COMPARATIVE EVALUATION OF MACROSCOPIC, MICROSCOPIC, SEROLOGICAL AND CULTURAL EXAMINATION OF CSF IN BACTERIAL MENINGITIS

A DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY (ENVIRONMENTAL AND PUBLIC HEALTH)

> BY NABARAJ DAHAL

CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KIRTIPUR, KATHMANDU, NEPAL 2008

COMPARATIVE EVALUATION OF MACROSCOPIC, MICROSCOPIC, SEROLOGICAL AND CULTURAL EXAMINATION OF CSF IN MENINGITIS

A DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY (ENVIRONMENTAL AND PUBLIC HEALTH)

> BY NABARAJ DAHAL

CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KIRTIPUR, KATHMANDU, NEPAL 2008

RECOMMENDATION

This is to certify that **Mr. Nabaraj Dahal** has completed this dissertation work entitled "COMPARATIVE EVALUATION OF MACROSCOPIC, MICROSCOPIC, SEROLOGICAL AND CULTURAL EXAMINATION OF CSF IN BACTERIAL MENINGITIS" as a partial fulfillment of Master of Science Degree in Microbiology under our supervision. To our knowledge, this work has not been submitted for any other degree.

Mr. Binod Lekhak Dr. Dwij Raj Bhatta, Ph. D.

Assistant ProfessorAssociate ProfessorCentral Department of MicrobiologyCentral Department of MicrobiologyTribhuvan University,Tribhuvan University,KathmanduKathmandu

Dr. Sujan Vaidya Pathologist Department of Pathology Patan Hospital, Lalitpur

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Dwij Raj Bhatta, Mr. Binod Lekhak and Dr. Sujan Vaidya,** this dissertation work of **Mr. Nabaraj Dahal** entitled "COMPARATIVE EVALUATION **OF MACROSCOPIC, MICROSCOPIC, SEROLOGICAL AND CULTURAL EXAMINATION OF CSF IN BACTERIAL MENINGITIS**" has been approved for the examination and is submitted to the Tribhuvan University in the Partial fulfillment of the requirements for Master of Science Degree in Microbiology (Environmental and Public Health).

> Dr. Dwij Raj Bhatta, Ph. D. Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

BOARD OF EXAMINERS

Recommended by:

Dr. Dwij Raj Bhatta, Ph.D. Supervisor

Mr. Binod Lekhak Supervisor

Dr. Sujan Vaidya Supervisor

Approved by:

Dr. Dwij Raj Bhatta, Ph. D. Head of Department

Examined by:

Dr. Bharat Mani Pokhrel, Ph. D. External Examiner

••••••

Ms. Shaila Basnyat Internal Examiner

ACKNOWLEDGEMENT

I am extremely grateful to my respected supervisors **Dr. Dwij Raj Bhatta, Mr. Binod Lekhak** and **Dr. Sujan Vaidya** for their constant inspiration, proper guidance and critical evaluation of this work. Without their help and guidance, this research work wouldn't have been completed.

I am also thankful to Dr. Anjana Singh, Dr. Prakash Ghimire, Dr. Shreekant Adhikari and Ms. Shaila Basnyat and staffs of Central Department of Microbiology for their support and generosity.

I heartily thank **Patan Hospital** for providing me the opportunity to use Laboratory facilities of the Hospital. I would also like to thank Mr. Ram Babu Shrestha, laboratory In-charge, Patan Hospital, for providing me the facilities in the laboratory during this work. I am particularly indebted to Mr. Krishna Govinda Prajapati and Mrs. Sabina Dangol who have given me invaluable help, support and generosity during my work. I am also thankful to Ms. Rita Bajracharya, Mr. Krishna Mukunda Khanal, Mr. Pawan Shrestha, Mr. Hem Subedi, Mr. Sundar Lal Shrestha, Mr. Dipendra Yadav, Mr. Dhirendra Yadav, Mr. Chandraman Shrestha, Mr. Kiran Neupane and all the staffs of Patan Hospital for creating such a friendly environment and for their help and cooperation during the laboratory work.

It is a pleasure to acknowledge my debt to my friends Sanjiv Neupane, Kashi Ram Ghimire, Bishnu Marasini, Pankaj Baral and Girdhari Rijal whose support and cooperation from the beginning of this thesis is remarkable.

Finally, I admire my Family for their moral support and attention.

..... Nabaraj Dahal

ABSTRACT

The Present study was conducted to find out the incidence of meningitis among the patients attending Patan Hospital, Kathmandu, Nepal from May 2007 to March 2008.

In this study, 464 Cerebrospinal fluid (CSF) samples were collected from suspected meningitis patients. The samples were analyzed for turbidity, total leucocyte count, protein level, gluose level and cultured for the isolation of microorganism. In all 464 CSF samples collected, only 20 (4.31%) showed positive culture result. Gram positive isolates were predominant. Among the isolates *Streptococcus pneumoniae* (45%) followed by *Haemophilus influenzae* type b, *Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus viridans, Citrobacter freundii* and *Cryptococcus neoformans* were present.

Higher number of CSF samples having leucocyte count more than 100 cells/mm³ were found culture positive. The association of the cell count and culture positivity was found statistically significant (P<0.05). Among the culture positive CSF samples, 60% had low glucose level (>40mg/dl) and 100% had high protein level. Most of the Gram negative isolates were found susceptible to Chloramphenicol and Cefotaxime and resistant to Amoxycillin.

Sensitivity and specificity of macroscopic, microscopic, serological and culture methods used to analyze the CSF samples for the confirmation of meningitis were assessed. The present study showed the correlation between macroscopic, microscopic, serological and cultural methods of CSF examination to confirm meningitis.

Key words: Meningitis, CSF (Cerebrospinal fluid), cell count, Gram Stain, Latex agglutination test for Hib, Binax test for Pneumococcal antigen

TABLE OF CONTENTS

Title Page	i
Recommendation	ii
Certificate of Approval	iii
Board of Examiners	iv
Acknowledgement	V
Abstract	vi
Table of Contents	vii
List of Abbreviations	xi
List of Tables	xiii
List of Figures	xiv
List of Photographs	XV
List of Appendices	xvi
CHAPTER I INTRODUCTION	1-5
CHAPTER II OBJECTIVES 2.1 General Objective	6 6
2.2 Specific Objectives	6
CHAPTER III LITERATURE REVIEW	7-51
3.1 History of meningitis	7
3.2 Meningitis as a Disease	7
3.3 Anatomy and Physiology	8
3.3.1 Anatomy of Meninges	8
3.3.2 Blood Brain Barrier	9

3.3.3 Ventricles of Brain	9
3.3.4 Cerebrospinal Fluid	10
3.4 Methods of CSF collection and examination	12
3.5 Possible Pathogens of meningitis	14
3.6 Pathogenesis	16
3.6.1 Routes of Infection	19
3.6.1.1 By the blood stream	19
3.6.1.2 From an adjacent lesion	19
3.6.1.3 Iatrogenic infection	20
3.6.1.4 Travel along the nerves leading to the brain	20
3.7 Clinical Manifestations	20
3.8 Types of Meningitis	23
3.8.1 Acute Pyogenic (purulent) Meningitis	23
3.8.2 Aseptic Meningitis	24
3.8.3 Tuberculous Meningitis (TBM)	26
3.8.4 Fungal Meningitis	28
3.8.5 Neurosyphilis	29
3.9 Types of meningitis by age group	29
3.9.1 Neonatal meningitis	30
3.9.2 Meningitis in children	30
3.9.3 Meningitis in adults	31
3.10 Bacteria in CSF of confirmed cases of meningitis by age group	31
3.11 Bacterial Meningitis	32
3.11.1 Epidemiology of meningococcal Meningitis	33
3.11.2 Epidemiology of Haemophilus influenzae Meningitis	36

3.11.3 Epidemiology of pneumococccal Meningitis	37
3.11.4 Rare etiological agents of meningitis	38
3.12 Laboratory Investigations of Meningitis	40
3.12.1 Collection and transport of specimen	40
3.12.2 Macroscopic and microscopic examination	41
3.12.3 Chemical examinations	42
3.12.3.1 Glucose estimation	42
3.12.3.2 Total protein estimation and globulin test	42
3.12.4 Culture	43
3.12.5 CSF serology	44
3.12.5.1 Counter current immunoelectrophoresis (CIE)	44
3.12.5.2 Latex agglutination test (LAT)	44
3.12.5.3 Quellung reaction	44
3.12.5.4 Syphilis serology	45
3.12.5.5 ELISA	45
3.13 Molecular technique	45
3.14 Global Scenario of Meningeal Infection	45
3.15 Scenario of meningeal infections in Nepal	49
CHAPTER IV MATERIALS AND METHODS	52-58
4.1 Materials	52
4.2 Methods	52
4.2.1 Collection of Samples	52
4.2.2 Macroscopic Examination of CSF Samples	52
4.2.3 Total Leucocyte Count	53
4.2.4 Estimation of Glucose and Protein	53
4.2.5 Latex Agglutination Test for H. influenzae type b	54
4.2.6 Binax Test for Pneumococcal Antigen	54
4.2.7 Microscopic Examination	55

4.2.8 CSF Culture	55
4.2.9 Identification of Isolate	55
4.2.10 Antibiotic Susceptibility Pattern of Bacterial Isolates	57
4.2.11 Data Analysis	58
CHAPTER V RESULTS	59-69
5.1 Culture Positivity of CSF	59
5.2 Culture Positivity With Respect to Age and Gender	59
5.3 Culture Positivity With Respect to Appearance of CSF	60
5.4 Gram Staining Result of CSF	61
5.5 Correlation of Culture Positivity and Leucocyte Count of CSF	61
5.6 Correlation of Protein Concentration of CSF With Culture Positivity	62
5.7 Correlation of Glucose Level with Culture Positivity	63
5.8 Detection of Haemophilus influenzae type b in CSF Samples	63
5.9 Detection of Streptococcus Pneumoniae in CSF by Binax Test	64
5.10 Microbiological Profile	64
5.11 Microbological Profile of Meningitis Patients (Age Wise)	65
5.12 Antibiotic Susceptibility Pattern of the Bacterial Isolates of CSF Samples	66
CHAPTER VI DISCUSSION AND CONCLUSION	70-77
6.1 Discussion	70
6.2 Conclusion	77
CHAPTER VII SUMMARY AND RECOMMENDATIONS	78-80
7.1 Summary	78
7.2 Recommendations	79
REFERENCES	81-97
APPENDICES I-	XXXV

LIST OF TABLES

Table 1: Physical and chemical characteristics of CSF in normal condition
Table 2: CSF finding in different conditions
Table 3: Culture result
Table 4: Age and sex wise distribution of growth positive samples
Table 5: Culture positivity with respect to appearance of CSF
Table 6: Culture positivity with reference to Gram staining
Table 7: Correlation of culture positivity and leucocyte count of CSF
Table 8: Correlation of protein concentration of CSF with culture positivity
Table 9: Culture positivity with respect to Glucose level of CSF samples
Table 10: Detection of *Haemophilus influenzae* type b in CSF by Latex Agglutination test
Table 11: Detection of *Streptococcus pneumoniae* in CSF by Binax test

Table 12: Distribution of microorganisms in culture positive CSF samples

Table 13: Distribution of microorganisms on different age group of patients

Table 14: Antibiotic susceptibility pattern of bacterial isolates

LIST OF FIGURES

Figure 1: Gender wise distribution of positive cases

Figure 2: Distribution of microorganisms in growth positive samples

LIST OF PHOTOGRAPHS

Photograph 1: *Streptococcus pneumoniae* colonies on Blood agar with zone of inhibiton around Optochin discs (ethyl hydrocupreine hydrochloride)

Photograph 2: Antibiotic susceptibility test of Pneumococci on Blood agar

Photograph 3: Positive Binax test (for Pneumococci)

Photograph 4: Satellitism of *Haemophilus influenzae* with *Staphylococcus* colonies on blood agar

Photograph 5: Growth of *Haemophilus influenzae* around X+V factor

Photograph 6: Cryptococcus neoformans in CSF, India ink preparation

LIST OF APPENDICES

- Appendix-I List of the equipments and materials **Appendix-II** A. Composition and preparation of culture media B. Composition and preparation of biochemical media C. Composition and preparation of staining and test reagents Gram staining procedure Appendix-III Appendix-IV Ziehl-Neelsen staining procedure Appendix-V Methodology of biochemical test used for the identification of bacteria Appendix-VI Determinative characteristics of bacterial and fungal isolates **Appendix-VII** Distinguishing reactions of the commoner and pathogenic Enterobactriaceae Appendix-VIII Zone size interpretative chart Appendix-IX Zone size interpretative chart of Streptococcus pneumoniae and Haemophilus influenzae Appendix-X Calculation of Sensitivity, Specificity, Positive and Negative Predictive values and Efficiency of diagnostic techniques Appendix-XI Data Analysis (Chi square test) **Appendix- XII** Guidelines for the interpretation of results of Haematological and Chemical analysis of CSF from children and adults
- Appendix- XIII Protocols for rapid antigen detection tests

LIST OF ABBREVIATIONS

ABM	: Acute Bacterial Meningitis
AFB	: Acid Fast Bacilli
AIDS	: Acquired Immune Deficiency Syndrome
BBB	: Blood Brain Barrier
BCG	: Bacillus Calmette- Guerin
CDC	: Center for Disease Control and Prevention
CFR	: Case Fatality Rates
CIE	: Counter Current Immunoelectrophoresis
cm	: Centimeter
CMV	: Cytomegalovirus
CNS	: Central Nervous System
CO_2	: Carbondioxide
CRP	: C-reactive Protein
CSF	: Cerebrospinal Fluid
DIC	: Disseminated Intravascular Coagulation
dl	: Deciliter
ELISA	: Enzyme Linked Immunosorbent Assay
GBS	: Group B Streptococci
GI	: Gastrointestinal Tract
Hib	: Haemophilus influenzae type b
HIV	: Human Immuno Deficiency Virus
HSV	: Herpes Simplex Virus
IgA	: Immunoglobulin A
IL-1	: Interleukin-1
IV	: Intravenous
JAMA	: Journal of the American Medical Association
L3	: Third Lumbar Spine
L4	: Fourth Lumbar Spine
L5	: Fifth Lumbar Spine
LAT	: Latex Agglutination Test

LDH	: Lactate Dehydrogenase
MA	: MacConkey Agar
μl	: Microliter
mg	: Milligram
ml	: Milliliter
mm	: Millimeter
mm ³	: Cubic millmeter
MHA	: Mueller Hinton Agar
MHBA	: Mueller Hinton Blood Agar
MR	: Methyl Red
NA	: Nutrient Agar
No.	: Number
NPV	: Negative Predictive Value
OD	: Optical Density
PCR	: Polymerase Chain Reaction
PPV	: Positive Predictive Value
RBC	: Red Blood Cells
REMA	: Response to Epidemic Meningitis in Africa
rpm	: Revolution Per Minute
SDA	: Sabouraud Dextrose Agar
SIADH	: Syndrome of Inappropriate Antidiuretic Hormone
SIM	: Sulphide Indole Motility
TB	: Tuberculosis
TBM	: Tuberculous Meningitis
TSI	: Triple Sugar Iron
TUTH	: Tribhuvan University Teaching Hospital
UK	: United Kingdom
US	: United States
VDRL	: Veneral Disease Research Laboratory
VP	: Voges Proskauer
VZV	: Varicella Zooster Virus
WBC	: White Blood Cells
WHO	: World Health Organization
ZN	: Ziehl-Neelsen