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ABSTRACT 

 

The Longest Common Subsequence(LCS) identification of biological sequences has 

significant aplications in bioinformatics. Due to the emerging growth in 

bioinformatics applications, new biological sequences with longer length have been 

used for processing, making it great challenge for sequenctial LCS algorithms. Few 

parallel LCS algorithms have been  proposed but their efficiency and effectiveness 

are not satisfactory with increasing complexity and size of biological data. To 

overcome limitations of existing LCS algorithms and considering MapReduce 

programming model as promising technology for cost effective high performace 

parallel computing, MapReduce based parallel algorithm for LCS has been 

developed. This algorithm adopts the concepts of successor tables, identical character 

pairs, successor tree and traversal of successor tree to find Longest Common 

Subsequence. The hadoop framework is used for the realization of MapReduce 

model. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

 

Biological sequence[1] can be represented as a sequence of symbols. DNA sequences 

can be represented as sequences of four letters A, C, G and T corresponding to the 

four sub-molecules Adenine, Cytosine, Guanine, and Thymine. When a new 

biological sequence is found, we want to know what other sequence it is most similar 

to. Sequence comparison  has been used successfully to establish the link between 

cancer-causing genes and a gene evolved in normal growth and development.  

Among the many sequence comparison algorithms, one extremely common technique 

includes the alignment-based methods. These involve aligning the entire (global 

alignment, Needleman-Wunsch[2]) or smaller sections (local alignment, Smith-

Waterman[3]) of the genetic sequences. The choice of global or local alignment is 

based on the type of analysis desired. However, both these methods are heavily 

dependent on the quality of sequence data. Even slight discrepancies resulting from 

experimental or technical limitations, can significantly affect the comparison results. 

Alternative approaches of sequence analysis are becoming increasingly important in 

dealing with the exponential growth of genetic sequence data, and the classification 

and the grouping of organisms based on these sequences. Such alternative approaches 

include the alignment-free methods, which match the relative (as opposed to the 

exact) order of the base pairs in the sequence. One way of detecting the similarity of 

two or more sequences using the alignment-free methods is to find their Longest 

Common Subsequences. 

A subsequence is a sequence that appears in the same relative order, but not 

necessarily contiguous. This makes the subsequence different from the substring as a 

substring should appear in a contiguous relative order. A common subsequence is a 
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longest subsequence if it is of maximum length. For example, between ATCG and 

CTCAG, the longest common substring is TC, while the longest common 

subsequence is TCG. 

Advancements in sequencing technology are changing the scale of genetic data. The 

Genbank, a public repository of genetic sequence data, reported 178322253 sequence 

records in its 204th release in Oct 2014. Analyzing such large datasets, including the 

3 billion bases of the human reference genome, on uniprocessor machines is an 

extremely time consuming process. Therefore, for efficient computation of LCS, 

Parallel algorithms are used. 

In this thesis work, a parallel algorithm for finding the longest common subsequence 

(LCS), across genetic sequences is developed. This algorithm uses the open-source 

implementation of MapReduce[4]  called Hadoop[5] to schedule, monitor, and 

manage the parallel execution. MapReduce is the software framework invented by 

and used by Google to support parallel execution of their data intensive applications. 

Computation in MapReduce is divided into two major phases called map and reduce, 

separated by an internal grouping of the intermediate results. This two-phase 

computation was developed after recognizing that many different computations could 

be solved by first computing a partial result (map phase), and then combining those 

partial results into the final result (reduce phase). The power of MapReduce is that 

map and reduce functions are executed in parallel over potentially hundreds or 

thousands of processors with minimal effort by the application developer.  
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1. 2. Problem Definition 

 

Searching for the longest common sequence (LCS) between biosequences is one of 

the most fundamental tasks in bioinformatics.  There are many sequential algorithms 

available in this area and few parallel algorithms are making use of the technology to 

arrive at a quick solution. The parallel algorithms are implemented using CREW 

PRAM model, Systolic arrays and MPP parallel computing model. The parallel 

implementations of these algorithms are of a certain difficulty due to their 

complicated concurrency, synchronization, and mutual exclusion, that is, none of 

these algorithms employed simple and cost-effective high performance parallel 

computing framework such as MapReduce for implementing their algorithms. There 

is very less work done for LCS using MapReduce. 

 

In this thesis work, a parallel algorithm is developed to speed up the computation for 

finding LCS using the MapReduce programming model. MapReduce is a 

programming model for processing large data sets with a parallel, distributed 

algorithm on a cluster. The main challenge with MapReduce model is to split the 

problem in the form of map and reduce operations. 

 

1. 3. Objectives 

 

The main objectives of this thesis are 

 To develop a MapReduce  based parallel algorithm to find Longest Common 

Subsequences  

 To use developed algorithm for biological sequence comparison 

 

  



 

4 
 

1.4 Scope of the work 

 

When a new gene sequence is found, we want to know what other sequences it is 

most similar to. Sequence comparison has been used successfully to establish the link 

between cancer-causing genes and a gene evolved in normal growth and 

development. One way of detecting the similarity of two or more sequences is to find 

their LCS.  

 

Because of larger number of gene sequences increasing day by day and extremely 

large length of single gene sequence there is a need of parallel computing to find the 

LCS of gene sequences. MapReduce programming with Hadoop framework is 

emerging technology for distributed computing especially in case of big data. So, 

parallel implementation of LCS using MapReduce programming model really the 

good candidate of research. 

 

The scope of this thesis work is to develop a MapReduce based parallel algorithm that 

could be used to find the longest common subsequence of gene sequences  

 

1.5 Organization of the thesis report 

 

This thesis report is mainly divided into six sections: Introduction, Literature Review, 

Theoretical Background, Research Methodology, Results and Discussions and 

Conclusions. 

Introduction section covers Background of thesis work, Problem Definition, 

Objectives and Scope of the work. 



 

5 
 

Under Literature Review brief introduction of some existing algorithms are included. 

Needleman–Wunsch algorithm, Smith–Waterman algorithm and Fast LCS algorithm 

are included in this section. 

Third chapter,which is Theoretical Background includes brief introduction of 

Deoxyribonucleic acid (DNA), MapReduce and Hadoop and the Hadoop Distributed 

File System. 

Research Methodology section covers Model Development, Algorithm Development 

and MapReduce Strategy developed for realization of the algorithm developed. 

Results and Discussions section includes Sample output, Complexity Analysis and 

Run Time of the Algorithm. 

Finally the thesis report is concluded with Conclusions section which includes 

conclusions and recommendations. 
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CHAPTER 2: LITERATURE REVIEW 

 

Since the LCS problem is essentially a special case of the sequence alignment, all the 

algorithms for the sequence alignment can be used to solve the LCS problem. 

 

The Needleman–Wunsch[2] algorithm was the first application of dynamic 

programming which provides a global alignment between two sequences. This 

algorithm leads to the evolution of various efficient LCS algorithms. It is only 

suitable if the two sequences are of similar length. The Smith- Waterman [3] 

algorithm evolved from Needleman- Wunsch algorithm provides a local alignment of 

biological sequences. 

 

Various parallel algorithms based on the CREW PRAM model, Systolic arrays have 

been proposed in the earlier days to reduce the computation time. Later, Wan, Liu, 

Chen proposed Fast LCS algorithm [6]. Fast LCS‘s efficiency has been further 

improved by the Efficient Fast Pruned LCS (EFP_LCS) [7]. Further inspired from 

Fast LCS algorithm, Bhowmick, Shafiullah, Rai and Bastola have proposed a Parallel 

Non-Alignment Based Approach to LCS [8]. In the recent days Li ,Wang and Bao  

have proposed a finite automaton based on cloud computing called FACC[9] for 

LCS. This is also mostly inspited by Fast LCS algorithm. 

 

2.1 Needleman–Wunsch algorithm  

 

The Needleman–Wunsch algorithm performs a global alignment on two sequences. It 

is commonly used in bioinformatics to align protein or nucleotide sequences. The 

algorithm was published in 1970 by Saul B. Needleman and Christian D. Wunsch. 

The Needleman–Wunsch algorithm is an example of dynamic programming, and was 
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the first application of dynamic programming to biological sequence comparison. It is 

sometimes referred to as the Optimal matching algorithm.  

 

This global sequence alignment method explores all possible alignments and chooses 

the best one (the optimal global alignment). It does this by reading in a scoring matrix 

and a gap penalty (penalties) that contains values for every possible residue or 

nucleotide match and summing the matches taken from the scoring matrix. 

 

2.2 Smith–Waterman algorithm 

 

The Smith–Waterman algorithm performs local sequence alignment; that is, for 

determining similar regions between two strings or nucleotide or protein sequences. 

Instead of looking at the total sequence, the Smith–Waterman algorithm compares 

segments of all possible lengths and optimizes the similarity measure.  

 

The algorithm was first proposed by Temple F. Smith and Michael S. Waterman in 

1981. Like the Needleman–Wunsch algorithm, of which it is a variation, Smith–

Waterman is a dynamic programming algorithm. As such, it has the desirable 

property that it is guaranteed to find the optimal local alignment with respect to the 

scoring system being used (which includes the substitution matrix and the gap-

scoring scheme). The main difference to the Needleman–Wunsch algorithm is that 

negative scoring matrix cells are set to zero, which renders the (thus positively 

scoring) local alignments visible. Backtracking starts at the highest scoring matrix 

cell and proceeds until a cell with score zero is encountered, yielding the highest 

scoring local alignment.  
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2.3 Fast LCS algorithm  

 

The algorithm first constructs a novel successor table to obtain all the identical pairs 

and their levels. It then obtains the LCS by tracing back from the identical character 

pairs at the last level. The key technique of this algorithm is the use of several 

effective pruning operations. In the process of generating the successors, pruning 

techniques can remove the identical pairs which cannot generate the LCS so as to 

reduce the search space and accelerate the search speed. 
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CHAPTER 3: THEORETICAL BACKGROUND  

 

3.1 Deoxyribonucleic acid (DNA) 

 

Deoxyribonucleic acid (DNA) is a molecule that encodes the genetic instructions 

used in the development and functioning of all known living organisms and many 

viruses. Along with RNA and proteins, DNA is one of the three major 

macromolecules essential for all known forms of life. Most DNA molecules are 

double-stranded helices, consisting of two long biopolymers of simpler units called 

nucleotides—each nucleotide is composed of a nucleobase (guanine, adenine, 

thymine, and cytosine), recorded using the letters G, A, T, and C, as well as a 

backbone made of alternating sugars (deoxyribose) and phosphate groups (related to 

phosphoric acid), with the nucleobases (G, A, T, C) attached to the sugars. DNA is 

well-suited for biological information storage, since the DNA backbone is resistant to 

cleavage and the double-stranded structure provides the molecule with a built-in 

duplicate of the encoded information. 

 

Figure 3.1. Structure of DNA sequence 
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3.2 MapReduce 

 

MapReduce is a programming model and an associated implementation for  

processing and generating large data sets. Users specify a map function that processes 

a key/value pair to generate a set of intermediate key/value pairs, and a reduce 

function that merges all intermediate values associated with the same intermediate 

key. 

 

Programs written in this functional style are automatically parallelized and executed 

on a large cluster of commodity machines. The run-time system takes care of the 

details of partitioning the input data, scheduling the program‘s  execution across a set 

of machines, handling machine failures, and managing the required inter-machine 

communication. This allows programmers without any experience with parallel and 

distributed systems to easily utilize the resources of a large distributed system. 

A typical MapReduce computation processes many terabytes of data on thousands of 

machines. Programmers find the system easy to use: hundreds of MapReduce 

programs have been implemented and upwards of one thousand MapReduce jobs are 

executed on Google‘s clusters every day. 

MapReduce provides an abstraction that involves the programmer defining a 

"mapper" and a "reducer," with the following signatures: 

 Map: (value 1, key1) → list (key2, value2) 

 Reduce: (key2, list (value2) → list (value2). 

  



 

11 
 

3.2.1 Execution Overview 

 

The Map invocations are distributed across multiple machines by automatically 

partitioning the input data into a set of M splits. The input splits can be processed in 

parallel by different machines. Reduce invocations are distributed by partitioning the 

intermediate key space into R pieces using a partitioning function (e.g., hash(key) 

mod R). The number of partitions (R) and the partitioning function are specified by 

the user. 

 

Figure 3.2. MapReduce Execution Overview 

 

Figure 3.2 shows the overall flow of a MapReduce operation in the implementation. 

When the user program calls the MapReduce function, the following sequence of 

actions occurs (the numbered labels in Figure 3.2 correspond to the numbers in the 

list below): 
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1. The MapReduce library in the user program first splits the input files into M pieces 

of typically 16 megabytes to 64 megabytes (MB) per piece (controllable by the user 

via an optional parameter). It then starts up many copies of the program on a cluster 

of machines. 

 

2. One of the copies of the program is special – the master. The rest are workers that 

are assigned work by the master. There areM map tasks and R reduce tasks to assign. 

The master picks idle workers and assigns each one a map task or a reduce task. 

 

3. A worker who is assigned a map task reads the contents of the corresponding input 

split. It parses key/value pairs out of the input data and passes each pair to the user-

defined Map function. The intermediate key/value pairs produced by the Map 

function are buffered in memory. 

 

4. Periodically, the buffered pairs are written to local disk, partitioned into R regions 

by the partitioning function. The locations of these buffered pairs on the local disk are 

passed back to the master, who is responsible for forwarding these locations to the 

reduce workers. 

5. When a reduce worker is notified by the master about these locations, it uses 

remote procedure calls to read the buffered data from the local disks of the map 

workers. When a reduce worker has read all intermediate data, it sorts it by the 

intermediate keys so that all occurrences of the same key are grouped together. The 

sorting is needed because typically many different keys map to the same reduce task. 

If the amount of intermediate data is too large to fit in 

memory, an external sort is used. 

 

6. The reduce worker iterates over the sorted intermediate data and for each unique 

intermediate key encountered, it passes the key and the corresponding set of 
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intermediate values to the user‘s Reduce function. The output of the Reduce function 

is appended to a final output file for this reduce partition. 

 

7. When all map tasks and reduce tasks have been completed, the master wakes up 

the user program. At this point, the MapReduce call in the user program returns back 

to the user code. 

After successful completion, the output of the mapreduce execution is available in the 

R output files (one per reduce task, with file names as specified by the user). 

Typically, users do not need to combine these R output files into one file – they often 

pass these files as input to another MapReduce call, or use them from another 

distributed application that is able to deal with input that is partitioned into multiple 

files. 

 

3.2.2 Master Data Structures 

 

The master keeps several data structures. For each map  task and reduce task, it stores 

the state (idle, in-progress, or completed), and the identity of the worker machine (for 

non-idle tasks). 

 

The master is the conduit through which the location of intermediate file regions is 

propagated from map tasks to reduce tasks. Therefore, for each completed map task, 

the master stores the locations and sizes of the R intermediate file regions produced 

by the map task. Updates to this location and size information are received as map 

tasks are completed. The information is pushed incrementally to workers that have in-

progress reduce tasks. 
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3.3 Hadoop and the Hadoop Distributed File System 

 
Hadoop is a popular open source implementation of  MapReduce, which is a powerful 

tool designed for deep analysis and transformation of very large datasets which is 

inspired by Google's MapReduce and Google File System. It enables  applications to 

work with thousands of nodes and petabytes of data. 

 

Hadoop uses a distributed file system called Hadoop Distributed File System (HDFS),  

which creates multiple replicas of data blocks and distributes them on computer nodes 

throughout a cluster to enable reliability and has extremely rapid computations to 

store data as well as the intermediate results. The Hadoop runtime system coupled 

with HDFS manages the details of parallelism and concurrency to provide ease of 

parallel programming with reinforced reliability. In a Hadoop cluster, a master node 

controls a group of slave nodes on which the Map and Reduce functions run in 

parallel.  

 

3.3.1 NameNode and DataNodes  

 

HDFS has a master/slave architecture. An HDFS cluster consists of a single 

NameNode, a master server that manages the file system namespace and regulates 

access to files by clients. In addition, there are a number of DataNodes, usually one 

per node in the cluster, which manage storage attached to the nodes that they run on. 

HDFS exposes a file system namespace and allows user data to be stored in files. 

Internally, a file is split into one or more blocks and these blocks are stored in a set of 

DataNodes. The NameNode executes file system namespace operations like opening, 

closing, and renaming files and directories. It also determines the mapping of blocks 

to DataNodes. The DataNodes are responsible for serving read and write requests 

from the file system‘s clients. The DataNodes also perform block creation, deletion, 

and replication upon instruction from the NameNode.  
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The NameNode and DataNode are pieces of software designed to run on commodity 

machines. These machines typically run a GNU/Linux operating system (OS). HDFS 

is built using the Java language; any machine that supports Java can run the 

NameNode or the DataNode software. Usage of the highly portable Java language 

means that HDFS can be deployed on a wide range of machines. A typical 

deployment has a dedicated machine that runs only the NameNode software. Each of 

the other machines in the cluster runs one instance of the DataNode software. The 

architecture does not preclude running multiple DataNodes on the same machine but 

in a real deployment that is rarely the case.  

 

 

Figure 3.3. HDFS Architecture 

 

The existence of a single NameNode in a cluster greatly simplifies the architecture of 

the system. The NameNode is the arbitrator and repository for all HDFS metadata. 

The system is designed in such a way that user data never flows through the 

NameNode.  
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3.3.2 The File System Namespace  

 

HDFS supports a traditional hierarchical file organization. A user or an application 

can create directories and store files inside these directories. The file system 

namespace hierarchy is similar to most other existing file systems; one can create and 

remove files, move a file from one directory to another, or rename a file. HDFS does 

not yet implement user quotas or access permissions. HDFS does not support hard 

links or soft links. However, the HDFS architecture does not preclude implementing 

these features.  

 

The NameNode maintains the file system namespace. Any change to the file system 

namespace or its properties is recorded by the NameNode. An application can specify 

the number of replicas of a file that should be maintained by HDFS. The number of 

copies of a file is called the replication factor of that file. This information is stored 

by the NameNode.  

 

3.3.3 Data Replication  

 

HDFS is designed to reliably store very large files across machines in a large cluster. 

It stores each file as a sequence of blocks; all blocks in a file except the last block are 

the same size. The blocks of a file are replicated for fault tolerance. The block size 

and replication factor are configurable per file. An application can specify the number 

of replicas of a file. The replication factor can be specified at file creation time and 

can be changed later. Files in HDFS are write-once and have strictly one writer at any 

time.  

 

The NameNode makes all decisions regarding replication of blocks. It periodically 

receives a Heartbeat and a Blockreport from each of the DataNodes in the cluster. 
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Receipt of a Heartbeat implies that the DataNode is functioning properly. A 

Blockreport contains a list of all blocks on a DataNode.  

 

The placement of replicas is critical to HDFS reliability and performance. Optimizing 

replica placement distinguishes HDFS from most other distributed file systems. This 

is a feature that needs lots of tuning and experience. The purpose of a rack-aware 

replica placement policy is to improve data reliability, availability, and network 

bandwidth utilization. The current implementation for the replica placement policy is 

a first effort in this direction. The short-term goals of implementing this policy are to 

validate it on production systems, learn more about its behavior, and build a 

foundation to test and research more sophisticated policies.  

 

To minimize global bandwidth consumption and read latency, HDFS tries to satisfy a 

read request from a replica that is closest to the reader. If there exists a replica on the 

same rack as the reader node, then that replica is preferred to satisfy the read request. 

If HDFS cluster spans multiple data centers, then a replica that is resident in the local 

data center is preferred over any remote replica.   
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CHAPTER 4: RESEARCH METHODOLOGY 

 

4.1  Model Development 

 

Below are the steps followed in Model development. These include construction of 

successor table, finding initial identical character pairs, producing successors and 

creating successor tree, and finally traversing successor tree to find LCS. 

 

4.1.1 Constructing successor tables 

 

Suppose X =  (  ,   , …,  ) and Y = (  ,   , …,   ) are two biosequences where  

         {A, C, G, T}. We can define an array CH of the four characters such that 

CH(0) = ‗A‘, CH(1)=‗C‘, CH(2) = ‗G‘ and CH(3) = ‗T‘. The successor tables of the 

identical characters of X and Y are represented by TX and TY. Entries in successor 

tables are defined as: 

 

T(i,j)  {
   * |     (   )+   (   )    

              
      (1) 

 

S(i,j)  * |     ( )    } 

Where  i= 0,1,2,3 and  j = 0,1,2,…,n i.e. length of sequence. 

 

If T(i,j) is not "-", it gives the position of the next character identical to CH(i) after 

the     position in the sequence, otherwise it means there is no such character after the 

    position. 
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Example 1: 

Let X = "ATCG" and Y = "CTCAG". Their successor tables TX and TY are shown in 

Table 4.1. 

 

Table 4.1. Successor Tables TX and TY 

TX: 

i CH(i) j 

0 1 2 3 4 

0 A 1 - - - - 

1 C 3 3 3 - - 

2 G 4 4 4 4 - 

3 T 2 2 - - - 

 

TY: 

i CH(i) j 

0 1 2 3 4 5 

0 A 4 4 4 4 - - 

1 C 1 3 3 - - - 

2 G 5 5 5 5 5  

3 T 2 2 - - -  

 

 

 

4.1.2 Finding initial identical character pairs 

 

For the sequences X and Y, if        = CH(k), then (i, j)  is called an identical pair 

of CH(k). Initial identical character pairs of X and Y computed from TX and TY are 

represented as (TX(k,0), TY(k,0)), where k = 0,1,2,3. In example 1, these are A(1,4), 

C(3,1), G(4,5) and T(2,2). 
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4.1.3 Producing successors and creating successor tree 

 

At first all the direct successors of initial identical character pairs are  produced in 

parallel using successor tables. Then the direct successors of those successors 

computed  in the previous step are produced in parallel. This process of producing 

direct successors is repeated until there are no successor to be produced. 

 

For an identical character pair (i, j), the direct successors can be  produced as: 

 

(i,j) →{(TX(k,i),TY(k,j))|k = 0,1,2,3 TX(k,i)≠'-' and TY(k,j)≠'-'}   

 (2) 

 

For example, the successors of the identical character pair A (1,4) in Example 1 can 

be obtained by coupling the elements of the 1st column of TX and the 4th column of 

TY. It is G(4, 5). 

 

Operation of Pruning 

 

While producing director successor and creating  successor tree, pruning techniques  

can be used to remove the identical pairs which do not contribute to the LCS so as to 

reduce the search space and improve the efficiency. 

 

Pruning Operation 1 

If there are two identical character pairs (i, j) and (k, l) satisfying (k, l)>(i, j) on the 

same level, then (k, l) can be pruned without affecting the correctness of the 

algorithm in obtaining the LCS of X and Y. 

 

For example, C(3, 3) and G(4, 5) in Example 1 are the successors of the identical pair 

T(2, 2). Since they are on the same level and G(4, 5) > C(3, 3),  we can prune G(4, 5). 
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Pruning Operation 2 

If on the same level, there are two identical character pairs (  , j) and (  , j) satisfying 

   <  , then (  , j) can be pruned without affecting the correctness of the algorithm in 

obtaining the LCS of X and Y. 

 

Pruning Operation 3 

If there are identical character pairs (  , j) , (  , j), ..., (  , j) and   <   <...<  , then we 

can prune (  , j), ..., (  , j). 

 

Finally a successor  tree is created from the successors produced.We consider a 

dummy node  ɛ(0,0) as a root. 

 

Figure 4.1. Successor tree to compute LCS of sequences X and Y 

 

4.1.4 Traversing successor tree to find LCS 

 

The successor tree is traversed using depth first search method. Longest path gives 

the LCS. 

For example, in Example 1, longest path traversed is 

 

 

Figure 4.2. Longest Common Subsequences of sequences X and Y 

 

Therefore, Longest Common Subsequence is TCG. 
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4.2 Algorithm Development 

 

Input: 

 Two bio-sequences X and Y of length m and n respectively. 

Output: 

 String(s) LCS of length |LCS| which is (are) the longest common 

subsequence(s) of X and Y. 

 

Procedure 

1. Create successor table TX and TY for X and Y sequences over the alphabets of CH 

in parallel using MapReduce model  

2. Initial identical character pairs  

2.1 Find all the initial identical character pairs:(TX(k, 0),TY(k, 0)), where k = 

0,1,2,3 

 2.2 Apply pruning techniques on the initial identical character pairs obtained 

3. Finding the direct successors level wise and producing the successor tree 

   Repeat the steps 3.1 through 3.2 until no more successors are found 

3.1 For all the current level identical pair, do in parallel using MapReduce 

model   

3.1.1 Identify all direct successors 

  3.1.2 Apply pruning techniques 

 3.2 Add the potentially useful successor to the successor tree 

4. Traversing successor tree to search for LCS 

4.1 By depth first search method, successor tree is traversed from root to 

every leaf node  

4.2 Longest path traversed will be the LCS 
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4.3  MapReduce strategy  

 

First of all two input files containing DNA sequences are loaded to HDFS. Input files 

are text files which contain combinations of characters A, C, G and  T. 

 

4.3.1 Finding  the positions of characters 

 

This single Map Reduce task is to find  positions of all characters in both input 

sequences. Input for this MapReduce job are input files loaded into HDFS under input 

directory. 

 

For this, the Map and Reduce tasks are defined as follows: 

 

Map Procedure: 

Input(k,v) = (line_number, dna_sequence) 

Output(k,v) = (character, position_of_character) 

For each line in value  

 Extract each character 

 Set extracted character(A, C, G and T)  as output key 

 Set position of extracted character as output value 

 

Reduce Procedure: 

Input(k,v) = (character, position_of_character) 

Output(k,v) = (character, position_list) 

For each position values of characters in a sequence 

 Create a list of positions of each characters in a sequence file 

 Set thus created list as output value of reducer 

 Character value plus sequence file name will be the output key of 

reducer 
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Output of this MapReduce job is written to HDFS under ―positons‖ sub directory of 

output directory. 

 

4.3.2 Creating successor tables 

 

This single Map Reduce task is to create successor tables TX and TY in parallel. This 

MapReduce job takes as  input from ―positons‖ sub directory of output directory. 

For this, the Map and Reduce tasks are defined as follows: 

Map Procedure: 

 Input(k,v) = (line_number, position_list) 

 Output(k,v) = (one, position_list) 

For each line in value, pass the content in line (position list) to the reducer as 

it is. 

Reduce Procedure: 

 Input(k,v) = (one, position_list) 

 Output(k,v) = (character, entry_in_successor_table) 

 

Here, 

HBase table is used to store the successor tables created. Since successor table is used 

as lookup table for computing direct successors at each level, it is effective solution to 

store this in HBase and retrieve whenever needed. 

 

The HBase table created to store values of successor tables is given the name 

―successor_table‖. Two column families ―seq1‖ and ―seq2‖ are defined to store 

values corresponding to TX and TY. There are four row keys defined with names 

0,1,2 and 3 corressponding to four characters A,C,G and T.  
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4.3.3 Finding initial identical pairs 

 

This single Map Reduce task is to compute initial identical pairs from successor 

tables TX and TY in parallel. 

Here, 

Input to the Mapper is the data from HBase table ―successor_table‖. 

For this, the Map and Reduce tasks are defined as follows: 

Map Procedure: 

 Input(k,v) = (rowKey, columns) 

 Output(k,v) = (identical_character, position_pair) 

Combine  values in columns ―seq1:0‖ and ―seq2:0‖ to compute the identical 

character pairs. 

Reduce Procedure: 

 Input(k,v) = (identical_character, position_pair) 

 Output(k,v) = (identical_character, pruned_ position_pair) 

Perform prunings on the position pairs and only the remaining pairs after pruning will 

be treated as initial identical character pairs and written to HDFS. Output of this 

MaprReduce job is given name ―level0‖ in output directory. 

 

4.3.4 Finding LCS levelwise 

 

This is Multi Level Map Reduce task. Input to the First level Map Reduce job to  

compute LCS are the initial identical pairs stored under the location ―levelo‖. And 

output will be stored under ―level1‖. 

For next level MapReduce job, input is ―level1‖ and output is ―level2‖ and so on until 

there are no direct successors based on successor tables. 

For this the Map and Reduce tasks are defined as follows:  



 

26 
 

Map Procedure: 

 Input(k,v) = (identical_character, position_pair) 

 Output(k,v) = (identical_character, direct_successors) 

 For each identical character pair at current level, compute all possible direct 

successors. 

Reduce Procedure: 

 Input(k,v) = (identical_character, direct_successors) 

 Output(k,v) = (identical_character, pruned_direct_successors) 

 For each identical character pairs at a level 

 Compute all possible direct successors from successor tables 

 Apply pruning techniques 

 Identical character pair will remain as key of reducer output 

 Direct successors after pruning will be value of reducer output 

 

Here, 

Besides input from previous level LCS, successor tables are read from HBase in 

every mapper as the look up table to compute the direct successors. 

 

The identical character pairs at each level need to remember the value of the  identical 

character pairs at previous levels. Therefore, identical characters pairs are created by 

concatenating the LCS at previous levels.  
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CHAPTER 5: RESULTS AND DISCUSSIONS 

 

The basic Map Reduce Model for computing the Longest Common Subsequence has 

been developed, which includes as listed below. 

 

5.1 Sample Output 

 

Below are the sample outputs at different stages. 

 

5.1.1 Input directory in HDFS  

 

 

Figure 5.1. Input directory in HDFS 
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5.1.2 Input sequence one  in HDFS  

 

 

Figure 5.2. Input sequence one  in HDFS 

 

5.1.3 Input sequence two  in HDFS 

 

 

Figure 5.3. Input sequence two  in HDFS 
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5.1.4 Output directory in HDFS  

 

 

Figure 5.4. Output directory in HDFS 

 

5.1.5 Output of position finding 

 

 

Figure 5.5. Output of position finding 
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5.1.6 Output of  successor table creation 

 

 

Figure 5.6. Output of  successor table creation 
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5.1.7 Output of initial identical character pair finding(level 0 LCS) 

 

 

Figure 5.7. Output of initial identical character pair finding(level 0 LCS) 

 

5.1.8 Output of level 1 LCS 

 

 

Figure 5.8. Output of level 1 LCS 
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5.1.9 Output of level 2 LCS 

 

 

Figure 5.9. Output of level 2 LCS   
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5.2 Complexity Analysis 

 

Each input sequence is traversed once to find the position of identical characters. 

Based on positions found, successor tables are constructed and finally LCS is 

computed. Therefore, assuming both sequences with length n, time complexity is 

O(n). Again storage space is proportional to the size of input sequences. Therefore, 

the  space complexity is also O(n). 

 

5.3 Run Time of Algorithm 

 

Performance is measured by running this algorithm for two input sequences. Below 

are the results for the time taken with single node and multi node cluster with 5 

working nodes. The configuration for each node is Intel Core 2 Duo CPU E7500 

2.93GHz with 2 cores and 2GB of RAM. The hadoop version used is 1.0.4 and the 

linux version for hadoop cluster setup is ubuntu 12.04. Two input sequences are run 

for 10 times in both single node and multi node cluster and average time is computed. 

Table 5.1 shows the time taken by this algorithm while running in single node. Table 

5.2 shows the time taken while running in the multi node cluster. 
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Table 5.1. Time taken by each MapReduce job for single node 

No of 

iterations 

Time taken by each MapReduce job(in ms) 

Position 

Pair 

Successor 

Table 

Initial Identical 

Pair LCS 

1 34167 33491 33594 32640 

2 33089 32491 33535 32545 

3 33302 33582 33553 32471 

4 33034 33594 32922 33467 

5 35196 32511 33580 32501 

6 34015 33457 32667 33521 

7 34043 32546 33548 32861 

8 34027 33553 32718 33480 

9 32088 33557 32491 33446 

10 32111 33569 32480 33447 

Average 33507.2 33235.1 33108.8 33037.9 

  

Table 5.2. Time taken by each MapReduce job for multi node cluster 

No of 

iterations 

  

Time taken by each MapReduce job(in ms) 

Position 

Pair 

Successor 

Table 

Initial Identical 

Pair LCS 

1 15353 14484 19429 28885 

2 15296 14514 19437 28900 

3 20218 14517 14433 28885 

4 15238 14512 14440 29858 

5 15320 14480 14469 33844 

6 15274 14533 14448 28838 

7 20283 14527 14411 33866 

8 15156 14517 14462 33839 

9 15233 14499 14429 28866 

10 15252 14496 14449 28864 

Average 16262.3 14507.9 15440.7 30464.5 
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As shown in Table 5.1 and Table 5.2, time taken by the algorithm is decreased in case 

of multi node cluster compared with that in  the single node. Thus, it shows  the 

performance of this algortihm is scalabe with number of nodes in the cluster.This 

algorithm can be used to compute LCS of very long bio sequences in short time if we 

increase the processing power by adding more nodes in the cluster. 
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CHAPTER 6:  CONCLUSIONS 

 

A basic model for MapReduce based parallel algorithm for gene sequence 

comparison has been developed. Although there are few parallel algorithms for LCS 

computation, they are not reliable as the MapReduce based solution in the context of 

fault tolerance and concurrency control. Thus the algorithm developed in this thesis 

work uses the cutting edge technology to address the problem with the LCS 

computation. This MapReduce based model handles all the different aspects of 

distributed computing from load balancing to synchronization automatically. 

Simulation results show that the algorithm is scalable with respect to the number of 

nodes in the cluster. Hence, the large number of  gene data can be processed at short 

period if we use the large number of nodes created from commodity computers. 

 

The algorithm developed in this thesis work uses the HBase to store the successor 

tables. The HBase being one of member in NoSQL family, we can use all benefits 

NoSQL provides. Thus, we can have any number of columns in successor table which 

can grow dynamically. This makes possible to store successor tables of bio sequences 

which have large number of base pairs. 

 

Yet there is much room for optimization and improvements for better accuracy and 

efficiency. Efficiency is to be achieved by looking for alternative approaches to 

address the same problem. Currently to compute LCS level wise, different 

MapReduce jobs are created at each level. The efficiency could be improved if we 

could compute the LCS using the single MapReduce job. 
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