

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

CENTRAL CAMPUS, PULCHOWK

THESIS NO: 069MSCS670

A MapReduce Based Parallel Algorithm for Finding Longest Common

Subsequence in Biosequences

By

Jnaneshwar Bohara

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND

COMPUTER ENGINEERING IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN

COMPUTER SYSTEM AND KNOWLEDGE ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

LALITPUR, NEPAL

NOVEMBER, 2014

A MapReduce Based Parallel Algorithm for Finding Longest Common

Subsequence in Biosequences

By

Jnaneshwar Bohara

069MSCS670

Thesis Supervisor

Prof. Dr. Shashidhar Ram Joshi

A thesis submitted in partial fulfillment of the requirements for the

degree of Master of Science in Computer System and Knowledge

Engineering

Department of Electronics and Computer Engineering

Institute of Engineering, Central Campus

Tribhuvan University

Pulchowk, Lalitpur, Nepal

November, 2014

ii

COPYRIGHT

The author has agreed that the library, Department of Electronics and Computer

Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis freely

available for inspection. Moreover the author has agreed that the permission for

extensive copying of this thesis work for scholarly purpose may be granted by the

professor(s), who supervised the thesis work recorded herein or, in their absence, by

the Head of the Department, wherein this thesis was done. It is understood that the

recognition will be given to the author of this thesis and to the Department of

Electronics and Computer Engineering, Pulchowk Campus in any use of the material

of this thesis. Copying of publication or other use of this thesis for financial gain

without approval of the Department of Electronics and Computer Engineering,

Institute of Engineering, Pulchowk Campus and author‘s written permission is

prohibited.

Request for permission to copy or to make any use of the material in this thesis in

whole or part should be addressed to:

Head

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Pulchowk, Lalitpur, Nepal

iii

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

CENTRAL CAMPUS, PULCHOWK

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certify that they have read, and recommended to the Institute of

Engineering for acceptance, a thesis report entitled ―A MapReduce Based Parallel

Algorithm for Finding Longest Common Subsequence in Biosequences‖ submitted

by Mr Jnaneshwar Bohara in partial fulfillment of the requirement for the degree of

Master of Science in Computer System and Knowledge Engineering.

Spuervisor, Dr. Shashidhar Ram Joshi

Professor

Department of Electronics and Computer Engineering

External Examiner, Mr. Saroj Shakya

Associate Professor

Nepal College of Information Technology

Committee Chairperson, Dr. Shashidhar Ram Joshi

Professor

Department of Electronics and Computer Engineering

Date

iv

Departmental Acceptance

The thesis entitled ―A MapReduce Based Parallel Algorithm for Finding Longest

Common Subsequence in Biosequences‖, submitted by Jnaneshwar Bohara in partial

fulfillment of the requirement for the award of the degree of ―Master of Science in

Computer System and Knowledge Engineering‖ has been accepted as a bonafide

record of work independently carried out by him in the department.

Dr. Dibakar Raj Pant

Asst. Prof. and Head of the Department

Department of Electronics and Computer Engineering,

Central Campus, Pulchowk

Institute of Engineering,

Tribhuvan University,

Nepal.

v

ABSTRACT

The Longest Common Subsequence(LCS) identification of biological sequences has

significant aplications in bioinformatics. Due to the emerging growth in

bioinformatics applications, new biological sequences with longer length have been

used for processing, making it great challenge for sequenctial LCS algorithms. Few

parallel LCS algorithms have been proposed but their efficiency and effectiveness

are not satisfactory with increasing complexity and size of biological data. To

overcome limitations of existing LCS algorithms and considering MapReduce

programming model as promising technology for cost effective high performace

parallel computing, MapReduce based parallel algorithm for LCS has been

developed. This algorithm adopts the concepts of successor tables, identical character

pairs, successor tree and traversal of successor tree to find Longest Common

Subsequence. The hadoop framework is used for the realization of MapReduce

model.

Keywords

Bioinformatics, Longest Common Subsequence, MapReduce, Hadoop

vi

ACKNOWLEDGMENT

I would like to express my deep gratitude to Department of Electronics and Computer

Engineering for implementing thesis work as a part of our syllabus through which we

can start our first step towards research field.

I am grateful to my supervisor Prof. Dr. Shashidhar Ram Joshi for his encouragement

and valuable guidance during the thesis work.

I am also thankful to my respected teachers Prof. Dr. Subarna Shakya, Dr. Arun

Timilsina, Dr. Aman Shakya, and Dr. Sanjeeb Prasad Panday for their suggestions

and comments regarding this thesis.

Last but not least I am deeply obliged to Assoc. Prof. Dr. Dhundy Raj Bastola from

School of Interdisciplinary Informatics, University of Nebraska, Omaha for inspiring

me to do research on bioinformatics and providing the necessary datasets.

vii

TABLE OF CONTENTS

Copyright ii

Approval Page iii

Departmental Acceptance iv

Abstract v

Acknowledgement vi

Table of Contents vii

List of Tables ix

List of Figures x

List of Abbreviations xi

1. CHAPTER 1: INTRODUCTION 1

1.1 Background 1

1.2 Problem Definition 3

1.3 Objectives 3

1.4 Scope of the work 4

1.5 Organization of the thesis report 4

2. CHAPTER 2: LITERATURE REVIEW 6

2.1 Needleman–Wunsch algorithm 6

2.2 Smith–Waterman algorithm 7

2.3 Fast LCS algorithm 8

3. CHAPTER 3: THEORETICAL BACKGROUND 9

3.1 Deoxyribonucleic acid (DNA) 9

3.2 MapReduce 10

3.2.1 Execution Overview 11

3.2.2 Master Data Structures 13

3.3 Hadoop and the Hadoop Distributed File System 14

3.3.1 NameNode and DataNodes 14

viii

3.3.2 The File System Namespace 16

3.3.3 Data Replication 16

4. CHAPTER 4: RESEARCH METHODOLOGY 18

4.1 Model Development 17

4.1.1 Constructing successor tables 18

4.1.2 Finding initial identical character pairs 19

4.1.3 Producing successors and creating successor tree 20

4.1.4 Traversing successor tree to find LCS 21

4.2 Algorithm Development 22

4.3 MapReduce Strategy 23

4.3.1 Finding the positions of characters 23

4.3.2 Creating successor tables 24

4.3.3 Finding initial identical pairs 25

4.3.4 Finding LCS levelwise 25

5. CHAPTER 5: RESULTS AND DISCUSSIONS 27

5.1 Sample Output 27

5.1.1 Input directory in HDFS 27

5.1.2 Input sequence one in HDFS 28

5.1.3 Input sequence two in HDFS 28

5.1.4 Output directory in HDFS 29

5.1.5 Output of position finding 29

5.1.6 Output of successor table creation 30

5.1.7 Output of initial identical character pair finding(level 0 LCS) 31

5.1.8 Output of level 1 LCS 31

5.1.9 Output of level 2 LCS 32

5.2 Complexity Analysis 33

5.3 Run Time of Algorithm 33

6. CHAPTER 6: CONCLUSIONS 36

REFERENCES 37

ix

LIST OF TABLES

Table 4.1. Successor Tables TX and TY ...19

Table 5.1. Time taken by each MapReduce job for single node34

Table 5.2. Time taken by each MapReduce job for multi node cluster34

x

LIST OF FIGURES

Figure 3.1. Structure of DNA sequence……………………………………………..9

Figure 3.2. MapReduce Execution Overview…………………………………...…..11

Figure 3.3. HDFS Architecture…………………………………………….…….15

Figure 4.1. Successor tree to compute LCS of sequences X and Y……………….. 21

Figure 4.2. Longest Common Subsequences of sequences X and Y…………….…21

Figure 5.1. Input directory in HDFS………………………………………..……... 27

Figure 5.2. Input sequence one in HDFS ………………………………………….28

Figure 5.3. Input sequence two in HDFS …………………………………..…..….28

Figure 5.4. Output directory in HDFS …………………………………………..…29

Figure 5.5. Output of position finding …………………………………………......29

Figure 5.6. Output of successor table creation……………………………….........30

Figure 5.7. Output of initial identical character pair finding(level 0 LCS) …….. ..31

Figure 5.8. Output of level 1 LCS ………………………………………….....… .31

Figure 5.9. Output of level 2 LCS ……………………………………….…….......32

xi

LIST OF ABBREVIATIONS

DNA Deoxyribonucleic Acid

EFP Efficient Fast Pruned

FACC Finite Automaton based on Cloud Computing

HDFS Hadoop Distributed File System

LCS Longest Common Subsequence

1

CHAPTER 1: INTRODUCTION

1.1 Background

Biological sequence[1] can be represented as a sequence of symbols. DNA sequences

can be represented as sequences of four letters A, C, G and T corresponding to the

four sub-molecules Adenine, Cytosine, Guanine, and Thymine. When a new

biological sequence is found, we want to know what other sequence it is most similar

to. Sequence comparison has been used successfully to establish the link between

cancer-causing genes and a gene evolved in normal growth and development.

Among the many sequence comparison algorithms, one extremely common technique

includes the alignment-based methods. These involve aligning the entire (global

alignment, Needleman-Wunsch[2]) or smaller sections (local alignment, Smith-

Waterman[3]) of the genetic sequences. The choice of global or local alignment is

based on the type of analysis desired. However, both these methods are heavily

dependent on the quality of sequence data. Even slight discrepancies resulting from

experimental or technical limitations, can significantly affect the comparison results.

Alternative approaches of sequence analysis are becoming increasingly important in

dealing with the exponential growth of genetic sequence data, and the classification

and the grouping of organisms based on these sequences. Such alternative approaches

include the alignment-free methods, which match the relative (as opposed to the

exact) order of the base pairs in the sequence. One way of detecting the similarity of

two or more sequences using the alignment-free methods is to find their Longest

Common Subsequences.

A subsequence is a sequence that appears in the same relative order, but not

necessarily contiguous. This makes the subsequence different from the substring as a

substring should appear in a contiguous relative order. A common subsequence is a

2

longest subsequence if it is of maximum length. For example, between ATCG and

CTCAG, the longest common substring is TC, while the longest common

subsequence is TCG.

Advancements in sequencing technology are changing the scale of genetic data. The

Genbank, a public repository of genetic sequence data, reported 178322253 sequence

records in its 204th release in Oct 2014. Analyzing such large datasets, including the

3 billion bases of the human reference genome, on uniprocessor machines is an

extremely time consuming process. Therefore, for efficient computation of LCS,

Parallel algorithms are used.

In this thesis work, a parallel algorithm for finding the longest common subsequence

(LCS), across genetic sequences is developed. This algorithm uses the open-source

implementation of MapReduce[4] called Hadoop[5] to schedule, monitor, and

manage the parallel execution. MapReduce is the software framework invented by

and used by Google to support parallel execution of their data intensive applications.

Computation in MapReduce is divided into two major phases called map and reduce,

separated by an internal grouping of the intermediate results. This two-phase

computation was developed after recognizing that many different computations could

be solved by first computing a partial result (map phase), and then combining those

partial results into the final result (reduce phase). The power of MapReduce is that

map and reduce functions are executed in parallel over potentially hundreds or

thousands of processors with minimal effort by the application developer.

3

1. 2. Problem Definition

Searching for the longest common sequence (LCS) between biosequences is one of

the most fundamental tasks in bioinformatics. There are many sequential algorithms

available in this area and few parallel algorithms are making use of the technology to

arrive at a quick solution. The parallel algorithms are implemented using CREW

PRAM model, Systolic arrays and MPP parallel computing model. The parallel

implementations of these algorithms are of a certain difficulty due to their

complicated concurrency, synchronization, and mutual exclusion, that is, none of

these algorithms employed simple and cost-effective high performance parallel

computing framework such as MapReduce for implementing their algorithms. There

is very less work done for LCS using MapReduce.

In this thesis work, a parallel algorithm is developed to speed up the computation for

finding LCS using the MapReduce programming model. MapReduce is a

programming model for processing large data sets with a parallel, distributed

algorithm on a cluster. The main challenge with MapReduce model is to split the

problem in the form of map and reduce operations.

1. 3. Objectives

The main objectives of this thesis are

 To develop a MapReduce based parallel algorithm to find Longest Common

Subsequences

 To use developed algorithm for biological sequence comparison

4

1.4 Scope of the work

When a new gene sequence is found, we want to know what other sequences it is

most similar to. Sequence comparison has been used successfully to establish the link

between cancer-causing genes and a gene evolved in normal growth and

development. One way of detecting the similarity of two or more sequences is to find

their LCS.

Because of larger number of gene sequences increasing day by day and extremely

large length of single gene sequence there is a need of parallel computing to find the

LCS of gene sequences. MapReduce programming with Hadoop framework is

emerging technology for distributed computing especially in case of big data. So,

parallel implementation of LCS using MapReduce programming model really the

good candidate of research.

The scope of this thesis work is to develop a MapReduce based parallel algorithm that

could be used to find the longest common subsequence of gene sequences

1.5 Organization of the thesis report

This thesis report is mainly divided into six sections: Introduction, Literature Review,

Theoretical Background, Research Methodology, Results and Discussions and

Conclusions.

Introduction section covers Background of thesis work, Problem Definition,

Objectives and Scope of the work.

5

Under Literature Review brief introduction of some existing algorithms are included.

Needleman–Wunsch algorithm, Smith–Waterman algorithm and Fast LCS algorithm

are included in this section.

Third chapter,which is Theoretical Background includes brief introduction of

Deoxyribonucleic acid (DNA), MapReduce and Hadoop and the Hadoop Distributed

File System.

Research Methodology section covers Model Development, Algorithm Development

and MapReduce Strategy developed for realization of the algorithm developed.

Results and Discussions section includes Sample output, Complexity Analysis and

Run Time of the Algorithm.

Finally the thesis report is concluded with Conclusions section which includes

conclusions and recommendations.

6

CHAPTER 2: LITERATURE REVIEW

Since the LCS problem is essentially a special case of the sequence alignment, all the

algorithms for the sequence alignment can be used to solve the LCS problem.

The Needleman–Wunsch[2] algorithm was the first application of dynamic

programming which provides a global alignment between two sequences. This

algorithm leads to the evolution of various efficient LCS algorithms. It is only

suitable if the two sequences are of similar length. The Smith- Waterman [3]

algorithm evolved from Needleman- Wunsch algorithm provides a local alignment of

biological sequences.

Various parallel algorithms based on the CREW PRAM model, Systolic arrays have

been proposed in the earlier days to reduce the computation time. Later, Wan, Liu,

Chen proposed Fast LCS algorithm [6]. Fast LCS‘s efficiency has been further

improved by the Efficient Fast Pruned LCS (EFP_LCS) [7]. Further inspired from

Fast LCS algorithm, Bhowmick, Shafiullah, Rai and Bastola have proposed a Parallel

Non-Alignment Based Approach to LCS [8]. In the recent days Li ,Wang and Bao

have proposed a finite automaton based on cloud computing called FACC[9] for

LCS. This is also mostly inspited by Fast LCS algorithm.

2.1 Needleman–Wunsch algorithm

The Needleman–Wunsch algorithm performs a global alignment on two sequences. It

is commonly used in bioinformatics to align protein or nucleotide sequences. The

algorithm was published in 1970 by Saul B. Needleman and Christian D. Wunsch.

The Needleman–Wunsch algorithm is an example of dynamic programming, and was

7

the first application of dynamic programming to biological sequence comparison. It is

sometimes referred to as the Optimal matching algorithm.

This global sequence alignment method explores all possible alignments and chooses

the best one (the optimal global alignment). It does this by reading in a scoring matrix

and a gap penalty (penalties) that contains values for every possible residue or

nucleotide match and summing the matches taken from the scoring matrix.

2.2 Smith–Waterman algorithm

The Smith–Waterman algorithm performs local sequence alignment; that is, for

determining similar regions between two strings or nucleotide or protein sequences.

Instead of looking at the total sequence, the Smith–Waterman algorithm compares

segments of all possible lengths and optimizes the similarity measure.

The algorithm was first proposed by Temple F. Smith and Michael S. Waterman in

1981. Like the Needleman–Wunsch algorithm, of which it is a variation, Smith–

Waterman is a dynamic programming algorithm. As such, it has the desirable

property that it is guaranteed to find the optimal local alignment with respect to the

scoring system being used (which includes the substitution matrix and the gap-

scoring scheme). The main difference to the Needleman–Wunsch algorithm is that

negative scoring matrix cells are set to zero, which renders the (thus positively

scoring) local alignments visible. Backtracking starts at the highest scoring matrix

cell and proceeds until a cell with score zero is encountered, yielding the highest

scoring local alignment.

8

2.3 Fast LCS algorithm

The algorithm first constructs a novel successor table to obtain all the identical pairs

and their levels. It then obtains the LCS by tracing back from the identical character

pairs at the last level. The key technique of this algorithm is the use of several

effective pruning operations. In the process of generating the successors, pruning

techniques can remove the identical pairs which cannot generate the LCS so as to

reduce the search space and accelerate the search speed.

9

CHAPTER 3: THEORETICAL BACKGROUND

3.1 Deoxyribonucleic acid (DNA)

Deoxyribonucleic acid (DNA) is a molecule that encodes the genetic instructions

used in the development and functioning of all known living organisms and many

viruses. Along with RNA and proteins, DNA is one of the three major

macromolecules essential for all known forms of life. Most DNA molecules are

double-stranded helices, consisting of two long biopolymers of simpler units called

nucleotides—each nucleotide is composed of a nucleobase (guanine, adenine,

thymine, and cytosine), recorded using the letters G, A, T, and C, as well as a

backbone made of alternating sugars (deoxyribose) and phosphate groups (related to

phosphoric acid), with the nucleobases (G, A, T, C) attached to the sugars. DNA is

well-suited for biological information storage, since the DNA backbone is resistant to

cleavage and the double-stranded structure provides the molecule with a built-in

duplicate of the encoded information.

Figure 3.1. Structure of DNA sequence

10

3.2 MapReduce

MapReduce is a programming model and an associated implementation for

processing and generating large data sets. Users specify a map function that processes

a key/value pair to generate a set of intermediate key/value pairs, and a reduce

function that merges all intermediate values associated with the same intermediate

key.

Programs written in this functional style are automatically parallelized and executed

on a large cluster of commodity machines. The run-time system takes care of the

details of partitioning the input data, scheduling the program‘s execution across a set

of machines, handling machine failures, and managing the required inter-machine

communication. This allows programmers without any experience with parallel and

distributed systems to easily utilize the resources of a large distributed system.

A typical MapReduce computation processes many terabytes of data on thousands of

machines. Programmers find the system easy to use: hundreds of MapReduce

programs have been implemented and upwards of one thousand MapReduce jobs are

executed on Google‘s clusters every day.

MapReduce provides an abstraction that involves the programmer defining a

"mapper" and a "reducer," with the following signatures:

 Map: (value 1, key1) → list (key2, value2)

 Reduce: (key2, list (value2) → list (value2).

11

3.2.1 Execution Overview

The Map invocations are distributed across multiple machines by automatically

partitioning the input data into a set of M splits. The input splits can be processed in

parallel by different machines. Reduce invocations are distributed by partitioning the

intermediate key space into R pieces using a partitioning function (e.g., hash(key)

mod R). The number of partitions (R) and the partitioning function are specified by

the user.

Figure 3.2. MapReduce Execution Overview

Figure 3.2 shows the overall flow of a MapReduce operation in the implementation.

When the user program calls the MapReduce function, the following sequence of

actions occurs (the numbered labels in Figure 3.2 correspond to the numbers in the

list below):

12

1. The MapReduce library in the user program first splits the input files into M pieces

of typically 16 megabytes to 64 megabytes (MB) per piece (controllable by the user

via an optional parameter). It then starts up many copies of the program on a cluster

of machines.

2. One of the copies of the program is special – the master. The rest are workers that

are assigned work by the master. There areM map tasks and R reduce tasks to assign.

The master picks idle workers and assigns each one a map task or a reduce task.

3. A worker who is assigned a map task reads the contents of the corresponding input

split. It parses key/value pairs out of the input data and passes each pair to the user-

defined Map function. The intermediate key/value pairs produced by the Map

function are buffered in memory.

4. Periodically, the buffered pairs are written to local disk, partitioned into R regions

by the partitioning function. The locations of these buffered pairs on the local disk are

passed back to the master, who is responsible for forwarding these locations to the

reduce workers.

5. When a reduce worker is notified by the master about these locations, it uses

remote procedure calls to read the buffered data from the local disks of the map

workers. When a reduce worker has read all intermediate data, it sorts it by the

intermediate keys so that all occurrences of the same key are grouped together. The

sorting is needed because typically many different keys map to the same reduce task.

If the amount of intermediate data is too large to fit in

memory, an external sort is used.

6. The reduce worker iterates over the sorted intermediate data and for each unique

intermediate key encountered, it passes the key and the corresponding set of

13

intermediate values to the user‘s Reduce function. The output of the Reduce function

is appended to a final output file for this reduce partition.

7. When all map tasks and reduce tasks have been completed, the master wakes up

the user program. At this point, the MapReduce call in the user program returns back

to the user code.

After successful completion, the output of the mapreduce execution is available in the

R output files (one per reduce task, with file names as specified by the user).

Typically, users do not need to combine these R output files into one file – they often

pass these files as input to another MapReduce call, or use them from another

distributed application that is able to deal with input that is partitioned into multiple

files.

3.2.2 Master Data Structures

The master keeps several data structures. For each map task and reduce task, it stores

the state (idle, in-progress, or completed), and the identity of the worker machine (for

non-idle tasks).

The master is the conduit through which the location of intermediate file regions is

propagated from map tasks to reduce tasks. Therefore, for each completed map task,

the master stores the locations and sizes of the R intermediate file regions produced

by the map task. Updates to this location and size information are received as map

tasks are completed. The information is pushed incrementally to workers that have in-

progress reduce tasks.

14

3.3 Hadoop and the Hadoop Distributed File System

Hadoop is a popular open source implementation of MapReduce, which is a powerful

tool designed for deep analysis and transformation of very large datasets which is

inspired by Google's MapReduce and Google File System. It enables applications to

work with thousands of nodes and petabytes of data.

Hadoop uses a distributed file system called Hadoop Distributed File System (HDFS),

which creates multiple replicas of data blocks and distributes them on computer nodes

throughout a cluster to enable reliability and has extremely rapid computations to

store data as well as the intermediate results. The Hadoop runtime system coupled

with HDFS manages the details of parallelism and concurrency to provide ease of

parallel programming with reinforced reliability. In a Hadoop cluster, a master node

controls a group of slave nodes on which the Map and Reduce functions run in

parallel.

3.3.1 NameNode and DataNodes

HDFS has a master/slave architecture. An HDFS cluster consists of a single

NameNode, a master server that manages the file system namespace and regulates

access to files by clients. In addition, there are a number of DataNodes, usually one

per node in the cluster, which manage storage attached to the nodes that they run on.

HDFS exposes a file system namespace and allows user data to be stored in files.

Internally, a file is split into one or more blocks and these blocks are stored in a set of

DataNodes. The NameNode executes file system namespace operations like opening,

closing, and renaming files and directories. It also determines the mapping of blocks

to DataNodes. The DataNodes are responsible for serving read and write requests

from the file system‘s clients. The DataNodes also perform block creation, deletion,

and replication upon instruction from the NameNode.

15

The NameNode and DataNode are pieces of software designed to run on commodity

machines. These machines typically run a GNU/Linux operating system (OS). HDFS

is built using the Java language; any machine that supports Java can run the

NameNode or the DataNode software. Usage of the highly portable Java language

means that HDFS can be deployed on a wide range of machines. A typical

deployment has a dedicated machine that runs only the NameNode software. Each of

the other machines in the cluster runs one instance of the DataNode software. The

architecture does not preclude running multiple DataNodes on the same machine but

in a real deployment that is rarely the case.

Figure 3.3. HDFS Architecture

The existence of a single NameNode in a cluster greatly simplifies the architecture of

the system. The NameNode is the arbitrator and repository for all HDFS metadata.

The system is designed in such a way that user data never flows through the

NameNode.

16

3.3.2 The File System Namespace

HDFS supports a traditional hierarchical file organization. A user or an application

can create directories and store files inside these directories. The file system

namespace hierarchy is similar to most other existing file systems; one can create and

remove files, move a file from one directory to another, or rename a file. HDFS does

not yet implement user quotas or access permissions. HDFS does not support hard

links or soft links. However, the HDFS architecture does not preclude implementing

these features.

The NameNode maintains the file system namespace. Any change to the file system

namespace or its properties is recorded by the NameNode. An application can specify

the number of replicas of a file that should be maintained by HDFS. The number of

copies of a file is called the replication factor of that file. This information is stored

by the NameNode.

3.3.3 Data Replication

HDFS is designed to reliably store very large files across machines in a large cluster.

It stores each file as a sequence of blocks; all blocks in a file except the last block are

the same size. The blocks of a file are replicated for fault tolerance. The block size

and replication factor are configurable per file. An application can specify the number

of replicas of a file. The replication factor can be specified at file creation time and

can be changed later. Files in HDFS are write-once and have strictly one writer at any

time.

The NameNode makes all decisions regarding replication of blocks. It periodically

receives a Heartbeat and a Blockreport from each of the DataNodes in the cluster.

17

Receipt of a Heartbeat implies that the DataNode is functioning properly. A

Blockreport contains a list of all blocks on a DataNode.

The placement of replicas is critical to HDFS reliability and performance. Optimizing

replica placement distinguishes HDFS from most other distributed file systems. This

is a feature that needs lots of tuning and experience. The purpose of a rack-aware

replica placement policy is to improve data reliability, availability, and network

bandwidth utilization. The current implementation for the replica placement policy is

a first effort in this direction. The short-term goals of implementing this policy are to

validate it on production systems, learn more about its behavior, and build a

foundation to test and research more sophisticated policies.

To minimize global bandwidth consumption and read latency, HDFS tries to satisfy a

read request from a replica that is closest to the reader. If there exists a replica on the

same rack as the reader node, then that replica is preferred to satisfy the read request.

If HDFS cluster spans multiple data centers, then a replica that is resident in the local

data center is preferred over any remote replica.

18

CHAPTER 4: RESEARCH METHODOLOGY

4.1 Model Development

Below are the steps followed in Model development. These include construction of

successor table, finding initial identical character pairs, producing successors and

creating successor tree, and finally traversing successor tree to find LCS.

4.1.1 Constructing successor tables

Suppose X = (, , …,) and Y = (, , …,) are two biosequences where

 {A, C, G, T}. We can define an array CH of the four characters such that

CH(0) = ‗A‘, CH(1)=‗C‘, CH(2) = ‗G‘ and CH(3) = ‗T‘. The successor tables of the

identical characters of X and Y are represented by TX and TY. Entries in successor

tables are defined as:

T(i,j) {
 * | ()+ ()

 (1)

S(i,j) * | () }

Where i= 0,1,2,3 and j = 0,1,2,…,n i.e. length of sequence.

If T(i,j) is not "-", it gives the position of the next character identical to CH(i) after

the position in the sequence, otherwise it means there is no such character after the

 position.

19

Example 1:

Let X = "ATCG" and Y = "CTCAG". Their successor tables TX and TY are shown in

Table 4.1.

Table 4.1. Successor Tables TX and TY

TX:

i CH(i) j

0 1 2 3 4

0 A 1 - - - -

1 C 3 3 3 - -

2 G 4 4 4 4 -

3 T 2 2 - - -

TY:

i CH(i) j

0 1 2 3 4 5

0 A 4 4 4 4 - -

1 C 1 3 3 - - -

2 G 5 5 5 5 5

3 T 2 2 - - -

4.1.2 Finding initial identical character pairs

For the sequences X and Y, if = CH(k), then (i, j) is called an identical pair

of CH(k). Initial identical character pairs of X and Y computed from TX and TY are

represented as (TX(k,0), TY(k,0)), where k = 0,1,2,3. In example 1, these are A(1,4),

C(3,1), G(4,5) and T(2,2).

20

4.1.3 Producing successors and creating successor tree

At first all the direct successors of initial identical character pairs are produced in

parallel using successor tables. Then the direct successors of those successors

computed in the previous step are produced in parallel. This process of producing

direct successors is repeated until there are no successor to be produced.

For an identical character pair (i, j), the direct successors can be produced as:

(i,j) →{(TX(k,i),TY(k,j))|k = 0,1,2,3 TX(k,i)≠'-' and TY(k,j)≠'-'}

 (2)

For example, the successors of the identical character pair A (1,4) in Example 1 can

be obtained by coupling the elements of the 1st column of TX and the 4th column of

TY. It is G(4, 5).

Operation of Pruning

While producing director successor and creating successor tree, pruning techniques

can be used to remove the identical pairs which do not contribute to the LCS so as to

reduce the search space and improve the efficiency.

Pruning Operation 1

If there are two identical character pairs (i, j) and (k, l) satisfying (k, l)>(i, j) on the

same level, then (k, l) can be pruned without affecting the correctness of the

algorithm in obtaining the LCS of X and Y.

For example, C(3, 3) and G(4, 5) in Example 1 are the successors of the identical pair

T(2, 2). Since they are on the same level and G(4, 5) > C(3, 3), we can prune G(4, 5).

21

Pruning Operation 2

If on the same level, there are two identical character pairs (, j) and (, j) satisfying

 < , then (, j) can be pruned without affecting the correctness of the algorithm in

obtaining the LCS of X and Y.

Pruning Operation 3

If there are identical character pairs (, j) , (, j), ..., (, j) and < <...< , then we

can prune (, j), ..., (, j).

Finally a successor tree is created from the successors produced.We consider a

dummy node ɛ(0,0) as a root.

Figure 4.1. Successor tree to compute LCS of sequences X and Y

4.1.4 Traversing successor tree to find LCS

The successor tree is traversed using depth first search method. Longest path gives

the LCS.

For example, in Example 1, longest path traversed is

Figure 4.2. Longest Common Subsequences of sequences X and Y

Therefore, Longest Common Subsequence is TCG.

22

4.2 Algorithm Development

Input:

 Two bio-sequences X and Y of length m and n respectively.

Output:

 String(s) LCS of length |LCS| which is (are) the longest common

subsequence(s) of X and Y.

Procedure

1. Create successor table TX and TY for X and Y sequences over the alphabets of CH

in parallel using MapReduce model

2. Initial identical character pairs

2.1 Find all the initial identical character pairs:(TX(k, 0),TY(k, 0)), where k =

0,1,2,3

 2.2 Apply pruning techniques on the initial identical character pairs obtained

3. Finding the direct successors level wise and producing the successor tree

 Repeat the steps 3.1 through 3.2 until no more successors are found

3.1 For all the current level identical pair, do in parallel using MapReduce

model

3.1.1 Identify all direct successors

 3.1.2 Apply pruning techniques

 3.2 Add the potentially useful successor to the successor tree

4. Traversing successor tree to search for LCS

4.1 By depth first search method, successor tree is traversed from root to

every leaf node

4.2 Longest path traversed will be the LCS

23

4.3 MapReduce strategy

First of all two input files containing DNA sequences are loaded to HDFS. Input files

are text files which contain combinations of characters A, C, G and T.

4.3.1 Finding the positions of characters

This single Map Reduce task is to find positions of all characters in both input

sequences. Input for this MapReduce job are input files loaded into HDFS under input

directory.

For this, the Map and Reduce tasks are defined as follows:

Map Procedure:

Input(k,v) = (line_number, dna_sequence)

Output(k,v) = (character, position_of_character)

For each line in value

 Extract each character

 Set extracted character(A, C, G and T) as output key

 Set position of extracted character as output value

Reduce Procedure:

Input(k,v) = (character, position_of_character)

Output(k,v) = (character, position_list)

For each position values of characters in a sequence

 Create a list of positions of each characters in a sequence file

 Set thus created list as output value of reducer

 Character value plus sequence file name will be the output key of

reducer

24

Output of this MapReduce job is written to HDFS under ―positons‖ sub directory of

output directory.

4.3.2 Creating successor tables

This single Map Reduce task is to create successor tables TX and TY in parallel. This

MapReduce job takes as input from ―positons‖ sub directory of output directory.

For this, the Map and Reduce tasks are defined as follows:

Map Procedure:

 Input(k,v) = (line_number, position_list)

 Output(k,v) = (one, position_list)

For each line in value, pass the content in line (position list) to the reducer as

it is.

Reduce Procedure:

 Input(k,v) = (one, position_list)

 Output(k,v) = (character, entry_in_successor_table)

Here,

HBase table is used to store the successor tables created. Since successor table is used

as lookup table for computing direct successors at each level, it is effective solution to

store this in HBase and retrieve whenever needed.

The HBase table created to store values of successor tables is given the name

―successor_table‖. Two column families ―seq1‖ and ―seq2‖ are defined to store

values corresponding to TX and TY. There are four row keys defined with names

0,1,2 and 3 corressponding to four characters A,C,G and T.

25

4.3.3 Finding initial identical pairs

This single Map Reduce task is to compute initial identical pairs from successor

tables TX and TY in parallel.

Here,

Input to the Mapper is the data from HBase table ―successor_table‖.

For this, the Map and Reduce tasks are defined as follows:

Map Procedure:

 Input(k,v) = (rowKey, columns)

 Output(k,v) = (identical_character, position_pair)

Combine values in columns ―seq1:0‖ and ―seq2:0‖ to compute the identical

character pairs.

Reduce Procedure:

 Input(k,v) = (identical_character, position_pair)

 Output(k,v) = (identical_character, pruned_ position_pair)

Perform prunings on the position pairs and only the remaining pairs after pruning will

be treated as initial identical character pairs and written to HDFS. Output of this

MaprReduce job is given name ―level0‖ in output directory.

4.3.4 Finding LCS levelwise

This is Multi Level Map Reduce task. Input to the First level Map Reduce job to

compute LCS are the initial identical pairs stored under the location ―levelo‖. And

output will be stored under ―level1‖.

For next level MapReduce job, input is ―level1‖ and output is ―level2‖ and so on until

there are no direct successors based on successor tables.

For this the Map and Reduce tasks are defined as follows:

26

Map Procedure:

 Input(k,v) = (identical_character, position_pair)

 Output(k,v) = (identical_character, direct_successors)

 For each identical character pair at current level, compute all possible direct

successors.

Reduce Procedure:

 Input(k,v) = (identical_character, direct_successors)

 Output(k,v) = (identical_character, pruned_direct_successors)

 For each identical character pairs at a level

 Compute all possible direct successors from successor tables

 Apply pruning techniques

 Identical character pair will remain as key of reducer output

 Direct successors after pruning will be value of reducer output

Here,

Besides input from previous level LCS, successor tables are read from HBase in

every mapper as the look up table to compute the direct successors.

The identical character pairs at each level need to remember the value of the identical

character pairs at previous levels. Therefore, identical characters pairs are created by

concatenating the LCS at previous levels.

27

CHAPTER 5: RESULTS AND DISCUSSIONS

The basic Map Reduce Model for computing the Longest Common Subsequence has

been developed, which includes as listed below.

5.1 Sample Output

Below are the sample outputs at different stages.

5.1.1 Input directory in HDFS

Figure 5.1. Input directory in HDFS

28

5.1.2 Input sequence one in HDFS

Figure 5.2. Input sequence one in HDFS

5.1.3 Input sequence two in HDFS

Figure 5.3. Input sequence two in HDFS

29

5.1.4 Output directory in HDFS

Figure 5.4. Output directory in HDFS

5.1.5 Output of position finding

Figure 5.5. Output of position finding

30

5.1.6 Output of successor table creation

Figure 5.6. Output of successor table creation

31

5.1.7 Output of initial identical character pair finding(level 0 LCS)

Figure 5.7. Output of initial identical character pair finding(level 0 LCS)

5.1.8 Output of level 1 LCS

Figure 5.8. Output of level 1 LCS

32

5.1.9 Output of level 2 LCS

Figure 5.9. Output of level 2 LCS

33

5.2 Complexity Analysis

Each input sequence is traversed once to find the position of identical characters.

Based on positions found, successor tables are constructed and finally LCS is

computed. Therefore, assuming both sequences with length n, time complexity is

O(n). Again storage space is proportional to the size of input sequences. Therefore,

the space complexity is also O(n).

5.3 Run Time of Algorithm

Performance is measured by running this algorithm for two input sequences. Below

are the results for the time taken with single node and multi node cluster with 5

working nodes. The configuration for each node is Intel Core 2 Duo CPU E7500

2.93GHz with 2 cores and 2GB of RAM. The hadoop version used is 1.0.4 and the

linux version for hadoop cluster setup is ubuntu 12.04. Two input sequences are run

for 10 times in both single node and multi node cluster and average time is computed.

Table 5.1 shows the time taken by this algorithm while running in single node. Table

5.2 shows the time taken while running in the multi node cluster.

34

Table 5.1. Time taken by each MapReduce job for single node

No of

iterations

Time taken by each MapReduce job(in ms)

Position

Pair

Successor

Table

Initial Identical

Pair LCS

1 34167 33491 33594 32640

2 33089 32491 33535 32545

3 33302 33582 33553 32471

4 33034 33594 32922 33467

5 35196 32511 33580 32501

6 34015 33457 32667 33521

7 34043 32546 33548 32861

8 34027 33553 32718 33480

9 32088 33557 32491 33446

10 32111 33569 32480 33447

Average 33507.2 33235.1 33108.8 33037.9

Table 5.2. Time taken by each MapReduce job for multi node cluster

No of

iterations

Time taken by each MapReduce job(in ms)

Position

Pair

Successor

Table

Initial Identical

Pair LCS

1 15353 14484 19429 28885

2 15296 14514 19437 28900

3 20218 14517 14433 28885

4 15238 14512 14440 29858

5 15320 14480 14469 33844

6 15274 14533 14448 28838

7 20283 14527 14411 33866

8 15156 14517 14462 33839

9 15233 14499 14429 28866

10 15252 14496 14449 28864

Average 16262.3 14507.9 15440.7 30464.5

35

As shown in Table 5.1 and Table 5.2, time taken by the algorithm is decreased in case

of multi node cluster compared with that in the single node. Thus, it shows the

performance of this algortihm is scalabe with number of nodes in the cluster.This

algorithm can be used to compute LCS of very long bio sequences in short time if we

increase the processing power by adding more nodes in the cluster.

36

CHAPTER 6: CONCLUSIONS

A basic model for MapReduce based parallel algorithm for gene sequence

comparison has been developed. Although there are few parallel algorithms for LCS

computation, they are not reliable as the MapReduce based solution in the context of

fault tolerance and concurrency control. Thus the algorithm developed in this thesis

work uses the cutting edge technology to address the problem with the LCS

computation. This MapReduce based model handles all the different aspects of

distributed computing from load balancing to synchronization automatically.

Simulation results show that the algorithm is scalable with respect to the number of

nodes in the cluster. Hence, the large number of gene data can be processed at short

period if we use the large number of nodes created from commodity computers.

The algorithm developed in this thesis work uses the HBase to store the successor

tables. The HBase being one of member in NoSQL family, we can use all benefits

NoSQL provides. Thus, we can have any number of columns in successor table which

can grow dynamically. This makes possible to store successor tables of bio sequences

which have large number of base pairs.

Yet there is much room for optimization and improvements for better accuracy and

efficiency. Efficiency is to be achieved by looking for alternative approaches to

address the same problem. Currently to compute LCS level wise, different

MapReduce jobs are created at each level. The efficiency could be improved if we

could compute the LCS using the single MapReduce job.

37

REFERENCES

[1] Hao B, Zhang SY, The manual of bioinformatics, Shanghai Science

and Technology Publishing Company 2000.

[2] Needleman SB and Wunsch CD, "A general method applicable to the search

for similarities in the amino acid sequence of two proteins" J Mol Biol 48

443-53, 1970

[3] Smith TF and Waterman MS, "Comparison of biosequences", Adv. Appl.

 Math. 2 482– 89, 1981

[4] Dean J and Ghemawat S, "MapReduce: Simplified Data Processing on Large

 Clusters", OSDI ‘04: 6th Symposium on Operating Systems Design and

 Implementation, 2004

[5] White T, "Hadoop: The Definitive Guide" O‘Reilly|Yahoo Press, 2009

[6] Chen Y, Wan A and Liu W, "A fast Parallel Algorithm for finding the

Longest Common Subsequence of multiple biosequences", BMC

Bioinformatics 7 (suppl 4), 2006

[7] Eswaran S and RajaGopalan SP, "An Efficient Fast Pruned Parallel Algorithm

for finding LCS in Biosequences", Anale Seria Informatica. Vol. VIII fasc.1 ,

2010.

[8] Bhowmick S, Shafiullah1 M, Rai H and Bastola D, ―A Parallel Non-

Alignment Based Approach to Efficient Sequence Comparison using Longest

38

Common Subsequences‖, High Performance Computing Symposium

(HPCS2010) , Journal of Physics: Conference Series 256 (2010) 012012, 2010

[9] Li Y, Wang Y and Bao L, "FACC: A Novel Finite Automaton Based on

Cloud Computing for the Multiple Longest Common Subsequences Search",

Hindawi Publishing Corporation, Mathematical Problems in Engineering,

Volume 2012

