
i

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

Thesis No.:

Image Classification based on Convolution Neural Network

By

Shailesh Singh

A THESIS REPORT

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND COMPUTER

ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE IN COMPUTER SYSTEM AND KNOWLEDGE

ENGINEERING (MSCSKE)

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

LALITPUR, NEPAL

January, 2017

ii

COPYRIGHT

The author has agreed that the library, Department of Electronics and Computer Engineering,

PulchowkCampus, Institute of Engineering may make this thesis freely available for inspection.

Moreover, the author has agreed that permission for extensive copying of this thesis for scholarly

purpose may be granted by the professor(s) who supervised the work recorded herein or, in their

absence, by the Head of the Department wherein the thesis was done. It is understood that the

recognition will be given to the author of this thesis and to the Department of Electronics and

Computer Engineering, Pulchowk Campus, and Institute of Engineering in any use of the material

of this thesis. Copying or publication or the other use of this thesis for financial gain without

approval of the Department of Electronics and Computer Engineering,Pulchowk Campus, Institute

of Engineering and author’s written permission is prohibited.

Request for permission to copy or to make any other use of the material in this thesis in whole or

in part should be addressed to:

Head

Department of Electronics and Computer Engineering

Pulchowk Campus

Pulchowk, Lalitpur

Nepal

iii

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certify that they have read, and recommended to the Institute of Engineering for

acceptance, a thesis entitled "Image Classification Based on Convolution Neural Network"

submitted by Shailesh Singh in partial fulfillment of the requirements for the degree of Master of

Science in Computer System and Knowledge Engineering(MSCSKE)

__

Supervisor, Dr. Basanta Joshi

Lecturer, Department of Electronics and Computer Engineering

Pulchowk Campus

Institute of Engineering, Tribhuvan University

__

External Supervisor,

Committee Chairperson, Dr. Diwakar Raj Pant

Head

Department of Electronics and Computer Engineering

Pulchowk Campus

Institute of Engineering, Tribhuvan University

iv

Abstract

Apart from image processing techniques, the problem of object recognition can also be solved by

using machine learning techniques. The main concern of this thesis is to classify images using

machine learning techniques. To tackle with such problems, artificial neural network i.e.

Convolutional Neural Network has been developed. In order to design the Convolutional Neural

Network, different parameters like filter size, number of convolution layers, drop out layers etc

were taken. Careful choosing and study of these parameters shows that efficient architecture can

be designed. Different neural network architectures for CIFAR-10 and MNIST dataset have been

developed. Being different in terms of number of hidden layers, filter size and other measures, they

have been trained on Central Processing Unit. Drop out techniques has been used to reduce over-

fitting issues. Accuracy of these architectures has been calculated by feeding the networks with the

test data. Lastly, results are compared and analyzed to find out best architecture. Thus, this study

gives a way to design efficient architecture for image classification.

v

Acknowledgements

It is great pleasure for me to complete a thesis. I am indebted to several personnel who have lent

me hands in various ways during the thesis period.I would like to express my deep sense of

gratitude to my supervisor, Dr. Basanta Joshi, for his immense guidance, constant inspiration

and encouragement. It has been a privilege to work under his supervision.

I would like to express my special thanks of gratitude to the Department of Electronics and

Computer Engineering (DOECE) and to our Head of Department Dr. Dibakar Raj Pant for

providing us with the golden opportunity to explore our interest and ideas in the field of

engineering through this thesis.I would like to express my sincere appreciation towards my

program co-coordinator, Dr. Sanjeeb Prasad Panday, for his constant guidance and

motivations.I am also grateful to Prof. Dr. Shashidhar Ram Joshi, Prof. Dr. Subarna Shakya

and Dr. Aman Shakya for their invaluable knowledge sharing, support and encouragement

during my master degree.

Last but not the least my classmates (071 Batch, M.Sc. in Computer Systems and Knowledge

Engineering) and all the people who are directly or indirectly involved in this thesis deserve

special thanks for their kind cooperation, interest and support in my research work.

vi

Table of Contents

Table of Contents

COPYRIGHT.. ii

Abstract ... iv

Acknowledgements .. v

Table of Contents .. vi

List of Figures .. viii

Abbreviations .. ix

Chapter 1: Introduction .. 1

1.1 Background .. 1

1.2 Problem Statement ... 4

1.3 Objectives .. 4

Chapter 2: Literature Review .. 5

2.1 Neural Networks .. 5

2.2 Deep Neural Network (DNNs) .. 6

2.3 Convolutional Neural Networks (CNNs)... 7

2.4 Related Works .. 9

Chapter 3: Methodology ... 10

3.1 Model Development... 11

3.1.2 Dataset Preparation ... 11

3.1.2 CNN Architecture Design ... 11

3.1.3 Learning a Classifier ... 13

3.1.4 Testing and Evaluation .. 15

3.2 Tools and IDE .. 17

3.3 Data Collection and Evaluation ... 17

Chapter 4: Results and Discussion ... 19

vii

4.1 Overview of Tasks ... 19

4.1.1 Deep Learning Framework Installation and CPU Configuration 19

4.1.2 CNN Architectures .. 19

4.2 Final Results... 25

Chapter 5: Conclusion... 29

Chapter 6: Limitations and Future Enhancement ... 30

References ... 31

viii

List of Figures

Figure 1:- Machine Learning Overview .. 2

Figure 2:- Concept of Image Classification Problem .. 3

Figure 3:- An Artificial Neural Network ... 5

Figure 4 : - A Human Neuron Example .. 5

Figure 5 :- Multilayer Perceptrons with 4 layers. .. 6

Figure 6:-CNN with its neurons arranged in three dimensions ... 7

Figure 7 : - Different Layers within Convolutional Neural Network Architecture used in [9] 9

Figure 8 : - Image Classification Pipeline ... 10

Figure 99: - Model Development Steps ... 11

Figure 10:- Dataset Division.. 11

Figure 11:- CNN Design.. 12

Figure 12:-Loss function with various learning rates .. 15

Figure 13:- Validation/Training Accuracy and over-fitting .. 16

Figure 14: - Images in CIFAR-10 Dataset... 17

Figure 15: -Handwritten digits in MNIST Dataset .. 18

Figure 16 : - Importing tensorflow Library on IPython Notebook showing CPU enabled sign. .. 19

Figure 17: - CNN Architecture for MNISTDataset ... 20

Figure 18: - Precision, Recall, f1-score and Support for CNN after 10 epochs 20

Figure 19: - Confusion Matrix for CNN designed for MNIST Dataset .. 21

Figure 20:- CNN Architecture-1 for CIFAR-10 Dataset ... 21

Figure 21: - CNN Architecture Train and Test Loss ... 22

Figure 22: - Layer Information for CNN Architecture-2 .. 22

Figure 23: - Architecture trained for 40 epochs .. 23

Figure 24:- Layer Information for CNN Architcture-3 for CIFAR-10 Dataset 23

Figure 25: - CNN Architecture-3 Trained for 73 epochs .. 24

Figure 26:- Convolution Filter of first convolution layer of Architecture 3 24

Figure 27:- Accuracy of different architectures .. 25

Figure 28:- Results obtained from architecture-3 over test dataset ... 28

ix

Abbreviations

AI Artificial Intelligence

CNN Convolution Neural Network

CONV Convolution Neural Network

DNN Deep Neural Network

MSGD Minibatch Stochastic Gradient Descent

NLL Negative Log Likelihood

POOL Pooling Layer

RELU Rectified Linear Unit

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

1

Chapter 1: Introduction

1.1 Background

With the advent of modern technologies, computers are becoming powerful day by day. They

have become perfect companion with high speed computing capabilities over the time. Few

decades ago it was believed that machines are only for arithmetic operations but not for complex

tasks like speech recognition, object detection, image classification, language modeling etc. But

now a day, situation is inverted. Machines are capable of doing these things more easily with very

much high accuracy.

Conventional algorithm consisting of finite arithmetic operations cannot provide capacity to do

such complex tasks for machine. For this, Artificial Intelligence provides lots of techniques.

Learning Algorithms are used for such purpose. Huge dataset is required for training the model

with appropriate architecture. Testing is required to evaluate whether the model is working

properly or not.

Image processing focuses on two major tasks. They are:

i. Processing of image data for storage, transmission and representation for autonomous

machine perception.

ii. Improvement of pictorial information for human interpretation.

Following are the different uses of image processing:

i. Medical Applications

ii. Industrial Inspection

iii. Artistic effects

iv. Law enforcements

v. Human computer interfaces etc

Neural Network is one of AI techniques emerged long ago in 1940s but technology at that time

was not so advanced. It was then wakening time to time but could not impress the Computer

Science Community very much. It was up at time in 1980s with the development of back-

propagation. Later it was again discarded due to slow learning and expensive computation. In

2000s, it picked up again in AI field with lot of researches. It was believed that only 2 to 3 hidden

layers are sufficient for Neural Network to work properly but later on it is observed that even

2

more layers can represent high dimensional features of the input signals. Such neural networks

are referred to as Deep Neural Networks (DNN).

Connections between layers in DNNs, known as receptive fields (RF), are very important

parameters. They have to learn good feature representations of the dataset and these

representations involves learning linear filter weight values form input data. Results from

(Eugenio, Dundar, Jin, & Bates, An Analysis of the Connections Between Layers of Deep Neural

Networks, 2013) shows that even fully connected Convolutional Neural Network (CNN) Model

performs poorly in Image Classification Tasks.

Defining appropriate architecture for object detection is the main task that this thesis is intended

to do. Suitable feature representation methods are required to make the DNN work properly with

high accuracy.

Supervised Learning and Multi-Class Classification

Supervised learning is one of the common machines learning which consists of model which is

trained with training data. The training data consists of “labels” or “right answers”. Under this,

the model is trained. After completion of training, the model is supposed to give us more right

answers on new set of training examples.

There are two types of problems under supervised learning, Classification and Regression. In

Classification problem, the model classifies data into one of multiple discrete classes, no in

between the classes where as in Regression problem, the model classifies predicts some

continuous real valued problem.

Figure 1:- Machine Learning Overview

Machine Learning
Problem

Supervised

RegressionClassfication

Unsupervised

Clustering

3

Needs of Image Classification:

The intent of the classification process is to categorize all pixels in a digital image into one of

several objects. The image classification is required in various field like medical sector, remote

sensing, security, aviation etc. This is also used to classify the satellite images. The image

classification is done mainly by three methods: Unsupervised image classification, Supervised

image classification and Object-based image analysis

Classification of Image:

Image classification is a task of assigning an input image one label from set of categories. This is

one of core problems in computer vision.In computer vision, image is represented as one large 3-

dimensional array of numbers. Consider RGB image of size 32x32. What computer sees is

3𝑥32𝑥32 numbers or a total of 3072 numbers. And the task is to obtain a single label (such as

chair) from these numbers. Though recognizing an object is trivial task for human to perform, It is

challenge for computer vision algorithm to work correctly.A single object can be oriented in many

ways with respect to camera. So there may be viewpoint variation to consider. Other challenges

for the algorithm may to taking into account of scale variation, deformation, Occlusion,

Illumination Conditions, Brightness Clutter and Intra-class variation. A good image classification

model should address all of these variations.

Figure 2:- Concept of Image Classification Problem

Image Classification

Class Score

Image as seen by computer

4

1.2 Problem Statement

Now a day the application of artificial intelligence is growing in various sector to make the decision

automatic or to enhance the system so that they can cope with the changing environment. Neural

Network is a special technique in artificial intelligence field. Deep Neural Networks are applicable to

fields like image recognition (Eugenio, Dundar, Jin, & Bates, An Analysis of the Connections Between

Layers of Deep Neural Networks, 2013), Speech Recognition (Sainath, Kingsbury, Mohamed, &

Ramabhadran, 2013; Alex Graves), text prediction and handwriting generation [4], Language Generations

[5]. DNN architecture for one task does not work well with another task. For task related to specific field,

it is required to define which architecture to pick. For Image Classification or Object Detection task, and

designing its structure is challenging job.

To develop the neural network architecture based image classification is a challenging job and also a

booming topic in research community. This motivates me to take this thesis as an opportunity to work in

this sector and give some contribution in research community in this fied.

1.3 Objectives

The main objectives of this thesis are:

 To design effective architecture of CNN for image classification task.

 To classify images using Convolutional Neural Network

5

Chapter 2: Literature Review

2.1 Neural Networks

Neural Networks are biologically inspired connectionist models that receive some input and

transform it through series of hidden layers and finally calculates output. In regular neural

network, neuron in each layer is connected to all neurons in previous layers.

Figure 3:- An Artificial Neural Network

Figure 4 : - A Human Neuron Example

6

Multilayer Perceptron (MLPs)

Every neurons are independent and do not share connection among them. Problem with these

types of NNs is they cannot scale well (Grishick, Donahue, Darrel, & MAlik, Rich Features

Hierarchies for accurate object detection and semantic segmentation.). Consider a simple example

where input is RGB image of 32 x 32, there will be 32x32x3=3072 weights. This may be

somehow manageable but when the image is like 200x200 then there will be about 120000

weights, in this full connection model is wasteful and they possess over-fitting [7].

Figure 5 :- Multilayer Perceptrons with 4 layers.

2.2 Deep Neural Network (DNNs)

Deep Neural Networks are highly recognized Neural Network Architecture and are used

extensively used in computer vision, Speech Recognition, Language modeling and Natural

Language Processing. They have deeper architecture than conventional neural network.

Convolutional Neural Network and Recurrent Neural Network (RNN) are examples of DNN.

RNNs are used for sequence learning tasks like Speech Recognition, Handwriting Generation,

language modelling(Alex Graves; Graves, Generating Sequences with Recurrent Neural

Networks, 2014; Sutskever, 2013).

Layer A

Layer B

Layer C

Layer D

7

2.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Network is the powerful tool for image classification and object detection.

Instead of full connection model they modify neurons to be connected to small region of the

neurons in previous layer. It consists of many layers.

Figure 6:-CNN with its neurons arranged in three dimensions

i. Convolution Layer (CONV)

ii. Pooling Layer (POOL)

iii. Fully Connection Layer (FC)

Simple example of CNN structure is like [INPUT-CONV-RELU-POOL-FC]. CONV and FC

apply transformations and the operations done are the function of parameters, while POOL/RELU

Layers have fixed functions [7].

Convolutional Layers

Convolutional layers consist of set of learnable filters. Network will learn filters that activate

when they see some specific type of feature at some spatial position of the image. Stacking

number of these filters makes depth of Convolution Layer. Each neuron takes inputs from a

rectangular section of the previous layer; the weights for this rectangular section are the same for

each neuron in the convolutional layer. This rectangular section is receptive field that runs whole

across the image. Thus, the convolutional layer is just an image convolution of the previous layer,

where the weights specify the convolution filter. [9]

O[m, n] = f[m, n] ∗ g[m, n] = ∑ f[u, v]g[m − u, n − v]

⧞

𝑢=−⧞

8

Depth, Stride and Zero-padding

Depth(D) is number of neurons in convolution layers that connect to same region of input volume.

Stride(S) is measure of shifting of filter. Stride(S) =1, means that filter is moved to 1 unit (or

Pixel) at a time in x and y directions. More the value of S, there will be less alignment of filters.

Zero-padding (P) means adding zeros to the start and end of rows and columns. It is done in

order to properly extract the features of boarder pixels.

If W is width of input image, F is filter size, P is zero-padding and S is stride then Convolving

image would result output with size given by:

𝑂 =
𝑊−𝐹+2𝑃

𝑆
+1.

Also image can be convolved only when O is integer.

Pooling Layer

The pooling operation decreases dimensions of convolved image. It may be min-pooling, max-

pooling or averaging. The pooling regions are very small. If pooling region is just 2×2 then this

will have effect of subsampling the output maps by a factor of 2 in both dimensions. It

progressively reduces spatial size and reduces over-fitting.

Fully Connection Layer

After reducing image to suitable feature-maps, fully connected MLP is used. This layer consists

of neurons that are connected to every neurons of previous layer. [As in figure 1]

CNN Architecture

CNN in figure 6 consists of input layer, convolutional layers, and subsampling layers. Input layer

is input image. After this layer there is hidden convolution layer. Input image is convolved with

4 different convolution filter and we get 4 feature maps of the same image. These 4 feature maps

are then pooled and down-sampled at next layer. The down-sampled feature map is again

convolved with convolution filter to get 6 other feature maps. These are again sub-sampled. This

final feature map is then fully connected with output classes.

9

Figure 7 : - Different Layers within Convolutional Neural Network Architecture used in [9]

2.4 Related Works

First successful implementation of CNN was done by Yan LeCunn in 1990’s which is used to

read zip codes and digits [9]. CNN has been proved to be powerful tool for image classification

and object detection. It became more powerful when AlexNet(Alex, Ilya, & Hinton, 2012) won

ImageNet ILSVRC Challenge 2012 with significant performance from 2nd runner-up. AlexNet

was CNN with some modification to LeNet. It was deeper, bigger and Conv Layers were stacked

instead of immediate pooling layer. ZFNet(Zeiler & Fergus, 2013) won ImageNet ILSVRC

Challenge 2013. It modified AlexNet by varrying hyper parameters and using larger filters on

convolution layers.

Both CNN, along with Recurrent Neural Networks (RNN) are used to solve the problem like

image captioning(Fie-Fie & L., 2014; Vinyals, Toshev, Bengio, & Erthan, 2014; IIya Sutskever,

2011).

10

Chapter 3: Methodology

Data Driven Approach

It’s quite difficult task to generate algorithm within numbers of the image to classify it. Instead

this problem is solved as supervised learning. There are lots of examples of images for each

individual class. The models are exampled and develop learning algorithms that look at images

and learn about visual appearance of each class. This is data driven approach. [7]

Image Classification Pipeline

Image Classification is just reading array of pixels from image and assigning it a label. The

complete pipeline can be viewed as below:

Figure 8 : - Image Classification Pipeline

Input

The first step in the pipeline is Input and it consists of set of images each labeled with one of the

categories. It is known as training set.

Learning

The training set data is used by model to learn how each of class looks like. This step learns

classifier.

Evaluation

The final step is Evaluation in which model is given new set of images to classify. These images

are not seen by the model before and it calculates labels for these images. Then the predicted labels

are compared with true label and expect most of predicted ones to be true. It is expected to have

lot of predictions to be correct.

Learning Evaluation

Input

Evaluation
Testing

11

3.1 Model Development

For classification of data, there are various steps involved. Steps can be viewed as figure below:

Figure 99: - Model Development Steps

3.1.2 Dataset Preparation

Data provided is first must be divided into training set, validation set and testing sets.

Figure 10:- Dataset Division

Training Setare used to adjust various weights and parameters of the model.

Validation Setare not used to adjust the parameters of the model, instead they are used to reduce

overfitting problem

Testing Setare used for evaluating the predictive power of the model.

3.1.2 CNN Architecture Design

CNN in Image Classification

Dataset Preparation

Testing and

Evaluation
Learning Classifier

Layer m+1

Layer m

Layer m-1

CNN Architecture Design

Training Set
Validation

Set

Testing Set

12

CNN is to be designed for sole purpose of Image Classification. The architecture of network will

be modified; its filters are changed to see which will give best output.

Figure 11:- CNN Design

Convolution Layer Design

Convolution Layer takes input as volume [W1xH1xD1], and outputs another volume as

[W2xH2xD2]. It requires four hyper-parameters: Number of filters (K), Filter’s spatial extent (F),

amount of Stride (S), and Amount of Zero-padding (P).

Output volume is determined as follows:

𝐖𝟐 =
𝑊1− 𝐹 + 2𝑃

𝑆
+ 1

𝐇𝟐 =
𝐻1 − 𝐹 + 2𝑃

𝑆
+ 1

𝐃𝟐 = 𝐾

Pooling Layer Design

Input Layer

(Stack of CONV, POOL

and FC Layers)

OuOutput Class Score

Output Layer

13

Pooling Layer takes input as volume [W1xH1xD1], and outputs another volume as [W2xH2xD2].

It requires two hyper-parameters: Spatial extent (F) and amount of Stride (S)

Output volume is determined as follows:

𝐖𝟐 =
𝑊1− 𝐹

𝑆
+ 1

𝐇𝟐 =
𝐻1 − 𝐹

𝑆
+ 1

𝐃𝟐 = 𝐷1

Example of Simple CNN Architecture

As already mentioned, RELU and POOL layers are fixed function but CONV and FC have

transformation function whose value depends upon set of parameters (weights and biases). These

values are learned through gradient descent.

3.1.3 Learning a Classifier

Log likelihood of a classifier can be defined as:

ℒ(𝜃,𝒟) =∑log𝑃(𝑌 = 𝑦(𝑖)|𝑥(𝑖), 𝜃)

|𝒟|

𝑖=0

Log likelihood of a classifier gives measure of correct classification. Increasing value of log-

likelihood is better while training. Since it is more generalize to have minimization of objective

function, we define Negative Log-Likelihood (NLL) as:

𝑁𝐿𝐿(𝜃,𝒟) = −∑log𝑃(𝑌 = 𝑦(𝑖)|𝑥(𝑖), 𝜃)

|𝒟|

𝑖=0

Where 𝒟 is Dataset

𝜃 is weight parameter

[INPUT—CONV—RELU—POOL—FC]

14

(𝑥(𝑖), 𝑦(𝑖)) is ith training data. Y is target data.

NLL of a classifier is differential and it can be used by our model as cost function. Our model is

trained with algorithm that minimizes the cost function over the training data. The algorithm we

are going to use is Stochastic Gradient Descent with Mini-batches

Gradient Descent

A cost function is defined first. For system or hypothesis to work on the basis of examples, its

cost function should be minimum so that it gives least error. Weights are initialized to some

random values and iterating; we obtain value of weights that minimizes cost function. It is done

by gradient calculation. Back propagation is applied to calculate gradient descent.

Stochastic Gradient Descent (SGD)

A loss function is defined by its parameters. In ordinary gradient descent algorithm, at each

iteration, we move downward to error surface defined by the loss function. SGD works on same

principle as gradient descent but it moves more quickly downward. Unlike gradient descent where

gradients are calculated after running on entire dataset, SGD calculates over few examples at a

time [Single data at purest form].

There is variant of SGD called Minibatch SGD (MSGD) in which training examples are divided

into multiple batches and gradients are calculated after each batch.

MSGD Algorithm:

For every batch

i. Calculate cost function

ii. Calculate gradient

iii. Update parameters

iv. Until stopping condition

A pseudo-code of MSGD more clarifies the algorithm:

for (x_batch, y_batch) in mini_batches:

 loss = f(params, x_batch, y_batch)

 gradient_wrt_params= #Calculate Gradiet

 params -=learning_rate*gradient_wrt_params

 if <stopping condition is met>:

15

 return params

3.1.4 Testing and Evaluation

A typical train and test scheme is: learn parameters from training set, minimize cost function, and

compute test error.

Loss function is calculated for each batch. So, it is first quantity to track the training.

Figure 12:-Loss function with various learning rates

Figure above shows loss function over time with different learning rates. When learning, rate is

very high it cannot converge, it overshoots the minima and hence the training loss increases with

time.

If there is low learning rate, then the model learns at very slow rate. Thus, it takes much longer

time to converge. Choice of learning rate is a tricky and it has to be in a way such that it should

not be large enough to overshoot the minima and also should not be very small to get longer time

to converge.

A good choice of learning rate give smooth decrease in loss over time as shown in figure above.

Another quantity to track training is Validation/Training Accuracy.

16

Figure 13:- Validation/Training Accuracy and over-fitting

The gap between training accuracy and validation accuracy clearly suggests that there is over-

fitting. Curve C1 represents training accuracy. If the model gives validation accuracy represented

by Curve C2 then there is little over-fitting and model works good for not just training examples

but to new examples as well. But, in case, the model gives validation accuracy as depicted in Curve

C3, then it has strong over-fitting, thus giving worse result for new unseen examples.

C1

C2

C3

17

Figure 14: - Images in CIFAR-10 Dataset

Evaluation

The model can be evaluated with multiple measures:

i. Test loss/Test Accuracy

ii. Validation loss/Validation Accuracy

iii. Precision, Recall

A typical train and test scheme is: learn parameters from training set, minimize cost function, and

compute test error.

3.2 Tools and IDE

 Python with Sci-kit, numpy, scipy, Tensor flow

 Core i5

3.3 Data Collection and Evaluation

For object detection CIFAR-10 and MNIST Dataset are be used. CIFAR-10 consists of 60K

images of size 32x32. 50K images are used for Training while 10K are Test image.There are 6000

images per class. Different classes of CIFAR-10 Dataset are:

18

Label class

0 airplane

1 automobile

2 bird

3 cat

4 deer

5 dog

6 frog

7 horse

8 ship

9 truck

Table 3.3.1: - CIFAR-10 Dataset Classes

MNIST Dataset also contains 60K grayscale images of hand-written digits, each of size 28x28.

50K images are used for Training and 10K are used for Test images.

Label Digit

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

Table 3.3.2: -MNIST Dataset Classes

Figure 15: -Handwritten digits in MNIST Dataset

19

Chapter 4: Results and Discussion

4.1 Overview of Tasks

4.1.1 Deep Learning Framework Installation and CPU Configuration

A very effective deep learning framework ‘Tensor Flow’ is installed and is configured to run on

Core i5.

Figure 16 : - Importing tensorflow Library on IPython Notebook showing CPU enabled sign.

TensorFlow is an open source software library for numerical computation using data flow graphs.

Nodes in the graph represent mathematical operations, while the graph edges represent the

multidimensional data arrays (tensors) that flow between them. This flexible architecture lets us

deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device without

rewriting code. A deep learning framework ‘Lasagne’ along with ‘Nolearn’ are used for efficient

implementation.

4.1.2 CNN Architectures

Different CNN architectures are designed. As image size of both MNIST and CIFAR-10 are 28x28

and 32x32 sizes respectively, more than more than three layers of convolution are not possible

without sufficient pooling. Following each convolution with pooling layer, three architectures are

proposed.

CNN for MNIST Dataset

A Convolutional Neural Network is designed for both MNIST and CIFAR-10 Datasets. An

architecture is designed for MNIST Dataset with following layers’ configuration:

i. INPUT Layer accepting input of 28x28 image with single channel color

ii. First CONV Layer with 32 5x5 filters. With RELU activation function.

20

iii. MAXPOOL Layer with size 2x2.

iv. Second CONV Layer with 32 5x5 filters. With RELU activation function.

v. Second MAXPOOL Layer with size 2x2

vi. Dropout Layer with 50% dropout.

vii. FULL Connection Layer with 256 units Followed by another 50% dropout layer.

viii. OUTPUT Layer with 10 units.

Figure 17: - CNN Architecture for MNISTDataset

CNN after training over 10 epochs gives 98.70% accuracy.

Figure 18: - Precision, Recall, f1-score and Support for CNN after 10 epochs

This information can be viewed on Confusion Matrix can be obtained with above results.

Obviously results are fascinating with just 10 epochs. If we train model for more epochs, then the

21

output may be around 99% accuracy. This means this architecture is working perfectly for MNIST

Dataset.

Figure 19: - Confusion Matrix for CNN designed for MNIST Dataset

CNN Architecture-1 for CIFAR-10 Dataset

Figure 20:- CNN Architecture-1 for CIFAR-10 Dataset

Different Layers in CNN are:

i. Input layer is 32x32 images of 3 color channel i.e 3x32x32. Convolution of layer consists

of 20 5x5 patches with padding size 2 and stride equal to 1.

ii. Pooling layer after first convolution consists of max function with 2x2 patch size. Hence

it will reduce the image to 32x14x14.

22

iii. Second convolution layer consists of same properties as that of first convolution layer and

the image it produces will be of size 32x10x10 followed by pooling layer that reduces

image to 32x5x5

iv. Two full connection layer each of 256 units and with 50 % dropout is implemented.

v. Final Output layer with 10 outputs for different classes.

CNN Architecture-1 is trained for 34 Iterations.

Figure 21: - CNN Architecture Train and Test Loss

CNN Architecture-2 for CIFAR-10 Dataset

Figure 22: - Layer Information for CNN Architecture-2

Accuracy

epoch

23

The figure above shows architecture-2. This consists of small two 3x3 convolutions layers, two

full connection layers with dropout 50%. In architecture-1, we have used (5x5) convolution filters.

The CNN is trained for 40 epochs.

Figure 23: - Architecture trained for 40 epochs

CNN Architecture-3 for CIFAR Dataset

Figure 24:- Layer Information for CNN Architcture-3 for CIFAR-10 Dataset

Accuracy

24

This Arhitecture-3 is different from Architecture 1 and 2 above. It consists of 3 convolutions layers

of different sizes. First convolution layer is of size (3, 3), Second and Third Convolution Layers

are of size (2, 2). Using such small patches and deeper network allows to better model the problem.

Figure 25: - CNN Architecture-3 Trained for 73 epochs

Figure 26:- Convolution Filter of first convolution layer of Architecture 3

Accuracy

25

4.2 Final Results

 Architecture 1 Architecture 2 Architecture 3

Maximum Accuracy

(%)

65.526 66.564 71.025

Epochs to obtain

Max. Accuracy

27 31 48

Average Training

time(seconds)

72.04 70.13 49.84

Table 1:- Comparison of Three Architectures

Results obtained from all three architectures are listed above. The first architecture, having two

convolution layers each with filter size 5x5 and two dropout layers with 50% dropoutgave 65.526%

accuracy on 27th epoch. After that, it began to over-fit the model.

In Second Architecture, We have used two convolution layers but with small filter size than that

of Architecture 1. Each of them are of 3x3 size. With just this arrangement, the accuracy improved

to 66.564%. Again after 31st epochs the model begins to over-fit.

Third Architecture exploits 3 convolution layers, the first convolution layer is of size 3x3, second

and third convolution are of sizes 2x2 each. After three sequence of convolution and pooling, just

like other architectures, two dropout layers along with two fully connected layer are designed

before the final layer. On doing so the model gave the accuracy of 71.025 % which is quite good

than other two architectures.

Figure 27:- Accuracy of different architectures

65.526

66.564

71.025

62

63

64

65

66

67

68

69

70

71

72

Architecture 1 Architecture 2 Architecture 3

A
cc

u
ra

cy

Architecture

Validation Accuracy (%)

26

The figure 28 shows the classification results obtained from Architecture-3.

(a)

(a)

(b)

(c)

(c)

(d)

27

(f)

(e)

(g)
(h)

28

Figure 28:- Results obtained from architecture-3 over test dataset

(i)

(j)

(k) (l)

29

Chapter 5: Conclusion

 This thesis report presented suitable architecture of convolutional neural network for

solving image classification problem. Machine learning technology has been used to solve the

problem instead of using advance image processing techniques. The model of Deep Neural

Network architecture is developed in which deep layer extracts information from data at different

level of abstractions. Convolutional Neural Network is trained and the images are classified.

General idea is to use constant filter sizes for convolution layers. New approach discussed on this

research is of using variable filter sizes for extracting convolved features. The filters must be of

small size of about 3x3 or 2x2 for obtaining smooth train and valid loss.

For both MNIST and CIFAR-10 datasets, the three architectures are developed. The

architecture designed for one dataset did not work well with other. It depends upon image

properties like size, channels etc. To better train CNN, overall procedure is to use small patches of

convolution filters instead of bigger one. It will be better of using variable sized filters instead of

constant filters among all convolution layers. This thesis showed that using some slightly bigger

size filter at initial convolution layers and then using smaller filters long the depth gives good

accuracy and hence the efficient architecture.

In order for reducing over-fitting, dropout must be used. Dropout significantly improves

performance of the networks, as it performs model averaging of different networks. It must be used

in full connection layers. One or two layers of dropout must be implemented.

30

Chapter 6: Limitations and Future Enhancement

As with every research, the Architectures developed in this thesis have some limitations. Since

it is very expensive to calculate convolution operations CPUs needs to train the architectures. CPUs

can exploit their parallelism. High configuration CPUs are required to perform these calculations

so that training can be done in small time.

 Neural Networks with 2 or 3 layers of convolution performs well for CIFAR-10 and MNIST

Dataset but when dealing with larger datasets containing larger image sizes, it won’t be enough

with just 2 or 3 layers. Networks should contain deeper architectures.

The architecture developed for MNIST Dataset gave 98 % of accuracy over test dataset with

only 10 epochs. For CIFAR-10 dataset, accuracy did not do so well. Architectures depend upon

size of images which is a quite disappointment.

The accuracy obtained was around 68%. Further processes can be done to improve accuracy

of the Architectures. One of them is Data Augmentation. It can be used further to minimize over

fitting. Basically what it does is by performing transformations over images, it produces much

larger dataset to train the network. Deeper Architectures with more convolution layers can be used

to better model the problems.

31

References

[1]
C. Eugenio, A. Dundar, J. Jin and J. Bates, “An Analysis of the Connections Between

Layers of Deep Neural Networks,” arXiv, 2013.

[2]
T. N. Sainath, B. Kingsbury, A.-r. Mohamed and B. Ramabhadran, “Learning Filter Banks

within a Deep Neural Network Framework,” in IEEE, 2013.

[3]
A. Graves, A.-r. Mohamed and G. Hinton, “Speech Recognition with Deep Recurrent

Neural Networks,” University of Toronto.

[4] A. Graves, “Generating Sequences with Recurrent Neural Networks,” arXiv, 2014.

[5] O. Vinyals and Q. V.Le, “A Neural Conversational Model,” arXiv, 2015.

[6]
R. Grishick, J. Donahue, T. Darrel and J. MAlik, “Rich Features Hierarchies for accurate

object detection and semantic segmentation.,” UC Berkeley.

[7]
A. Karpathy, “CS231n Convolutional Neural Networks for Visual Recognition,” Stanford

University, [Online]. Available: http://cs231n.github.io/convolutional-networks/.

[8] I. Sutskever, “Training Recurrent Neural Networks,” University of Toronto, 2013.

[9]
“Convolutional Neural Networks (LeNet),” [Online]. Available:

http://deeplearning.net/tutorial/lenet.html.

[10]
K. Alex, S. Ilya and G. E. Hinton, “ImageNet Classification with Deep Convolutional

Neural Networks,” 2012.

[11]
Zeiler, M. D and F. Rob, “Visualizing and Understanding Convolutional Networks,” arXiv,

2013.

[12]
L. Fie-Fie and A. Karpathy, “Deep Visual Alignment for Generating Image Descriptions,”

Standford University, 2014.

[13]
O. Vinyals, A. Toshev, S. Bengio and D. Erthan, “Show and Tell: A Neural Image Caption

Generator.,” Google Inc., 2014.

32

[14]
I. Sutskever, J. Martens and G. Hinton, “Generating Text with Recurrent Neural

Networks,” in 28th International Conference on Machine Learning, Bellevue, 2011.

[15]
J. Martens, “Deep Learning via Hessian-Free Optimization,” in Procedings of 27th

International Conference on Machine Learning, 2010.

[16]
Nielsen and A. Michael, “Neural Networks and Deep Learning,” Determination Press,

2014.

