contains so rich a variety of attacks.

Input Dataset

Pre Processing

Determining architecture of MLP

Classification using Back
Propagation algorithms and SOM

Training and Testing of MLP

Figure 4.1: Block diagram of the proposed
system
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Feature Extraction: For each network connection in the data set, the following three

key groups of features for detecting intrusions will be extracted.

 Basic features: This group summarizes all the features that can be extracted

from a TCP/IP connection. Some of the basic features in the KDDCup99 data

sets are protocol type,  service, src_bytes and dst_bytes.

 Content features: These features are purely based on the contents in the data

portion of the data packet.

 Traffic features: This group comprises features that are computed with

respect to a 2 Sec. time window and it is divided into two groups: same host

features and same service features. Some of the traffic features are counted,

rerror_rate, rerror_rate and srv_serror_rate.

Instance Labeling: After extracting KDDCup99 features from each record, the

instances are labeled based on the characteristics of traffic as Normal, Dos, Probe,

R2L and U2R.

4.2 Pre Processing

The data set will be preprocessed so that it may be able to give it as an input to our

proposed system. This data set consists of numeric and symbolic features and will be

converted in numeric form so that it can be given as inputs to our MLP network. Now

this modified data set will be used as training and testing of the multi layer

perceptron.

Table 4.1 below shows the feature columns name and type of 10% KDDCup 99

dataset.
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Table 4.1:KDD feature columns name and type [9]

Symbolic columns which are protocol_type, service, flag and label are transformed to

numeric values using transformation tables given below. The protocol_type column

has 3 protocol values: TCP, UDP and ICMP. Table 4.2 demonstrates the

transformation table for protocol_type.
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Table 4.2:Protocol Type

Protocol_type No.

TCP 1

UDP 2

ICMP 3

The service column values are transformed to numeric values as shown in Table4.3.

Table 4.3: Service Type

Service No. Service No.

Auth 1 netbios_ssn 34

Bgp 2 Netstat 35

Courier 3 Nnsp 36

csnet_ns 4 nntp 37

Ctf 5 ntp_u 38

Daytime 6 Other 39

Discard 7 pm_dump 40

Domain 8 pop_2 41

domain_u 9 pop_3 42

Echo 10 Printer 43

eco_i 11 Private 44

ecr_i 12 red_i 45

Efs 13 remote_job 46

Exec 14 Rje 47
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Service No. Service No.

Finger 15 Shell 48

ftp 16 Smtp 49

ftp_data 17 sql_net 50

Gopher 18 Ssh 51

Hostnames 19 Sunrpc 52

http 20 Supdup 53

http_443 21 Systat 54

imap4 22 telnet 55

Irc 23 tftp_u 56

iso_tsap 24 tim_i 57

Klogin 25 Time 58

Kshell 26 urh_i 59

Ldap 27 urp_i 60

Link 28 Uucp 61

Login 29 uucp_path 62

Mtp 30 Vmnet 63

Name 31 Whois 64

netbios_dgm 32 x11 65

netbios_ns 33 z39_50 66
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The flag column values are transformed to numeric values as shown in Table 4.4.

Table 4.4: Flag Types

Flag No. Flag No.

Oth 1 S1 7

REJ 2 S2 8

RSTO 3 S3 9

RSTOS0 4 SF 10

RSTR 5 SH 11

S0 6

The Label column has normal and different kinds of sub attack values. Sub attack

values are classified as shown in Table 4.5 and then the normal and attack values are

transformed into numeric as shown in Table 6 below.

Table 4.5: Attacks Classification

Main Attack DOS U2R R2L Prob

Sub Attack

apache2

back

land

mailbomb

neptune

pod

processtable

smurf

teardrop

upstorm

buffer_overflow

load module

perl

ps

rootkit

xterm

ftp_write

guess_passwd

imap

mscam

warezclient

warezmaster

xclock

xsnoop

Ipsweep

nmap

portsweep

satan
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Table 4.6: Label Transformation

Label Column1 Column2 Column3 Column4 Column5

Normal 1 0 0 0 0

DoS 0 1 0 0 0

U2R 0 0 1 0 0

R2L 0 0 0 1 0

Prob 0 0 0 0 1

The following tables represent the data feature columns before and after

transformation.

Table 4.7: Feature Column Before Transformation

0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.0

0,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,normal.

Table 4.8: Feature Column  After Transformation

0,1,20,10,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.00,0.

00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,1,0,0,0,0.
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4.3 Determining Architecture of MLP

There is no certain mathematical approach for obtaining the optimum number of

hidden layers and their neurons. In this research, 10, 16, 23 and 30 layered MLP with

41 neurons in the input layer and 5 neurons in the output layer is used. The numbers

of nodes in hidden layer are chosen by hit and trial method.

Table 4.9 below shows the performance of multilayer perceptron with different

numbers of hidden layer neurons. The best performance is observed with 30 neurons

in the hidden layer.

Table 4.9: Selection of Number of Neurons in Hidden Layer

Hidden Layer No. of Neurons Performance

H1 10 0.00175

H1 16 0.000346

H1 23 0.00101

H1 30 0.000286

4.4 Training and Testing of MLP

The input dataset is divided into 3 subsets. The first subset is the training set, which is

used for computing the gradient and updating the network weights and biases. The

second subset is the validation set. The error on the validation set is monitored during

the training process. The validation error normally decreases during the initial phase

of training, as does the training set error. However, when the network begins to over-

fit the data, the error on the validation set typically begins to rise. When the validation

error increases for a specified number of iterations (net.trainParam.max_fail), the

training is stopped, and the weights and biases at the minimum of the validation error
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are returned. The test set error is not used during training, but it is used to compare

different models (MathWorks Matlab Help, 2012).

In this thesis, 80% data from the input dataset are used for training, 10% for

validation and 10% for testing of the MLP to analyze the performance of various

backpropagation algorithms. The results are shown in chapter 4.

4.5 Back Propagation Algorithm

The gradient descent, gradient descent with momentum and resilient Back

Propagation algorithms will be used for training of MLP and performance of these

algorithms will be compared.

Figure 4.2 above shows the flowchart of Back Propagation algorithm. The Back

Propagation learning algorithm can be divided into two phases: propagation and

weight update.

Phase 1: Propagation

Initialize weights W, V

Stop

Submit Pattern Z and compute

layer’s outputs  Y, O

Compute cycle error E

Calculate error term

Adjust weights of output layer

Adjust weights of hidden layer

More Pattern

E < Emax

E = 0

Yes

Yes

No

Figure 4.2: Backpropagation Algorithm Diagram
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Each propagation involves the following steps:

1. Forward propagation of a training pattern's input through the neural network in

order to generate the propagation's output activations.

2. Backward propagation of the propagation's output activations through the

neural network using the training pattern target in order to generate the deltas

of all output and hidden neurons.

Phase 2: Weight update

For each weight-synapse follow the following steps:

1. Multiply its output delta and input activation to get the gradient of the weight.

2. Subtract a ratio (percentage) of the gradient from the weight.

This ratio (percentage) influences the speed and quality of learning; it is called

the learning rate. The greater the ratio, the faster the neuron trains; the lower the ratio,

the more accurate the training is. The sign of the gradient of a weight indicates where

the error is increasing; this is why the weight must be updated in the opposite

direction.

Repeat phase 1 and 2 until the performance of the network is satisfactory.

4.6 Performance Parameters

Mean Square Error, Total CPU Time of Converge and Accuracy will be the

performance parameters to compare various Back Propagation algorithms.

Following parameters will be calculated while training and testing of MLP.

 True Positive (TP): Situation in which a signature is fired properly when an

attack is detected and an alarm is generated.

 False Positive (FP): Situation in which normal traffic causes the signature to

raise an alarm.

 True Negative (TN): Situation in which normal traffic does not cause the

signature to raise an alarm.
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 False Negative (FN): Situation in which a signature is not fired when an

attack is detected.

 Attack Detection Rate (ADR): The detection rate is defined as the number of

intrusion instances detected by the system (True Positive) divided by the total

number of intrusion instances present in the test set.

Attack Detection Rate (ADR) = (Total detected attacks / Total attacks) * 100

%

 False Alarm Rate (FAR): It is the ratio between the total number of

misclassified instances and the total number of normal connections present in

the data set.

False Alarm Rate (FAR) = (Total misclassified instances / Total normal

instances) * 100 %

 Recall Rate: Recall rate measures the proportion of actual positives which are

correctly identified.

Recall Rate = TP/ (TP + FN)

 Precision Rate: Precision rate is the ratio of true positives to combined true

and false positives.

Precision Rate = TP/ (TP + FP)

4.7 Tool

MATLAB 2012:

MATLAB (Matrix Laboratory) is a programming environment for algorithm

development, data analysis, visualization, and numerical computation. MATLAB can

solve technical computing problems faster than with traditional programming

languages, such as C, C++, and FORTRAN. MATLAB can be used in a wide range of

applications, including signal and image processing, communications, control design,

test and measurement, financial modeling and analysis, and neural networks. For a

million engineers and scientists in industry and academia, MATLAB is the language

of technical computing (MathWorks Matlab Help, 2012).
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Neural Network Toolbox supports supervised learning with feed forward, radial basis,

and dynamic networks. It also supports unsupervised learning with self-organizing

maps and competitive layers. With the toolbox we can design, train, visualize, and

simulate neural networks. Simulation is done using Neural Network toolbox in

Matlab.

Notepad++:

Notepad++ is a text editor and source code editor for Windows. It differs from the

built-in Windows text editor Notepad, is that Notepad++ supports tabbed editing,

which allows working with multiple open files in a single window. Notepad++ opens

large files significantly faster than Windows Notepad. Data preprocessing is done

using Notepad++ tool.
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5. SIMULATION RESULTS AND DISCUSSIONS

To access the effectiveness of the proposed intrusion detection approach, the

following simulation is performed. Intel (R) Core™ i5 CPU M 430 @ 2.27GHz,

having 4 GB of RAM is used. The operating system Microsoft Windows 7 Home

Premium is used. Simulation is performed using Matlab2012 version R2012a Sun Feb

17 18:06:36 2013. KDD dataset containing 494021 sample data is used as input to the

IDS. The input layer has 41 input neurons to describe 41 attributes in the KDD

dataset. For the hidden layer, hit and trial method is used that is explained in section

5.1 below. Since the network traffic is grouped into five different classes of attacks,

the output layer has 5 neurons.

5.1 Determining Hidden Layer Neurons

The Multilayer Perceptron is trained with scale congugate BP algorithm to find the

proper number of hidden layer neurons using the following default parameters:

Increment to weight change = 1.2, Decrement to weight change = 0.5, Initial weight

change = 0.07 and Maximum weight change = 50.

The simulation results are shown in an Appendix. Table 5.1 below shows the

performance of MLP with different number of hidden layer neurons and Figure 5.1

below shows the required MLP architecture of the system.

Table 5.1: Performance of MLP with different Number of Hidden Layer Neurons

Hidden Layer No. of Neurons Performance

H1 10 0.00175

H1 16 0.000346

H1 23 0.00101

H1 30 0.000286
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Figure 5.1: MLP Architecture of the System

5.2 Intrusion Detection

The input and target datasets are fed to the MLP and the output is observed. The

portion (25 records) of input dataset and target dataset is shown below in the Table

5.2 and 5.3 respectively. The output of the most efficient model (Scale Conjugate BP

algorithm) is shown below in the Table 5.4.
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Table 5.2: Portion of Input Dataset



32

Table 5.3: Portion of Target Dataset
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Table 5.4: Output Data

By comparing the rows of Table 4.6 (Label Transformation) and Table 5.4 (Output

Data), type of attack can be identified easily. For example in Table 5.4 above, if value

of first column (A) is nearly equal to 1 and value of other columns is nearly equals to

0 that is normal type activity. If value of second column (B) is nearly equal to 1 and

value of other columns is nearly equal to 0 that is DoS type attack and so on.
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5.3 Determining Hidden Layer Neurons in Scale Conjugate Gradient

(SCG):

The Multilayer Perception is trained to find the number of hidden layer neurons using

the following parameters:

Number of input data = 494021

Number of input layer neurons = 41

Number of output layer neurons = 5

change in weight for second derivative approximation(σ)=5.0e-5

Parameter for regulating the indefiniteness of the Hessian(λ)=5.0e-7

Above Table 4.9 shows the performance of MLP with different number of hidden

layer neurons. The best performance is observed with 20 neurons in the hidden layer.

The required MLP architecture is shown below in Figure 5.2.

Figure 5.2: MLP Architecture of Back Propagation
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Figure 5.3: Performance of MLP with 10 neurons in hidden layer.

Figure 5.4: Performance of MLP with 5 neurons in hidden layer.
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5.2 Performance Assessment of Back Propagation Algorithms

Simulation is done to analyze the performance of Scaled Conjugate Gradient.

5.2.1 Scale Conjugate Gradient (SCG):

The Multilayer Perceptron was trained with SCG algorithm by using following

parameters.

change in weight for second derivative approximation(σ)=5.0e-5

Parameter for regulating the indefiniteness of the Hessian(λ)=5.0e-7

Figure 5.5: Performance of SCG Algorithm
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Figure 5.6: Confusion matrix of Scaled Conjugate Gradient algorithm

Table 5.5: Evaluation Results for each Attack Classes (SCG)

Attack TP FP FN Recall Precision

DoS 391407 35 42 99.99% 99.99%

U2R 0 0 32 0% 0%

R2L 915 106 189 82.88% 89.61%

Probe 3898 30 200 95.12% 99.23%

Total 396220 171 463 98.88% 99.95%
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Figure 5.7: Relationship of Attack Types versus True Positive

Figure 5.8: Relationship of Attack Types versus False Positive
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Figure 5.9: Relationship of Attack types Versus False Negative

Figure 5.10: Relationship of Attack Types Versus Recall Rate

0
50
100
150
200
250
300
350
400
450
500

DoS U2R R2L Probe Total

Fa
lse

 N
eg

at
iv

e

Attack Types

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

DoS U2R R2L Probe Total

Re
ca

ll 
Ra

te

Attack Types



40

Figure 5.11: Relationship of Attack Types Versus Precision Rate

From above all comparison between different types of attack and performance

we conclude that precision rate, recall rate and true positive is higher in DoS

type attack. False Positive is higher in R2L type attack and false negative  is

higher in Probe type attack. Similarly performance is higher in 30 hidden layer

network and epoch time less in 10 hidden in SCG Backpropagation algorithm

and SOM but less epoch time in SOM than Backpropagation algorithm.

5.2.2 Determining Hidden Layer Neurons  in Self Organizing Map

The Multilayer Perception is trained to find the number of hidden layer neurons using

the following parameters:

Number of input data = 14020

Number of input layer neurons = 41

Number of output layer neurons = 5 and 10

Simulation is done to analyze the performance of Self Organizing Map in terms of

different number of hidden layer , epoch and iteration time required.
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Figure 5.12: SOM Network Layer of Size 10.

Figure 5.13: Performance of SOM with 5 neurons in hidden layer.



42

Figure 5.14: Performance of SOM with 10 neurons in hidden layer.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

An Intrusion Detection System is designed using supervised neural network Back

Propagation Algorithm and unsupervised neural network Self Organizing Map. From

above simulation result, data analysis and calculate the performance parameter we

conclude the detailed in following points

 In Back Propagation algorithm calculate the performance parameters like true

positive, false positive, false negative, recall rate ,precision rate in different

types of attack and from result we conclude that precision rate in DoS is

highest. In self organizing map calculate the performance parameters SOM

neighbor connections, SOM input planes , SOM topology, SOM weight

Position in different hidden layers and these parameters are  good

performance in 30 hidden layer network.

 In both algorithm of hidden layers are  training and testing using the large

number of  KDD cups data set and Self Organizing Map algorithm is

suggested as the most efficient model because of fast epoch time and required

less memory .

 Both of Supervised and Unsupervised neural network algorithms are verified

using JAVA code also.

6.2 Future Recommendations

Network Intrusion Detection can be done using other types of Neural Networks like

Radial Basis Function Neural Network and using unsupervised networks like Self

Organizing Map (SOM) in real data.
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Appendix A

1. Feature Name and Type of  10% KDDCup 99 dataset:

Table A.1: KDD Feature Columns Name and Type [5]
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2. Types of Attacks in 10% KDDCup 99 dataset:

Table A.2: Attacks Classification

Main Attack DOS U2R R2L Probe

Sub Attack

apache2

back

land

mailbomb

neptune

pod

processtable

smurf

teardrop

upstorm

buffer_overflow

load module

perl

ps

rootkit

xterm

ftp_write

guess_passwd

imap

mscam

warezclient

warezmaster

xclock

xsnoop

Ipsweep

nmap

portsweep

satan
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3. Performance of MLP with different values of Hidden Layer Neurons:

Figure A.1: Performance of MLP with 10 Neurons in Hidden Layer

Figure A.2: Performance of MLP with 16 Neurons in Hidden Layer
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Figure A.3: Performance of MLP with 23 Neurons in Hidden Layer

Figure A.4: Performance of MLP with 30 Neurons in Hidden Layer
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Appendix B

1. Simulation Results of SCBP Algorithm:

The graphical representation of the visual impression of the distribution of Errors

(Targets- Outputs) is shown as the Error Histogram plot for the given data in Figure

B.1. It consists of tabular instances shown as adjacent rectangles erected over discrete

bins. It shows that maximum error is ~ - 0.05. The receiver operating characteristics

for training, validation and testing phases of the dataset are shown in Figure B.2. The

ideal value should be close to one. As per the simulation we have got data which are

mostly True Positive.

Figure B.1: Error Histogram of SCBP
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Figure B.2: ROC plot of SCBP

2 Simulation Result Of Self Organizing Map

In Self Organizing Map the simulation result of different parameters like SOM

weight position, SOM input plane, SOM neighbor connection and SOM topology

showing below figure.

Figure: B.3 SOM weight Position
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Figure: B.4 SOM input planes

Figure : B.5 SOM neighbor connections
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Figure: B.7 SOM topology


