POPULATION ESTIMATION OF SOME RHIZOBIA FROM SOIL SAMPLES COLLECTED FROM HIGH HIMALAYAN HABITATS OF MANANG, NEPAL

A Dissertation Submitted for the Partial Fulfillment of the Requirements for the Master's of Science in Botany

> Submitted by DEEPAK MAHAT Roll No. : 18 / 061-062 Symbol No.: 1115 T.U. Regd. No.: 5 - 1 - 48 - 41 - 99

Central Department of Botany Tribhuvan University, Kirtipur, Kathmandu, Nepal 2008 Ref. No.

RECOMMENDATION LETTER

This is to certify that the dissertation work entitled "**Population Estimation** of some rhizobia from soil samples collected from high Himalayan Habitats of Manang, Nepal" has been carried out by Mr. Deepak Mahat under my supervision. The result of this research work has not been submitted for any academic degree to the best of my knowledge. I recommend his thesis for partial fulfillment of his Master's Degree in Botany, Tribhuvan University.

> **Prof. Dr. V.N.P. Gupta** Central Department of Botany Tribhuvan University Kathmandu, Nepal

Date: 4 January, 2008

LETTER OF APPROVAL

This dissertation paper submitted by **Mr. Deepak Mahat** entitled "**Population Estimation of some rhizobia from soil samples collected from high Himalayan Habitats of Manang, Nepal**" has been accepted as a partial fulfillment of Master of Science in Botany.

Expert Committee

.....

(Supervisor) Prof. Dr. Vimal N.P. Gupta Central Department of Botany T.U., Kirtipur, Nepal

(External Examiner) Dr. Kayo Devi Yami Nepal Academy of Science and Technology (NAST) Lalitipur, Nepal

(Internal Examiner) Dr. Bijaya Pant Central Department of Botany T.U., Kirtipur, Nepal

.....

(Head of the Department) Prof. Dr. Krishna Kumar Shrestha Central Department of Botany T.U., Kirtipur, Nepal

.....

Date : March 12, 2008

ACKNOWLEDGEMENT

First and foremost, I would like to express my deep sense of honour and appreciation to my supervisor Prof. Dr. V.N.P Gupta for his invaluable supervision, suggestions and regular encouragements during the work.

I am grateful to the Head, Central Department of Botany, T.U. for providing necessary laboratory facilities and administrative support.

I am thankful to T.U./NUFU (The Norwegian Council for Higher Education Programme for Development Research and Education/Norway) Project for providing me full financial support during the fieldwork in Manang without which this work would not have been possible.

I would like to express deep gratitude to Prof. Dr. R. P. Chaudhary and Prof. Dr. H. D. Lekhak for their valuable suggestions, continuous encouragement and guidance during the fieldworks in the remotes of Manang in high Himalayan areas. I would like to acknowledge the regular encouragements of Prof. Dr. K.K. Shrestha, Prof. Dr. S.D. Joshi, Dr. Usha Budathoki, Dr. R.D. Tiwari, Dr. Bijaya Pant, Sangita Rajbhandari and Mr. Roshan Poudyal for valuable suggestions.

I am thankful to Dr. Geeta Shrestha of NAST for their scholarly advices during this work. My special thanks goes to Mr. Trilok Nath Thakur for his valuable suggestions, literature support, and encouragements during the lab works. Similarly, my gratitude goes to Dr. Som Prasad Poudel and Ms. Jwala Bajracharya during this work.

My sincere thanks goes to Mr. Sandesh Bhattarai, Dr. Mohan Panthi, Kapil and Mingta for their kind co-operation during fieldwork. My sincere thanks also goes to Mr. Lila N. Sharma especially for his kind co-operations.

I am really obliged and indebted to my friends Bishnu, Devendra, Dinesh, Basanta, Bibek and Munesh who always supported and encouraged me during the preparation of this thesis and academic time period. I am also thankful to my all friends who helped me during this work.

At last but not least, I have proud for my parents, whose continuous support, encouragements and affection that have been instrumental to push me always forward in the time of difficulties.

Deepak Mahat

ABSTRACT

Rhizobium meliloti, R. leguminosarum by. phaseoli, R. leguminosarum by. trifolii, and Bradyrhizobium spp. were isolated from the root nodules of Argyrolobium roseum, Phaseolus vulgaris, Trifolium repens and Indigofera spp. respectively from Manang. All the four rhizobial strains were isolated and purified using Yeast extract Mannitol Agar (YEMA) medium and characterized depending upon their growth responses on YEMA-CR medium, YEMA-BTB medium, YEMB medium, Gram staining and rate of multiplication of the bacterial cells. All the isolates were authenticated by using their specific host plant by infection test on sterilized filter paper and plastic pouch using modified Jensen's nitrogen free medium. The bacterial population of R. meliloti, R. leguminosarum by. phaseoli, Bradyrhizobium spp. and B. japonicum was analyzed for each altitude ranging from Khangsar Goth (4190m asl) to Chame (2705m asl) with an altitude difference of about 100m. The effectiveness of R. meliloti, R. leguminosarum by phaseoli, Bradyrhizobium spp. and B. japonicum was determined on the basis of total nitrogen content of the root nodules of Trigonella corniculata, Phaseolus vulgaris, Dolichos lablab and Glycine max respectively grown separately in soil of Manang and Kathmandu and showed that *R. leguminosarum* by, phaseoli was the most effective one among others. Soil in each altitude was analyzed on the basis of pH, moisture, nitrogen, phosphorus, potassium and organic matter content and that overall content was satisfactory for the growth and distribution of bacterial cells. The statistical analysis also revealed the significant relationship between the altitude and no. of bacteria. The bacterial population decreased with an increase in altitudes.

EXECUTIVE SUMMARY

Nitrogen is the most common limiting factor for primary production due to its significant presence in most of the biomolecules. It is the structural component of aminoacids, which are the building blocks of protein. Thus the symbiotic bacteria i.e., rhizobia are responsible for the conversion of atmospheric nitrogen into combined form of organic compound. Successful legume-*Rhizobium* symbiosis definitely increase the incorporation of BNF into soil ecosystems. The legume is the macrosymbiont and the *Rhizobium* is the microsymbiont. The microsymbionts i.e., rhizobia are classified on the basis of the cross inoculation groups of the legumes nodulated by these rhizobia.

The present investigation focuses on the characterization, authentication of rhizobia from Manang as well as their effectiveness and the bacterial population in soils at each altitude ranging from 2705m to 4190m at an altitudinal difference of about 100m. Soil from these altitude were also analyzed for p^H, moisture, nitrogen, phosphorus, potassium and organic matter content.

Rhizobium meliloti (R101), *R*. leguminosarum bv. phaseoli (R103), R. leguminosarum bv. trifolii (R109) and Brdayrhizobium spp. (B111) were isolated from the root nodules of Argyrolobium roseum, Phaseolus vulgaris, *Trifolium repens* and *Indigofera* spp. respectively growing in Chame (Manang) area. All the four rhizobial strains were isolated in pure culture on Yeast Extract Mannitol Agar medium. The bacterial colonies grown on YEMA-CR were creamy white to translucent, watery and raised (concave). R101, R103 and R109 showed the acid producing behaviour on YEMA-BTB and YEMB medium where as B111 showed the alkali producing behaviour. All the four isolates showed Gram negative reaction taking up red coloration. The multiplication rate of rhizobial cells increased upto first 72 hours period and later it lowered down showing a hyperbolic curve.

The bacterial isolates R101, R103, R109 and B111 were authenticated by plant infection tests taking up specific hosts *Trigonella corniculata*, *Phaseolus vulgaris*, *Trifolium repens* and *Desmodium* spp. respectively. Pouch test technique was

used. After 18 days of inoculation visible nodules appeared, authenticating the inoculate of bacterial suspension to be rhizobia for all cases.

Soil contained rhizobial population was estimated using standard MPN (Most Probable Number) count method. The population of *R. meliloti, R. leguminosarum* by phaseoli, *Bradyrhizobium* spp. and *Bradyrhizobium japonicum* were estimated for each altitude ranging from Khangsar Goth (4190m) to Chame (2705m) with a difference of about 100m. Throughout the study area, Chame contained the highest population of *R. leguminosarum* by phaseoli (70×10^3 cells gm⁻¹ soil), *R. meliloti* (48×10^3 cells gm⁻¹ soil), *Bradyrhizobium* spp. (112×10^2 cells gm⁻¹ soil) and *B. japonicum* (40×10^2 cells gm⁻¹ soil). The rhizobial population was estimated on the basis of the nodulation of their specific hosts (*Trigonella corniculata, Phaseolus vulgaris, Dolichos lablab* and *Glycine max*) and calculated from the Table VIII₂ of Fischer and Yates (1963).

The effectiveness of *R. meliloti*, *R. leguminosarum* bv. phaseoli, *Bradyrhizobium* spp. and *B. japonicum* was determined by analyzing the nitrogen content of the root nodules of *Trigonella corniculata*, *Phaseolus vulgaris*, *Dolichos lablab* and *Glycine max* respectively grown separately in the soils of Manang. They were also grown in soil samples of Kirtipur, Kathmandu. *Phaseolus vulgaris* contained 5.24% total nitrogen in the root noudles and considered *R. leguminosarum* bv. phaseloi as the most effective strain of Manang. *Glycine max* with 3.98% total nitrogen considered *B. japonicum* as the most ineffective belonging to Manang. The soil of each altitude was analyzed for p^{H} , moisture (%), total nitrogen (%), phosphorus (kg/ha), potassium (kg/ha) and organic matter (%) content and overall content was satisfactory for plant growth. The statistical analysis also revealed the significant relationship between the altitude and no. of bacteria. The bacterial population decreased with the increase in altitudes.

CONTENTS

Recom	mendat	tion Letter	
Acknow	wledger	nent	
Acrony	yms		
Abstra	ct		
Execut	tive Sun	nmary	
СНАР	PTER (ONE : INTRODUCTION	1-5
1.1	Object	ives	5
1.2	Limita	tions	5
СНАР	PTER 1	WO : LITERATURE REVIEW	6-12
CHAP	TER 1	THREE : STUDY AREA	13-16
3.1	Locati	on and Physiography	13
3.2	Study	Location	13
3.3	Climat	te	14
3.4	Cropp	ing System	15
CHAF	PTER F	FOUR : MATERIALS AND METHODS	17-30
CHAP I.	TER F Materi		17-30 17
	Materi		
I.	Materi Source	als	17
I. 4.1	Materi Source	als e of seeds atory facilities	17 17
I. 4.1 4.2	Materi Source Labora Metho	als e of seeds atory facilities	17 17 17
I. 4.1 4.2 II.	Materi Source Labora Metho Isolatie	als e of seeds atory facilities ds	17 17 17 17
I. 4.1 4.2 II.	Materi Source Labora Metho Isolatie	als e of seeds atory facilities ds on of pure culture	17 17 17 17 17
I. 4.1 4.2 II.	Materi Source Labora Metho Isolati 4.1.1 C	als e of seeds atory facilities ds on of pure culture Collection of nodules	17 17 17 17 17 17
I. 4.1 4.2 II.	Materi Source Labora Metho Isolati 4.1.1 C	als e of seeds atory facilities ds on of pure culture Collection of nodules Preparation of stock solution	17 17 17 17 17 17 17 18
I. 4.1 4.2 II.	Materi Source Labora Metho Isolati 4.1.1 C	aals e of seeds atory facilities ds on of pure culture Collection of nodules Preparation of stock solution 4.1.2.1 Congo red (CR) stock solution	17 17 17 17 17 17 17 18 18
I. 4.1 4.2 II.	Materi Source Labora Metho Isolati 4.1.1 (4.1.2	als e of seeds atory facilities ds on of pure culture Collection of nodules Preparation of stock solution 4.1.2.1 Congo red (CR) stock solution 4.1.2.2 Bromothymol blue (BTB) stock solution	17 17 17 17 17 17 17 18 18
I. 4.1 4.2 II.	Materi Source Labora Metho Isolati 4.1.1 (4.1.2	aals e of seeds atory facilities ds on of pure culture Collection of nodules Preparation of stock solution 4.1.2.1 Congo red (CR) stock solution 4.1.2.2 Bromothymol blue (BTB) stock solution Preparation of Yeast extract Mannitol Agar-Congo Red	17 17 17 17 17 17 18 18 18
I. 4.1 4.2 II.	Materi Source Labora Metho Isolati 4.1.1 (4.1.2	als e of seeds atory facilities ds on of pure culture Collection of nodules Preparation of stock solution 4.1.2.1 Congo red (CR) stock solution 4.1.2.2 Bromothymol blue (BTB) stock solution Preparation of Yeast extract Mannitol Agar-Congo Red (YEMA-CR) medium	17 17 17 17 17 17 18 18 18 18
I. 4.1 4.2 II.	Materi Source Labora Metho Isolati 4.1.1 C 4.1.2 4.1.3 4.1.4 4.1.5	als e of seeds atory facilities ds on of pure culture Collection of nodules Preparation of stock solution 4.1.2.1 Congo red (CR) stock solution 4.1.2.2 Bromothymol blue (BTB) stock solution Preparation of Yeast extract Mannitol Agar-Congo Red (YEMA-CR) medium Culture of root nodule extract on YEMA-CR media	17 17 17 17 17 17 18 18 18 18 18

	4.2.2	Acid/Alkali production characteristics	20
		4.2.2.1 Acid/Alkali production on solid (YMA-BTB) medium	20
		4.2.2.2 Acid/Alkali production on liquid medium	20
	4.2.3	Gram staining	21
	4.2.4	Multiplication of Bacterial Cells	22
4.3	Authe	entication of rhizobial isolates by infection test	22
	4.3.1	Seeds, filter papers and growth pouches sterilization	22
	4.3.2	Seed germination on Agar water medium	23
	4.3.3	Preparation of liquid rhizobial inocula	23
	4.3.4	Preparation of modified Jensen's N-free medium	23
	4.3.5	Inoculating rhizobial count	24
	4.3.6	Infection test on growth pouch	24
4.4	Estim	ation of Most Probable Number (MPN)	25
	4.4.1	Collection of soil	26
	4.4.2	Sterilization of seeds and seeds germination	26
	4.4.3	Sterilization of sand, pebbles and growth pouches	26
	4.4.4	Soil dilution	26
	4.4.5	Plantation	26
	4.4.6	Nodulation	27
4.5	Evalu	ation of N2-fixing efficiency of rhizobial strains from the soils of	
	Mana	ng and Kathmandu	27
	4.5.1	Legume plantation on Manang and Kathmandu soil	27
	4.5.2	Nitrogen content in root nodules	27
4.6	Soil a	nalysis	28
	4.6.1	Soil p ^H	28
	4.6.2	Soil moisture	28
	4.6.3	Nitrogen (N)	28
	4.6.4	Phosphorus (P)	29
	4.6.5	Potassium (K)	29
	4.6.6	Organic matter	29
4.7	Statist	tical Analysis	30
СНА	PTER I	FIVE : RESULT	31-39
5.1	Isolati	ion of rhizobial isolates	31
5.2	Chara	cterization of rhizobial isolates	31

	5.2.1	Colony characteristic and growth response on YMA-CR medium	31
	5.2.2	Acid/Alkali production characteristics	31
		5.2.2.1 Acid/Alkali production on solid (YMA-BTB) medium	32
		5.2.2.2 Acid/Alkali production in liquid medium	32
	5.2.3	Gram staining	32
	5.2.4	Multiplication of bacterial cells	33
5.3	Authe	ntication of rhizobial isolates	33
5.4	Estim	stimation of Most Probable Number (MPN) 34	
5.5	Evalua	Evaluation of effectiveness of rhizobial strains from soil of Manang and	
	Kathmandu		35
5.6	Soil Analysis		
	5.6.1	Soil p ^H	36
	5.6.2	Soil moisture (%)	36
	5.6.3	Nitrogen (%)	36
	5.6.4	Phosphorus (kg/ha)	37
	5.6.5	Potassium (kg/ha)	38
	5.6.6	Organic matter (%)	38
5.7	Statist	ical analysis	39
CHAI	PTER S	SIX : DISCUSSION 4	40-44
CHAI	PTER S	SEVEN : CONCLUSION AND RECOMMENDATIONS	45-46
7.1	Concl	usion	45
7.2	Recon	nmendations	46

REFERENCES

APPENDICES

LIST OF TABLES

APPENDIX II

Table 1:	Physiography of the study area	57
Table 2:	Monthly average precipitation, maximum and minimum	
	temperature of Chame (2006)	57
Table 3:	Physiography of the site of nodule collection	58
Table 4:	Change in p ^H of the broth of rhizobia in different time intervals	58
Table 5:	Multiplication of bacterial cells in different time intervals	58
Table 6:	Most Probable Number (MPN) of different types of bacteria based	on
	altitudinal variation	59
Table 7:	Root nodule nitrogen content (%) of different legumes	
	from two different localities i.e., Manang and Kathmandu	60
Table 8:	Spot wise soil p ^H , moisture, nitrogen, phosphorus, potassium and organic	
	matter content of Manang	60

APPENDIX III

Table 1:	Data for ANOVA containing different types of		
	rhizobia at different altitudes	61	
Table 2:	ANOVA chart for different types of bacteria at different altitudes	62	

LIST OF FIGURES

Fig. 1:	Monthly average precipitation of Chame (2006)	15
Fig. 2:	Monthly average maximum and minimum temperature	
	of Chame (2006)	15
Fig. 3 :	Change in p ^H of broth of rhizobia in different time intervals	32
Fig. 4 :	Multiplication of bacterial cells in different time intervals	33
Fig. 5 :	Most Probable Number (MPN) of different types of bacteria based	
	on altitudinal variation	35
Fig. 6 :	Root nodule nitrogen content (%) of different legumes from two	
	different localities (i.e., Manang and Kathmandu)	36
Fig. 7 :	Nitrogen content (%) of soils from different altitudes of Manang	37
Fig. 8 :	Total available phosphorus (kg/ha) of soils from different altitudes of	
	Manang.	37
Fig. 9 :	Total available potassium (kg/ha) of soils from different altitudes of	
	Manang	38

LIST OF PHOTOGRAPH

PHOTO PLATE I

- Photo 1: R. meliloti isolate 'R101' colonies on YMA-CR plate
- Photo 2: R. leguminosarum bv. phaseoli isolate 'R103' colonies on YMA-CR plate
- Photo 3: R. leguminosarum bv. trifolii isolate 'R109' colonies on YMA-CR plate
- Photo 4: Bradyrhizobium spp. isolate 'B111' colonies on YMA-CR plate
- Photo 5: Rhizobial cells after Gram staining
- Photo 6: Different rhizobial isolates on YMA-BTB plates

PHOTO PLATE II

- Photo 1: Authentication of *R. leguminosarum* by. phaseoli isolate
- Photo 2: Authentication of *R. meliloti* isolate
- Photo 3: Authentication of R. leguminosarum by. trifolii isolate
- Photo 4: Authentication of *Bradyrhizobium* spp. isolate
- Photo 5: Legumes growing in plastic pouches for estimation of Most Probable Number (MPN)
- Photo 6: Researcher working in laminar air flow cabinet

ACRONYMS

%	Percentage
asl	above sea level
B111	Bradyrhizobium spp. strain
BNF	Biological Nitrogen Fixation
CDB	Central Department of Botany
et al	et albeli
gm ⁻¹	per gram
ha	Hectare
Κ	Potassium
kg	Kilogram
m	Metre
ml	mililitre
MPN	Most Probable Number
N/N_2	Nitrogen
no.	number
Р	Phosphorus
р ^н	Negative logarithm of hydrogen ion concentration
R101	Rhizobium meliloti strain
R103	Rhizobium leguminosarum bv. phaseoli strain
R109	Rhizobium leguminosarum bv. trifolii strain
ROT	Range of transition
T.U.	Tribhuvan University
YEM	Yeast Extract Mannitol
YEMA	Yeast Extract Mannitol Agar
YEMA-BTB	Yeast Extract Mannitol Agar-Bromo Thymol Blue
YEMA-CR	Yeast Extract Mannitol Agar-Congo Red
YEMB	Yeast Extract Mannitol Broth