TRIBHUVAN UNIVERSITY
INSTITUTE OF ENGINEERING
CENTRAL CAMPUS, PULCHOWK

THESISNO: 069M SCS654

Intrusion Detection System Using Back Propagation Algorithm And Compare
Its Performance With Self Organizing M ap

By
Bisho Raj Kaphale

A THESIS
SUBMITTED TO THE DEPARTMENT OF ELECTRONICSAND
COMPUTER ENGINEERING IN PARTIAL FULFILLMENT OF THE
REQUIREMENTSFOR THE DEGREE OF MASTER OF SCIENCE IN
COMPUTER SYSTEM AND KNOWLWDGE ENGINEERING

DEPARTMENT OF ELECTRONICSAND COMPUTER ENGINEERING
LALITPUR, NEPAL
NOVEMBER, 2014

Intrusion Detection System Using Back Propagation Algorithm And Compare
Its performance With Self Organizing Map

By
Bisho Raj Kaphale
069/M SCS/654

Thesis Supervisor
Prof. Dr. Subarna Shakya
Department of Electronics and Computer Engineering
Institute of Engineering

Central Campus

A thesis submitted to the Department of Electronics and Computer Engineering in
partia fulfillment of the requirements for the degree of Master of Sciencein

Computer System and Knowledge Engineering

Department of Electronics and Computer Engineering
Institute of Engineering, Central Campus
Tribhuvan University
Lalitpur, Nepal

November, 2014

COPYRIGHT

The author has agreed that the library, Department of electronics and Computer
Engineering, Institute of Engineering Pulchowk Campus, may make this thesis freely
available for inspection. Moreover the author has agreed that the permission for
extensive copying of this thesis work for scholarly purpose may be granted by the
professor(s), who supervised the thesis work recorded herein or, in their absence, by
the Head of the Department, wherein this thesis was done. It is understood that the
recognition will be given to the author of this thesis and to the Department of
Electronics and Computer Engineering, Pulchowk Campus in any use of the materia
of this thesis. Copying of publication or other use of this thesis for financial gain
without approval of the Department of Electronics and Computer Engineering,
Institute of Engineering, Pulchowk Campus and author’s written permission is

prohibited.

Request for permission to copy or to make any use of the materia in thisthesisin

whole or part should be addressed to:

Head
Department of Electronics and Computer Engineering
Institute of Engineering, Pulchowk Campus

Pulchowk, Lalitpur, Nepal

TRIBHUVAN UNIVERSITY
INSTITUTE OF ENGINEERING
CENTRAL CAMPUS

DEPARTENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certify that it has been read and recommended to the Department of
Electronics and Computer Engineering for acceptance, a report for the thesis entitled
“Intrusion Detection System Using Back Propagation Algorithm and Compare Its
Performance With Self Organizing Map”, submitted by Bisho Rg Kaphale in partial
fulfillment of the requirement for the award of the degree of “Masters of Science in

Computer Systems and Knowledge Engineering”.

Supervisor: Dr. Subarna Shakya
Professor
Department of Electronics and Computer Engineering

Institute of Engineering, Central Campus, Pulchowk

External Examiner: Suresh Kumar Regmi
Managing Director
Professional Computer System Pvt. Ltd

Committee Chairperson, Dr. Shashidhar Ram Joshi
Professor

Department of Electronics and Computer Engineering

Date Institute of Engineering, Central Campus, Pulchowk

DEPARTMENTAL ACCEPTANCE

The thesis entitled “Intrusion Detection System Using Back Propagation Algorithm
and Compare Its Performance With Self Organizing Map” submitted by Bisho Raj
Kaphale in partial fulfillment of the requirement for the award of the degree of
“Master of Science in Computer System and Knowledge Engineering” has been
accepted as a bonafide record of work independently carried out by him in the

department.

Dr. Dibakar Raj Pant

Assistant Professor, Head of the Department
Department of Electronics and Computer Engineering,
Central Campus, Pulchowk

Institute of Engineering,

Tribhuvan University, Nepal.

ACKNOWLEDGEMENT

| have taken effort in thisthesis. However, it would not have possible without the kind
support and help of many individuals and Institute of Engineering, Pulchowk

Campus. | would like to extend my sincere thanksto all of them.

I am very much thankful to the Department of Electronics and Computer Engineering,
Institute of Engineering for accepting my thesis on “Intrusion detection system using
Backpropagation algorithm and compare its performance with Self Organizing Map”.
I would like to express my specia gratitude and thanks to my supervisor Prof. Dr.
Subarna Shakya for his support over the whole thesis. His advices on technical
matters are invaluable, and his guidance is very critical for the successful of my

thesis.

Furthermore | would like to acknowledge with much appreciation the crucia role of
our Master’s degree program coordinator, Dr. Sanjeeb Prasad Panday and Prof Dr.
Sashidhar Ram Joshi . | express my heart-felt gratitude for providing me with all the

essential co-operation, valuable suggestions for choosing the project topic.

Finally, | would like to express my heartfelt thanks to my Parents, brothers Pushkar
Kafle and Bhumesh Kafle and my friends Sonkashi Singh, Suman Shrma, Sarad
Chandra Joshi, Shankar Gangaju, Madan Neupane who have always encouraged and
supported me.

ABSTRACT

Abstract- In recent years, internet and computers have been utilized by many people
all over the world in severa fields. On the other hand, network intrusion and
information safety problems are ramifications of using internet. The growing network
intrusions have put companies and organizations at a much greater risk of loss. This
thesis proposes a new learning methodology towards developing a novel Intrusion
Detection System (IDS) by Back Propagation Neural Networks (BPN) and Self
Organizing Map (SOM) and compares the performance between them. The main
function of Intrusion Detection System is to protect the resources from threats. It
analyzes and predicts the behaviors of users and then these behaviors resemble either
an attack or the normal behavior. There are several existing techniques that provide
more security to the network, but most of these techniques are static. This thesis tests
the proposed method by a benchmark intrusion dataset to verify its feasibility and
effectiveness. Results show that choosing good hidden layers network and input data
will not only have impact on the performance, but also on the overall execution
efficiency. The proposed method can significantly reduce the training time and epoch
time. It provides a powerful tool to help supervisors analyze, model and understand
the complex attack behavior of electronic crime. The proposed methodology
implemented in sampled data from KddCup99 data set so that intrusion detection

attacks database is standard for the evaluation of intrusion detection systems.

Keywords - Intrusion Detection, Neural Network, Back Propagation Neural Network,
Intrusion Attacks, Self Organizing Map

Vi

TABLE OF CONTENTS

COPYRIGHT © ..ottt et sttt sttt ens i
DEPARTMENTAL ACCEPTANCE.........oii it iv
ACKNOWLEDGEMENT ...ttt sttt st v
A B ST RA CT et e s e e et e e e e e e e ante e e e e nae e e e e anaeeeens Vi
LIST OF FIGURES...... .ttt et a et e e e sneea e s iX
LIST OF TABLES ...ttt ettt st X
LIST OF ABBREVIATION ..ottt ettt ssee e e e see e e snraeeeen Xi
1. INTRODUGCTION ..ttt ettt sttt sttt st e e s sbbe e e e snnee e s sneeeeeennes 1
1.1 BACKGIOUNG.......eiiiiieiiie ettt sttt e et e e snne e s nee e nnnaeean 1
1.2. Problem SEALEMENToieeiiiieeeeee e 4
1.3, ODJECHIVE. ...ttt ettt ettt neas 5
1.4. Organization Of REPOITcceeiiiiiiiieiie ettt 5
2. LITERATURE REVIEW ...ttt 6
3. RESEARCH METHODOLOGYcoitiiiiiiieeiiieeeesieieeessieeeesssieeessseeeessnsseeessnsees 8
3.1 Back Propagation AlQOrthmcooeiiiiiiieieee e e 8
3.2 Self OrganiZiNG M@cocueeiiiiiieiieiie et nree 11
3.2.1. MapPIiNg PreCISIONcoiuiiiiieiie ittt s 13

3.2.2. TOPOIOgy PreServation..........ccveieeeiieeiiieessieeesieeesieesieeesineesree e eneeeens 13

3.2.3 SOM Implementation to Intrusion Detection Systemcccvvvvveveeene 13

4, DATA ANALY SIS, . ettt e e e s enre e e as 17
4.1 INPUL DALESEL ANAYSIS......eieiiiiiiieeiiie ettt nree e 17
4.2 PrE PrOCESSING. ... uvieuteeteesteeaieeesteeteaseesbeesteesaeesseeeseesbeeeseesbeesseeanneeseenneesseas 18
4.3 Determining ArchiteCture of MLP........cccoooiiiiiiee e 24
4.4 Traning and Testing Of MLPoooiiiiii e 24
4.5 Back Propagation AlQOrithmccoeoiiii i 25
4.6 Performance ParamMeters...........ooveiieieeiieeiee ettt 26
A oo OSSP PP 27
5. SSIMULATION RESULTS AND DISCUSSIONS........coociieeieee e 29
5.1 Determining Hidden Layer NEUIONS..........cceeeeiiieeeeiiiee e ciee et 29
5.2 INtruSion DELECHION.eiiiiiiiiiiii ettt 30

5.3 Determining Hidden Layer Neurons in Scale Conjugate Gradient (SCG):34

5.2 Performance Assessment of Back Propagation Algorithms.............cccceeuveeeee. 36
5.2.1 Scale Conjugate Gradient (SCG):......coveererreerieriieiee e 36

5.2.2 Determining Hidden Layer Neurons in Self Organizing Map.............. 40

6. CONCLUSIONS AND RECOMMENDATIONScoviiiiiiiiiiieee i 43
6.1 CONCIUSIONS.....ccutiiieieitieie ettt ettt ettt b et n e b nneesnee e 43
6.2 Future ReCOMMENELIONS..........ceivirieeierieeiesie e e 43

7. REFEIENCES ...t n e r e b ne e 44
8. Bibliographyccocueieeee e 46
N 0= 00 [A NSRRI 47
APPENDIX B ...ttt et nre e eree e 51

viii

LIST OF FIGURES

Figure 1.1:The Intrusion Detection System and External/Internal Network Intrusion

ATEACKS ...t e b bbbt e e n e e nenae s 2
Figure 1.2:Multilayer PErCEPLIONcccuei it e e e 3
Figure 1.3: Bipolar Sigmoid FUNCLION..........coiiiiiiieesiee e 4
Figure 3.1:A Back Propagation Training Set............ccooeeeiiieiciee e 8
Figure 3.2: Applying aTraining Pair t0 a NetWOrKccccoveeeiiiiiiiescie e 9
Figure 3.3: A Single Connection Learning in a Back Propagation network. 9
Figure 3.4: General SOM tOPOIOgYeeiueerrerrieeniie e 12
Figure 3.5:Structure of an Automated User Behavior Anomaly Detection System .. 14
Figure 3.6: Form of the designed SOM architeCture............ccooevveeieeneesneesee e 16
Figure 4.1: Block diagram of the proposed System..........cccceveiieeieeneeeneenee e 17
Figure 4.2: Backpropagation Algorithm Diagramccccceveriiveieeniesneenee e 25
Figure 5.1: MLP Architecture of the System ..., 30
Figure 5.2: MLP Architecture of Back Propagationccceeveveiiiieeiieeesiee s 34
Figure 5.3: Performance of MLP with 10 neuronsin hidden layer............cccccoovenee. 35
Figure 5.4: Performance of MLP with 5 neuronsin hidden layer.............cccoceeenneeen. 35
Figure 5.5: Performance of SCG Algorithm............cccooviiiiiie e 36
Figure 5.6: Confusion matrix of Scaled Conjugate Gradient algorithm.................... 37
Figure 5.7: Relationship of Attack Typesversus True Positive..........cccccceecveeeeinneee. 38
Figure 5.8: Relationship of Attack Types versus False Positive...........ccccccvvvveeinene 38
Figure 5.9: Relationship of Attack types Versus False Negative..........ccccccvevveennenne 39
Figure 5.10: Relationship of Attack TypesVersus Recall Rate............cccccceeeeenieenen. 39
Figure 5.11: Relationship of Attack Types Versus Precision Rate............ccccceevvenne 40
Figure 5.12: SOM Network Layer of SIZe 10.cccoceriieieenieiieeree e 41
Figure 5.13: Performance of SOM with 5 neuronsin hidden layer.cccceeenee. 41
Figure 5.14: Performance of SOM with 10 neuronsin hidden layer.c.ccooen.... 42

LIST OF TABLES

Table 4.1:KDD feature columns Name and tYP.cccverueereereenieeriee e eieesiens 19
Tabhle 4.2:ProtOCOI TYPE ...uvieieee ettt et e e 20
TaDIE 4.3 SEIVICE TYPE... ittt ettt neene e 20
I o = T I Y/ o= S 22
Table 4.5: Attacks ClassifiCatioN...........ccueiiiiiiiieie e 22
Table 4.6: Label Transformation...........coeoieeiiirieeieeeie e 23
Table 4.7: Feature Column Before Transformationcocevereeneneeseeneseeinenne 23
Table 4.8: Feature Column After Transformation............cccoceeveereniei e 23
Table 4.9: Selection of Number of Neuronsin Hidden Layerc.ccccoveevveeineennne, 24

ANN
DARPA
DOS
FN

FP

IDS
IEDS
MIT
MLP
NIDS
RoL

TN

TP
U2R

LIST OF ABBREVIATION

Artificial Neural Network

Defense Advance Research Project Agency
Denia of Service

False Negative

False Positive

Intrusion Detection System

Intrusion Detection Expert System
Massachusetts I nstitute of Technology
Multi-Layer Perception

Network based IDS

Remote to Local

True Negative

True Positive

User to Root

Xi

1. INTRODUCTION

1.1 Background

The problem of protecting information has existed since information has been
managed. However, as technology advances and information management systems
become more and more powerful, the problem of enforcing information security also
becomes more critical. The enlargement of this electronic environment comes with a
corresponding growth of electronic crime where the computer is used either as a tool

to commit the crime or as atarget of the crime[1].

In past years, numerous computers was hacked because of not consider the necessary
of precautions to protect against network attacks. The failure to secure their systems
puts many companies and organizations at a much greater risk of loss. Usudly, a
single attack can cost millions of dollarsin potential revenue. Moreover, that's just the
beginning. The damages of attacks include not only loss of intellectual property and
liability for compromised customer data (the time/money spent to recover from the
attack) but also customer confidence and market advantage. There is a need to
enhance the security of computers and networks for protecting the critical
infrastructure from threats. Accompanied by the rise of electronic crime, the design
of safe-guarding information infrastructure such as the intrusion detection system
(IDS) for preventing and detecting incidents becomes increasingly challenging. Figure
1.1 illustrates the intrusion detection system and external/internal network intrusion
attacks. The intrusion detector learning task is to build a predictive model (i.e. a
classifier) capable of distinguishing between bad intrusions and normal connections.
Recently, an increasing amount of research has been conducted on applying neural
networks to detect intrusions. An artificial neural network consists of a collection of
processing elements that are highly interconnected. Give a set of inputs and a set of
desired outputs, the transformation from input to output is determined by the weights
associated with the interconnections among processing elements. By modifying these
interconnections, the network is able to adapt to the desired outputs. The ability of
high tolerance for learning-by-example makes neural networks flexible and powerful
in IDS. However, the time required to induce the model from alarge dataset is long. It

can accurately predict probable attack behavior in IDS.
1

m " 9

Web Server Email Server
I"'-n.l I:ﬂfr-au.h Btk

B it b —ﬁ ﬁgég

IS Semsal

Figure 1.1:The Intrusion Detection System and External/Internal Network Intrusion
Attackg[1].

There are two general methods of detecting intrusions into computer and network

systems, namely Anomaly detection and Signature recognition.

Anomaly detection techniques establish a profile of the subject's normal behavior
(norm profile), compare the observed behavior of the subject with its norm profile,
and signal intrusions when the subject’s observed behavior differs significantly from
its norm profile. Signature recognition techniques recognize signatures of known
attacks, match the observed behavior with those known signatures, and signal
intrusions when there isa match [2].

Neural network is an universal classifier and with the proper choosing of its

architecture it can solve any, even very complicated, classification task [3].

Figure 1.2:Multilayer Perceptron[2]

Here above figure 1.2 shows the input layer, hidden layer(s) and output layer of
Multilayer Perceptron (MLP).

Attacks can be gathered in four main categories:

1) Denial of Service Attack (DoS): is an attack in which the attacker makes some
computing or memory resource too busy or too full to handle legitimate requests, or

denies legitimate users access to a machine.

2) User to Root Attack (U2R): is a class of exploit in which the attacker starts out
with access to a normal user account on the system (perhaps gained by sniffing
passwords, a dictionary attack, or social engineering) and is able to exploit some

vulnerability to gain root access to the system.
3) Remote to Local Attack (R2L): occurs when an attacker who has the ability to
send packets to a machine over a network but who does not have an account on that

machine exploits some vulnerability to gain local access as a user of that machine.

4) Probing Attack: Attacker triesto gain information about the target host [2].

Activation Function:

Multilayer perceptron networks typically use sigmoid transfer functions in the hidden
layers. These functions are often called "squashing” functions, because they compress

an infinite input range into a finite output range.

The bipolar sigmoid function: f(x) = -1 + 2/ [1+€%]
which has derivative of: f'(x) = 0.5 * [1 + f(x)] * [1 - f(X)]

Figure 1.3: Bipolar Sigmoid Function

In this research, multilayer perception is trained with various Backpropagation
algorithms. Based on the evaluation result, the proposed research is able to suggest
the best model for network based attack detection.

1.2. Problem Statement

IDS is Rule Based Monitoring and Controlling System, therefore, selection of
algorithm used to define standard rule base is a major challenge. The selection of
improper algorithm and model can maximize the occurrence of false alarm rate, high
resource consumption, and low intrusion detection rate and may result inefficiency to
entire system and may even lead to security vulnerabilities. The proper selection of

classifier algorithm leads to increase in efficiency of 1DS being implemented.

1.3. Objective

Objectives of the proposed research are as follows:
» To detect intrusion using multilayer perception with Back Propagation and
Self Organizing Map.
» To analyze the performance of Back Propagation algorithms and Self
Organizing Map and suggest the efficient model for network intrusion
detection based on the evaluation result.

1.4. Organization of Report

The report contains six chapters. Chapter 1 provides in detail about the background,
statements of problems, objectives of research. Chapter 2 explains about literature
review of intrusion detection system. Chapter 3 explains about different research
methodology on intrusion detection using Backpropagation system and Self
Organizing Map. Chapter 4 explains in detail about the input data analysis, hidden
layer network architecture and performance parameters. Chapter 5 explains about the
analysis of smulation results and discussions. Chapter 6 provides brief conclusions of
simulation results and suggests the most efficient model for intrusion detection along

with the future enhancements.

2. LITERATURE REVIEW

At first the concept of intrusion detection system was suggested by Anderson (1980)
[1]. He applied statistic method to analyze user’s behavior and to detect those
attackers who accessed system in an illegal manner. In [2] proposed a prototype of
IDES (intrusion detection expert system) in 1987, subsequently, the idea of intrusion
detection system was known progressively, and paper was regarded as significant
landmark in this area. In [4] the author proposed a data mining framework for
constructing intrusion detection models. The key idea is to apply data mining
programs namely, classification, meta-learning, association rules, and frequent
episodes to audit data for computing misuse and anomaly detection models that
accurately capture the actual behavior (i.e., patterns) of intrusions and normal
activities. Although, proposed detection model can detect a high percentage of old and
new PROBING and U2R attacks, it missed a large number of new DOS and R2L
attacks. Reference [5] is mostly focused on data mining techniques that are being used
for such purposes, and then presented a new idea on how data mining can aid IDSs by
utilizing biclustering as atool to analyze network traffic and enhance IDSs. Reference
[6] proposed a new weighted support vector clustering algorithm and applied it to the
anomaly detection problem. Experimental results show that mentioned method
achieves high detection rate with low false alarm rate. Intrusion detection attacks are

segmented into two groups,
* Host-based attacks [3-5] and
* Network-based attacks[6, 7].

In case of host-based attacks, the intruders aim at a particular machine and attempt to
get access to privileged services or resources on that particular machine. Detection of
these kinds of attacks typically uses routines that acquire system call data from an
audit-process which monitors all system calls made with the support of each user. In
case of network-based attacks, it is extremely complicated for legitimate users to use
various network services by purposely occupying or disrupting network resources and
services. Intruders attack these systems by transmitting huge amounts of network

traffic, utilizing familiar faults in networking services, overloading network hosts, etc.

6

Detection of these kinds of attacks uses network traffic data (i.e., tcpdump) to look at
traffic addressed to the machines being monitored.

3. RESEARCH METHODOLOGY

3.1 Back Propagation Algorithm

The back propagation algorithm is a quite essential one of the neura network. The
algorithm is the training or learning algorithm rather than the network itself. The
network used is generally of the simple type shown in figure 3.1, and in the examples
up until now. The network operates in exactly the same way as the others have seen.
Now, let’s consider what Back Propagation is and how to use it. A Back Propagation
network learns by example. You give the algorithm examples of what you want the
network to do and it changes the network’s weights so that, when training is finished,
it will give you the required output for a particular input. Back Propagation networks
are ideal for simple Pattern Recognition and Mapping Tasks4. As just mentioned, to
train the network you need to give it examples of what you want the output you want

(called the Target) for a particular input as shown in Figure 3.1.

Inputs o
rartacy
)ﬂ- o

netwark, we

Paviidis would like
to get this

fﬂ’.ehc-mpu? Yyou a1 10 11 o | v

waat for cach pattcrn)

Figure 3.1:A Back Propagation Training Set[1].

So, if the first pattern to the network, we would like the output to be O 1 as shown in
figure 3.1 (a black pixel is represented by 1 and a white by 0 as in the previous
examples). The input and its corresponding target are called a Training Pair.

4
e T

Input 1%, \ }"‘Q“-_
. \\ e N R .
N ¢/ Ne » We'dlike this
™ / NG A neuron o givea
. Tupuw 2 i, g — ’/ 07 ont.

b x%f = 5,
P —— .
Topur 24R, // . -H;‘A‘“» \\ TN We'd like this
: /?")‘ 4 -~ neuron to give a
k A \\ / -~ “17 out.
. / AN B
\“‘x IX./ ‘\\\ —~ S
-~ },éf
Laput 4 N/

Targams

Figure 3.2: Applying a Training Pair to a Network[1]

Once the network is trained, it will provide the desired output for any of the input
patterns. Let’s now look at how the training works. The network is first initialized by
setting up al its weights to be small random numbers — say between -1 and +1. Next,
the input pattern is applied and the output calculated (this is called the forward pass).
The calculation gives an output which is completely different to what you want (the
Target), since all the weights are random. Then calculate the Error of each neuron,
which is essentially: Target — Actua Output (i.e. what you want — What you actually
get). This error is then used mathematically to change the weights in such a way that
the error will get smaller. In other words, the Output of each neuron will get closer to
its Target (this part is called the reverse pass). The process is repeated again and again
until the error is minimal. Let's do an example with an actual network to see how the
process works. Just look at one connection initially, between a neuron in the output
layer and one in the hidden layer, figure 3.2.

W
A AB /B\

Wac

Figure 3.3: A Single Connection Learning in a Back Propagation network[1].

The connection interested in is between neuron A (a hidden layer neuron) and neuron
B (an output neuron) and has the weight WAB. The diagram also shows another
connection, between neuron A and C, but we’ll return to that later. The algorithm

works like this:

1. First apply the inputs to the network and work out the output — remember this

initial output could be anything, as the initial weights were random numbers.

2. Next work out the error for neuron B. The error is what you want — What you
actually get, in other words: ErrorB = OutputB (1-OutputB) (TargetB — OutputB) The
“Output (1-Output)” term is necessary in the equation because of the Sigmoid
Function — if we were only using a threshold neuron it would just be (Target —
Output).

3. Change the weight. Let W+AB be the new (trained) weight and WAB be the initial
weight. W+AB = WAB + (ErrorB x OutputA) Notice that it is the output of the
connecting neuron (neuron A) we use (not B). We update all the weights in the output

layer in thisway.

4. Calculate the Errors for the hidden layer neurons. Unlike the output layer we can’t
calculate these directly (because we don’t have a Target), so we Back Propagate them
from the output layer (hence the name of the algorithm). This is done by taking the
Errors from the output neurons and running them back through the weights to get the
hidden layer errors. For example if neuron A is connected as shown to B and C then
we take the errors from B and C to generate an error for A. ErrorA = Output A (1 -
Output A) (ErrorB WAB + ErrorC WAC) Again, the factor “Output (1 - Output)” is

present because of the sigmoid squashing function.

5. Having obtained the Error for the hidden layer neurons now proceed asin stage 3 to
change the hidden layer weights. By repeating this method we can train a network of
any number of layers. This may well have left some doubt in your mind about the
operation, so let’s clear that up by explicitly showing all the calculations for a full
sized network with 2 inputs, 3 hidden layer neurons and 2 output neurons as shown in

figure 3.3. W+ represents the new, recalculated weight, where as W (without the

10

superscript) represents the old weight. Reverse process is done in the same way.
Hence the attackers are calcul ated.

3.2 Sdf Organizing Map

The Self-Organizing Map [9] is a neural network model for analyzing and visualizing
high dimensional data. It belongs to the category of competitive learning network.
The SOM Fig 3.4 defines a mapping from high dimensional input data space onto a
regular two-dimensional array of neurons. In designed architecture is input vector
with six input values and output is realized to 2 dimension space. Every neuron i of

the map is associated with an n-dimensional reference vector.

____________ Mol T e (301)

Where, n denotes the dimension of the input vectors. The reference vectors together
form a codebook. The neurons of the map are connected to adjacent neurons by a
neighborhood relation, which dictates the topology, or the structure, of the map.
Adjacent neurons belong to the neighborhood Ni of the neuron i. In the SOM
algorithm, the topology and the number of neurons remain fixed from the beginning.
The number of neurons determines the granularity of the mapping, which has an
effect on the accuracy and generalization of the SOM. During the training phase, the
SOM forms elastic net that is formed by input data. The algorithm controls the net so
that it strives to approximate the density of the data. The reference vectors in the
codebook drift to the areas where the density of the input data is high. Eventualy,
only few codebook vectors lie in areas where the input data is sparse. The learning

process of the SOM goes as follows:
1. One sample vector x is randomly drawn from the input data set and its similarity

(distance) to the codebook vectors is computed by using Euclidean distance measure:
[PX=me][Emin {PXmif[ceeeeeen (3.2)

11

2. After the BMU(Best Matching Unit) has been found, the codebook vectors are
updated. The BMU itself as well as its topological neighbors are moved closer to the
input vector in the input spacei.e. the input vector attracts them. The magnitude of the
attraction is governed by the learning rate. As the learning proceeds and new input
vectors are given to the map, the learning rate gradually decreases to zero according
to the specified learning rate function type. Along with the Intrusion Detection
System, Using Self Organizing Map learning rate, the neighborhood radius decreases

aswell. The update rule for the reference vector of unit i is the following:

mi(t+1) = { mi(t) + a(t) [x(t) - mi@®)] , 1 € Ne(t)
MHEFL)Z{MHE)]E N) wveveeereeeeeeeeeeeeeeeeeeeee e (323)

3. The steps 1 and 2 together constitute a single training step and they are repeated
until the training ends. The number of training steps must be fixed prior to training the
SOM because the rate of convergence in the neighborhood function and the learning

rate are calculated accordingly.

Figure 3.4: General SOM topology[2]

After the training is over, the map should be topologically ordered. This means that n
topologically close input data vectors map to n adjacent map neurons or even to the

same single neuron.

3.2.1. Mapping Precision

The mapping precision measure describes how accurately the neurons respond to the
given data set. If the reference vector of the BMU calculated for a given testing vector
xi is exactly the same xi, the error in precision is then 0. Normally, the number of data
vectors exceeds the number of neurons and the precision error is thus always different
from 0. A common measure that calculates the precision of the mapping is the

average quantization error over the entire data set:

Eq= N E 11X Moo (3.4)

3.2.2. Topology Preservation

The topology preservation measure describes how well the SOM preserves the
topology of the studied data set. Unlike the mapping precision measure, it considers
the structure of the map. For a strangely twisted map, the topographic error is big
even if the mapping precision error is small. A simple method for calculating the

topographic error:

B = N D U(Xx) ettt ettt e e et e e, (3.5)

Where u(xx) is 1 if the first and second BMUs of xc are not next to each other.

Otherwise u(xy) isO.

3.2.3 SOM Implementation to Intrusion Detection System

The goal of the proposed architecture is to investigate effectiveness of application a
neural network SOM figure.3.6 at modeling user behavioral patterns so they can

13

distinguish between normal and abnormal behavior. In order to model user behavior
identified and isolated the system logs that were required as sources of information
for the networks. These logs being common log data provided the required user
activity information from where system derived the following behavioral
characteristics which typifies users on the system:

{1 User activity times- Thetime at which auser isnormally active.

1 User login hosts- The set of hosts from which a user normally logs in from.

User foreign hosts - The set of hosts which a user normally accesses via

commands on the system (FTP hosts).

Command set - The set of commands which a user normally uses.

CPU usage - The typical CPU usage patterns of a user.

Memory usage — The typical usage of memory for a user.

SYSTEM LOG INFORMATION

e

| |

COORDINATING PROCESS

|

"QIG_';}
DATA PREPROCESSING

JITI1L

,.,- —
LoGINY, / .-/ > /Commi, /FoREI®, /MEMOR

\ [cPu ACTIVE ', [~ gne |

| nost | | USAGE HUSAGE | IH I [NHOSTI| Y
w:cess’ Al ; ﬁ.ccEsg,a LFSAG

NV

INPUT VECTOR

Figure 3.5:Structure of an Automated User Behavior Anomaly Detection System[3]

14

Figure 3.5 illustrates how a complete system for the detection of user behavioral
anomalies is structured. The coordination process is responsible for channeling
system information to the neural networks. Each of the behavioral characteristics are
both modeled by a SOM network, as well as checked by a limited static rule filter for
easy breaches of security. Data acquired from the system logs is required to filter
through input data preprocessor Fig. 3.5, separating selected data from audit data. The
input to the neural network Fig. 3.6 represents data vector consisting from data
controlled on the monitored system. Before input vector processing it is needed to
normalize input data. The input to neural network is data vector, which consists from
SiX properties representing User activity times, User login hosts, User foreign hosts,
Command set CPU usage and Memory Usage. According to large numbers of
variations of this data it is necessary to normalize every input vector to be value in
range of values[-1, 1]. This range comes out from the previous applications of neural
network to system IDS realized within research activity on the Department of
Computers and Inforatics in KoSice . This normalization is more suitable for

implementation in proposed SOM network. The architecture uses normalization given

by:

z
Ek v[K]

Where nV[i] is the normalized value of feature (i), V[i] is the feature value of i, and K
is the number of features in a vector. The processing realized by the SOM network
consequently produces results for every user characteristic gives as input to the SOM
network. Expected network reply is the value close to-for user, which behavior does
not divert from normal behavior. If the value for given user exceeds specified
threshold value obtained through the SOM network representing its intrusion behavior
denotes raising alarm. If the output value of network is above specified threshold
value, alarm is raised. It is necessary to remark that basic request for this detection
mechanism is to setup threshold value to specific system whereby make it possible to
adapt sensitivity directly to computer system.

15

User activity times User foreign hosts CPU usage

User login hosts Command set Memory usage

Figure 3.6: Form of the designed SOM architecture[2]

16

4. DATAANALYSIS

Methodology of the proposed system is shown in the Figure 4.1 below.

Input Dataset

'

Pre Processing

A\ 4
Determining architecture of MLP

A4

Training and Testing of MLP

A 4
Classification using Back
Propagation a gorithms and SOM

Figure 4.1: Block diagram of the proposed
system

4.1 Input Dataset Analysis

Under the sponsorship of Defense Advanced Research Projects Agency (DARPA)
and Air Force Research Laboratory (AFRL), the MIT Lincoln laboratory has
established a network and captured the packets of different attack types and
distributed the data sets for the evaluation of researches in computer network intrusion
detection systems. The KDDCup99 data set is a subset of the DARPA benchmark
data set [10]. Each KDDCup99 training connection record contains 41 features and is
labeled as either normal or an attack, with exactly one specific attack type. This
dataset will be taken as training data for performing the proposed research work. The
result thus obtained will be compared with the rest of test data set. One of the reasons
for choosing this data set is that the data set is standard. Another reason is that it is

difficult to get another data set which contains so rich a variety of attacks.

17

Featur e Extraction: For each network connection in the data set, the following three

key groups of features for detecting intrusions will be extracted.

Basic features: This group summarizes all the features that can be extracted
from a TCP/IP connection. Some of the basic features in the KDDCup99 data
sets are protocol type, service, src_bytes and dst_bytes.
Content features: These features are purely based on the contents in the data
portion of the data packet.
Traffic features. This group comprises features that are computed with
respect to a 2 Sec. time window and it is divided into two groups: same host
features and same service features. Some of the traffic features are counted,
rerror_rate, rerror_rate and srv_serror_rate.
Instance Labeling: After extracting KDDCup99 features from each record, the
instances are labeled based on the characteristics of traffic as Normal, Dos, Probe,
R2L and U2R.

4.2 Pre Processing

The data set will be preprocessed so that it may be able to give it as an input to our
proposed system. This data set consists of numeric and symbolic features and will be
converted in numeric form so that it can be given as inputs to our MLP network. Now
this modified data set will be used as training and testing of the multi layer

perceptron.

Table 4.1 below shows the feature columns name and type of 10% KDDCup 99
dataset.

18

Table 4.1:KDD feature columns name and type [9]

Feature Feature
Feature Name Feature Name
Type Type

1 duration continuous. | 22 is_guest login discrete.

2 protocol_type symbolic. 23 count continuous.
3 service symbolic. 24 srv_count continuous.
4 flag symbolic. 25 serror_rate continuous.
5 src_bytes continuous. | 26 srv_serror_rate continuous.
(] dst bytes continuous. 27 rerror_rate continuous.
7 land discrete. 28 SrV_rerror_rate continuous.
8 wrong_fragment continuous. | 29 same_srv_rate continuous.
a urgent continuous. | 30 dift_srv_rate continuous.
10 hot continuous. | 31 srv_diff host rate | continuous.
11 | num_failed logins | continuous. | 32 dst _host count continuous.
12 logged_in discrete. 33 | dst host srv_count | continuous.
13 | num_compromised | continuous. | 34 dst hOStraiZmE SV | continuous.
14 root_shell continuous. | 35 dst_host_glﬁ_sn.r_rat continuous.

: dst host same src -
15 su_attempted continuous. 36 port_rate continuous.
16 num_root continuous. 37 det honk =i kit o continuous.
= st rate
17 | num file creations | continuous. | 38 | dst host serror rate | continuous.
18 num_shells continuous. | 39 dSt—hDSt?:t: —SEIor | continuous.
19 | num_access files continuous. | 40 | dst host rerror_rate | continuous.
num_outbound_cm : dst_host_srv_rerror_ :
20 confinuous. 4 confinuous.
ds rate
21 is_host _login discrete. 42 Label symbolic.

Symbolic columns which are protocol_type, service, flag and label are transformed to

numeric values using transformation tables given below. The protocol_type column
has 3 protocol valuess TCP, UDP and ICMP. Table 4.2 demonstrates the
transformation table for protocol _type.

19

Table 4.2:Protocol Type

Protocol_type No.
TCP 1
UDP 2

ICMP 3

The service column values are transformed to numeric values as shown in Tabled.3.

Table 4.3: Service Type

Service No. Service No.
Auth 1 netbios ssn 34
Bgp 2 Netstat 35
Courier 3 Nnsp 36
csnet_ns 4 nntp 37
Citf 5 ntp_u 38
Daytime 6 Other 39
Discard 7 pm_dump 40
Domain 8 pop_2 41
domain_u 9 pop_3 42
Echo 10 Printer 43
€co i 11 Private 44
ecr_i 12 red_i 45
Efs 13 remote job 46
Exec 14 Rje 47

20

Service No. Service No.
Finger 15 Shell 48
ftp 16 Smtp 49
ftp_data 17 sgl_net 50
Gopher 18 Ssh 51
Hostnames 19 Sunrpc 52
http 20 Supdup 53
http_443 21 Systat 54
imap4 22 telnet 55
Irc 23 tftp_u 56
iso_tsap 24 tim_i 57
Klogin 25 Time 58
Kshell 26 urh_i 59
Ldap 27 urp_i 60
Link 28 Uucp 61
Login 29 uucp_path 62
Mtp 30 Vmnet 63
Name 31 Whois 64
netbios_dgm 32 x11 65
netbios ns 33 z39 50 66

21

The flag column values are transformed to numeric values as shown in Table 4.4.

Table 4.4: Flag Types

Flag No. Flag No.
Oth 1 S1 7
REJ 2 S2 8
RSTO 3 S3 9
RSTOSO 4 SF 10
RSTR 5 SH 11
S0 6

The Label column has normal and different kinds of sub attack values. Sub attack
values are classified as shown in Table 4.5 and then the norma and attack values are

transformed into numeric as shown in Table 6 below.

Table 4.5; Attacks Classification

Main Attack DOS U2R R2L Prob
apache? buffer_overflow ftp_write | psweep
back load module guess_passwd nmap
land perl imap portsweep
mailbomb ps mscam satan
neptune rootkit warezclient
Sub Attack pod xterm warezmaster
processtable xclock
smurf XSnoop
teardrop
upstorm

22

Table 4.6; Label Transformation

L abel Columnl | Column2 | Column3 | Column4 | Column5
Nor mal 1 0 0 0 0
DoS 0 1 0 0 0
U2R 0 0 1 0 0
R2L 0 0 0 1 0
Prob 0 0 0 0 1

The following tables represent the data feature columns before and after

transformation.

Table 4.7: Feature Column Before Transformation

0,tep, http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.0
0,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,normal.

Table 4.8; Feature Column After Transformation

0,1,20,10,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.00,0.
00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,1,0,0,0,0.

23

4.3 Determining Architecture of MLP

There is no certain mathematical approach for obtaining the optimum number of
hidden layers and their neurons. In this research, 10, 16, 23 and 30 layered MLP with
41 neurons in the input layer and 5 neurons in the output layer is used. The numbers

of nodesin hidden layer are chosen by hit and trial method.
Table 4.9 below shows the performance of multilayer perceptron with different
numbers of hidden layer neurons. The best performance is observed with 30 neurons

in the hidden layer.

Table 4.9: Selection of Number of Neurons in Hidden Layer

Hidden L ayer No. of Neurons Performance
H1 10 0.00175
H1 16 0.000346
H1 23 0.00101
H1 30 0.000286

4.4 Training and Testingof MLP

The input dataset is divided into 3 subsets. The first subset is the training set, which is
used for computing the gradient and updating the network weights and biases. The
second subset is the validation set. The error on the validation set is monitored during
the training process. The validation error normally decreases during the initial phase
of training, as does the training set error. However, when the network begins to over-
fit the data, the error on the validation set typically begins to rise. When the validation
error increases for a specified number of iterations (net.trainParam.max_fail), the

training is stopped, and the weights and biases at the minimum of the validation error

24

Yes

S | No

are returned. The test set error is not used during training, but it is used to compare
different models (MathWorks Matlab Help, 2012).

In this thesis, 80% data from the input dataset are used for training, 10% for
validation and 10% for testing of the MLP to analyze the performance of various

backpropagation algorithms. The results are shown in chapter 4.

4.5 Back Propagation Algorithm

The gradient descent, gradient descent with momentum and reslient Back
Propagation algorithms will be used for training of MLP and performance of these

algorithms will be compared.

[initiaizeweichtsw, v |
%:

Submit Pattern Z and compute

layer’s outputs Y, O
v

E=0 Compute cycle error E

7y ¢

Calculate error term

v

Adjust weights of output layer
E < Emax ¢

Adjust weights of hidden layer

More Pattern

Yes

Figure 4.2: Backpropagation Algorithm Diagram

Figure 4.2 above shows the flowchart of Back Propagation algorithm. The Back
Propagation learning algorithm can be divided into two phases. propagation and
weight update.

Phase 1: Propagation
25

Each propagation involves the following steps:

1. Forward propagation of atraining pattern'sinput through the neural network in

order to generate the propagation's output activations.

2. Backward propagation of the propagation's output activations through the
neural network using the training pattern target in order to generate the deltas

of all output and hidden neurons.
Phase 2: Weight update
For each weight-synapse follow the following steps:
1. Multiply its output delta and input activation to get the gradient of the weight.
2. Subtract aratio (percentage) of the gradient from the weight.

This ratio (percentage) influences the speed and quality of learning; it is called
the learning rate. The greater the ratio, the faster the neuron trains; the lower the ratio,
the more accurate the training is. The sign of the gradient of a weight indicates where
the error is increasing; this is why the weight must be updated in the opposite

direction.

Repeat phase 1 and 2 until the performance of the network is satisfactory.

4.6 Performance Parameters

Mean Square Error, Total CPU Time of Converge and Accuracy will be the

performance parameters to compare various Back Propagation algorithms.
Following parameters will be calculated while training and testing of MLP.

True Positive (TP): Situation in which a signature is fired properly when an
attack is detected and an alarm is generated.

False Positive (FP): Situation in which normal traffic causes the signature to
raise an alarm.

True Negative (TN): Situation in which normal traffic does not cause the

signature to raise an alarm.

26

False Negative (FN): Situation in which a signature is not fired when an
attack is detected.

Attack Detection Rate (ADR): The detection rate is defined as the number of
intrusion instances detected by the system (True Positive) divided by the total
number of intrusion instances present in the test set.

Attack Detection Rate (ADR) = (Total detected attacks / Tota attacks) * 100
%

False Alarm Rate (FAR): It is the ratio between the total number of
misclassified instances and the total number of normal connections present in
the data set.

False Alarm Rate (FAR) = (Total misclassified instances / Total normal
instances) * 100 %

Recall Rate: Recall rate measures the proportion of actual positives which are

correctly identified.
Recall Rate = TP/ (TP + FN)

Precision Rate: Precision rate is the ratio of true positives to combined true

and false positives.

Precision Rate = TP/ (TP + FP)

4.7 Tool

MATLAB 2012:

MATLAB (Matrix Laboratory) is a programming environment for agorithm

development, data analysis, visualization, and numerical computation. MATLAB can

solve technical computing problems faster than with traditional programming
languages, such as C, C++, and FORTRAN. MATLAB can be used in awide range of

applications, including signal and image processing, communications, control design,

test and measurement, financial modeling and analysis, and neural networks. For a

million engineers and scientists in industry and academia, MATLAB is the language
of technical computing (MathWorks Matlab Help, 2012).

27

Neural Network Toolbox supports supervised learning with feed forward, radial basis,
and dynamic networks. It also supports unsupervised learning with self-organizing
maps and competitive layers. With the toolbox we can design, train, visualize, and
simulate neural networks. Simulation is done using Neural Network toolbox in
Matlab.

Notepad++:

Notepad++ is atext editor and source code editor for Windows. It differs from the
built-in Windows text editor Notepad, is that Notepad++ supports tabbed editing,
which allows working with multiple open files in a single window. Notepad++ opens
large files significantly faster than Windows Notepad. Data preprocessing is done
using Notepad++ tool.

28

5. SSIMULATION RESULTSAND DISCUSSIONS

To access the effectiveness of the proposed intrusion detection approach, the
following simulation is performed. Intel (R) Core™ i5 CPU M 430 @ 2.27GHz,
having 4 GB of RAM is used. The operating system Microsoft Windows 7 Home
Premium is used. Simulation is performed using Matlab2012 version R2012a Sun Feb
17 18:06:36 2013. KDD dataset containing 494021 sample datais used as input to the
IDS. The input layer has 41 input neurons to describe 41 attributes in the KDD
dataset. For the hidden layer, hit and trial method is used that is explained in section
5.1 below. Since the network traffic is grouped into five different classes of attacks,

the output layer has 5 neurons.

5.1 Determining Hidden Layer Neurons

The Multilayer Perceptron is trained with scale congugate BP algorithm to find the

proper number of hidden layer neurons using the following default parameters:

Increment to weight change = 1.2, Decrement to weight change = 0.5, Initial weight

change = 0.07 and Maximum weight change = 50.

The simulation results are shown in an Appendix. Table 5.1 below shows the
performance of MLP with different number of hidden layer neurons and Figure 5.1

below shows the required MLP architecture of the system.

Table 5.1: Performance of MLP with different Number of Hidden Layer Neurons

Hidden Layer No. of Neurons Perfor mance
H1 10 0.00175
H1 16 0.000346
H1 23 0.00101
H1 30 0.000286

29

4\ Pattern Recognition Neural NEMori;lE"wTew} Elm

Hidden Output

Input

41

Figure 5.1: MLP Architecture of the System

5.2 Intrusion Detection

The input and target datasets are fed to the MLP and the output is observed. The
portion (25 records) of input dataset and target dataset is shown below in the Table
5.2 and 5.3 respectively. The output of the most efficient model (Scale Conjugate BP
algorithm) is shown below in the Table 5.4.

30

Table 5.2: Portion of Input Dataset

lapcio| £ | Fla/ B n[ajkt/wncle|aRSTI W] X ¥ | 7 |Ab|AB|AC|AD | AE AF|AG|AH A1 AL AK| AL AM AN | 4D
012010 131 5450 0

i 00001 000 0000000 8 3 0 0 0 0 1 0 0 99 1 001 0 0 0 00
2012010 23 4% 0 0 0001 000 0000000 8 5 0 0 0 0 1 0 0121915 1 0005 0 0 0 0 @
3 012010 23513370 0 0001 000 0000000 8 5 0 0 0 0 1 0 0292 1 003 0 0 0 0 0
4 01210 2191337 0 0 0001 000 0000000 6 5 0 0 0 0 1 0 0393 1 0003 0 0 0 0 0
5 012010 2172020 0 0001 000 0000000 6 5 0 0 0 0 1 0 0494 1 0002 0 0 0 0 0
6 012010 272020 0 0001 000 0000000 6 5 0 0 0 0 1 0 05935 1 002 0 0 0 0 0
7 012010 2121900 0 0001 000 0000000 1 2 0 0 0 0 1 0 118 1 0 1084 0 0 0 1@
8 012010 15940370 0 0001 000 0000000 5 5 0 0 0 0 1 0 017 1 000900 0 0 0 O
3 012010 210 510 0 0001 000 0000000 8 8 0 0 0 0 1 0 0 § 1 00244 0 0 0 0
1 012010 212 7% 0 0 0 101 000 0000000 8 8 0 0 0 0 1 0 0 83 1 00120065 0 0 0 0
1 012010 210 640 00001 000 0000000182 0 0 0 0 1 0 01819 1 00060065 0 0 0 0
1 012010 1719850 0 0001 000 0000000 1 1 0 0 0 0 1 0 02819 1 00M1M 0 0 0 0
B 012010 22 730 0 0001 000 0000000111 0 0 0 0 1 0 031 1 000304 0 0 0 0
% 012010 25160 0 0001 000 0000000 4 4 0 0 0 0 1 0 0 413 1 00500 0 0 0 0
5 012010 241 2590 00001 000 0000000 1 1 0 0 0 0 1 0 0 MM 1 0007004 0 0 0 0
5 012010 201837 0 0 0001 000 0000000111 0 0 0 0 1 0 D18 1 00M1K 0 0 0 0
7012010 241 210 0 0001 000 0000000 2 2 0 0 0 0 1 0 031® 1 003004 0 0 0 0
8 012010 27 8180 0 0001 000 000000022 0 0 0 0 1 0 0D 41® 1 000208 0 0 0 0
15 012010 233 2550 0 0001 000 0000000 2 8 0 0 0 0 1 002 18 1 000168 0 0 0 0
2 012010 23 540 00001 000 0000000 7 7 0 0 0 0 1 0 D6I1® 1 000016 0 0 0 0
201201 2612730 0 0001 000 00000002717 0 0 0 0 1 0 0 M2 1 00006 0 0 0 0
2 012010 234 2550 0 0001 000 0000000 5 5 0 0 0 0 1 0 D@29 1 000008 0 0 0 0
B 012010 241 2590 00001 000 000000021 0 0 0 0 1 0 0523 1 0001068 0 0 0 0
% 012010 233 %80 0 0001 000 0000000 3 3 0 0 0 0 1 0 0 323 1 00306 0 0 0 0
% 012010 4519190 00001 000 0000000323 0 0 0 0 1 0 01329 1 00116 0 0 0 0
W4k 4] 10% _KDDCupd9 Dataset ¥ i | l

31

Table 5.3: Portion of Target Dataset

10|
At

12|

EE

14

15

A

18 |
=1

20|
21|

22 |

23 |

24

25

M4k M|

p99 Target Data

10%_KDDCu

32

Table 5.4: Output Data

A B c D_|E
1| 087 275606 4.73E-050.00058 0
2| 088 312606 A.58E-050.00058 0
3| 089 332606 451E-050.00057 0
4| 089 3.34E-06 A4.50E-05 0.00057 O
5| 089 349606 445605 0.00057 0O
6 089 35306 444E-050.00057 0
7| 085 233606 4.96E-050.00059 0
8 057 13905 3.11E-05000052 0
5 | 098 188605 287E-050.00051 0
10| 098 215605 2.77E-05 0.00051 0
11| 099 7.32605 2.026-05 0.00047 0
12| 099 8.556-05 1.94E-05 0.00046 0
13| 100 1.09-04 182E-050.00046 0
14| 099 6.63E-05 2.07E-05 0.00047 0
15| 100 3.85E-04 131E-05 0.00042 0
16| 100 4.88E-04 1.23E-050.00041 O
17| 100 5.06E-04 122E-050.00041 0
18| 100 5.61E-04 L19E-050.00041 0
13| 100 7.66E-04 110E-05 0.00040 0
20| 100 5.69E-04 L19E-05 0.00041 O
21| 100 6.176-04 LI16E-050.00041 0
22| 100 6.05E-04 LI7E-050.00041 0
23| 100 6.256-04 L16E-050.00041 0
24| 100 7.92E-04 1.09E-05 0.00040 O
25| 100 9.80E-04 1O03E-050.00040 0

W 4 b M| Qutput Data < ¥J

By comparing the rows of Table 4.6 (Label Transformation) and Table 5.4 (Output
Data), type of attack can be identified easily. For example in Table 5.4 above, if value
of first column (A) is nearly equal to 1 and value of other columns is nearly equals to
0 that is normal type activity. If value of second column (B) is nearly equal to 1 and

value of other columnsis nearly equal to O that is DoS type attack and so on.

33

5.3 Determining Hidden Layer Neurons in Scale Conjugate Gradient
(SCG):

The Multilayer Perception is trained to find the number of hidden layer neurons using
the following parameters.

Number of input data = 494021

Number of input layer neurons = 41

Number of output layer neurons =5

change in weight for second derivative approximation(o)=5.0e-5

Parameter for regulating the indefiniteness of the Hessian(A)=5.0e-7

Above Table 4.9 shows the performance of MLP with different number of hidden
layer neurons. The best performance is observed with 20 neurons in the hidden layer.
The required MLP architecture is shown below in Figure 5.2.

Figure 5.2: MLP Architecture of Back Propagation

4\ Meural Network Training {nntraint.c:c;l}.' 1_‘"-;“_ ._ = | =] 28

Neural Network —

Algorithms-

Data Division: Random (dividerand)

Training: Scaled Conjugate Gradient (trainscg)
Performance: Mean Squared Error (mise)
Derivative: Default (defaultderiv)

rProgress

Epoch: 0 I: 198 iterations J 1000
Time: | 0:13:50 |
Performance: 0352 0.00
Gradient: 0522 1.00e-06
Validation Checks: o [[] s

Figure 5.3: Performance of MLP with 10 neuronsin hidden layer.

A\ Meural Network Training (nntraintoof) l=|E] = |

Meural Network

Hidden Output

Algorithms

Data Division: Random (dividerand)

Training: Scaled Conjugate Gradient (trainscg)
Performance: Mean Squared Error (mise]
Derivative: Default (defaultderiv)

Progress

Epoch: 0 [: 99 iterations | 1000
Time: | 0:04:25 |
Performance: 0.261 - 0.00
Gradient: oeos [0 AESEels 0 | 1.00e-06
Validation Checks: 0 | T |6

Figure 5.4: Performance of MLP with 5 neuronsin hidden layer.

35

5.2 Perfor mance Assessment of Back Propagation Algorithms

Simulation is done to analyze the performance of Scaled Conjugate Gradient.

5.2.1 Scale Conjugate Gradient (SCG):
The Multilayer Perceptron was trained with SCG algorithm by using following

parameters.
change in weight for second derivative approximation(c)=5.0e-5

Parameter for regulating the indefiniteness of the Hessian(A)=5.0e-7

Best Validation Performance is 0.00053962 at epoch 240

Train
Validation
Test

Mean Squared Error (mse)

1 1 1
0 50 100 150 200

Figure 5.5: Performance of SCG Algorithm

36

Output Class

Output Class

4 5
Target Class

Output Class

Qutput Class

¥

2 3 4
Target Clase

e

All Confusion Matrix

Figure 5.6: Confusion matrix of Scaled Conjugate Gradient algorithm

Table 5.5: Evaluation Results for each Attack Classes (SCG)

Attack TP FP FN Recall Precision
DoS 391407 | 35 42 99.99% 99.99%
U2R 0 0 32 0% 0%

R2L 915 106 189 82.88% 89.61%
Probe 3898 30 200 95.12% 99.23%
Total 396220 | 171 463 98.88% 99.95%

37

True Positive

450000

400000
350000

300000

250000

200000
150000

100000

50000

0 T T T T

DoS U2R R2L Probe Total
Attack Types

Figure 5.7: Relationship of Attack Types versus True Positive

False Positive

180

160

140

120

100

80

60

40

20

DoS U2R R2L Probe Total
Attack Types

Figure 5.8: Relationship of Attack Types versus False Positive

38

500
450
400
350
300
250
200
150
100

50

False Negative

ul

Probe Total
Attack Types

Figure 5.9: Relationship of Attack types Versus False Negative

Recall Rate

120.00%

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%

| 1

R2L Probe Total
Attack Types

Figure 5.10: Relationship of Attack Types Versus Recall Rate

39

120.00%

100.00%
80.00%
60.00%
40.00%
20.00%
0.00% T
DoS

Figure 5.11: Relationship of Attack Types Versus Precision Rate

Precision Rate

R2L

U2R Probe Total

Attack Types

From above all comparison between different types of attack and performance
we conclude that precision rate, recall rate and true positive is higher in DoS
type attack. False Positive is higher in R2L type attack and false negative is
higher in Probe type attack. Similarly performance is higher in 30 hidden layer
network and epoch time less in 10 hidden in SCG Backpropagation algorithm
and SOM but less epoch time in SOM than Backpropagation algorithm.

5.2.2 Determining Hidden Layer Neurons in Self Organizing Map

The Multilayer Perception is trained to find the number of hidden layer neurons using
the following parameters:

Number of input data = 14020

Number of input layer neurons = 41

Number of output layer neurons =5 and 10

Simulation is done to analyze the performance of Self Organizing Map in terms of

different number of hidden layer , epoch and iteration time required.

40

Input SOM Layer Output

b @S|

41 10 x 10 100

Figure 5.12: SOM Network Layer of Size 10.

-‘. Meural Metwork Training (nntraintocl) | e |

Meural Network

Input Layer Output

41 25 25
Algorithms
Training: Batch Weight/Bias Rules (trainbu)
Performance: Mean Squared Error (mise)
Drervative: Default (defaultderiv)
Progress
Epoch: 0 | 200 iterations] 200
Time: | 0:00:49 |

Figure 5.13: Performance of SOM with 5 neuronsin hidden layer.

41

-‘l Meural Metwork Training {nntraintool) EA==E]

Meural Network

Input Layer Output

41 100 100
Algorithms
Training: Batch Weight/Bias Rules (trainbu)
Performance: Mean Squared Errer (mise)
Drerivative: Default (defaultderiv]
Progress
Epoch: 0 | 200 iterations | 200
Time: | 0:03:33 |

Figure 5.14: Performance of SOM with 10 neurons in hidden layer.

42

6. CONCLUSIONSAND RECOMMENDATIONS

6.1 Conclusions

An Intrusion Detection System is designed using supervised neural network Back
Propagation Algorithm and unsupervised neural network Self Organizing Map. From
above simulation result, data analysis and calculate the performance parameter we
conclude the detailed in following points
In Back Propagation algorithm calculate the performance parameters like true
positive, false positive, false negative, recall rate ,precision rate in different
types of attack and from result we conclude that precision rate in DoS is
highest. In self organizing map calculate the performance parameters SOM
neighbor connections, SOM input planes , SOM topology, SOM weight
Position in different hidden layers and these parameters are good
performance in 30 hidden layer network.
In both algorithm of hidden layers are training and testing using the large
number of KDD cups data set and Self Organizing Map algorithm is
suggested as the most efficient model because of fast epoch time and required
less memory .
Both of Supervised and Unsupervised neural network algorithms are verified
using JAVA code aso.

6.2 Future Recommendations

Network Intrusion Detection can be done using other types of Neural Networks like
Radial Basis Function Neural Network and using unsupervised networks like Self
Organizing Map (SOM) in real data.

43

7. References

[1] S. Mukkamala, G. Janoski and A. Sung, “Intrusion detection using neural
networks and support vector machines”, Proceedings of International Joint
Conference on Neural Networks (IJCNN '02), Val. 2, Pp. 1702-1707, 2002.

[2] Snehal A. Mulay, P.R. Devale and G.V. Garje, “Intrusion Detection System using
Support Vector Machine and Decision Tree”, International Journal of Computer
Applications, Val. 3, No. 3, Pp. 40-43, 2010.

[3] D. Anderson, T. Frivold and A. Valdes, “Nextgeneration intrusion detection expert
system (NIDES): a summary”, Technical Report SRI-CSL-95-07. Computer Science
Laboratory, SRI International, Menlo Park, CA, 1995.

[4] S. Axelsson, “Research in intrusion detection systems: a survey”, Technical
Report TR 98-17 (revised in 1999). Chalmers University of Technology, Goteborg,
Sweden, 1999.

[5] S. Freeman, A. Bivens, J. Branch and B. Szymanski, “Host-based intrusion
detection using user signatures”, Proceedings of the Research Conference. RPI, Troy,
NY, 2002.

[6] K. llgun, R.A. Kemmerer and P.A. Porras, “State transition analysis: A rule-based
intrusion detection approach”, IEEE Trans. Software Eng, Vol. 21, No. 3, Pp. 181-
199, 1995.

[7] D. Marchette, “A statistical method for profiling network traffic”, Proceedings of
the First USENIX Workshop on Intrusion Detection and Network Monitoring, Santa
Clara, CA, Pp. 119-128, 1999.

[8] Chan, L. W. and Fall side, F.: An adaptive training algorithm for back
propagation networks, Computer Speech and Language, Vol. 2, page 205-218,1987

[9] Kohonen, T. 1995. Self-Organizing Maps, volume 30 of Springer Series in
Information Sciences. Berlin, Heidelberg: Springer. (Second Extended Edition 1997).
[10] KDD Cup 1999 dataset. Available on:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

45

8. Bibliography

[1] S. Russel and P. Norvig, “ Artificial Intelligence, A Modern Approach” Pearson
Education, Second Edition, First Indian Reprint, 2003.

[2] E. Rich and K. Knight, “Atrtificial Intelligence”, Tata McGraw-Hill Edition, 26"
reprint 2002.

[3] Simon Haykin, “Neural Networks”, Pearson Education, 9" Indian Reprint, 2005.

46

Appendix A

1. FeatureNameand Typeof 10% KDDCup 99 dataset:
Table A.1: KDD Feature Columns Name and Type [5]
Feature Name Feaure Feature Name Feaiure
Type Type
1 duration continuous. | 22 is_guest _login discrete.
2 protocol_type symbolic. | 23 count continuous.
3 sevice symbolic. | 24 srv_count continuous.
4 flag symbolic. | 25 serror_rate continuous.
5 src_bytes continuous. | 26 srv_serror_rate continuous.
6 dst_bytes continuous. | 27 rerror_rate continuous.
T land discrete. 28 SIV_rerror_rate continuous.
8 | wrong fragment | continuous. | 29 same_srv_rate continuous.
9 urgent continuous. | 30 diff_srv_rate continuous.
10 hot continuous. | 31 | srv_diff host rate | continuous.
11 | num_failed logins | continuous. | 32 dst_host count | continuous.
12 logged in discrete. 33 | dst host srv_count | continuous.
13 | num_compromised | continuous. | 34 dst hnstrast:me SV | continuous.
14 root_shell continuous. | 35 dst_host_grl'f_sw_rat continuous.
: dst_host same src_ :
15 su_attempted continuous. | 36 port rate continuous.
16 num_root continuous. | 37 Gtchost s cit 1w continuous.
7 st rate
17 | num file creations | continuous. | 38 | dst host serror rate | continuous.
18 num_shells continuous. | 39 dSt—hDSt?:g —SEMOT | ontinuous.
19 | num_access files | continuous. | 40 | dst host rerror rate | continuous.
num_outbound cm j dst_host srv_rerror ,
20 = = continuous. | 41 TR eEe — | continuous.
ds rate

21 is_host_login discrete. | 42 Label symbolic.

47

2. Typesof Attacksin 10% KDDCup 99 dataset:

Table A.2; Attacks Classification

Main Attack | DOS U2R R2L Probe
apache2 buffer_overflow | ftp_write | psweep
back load module guess passwd | nmap
land perl imap portsweep
mailbomb ps mscam satan
neptune rootkit warezclient

Sub Attack
pod xterm warezmaster
processtable xclock
smurf XSnoop
teardrop
upstorm

48

3. Performance of ML P with different values of Hidden Layer Neurons:

~ Neural Network

Hidden

- Algorithms
Data Diwision:
Training:
Performance:
Derrvative:

Progress

Epoch:

Time:
Performance:
Gradient:

Validation Checks:

Random (dividerand])
RProp (trainrp)

Mean Squared Error (mse)
Default [(defaultderiv)

(] - 1000
02124
0.446 0.00

0.294 __:- 1.00e-05
o | 6] e

Figure A.1: Performance of MLP with 10 Neurons in Hidden Layer

Meural Network

Algorithms

Data Division:

Training:
Performance:
Derivative:

Progress

Epoch:

Times:
Performance:
Gradient:

Validation Checks:

Random (dividerand]
RProp (trainrp)
Mean Squared Error (mse)
Drefault (defaultderiv)
1000
[0:15:57]
0.326 0.00
0.462 1.00e-05
(1] | |] 6

Figure A.2: Performance of MLP with 16 Neurons in Hidden Layer

49

MNewral Network

Hidden Output

Algorithms

Data Division:

Training:
Performance:
Derrvative:

Random (dividerand)
RProp (trainrp)

Mean Squared Error (mse)
Default (defaultderny)

Progress
Epoch:] eratinns J 1000
Time: 0:13:34
Performance: 0.332 _ 0.00
Gradient: 0.634 _I— 1.00e-05
Walidation Checks: o [] &

Figure A.3: Performance of MLP with 23 Neurons in Hidden Layer

Meural Network

-Algorithms-
Drata Division:
Training:
Performance:
Derivative:

Random (dividerand}
RProp (trainrp)

Mean Squared Error (mse)
Default (defaultderiv)

-Progress-

Epoch: 0 _ 1000
Time: 0:33:57

Performance: 0.529 | _____ —- 0,00
Gradient: 0.687 1.00e-05
Validation Checks: o | IJ &

Figure A.4: Performance of MLP with 30 Neurons in Hidden Layer

50

Appendix B

1. Simulation Results of SCBP Algorithm:

The graphical representation of the visual impression of the distribution of Errors
(Targets- Outputs) is shown as the Error Histogram plot for the given data in Figure
B.1. It consists of tabular instances shown as adjacent rectangles erected over discrete
bins. It shows that maximum error is ~ - 0.05. The receiver operating characteristics
for training, validation and testing phases of the dataset are shown in Figure B.2. The
ideal value should be close to one. As per the smulation we have got data which are

mostly True Positive.

B Meural Metwork Training Error Histogram [!:l'cmenhi'stj_ Epoch 1000, Maximum e... (e |sSh| w5
——

File Edit View Insert Toecls Desktop Window Help o
% 10° Error Histogram with 20 Bins
T T T T T T T T T T T T T T T T T T T T
18t I Training H
Al [Vv alidation | |
I T=st
14 | Zero Error |

12
10

Instances

4 © I~ 00 O — O = © — = W ® I~ @ =+ O — @ O
0 O 0D m MmO D - — om0 Mmoo W
=T = e o RO e e = T g g o0 O OLoO0 =1

Errors = Ta;gets - Outputs

Figure B.1: Error Histogram of SCBP

ol

Training RCHZ> Walidatinn ROC

! R :
— Llass 1 r //ﬁ’—r
— Class 2
0.3 0.8
- — Class 3 - I
f:“i — Class 4 E —
w OB — (Class § m 0B
é é
04 LR
— —
o2 oz
n o
o o2 04 o0& [1 a oz 0.4 0.6 o= 1
False Pusilive Hals Falsc Positive Rate
Test RCHT Al RCHz
1 1
el :ﬁrf _
o8 - s 0oa
e il = P
= =
w 0.6 J o OB
g 2
z 3z
LR T L B
= —
o> 0.2
0 o ' ' ' ' '
u] o2 0.4 0.6 o2 1 o o2 0.4 0.6 o= 1
Falsc Positive Rateo False Positive Ratc

Figure B.2: ROC plot of SCBP

Simulation Result Of Self Organizing Map

In Self Organizing Map the simulation result of different parameters like SOM
weight position, SOM input plane, SOM neighbor connection and SOM topology
showing below figure.

ﬂ Meural Network Training 30M Weight Positions (plotsempos), Epoch 200, Maxi... =B =

File Edit View Insert Tools Desktop Window Help k]
g SO Yeight Positions
= & Ly 2000 4000 G000 5000 10000 12000 14000
= YWeight 1

Figure: B.3 SOM weight Position

52

n Met

wral Network Training SOM Tnput Planes (plotsomplanes), Fpoch 200, Maxinuim epoch reached. |M

File Edit View Insert Tools Desktop Window Help k]

Weights frarn Weights frorm WyeibEs from Wisidtits from Weidkd s from WeibiRs from Weitkts from Input 7

i B CH RNy bR

n & 10 0 & 10 O 0 O L 1 i O R O R s n & 1
Weights from Wyeitkts fromtieighBs from WisoghtE from Weighitd from Weaght2 from WeIGHE: from Input 14

. K F F B}

0 5 10 0O 5 10 0 5 10 0 510 0O 5 10 0 5 10 0 5 10
Wieights trom WisegHts from MYEmHEE from Wieegtitd from teegtits trom Wiseghitd trom WeigBA: trom Inpot 21

e EE N

0 5 10 0 5 10 0 5 10 0 5 10 0 &5 10 0 5 10 0 5 10
Wieights from tfeigtEz from WfeigEE from iseogtEs from WeigtEs from Weogtas from WeigEsE friom Input 25

K "k "} K b §

0 5 10 0 &8 10 0 5 10 o 5 10 0 5 10 ek i A o 5 10
Wicights from inigii® from Woag R from oot from Wioogtae from WioogFas from Yoy from Input 35

L H b ELEEHEEY

(Bl R e g Bf Ea el IR e SiE] S e e il R e] (s |
Wirights frnm Wimig R from WRIERE from WimigER foom Wheige fiom WisimbiE from npot 41

EEEENN

I8 S=E i] [| o 5 10 (aF o i) @F = il [@E s]

DRk

Figure: B.4 SOM input planes

H Meural Metwork Training 50M Meighbor Connecticns {plotsomnc), Epoch 200, ... |£|EI$

File

Edit View Insert Tools Desktop Window Help k]

SOM Meighbor Connections

Figure: B.5 SOM neighbor connections

53

. Meural Network Training SOM Topology (plotsomtop), Epoch 200, Maximum ep... | = | = 2 |

File Edit View Inset Tools Desktop Window Help N

SOM Topology

Figure: B.7 SOM topology

