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Abstract 

Apart from image processing techniques, the problem of object recognition can also be solved by 

using machine learning techniques. The main concern of this thesis is to classify images using 

machine learning techniques. To tackle with such problems, artificial neural network i.e. 

Convolutional Neural Network has been developed. In order to design the Convolutional Neural 

Network, different parameters like filter size, number of convolution layers, drop out layers etc 

were taken. Careful choosing and study of these parameters shows that efficient architecture can 

be designed. Different neural network architectures for CIFAR-10 and MNIST dataset have been 

developed. Being different in terms of number of hidden layers, filter size and other measures, they 

have been trained on Central Processing Unit. Drop out techniques has been used to reduce over-

fitting issues. Accuracy of these architectures has been calculated by feeding the networks with the 

test data. Lastly, results are compared and analyzed to find out best architecture. Thus, this study 

gives a way to design efficient architecture for image classification. 
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Chapter 1: Introduction 

1.1 Background 

With the advent of modern technologies, computers are becoming powerful day by day. They 

have become perfect companion with high speed computing capabilities over the time.  Few 

decades ago it was believed that machines are only for arithmetic operations but not for complex 

tasks like speech recognition, object detection, image classification, language modeling etc. But 

now a day, situation is inverted. Machines are capable of doing these things more easily with very 

much high accuracy. 

Conventional algorithm consisting of finite arithmetic operations cannot provide capacity to do 

such complex tasks for machine. For this, Artificial Intelligence provides lots of techniques. 

Learning Algorithms are used for such purpose. Huge dataset is required for training the model 

with appropriate architecture. Testing is required to evaluate whether the model is working 

properly or not.     

Image processing focuses on two major tasks. They are: 

i. Processing of image data for storage, transmission and representation for autonomous 

machine perception. 

ii. Improvement of pictorial information for human interpretation. 

Following are the different uses of image processing: 

i. Medical Applications 

ii. Industrial Inspection 

iii. Artistic effects 

iv. Law enforcements 

v. Human computer interfaces etc 

Neural Network is one of AI techniques emerged long ago in 1940s but technology at that time 

was not so advanced. It was then wakening time to time but could not impress the Computer 

Science Community very much. It was up at time in 1980s with the development of back-

propagation. Later it was again discarded due to slow learning and expensive computation. In 

2000s, it picked up again in AI field with lot of researches. It was believed that only 2 to 3 hidden 

layers are sufficient for Neural Network to work properly but later on it is observed that even 
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more layers can represent high dimensional features of the input signals. Such neural networks 

are referred to as Deep Neural Networks (DNN).   

Connections between layers in DNNs, known as receptive fields (RF), are very important 

parameters. They have to learn good feature representations of the dataset and these 

representations involves learning linear filter weight values form input data. Results from 

(Eugenio, Dundar, Jin, & Bates, An Analysis of the Connections Between Layers of Deep Neural 

Networks, 2013) shows that even fully connected Convolutional Neural Network (CNN) Model 

performs poorly in Image Classification Tasks. 

Defining appropriate architecture for object detection is the main task that this thesis is intended 

to do. Suitable feature representation methods are required to make the DNN work properly with 

high accuracy.  

Supervised Learning and Multi-Class Classification 

Supervised learning is one of the common machines learning which consists of model which is 

trained with training data. The training data consists of “labels” or “right answers”. Under this, 

the model is trained.  After completion of training, the model is supposed to give us more right 

answers on new set of training examples.  

There are two types of problems under supervised learning, Classification and Regression. In 

Classification problem, the model classifies data into one of multiple discrete classes, no in 

between the classes where as in Regression problem, the model classifies predicts some 

continuous real valued problem. 

 

Figure 1:- Machine Learning Overview 

 

Machine Learning 
Problem

Supervised

RegressionClassfication

Unsupervised

Clustering
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Needs of Image Classification: 

The intent of the classification process is to categorize all pixels in a digital image into one of 

several objects. The image classification is required in various field like medical sector, remote 

sensing, security, aviation etc. This is also used to classify the satellite images. The image 

classification is done mainly by three methods: Unsupervised image classification, Supervised 

image classification and Object-based image analysis 

Classification of Image: 

 

Image classification is a task of assigning an input image one label from set of categories. This is 

one of core problems in computer vision.In computer vision, image is represented as one large 3-

dimensional array of numbers. Consider RGB image of size 32x32. What computer sees is 

3𝑥32𝑥32 numbers or a total of 3072 numbers. And the task is to obtain a single label (such as 

chair) from these numbers. Though recognizing an object is trivial task for human to perform, It is 

challenge for computer vision algorithm to work correctly.A single object can be oriented in many 

ways with respect to camera. So there may be viewpoint variation to consider. Other challenges 

for the algorithm may to taking into account of scale variation, deformation, Occlusion, 

Illumination Conditions, Brightness Clutter and Intra-class variation. A good image classification 

model should address all of these variations. 

 

Figure 2:- Concept of Image Classification Problem 

Image Classification 

Class Score 

Image as seen by computer 
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1.2 Problem Statement 

Now a day the application of artificial intelligence is growing in various sector to make the decision 

automatic or to enhance the system so that they can cope with the changing environment. Neural 

Network is a special technique in artificial intelligence field. Deep Neural Networks are applicable to 

fields like image recognition (Eugenio, Dundar, Jin, & Bates, An Analysis of the Connections Between 

Layers of Deep Neural Networks, 2013), Speech Recognition (Sainath, Kingsbury, Mohamed, & 

Ramabhadran, 2013; Alex Graves), text prediction and handwriting generation [4], Language Generations 

[5]. DNN architecture for one task does not work well with another task. For task related to specific field, 

it is required to define which architecture to pick. For Image Classification or Object Detection task, and 

designing its structure is challenging job.   

To develop the neural network architecture based image classification is a challenging job and also a 

booming topic in research community. This motivates me to take this thesis as an opportunity to work in 

this sector and give some contribution in research community in this fied. 

1.3 Objectives 

The main objectives of this thesis are: 

 To design effective architecture of CNN for image classification task. 

 To classify images using Convolutional Neural Network 
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Chapter 2: Literature Review 

2.1 Neural Networks 

Neural Networks are biologically inspired connectionist models that receive some input and 

transform it through series of hidden layers and finally calculates output. In regular neural 

network, neuron in each layer is connected to all neurons in previous layers.  

 

Figure 3:- An Artificial Neural Network 

 

 

Figure 4 : - A Human Neuron Example 
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Multilayer Perceptron (MLPs) 

Every neurons are independent and do not share connection among them. Problem with these 

types of NNs is they cannot scale well (Grishick, Donahue, Darrel, & MAlik, Rich Features 

Hierarchies for accurate object detection and semantic segmentation.). Consider a simple example 

where input is RGB image of 32 x 32, there will be 32x32x3=3072 weights. This may be 

somehow manageable but when the image is like 200x200 then there will be about 120000 

weights, in this full connection model is wasteful and they possess over-fitting [7]. 

 

Figure 5 :- Multilayer Perceptrons with 4 layers. 

2.2 Deep Neural Network (DNNs) 

Deep Neural Networks are highly recognized Neural Network Architecture and are used 

extensively used in computer vision, Speech Recognition, Language modeling and Natural 

Language Processing. They have deeper architecture than conventional neural network. 

Convolutional Neural Network and Recurrent Neural Network (RNN) are examples of DNN. 

RNNs are used for sequence learning tasks like Speech Recognition, Handwriting Generation, 

language modelling(Alex Graves; Graves, Generating Sequences with Recurrent Neural 

Networks, 2014; Sutskever, 2013). 

Layer A 

 

 

 

Layer B 
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2.3 Convolutional Neural Networks (CNNs) 

Convolutional Neural Network is the powerful tool for image classification and object detection. 

Instead of full connection model they modify neurons to be connected to small region of the 

neurons in previous layer. It consists of many layers. 

  

Figure 6:-CNN with its neurons arranged in three dimensions 

i. Convolution Layer (CONV) 

ii. Pooling Layer (POOL) 

iii. Fully Connection Layer (FC) 

Simple example of CNN structure is like [INPUT-CONV-RELU-POOL-FC]. CONV and FC 

apply transformations and the operations done are the function of parameters, while POOL/RELU 

Layers have fixed functions [7]. 

Convolutional Layers  

Convolutional layers consist of set of learnable filters. Network will learn filters that activate 

when they see some specific type of feature at some spatial position of the image. Stacking 

number of these filters makes depth of Convolution Layer. Each neuron takes inputs from a 

rectangular section of the previous layer; the weights for this rectangular section are the same for 

each neuron in the convolutional layer. This rectangular section is receptive field that runs whole 

across the image. Thus, the convolutional layer is just an image convolution of the previous layer, 

where the weights specify the convolution filter. [9] 

O[m, n] = f[m, n] ∗ g[m, n] = ∑ f[u, v]g[m − u, n − v]

⧞

𝑢=−⧞
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Depth, Stride and Zero-padding 

Depth(D) is number of neurons in convolution layers that connect to same region of input volume.  

Stride(S) is measure of shifting of filter. Stride(S) =1, means that filter is moved to 1 unit (or 

Pixel) at a time in x and y directions. More the value of S, there will be less alignment of filters. 

Zero-padding (P) means adding zeros to the start and end of rows and columns. It is done in 

order to properly extract the features of boarder pixels. 

If W is width of input image, F is filter size, P is zero-padding and S is stride then Convolving 

image would result output with size given by: 

𝑂 =
𝑊−𝐹+2𝑃

𝑆
+1. 

Also image can be convolved only when O is integer. 

Pooling Layer 

The pooling operation decreases dimensions of convolved image. It may be min-pooling, max-

pooling or averaging. The pooling regions are very small. If pooling region is just 2×2 then this 

will have effect of subsampling the output maps by a factor of 2 in both dimensions. It 

progressively reduces spatial size and reduces over-fitting. 

Fully Connection Layer 

After reducing image to suitable feature-maps, fully connected MLP is used. This layer consists 

of neurons that are connected to every neurons of previous layer. [As in figure 1]  

CNN Architecture 

CNN in figure 6 consists of input layer, convolutional layers, and subsampling layers. Input layer 

is input image. After this layer there is hidden convolution layer. Input image is convolved with 

4 different convolution filter and we get 4 feature maps of the same image. These 4 feature maps 

are then pooled and down-sampled at next layer. The down-sampled feature map is again 

convolved with convolution filter to get 6 other feature maps. These are again sub-sampled. This 

final feature map is then fully connected with output classes. 
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Figure 7 : - Different Layers within Convolutional Neural Network Architecture used in [9] 

 

2.4 Related Works 

First successful implementation of CNN was done by Yan LeCunn in 1990’s which is used to 

read zip codes and digits [9]. CNN has been proved to be powerful tool for image classification 

and object detection. It became more powerful when AlexNet(Alex, Ilya, & Hinton, 2012) won 

ImageNet ILSVRC Challenge 2012 with significant performance from 2nd runner-up. AlexNet 

was CNN with some modification to LeNet. It was deeper, bigger and Conv Layers were stacked 

instead of immediate pooling layer. ZFNet(Zeiler & Fergus, 2013) won ImageNet ILSVRC 

Challenge 2013. It modified AlexNet by varrying hyper parameters and using larger filters on 

convolution layers. 

Both CNN, along with Recurrent Neural Networks (RNN) are used to solve the problem like 

image captioning(Fie-Fie & L., 2014; Vinyals, Toshev, Bengio, & Erthan, 2014; IIya Sutskever, 

2011). 
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Chapter 3: Methodology 

 

Data Driven Approach 

It’s quite difficult task to generate algorithm within numbers of the image to classify it. Instead 

this problem is solved as supervised learning. There are lots of examples of images for each 

individual class. The models are exampled and develop learning algorithms that look at images 

and learn about visual appearance of each class. This is data driven approach. [7] 

Image Classification Pipeline 

Image Classification is just reading array of pixels from image and assigning it a label. The 

complete pipeline can be viewed as below: 

 

 

 

 

 

 

Figure 8 : - Image Classification Pipeline 

Input 

The first step in the pipeline is Input and it consists of set of images each labeled with one of the 

categories. It is known as training set. 

Learning 

The training set data is used by model to learn how each of class looks like. This step learns 

classifier. 

Evaluation 

The final step is Evaluation in which model is given new set of images to classify. These images 

are not seen by the model before and it calculates labels for these images. Then the predicted labels 

are compared with true label and expect most of predicted ones to be true. It is expected to have 

lot of predictions to be correct. 

Learning Evaluation 

Input 

 

 

 

Evaluation 
Testing 
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3.1 Model Development 

 

For classification of data, there are various steps involved. Steps can be viewed as figure below: 

 

Figure 99: - Model Development Steps 

 

3.1.2 Dataset Preparation 

Data provided is first must be divided into training set, validation set and testing sets.  

 

 

Figure 10:- Dataset Division 

Training Setare used to adjust various weights and parameters of the model.  

Validation Setare not used to adjust the parameters of the model, instead they are used to reduce 

overfitting problem 

Testing Setare used for evaluating the predictive power of the model.  

3.1.2 CNN Architecture Design 

CNN in Image Classification 

Dataset Preparation 

Testing and 

Evaluation 
Learning Classifier 

Layer m+1 

Layer m 

Layer m-1 

CNN Architecture Design 

Training Set 
Validation 

Set 

 

Testing Set 
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CNN is to be designed for sole purpose of Image Classification. The architecture of network will 

be modified; its filters are changed to see which will give best output. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11:- CNN Design 

 

 

 

Convolution Layer Design 

Convolution Layer takes input as volume [W1xH1xD1], and outputs another volume as 

[W2xH2xD2]. It requires four hyper-parameters: Number of filters (K), Filter’s spatial extent (F), 

amount of Stride (S), and Amount of Zero-padding (P). 

Output volume is determined as follows: 

𝐖𝟐 =
𝑊1− 𝐹 + 2𝑃

𝑆
+ 1 

𝐇𝟐 =
𝐻1 − 𝐹 + 2𝑃

𝑆
+ 1 

𝐃𝟐 = 𝐾 

Pooling Layer Design 

Input Layer  

(Stack of CONV, POOL 

and FC Layers) 

OuOutput Class Score 

Output Layer 
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Pooling Layer takes input as volume [W1xH1xD1], and outputs another volume as [W2xH2xD2]. 

It requires two hyper-parameters: Spatial extent (F) and amount of Stride (S) 

Output volume is determined as follows: 

𝐖𝟐 =
𝑊1− 𝐹

𝑆
+ 1 

𝐇𝟐 =
𝐻1 − 𝐹

𝑆
+ 1 

𝐃𝟐 = 𝐷1 

 

 

Example of Simple CNN Architecture 

As already mentioned, RELU and POOL layers are fixed function but CONV and FC have 

transformation function whose value depends upon set of parameters (weights and biases). These 

values are learned through gradient descent.  

3.1.3 Learning a Classifier 

Log likelihood of a classifier can be defined as: 

ℒ(𝜃,𝒟) =∑log𝑃(𝑌 = 𝑦(𝑖)|𝑥(𝑖), 𝜃)

|𝒟|

𝑖=0

 

Log likelihood of a classifier gives measure of correct classification. Increasing value of log-

likelihood is better while training. Since it is more generalize to have minimization of objective 

function, we define Negative Log-Likelihood (NLL) as: 

𝑁𝐿𝐿(𝜃,𝒟) = −∑log𝑃(𝑌 = 𝑦(𝑖)|𝑥(𝑖), 𝜃)

|𝒟|

𝑖=0

 

Where 𝒟 is Dataset 

𝜃 is weight parameter 

[INPUT—CONV—RELU—POOL—FC] 
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(𝑥(𝑖), 𝑦(𝑖)) is ith training data. Y is target data. 

 

NLL of a classifier is differential and it can be used by our model as cost function. Our model is 

trained with algorithm that minimizes the cost function over the training data. The algorithm we 

are going to use is Stochastic Gradient Descent with Mini-batches 

Gradient Descent 

A cost function is defined first. For system or hypothesis to work on the basis of examples, its 

cost function should be minimum so that it gives least error. Weights are initialized to some 

random values and iterating; we obtain value of weights that minimizes cost function. It is done 

by gradient calculation. Back propagation is applied to calculate gradient descent. 

Stochastic Gradient Descent (SGD) 

A loss function is defined by its parameters. In ordinary gradient descent algorithm, at each 

iteration, we move downward to error surface defined by the loss function. SGD works on same 

principle as gradient descent but it moves more quickly downward. Unlike gradient descent where 

gradients are calculated after running on entire dataset, SGD calculates over few examples at a 

time [Single data at purest form].  

There is variant of SGD called Minibatch SGD (MSGD) in which training examples are divided 

into multiple batches and gradients are calculated after each batch.  

MSGD Algorithm: 

For every batch 

i. Calculate cost function 

ii. Calculate gradient 

iii. Update parameters 

iv. Until stopping condition 

A pseudo-code of MSGD more clarifies the algorithm: 

for (x_batch, y_batch) in mini_batches: 

 loss = f(params, x_batch, y_batch) 

 gradient_wrt_params=  #Calculate Gradiet 

 params -=learning_rate*gradient_wrt_params 

 if <stopping condition is met>: 
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  return params 

3.1.4 Testing and Evaluation 

A typical train and test scheme is: learn parameters from training set, minimize cost function, and 

compute test error. 

Loss function is calculated for each batch. So, it is first quantity to track the training. 

 

Figure 12:-Loss function with various learning rates 

Figure above shows loss function over time with different learning rates. When learning, rate is 

very high it cannot converge, it overshoots the minima and hence the training loss increases with 

time.  

If there is low learning rate, then the model learns at very slow rate. Thus, it takes much longer 

time to converge. Choice of learning rate is a tricky and it has to be in a way such that it should 

not be large enough to overshoot the minima and also should not be very small to get longer time 

to converge.  

A good choice of learning rate give smooth decrease in loss over time as shown in figure above. 

Another quantity to track training is Validation/Training Accuracy. 
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Figure 13:- Validation/Training Accuracy and over-fitting 

The gap between training accuracy and validation accuracy clearly suggests that there is over-

fitting. Curve C1 represents training accuracy. If the model gives validation accuracy represented 

by Curve C2 then there is little over-fitting and model works good for not just training examples 

but to new examples as well. But, in case, the model gives validation accuracy as depicted in Curve 

C3, then it has strong over-fitting, thus giving worse result for new unseen examples. 

C1 

C2 

C3 
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Figure 14: - Images in CIFAR-10 Dataset 

 

Evaluation 

The model can be evaluated with multiple measures: 

i. Test loss/Test Accuracy 

ii. Validation loss/Validation Accuracy 

iii. Precision, Recall 

 

A typical train and test scheme is: learn parameters from training set, minimize cost function, and 

compute test error. 

3.2 Tools and IDE 

 Python with Sci-kit, numpy, scipy, Tensor flow 

 Core i5 

3.3 Data Collection and Evaluation 

For object detection CIFAR-10 and MNIST Dataset are be used. CIFAR-10 consists of 60K 

images of size 32x32. 50K images are used for Training while 10K are Test image.There are 6000 

images per class. Different classes of CIFAR-10 Dataset are: 
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Label class 

0 airplane  

1 automobile  

2 bird  

3 cat  

4 deer  

5 dog  

6 frog  

7 horse  

8 ship  

9 truck 

Table 3.3.1: - CIFAR-10 Dataset Classes 

MNIST Dataset also contains 60K grayscale images of hand-written digits, each of size 28x28. 

50K images are used for Training and 10K are used for Test images. 

 

Label Digit 

0 0 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

 

Table 3.3.2: -MNIST Dataset Classes 

 

Figure 15: -Handwritten digits in MNIST Dataset  
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Chapter 4: Results and Discussion 

4.1 Overview of Tasks 

4.1.1 Deep Learning Framework Installation and CPU Configuration 

A very effective deep learning framework ‘Tensor Flow’ is installed and is configured to run on 

Core i5.  

 

Figure 16 : - Importing tensorflow Library on IPython Notebook showing CPU enabled sign. 

TensorFlow is an open source software library for numerical computation using data flow graphs. 

Nodes in the graph represent mathematical operations, while the graph edges represent the 

multidimensional data arrays (tensors) that flow between them. This flexible architecture lets us 

deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device without 

rewriting code. A deep learning framework ‘Lasagne’ along with ‘Nolearn’ are used for efficient 

implementation. 

4.1.2 CNN Architectures 

Different CNN architectures are designed. As image size of both MNIST and CIFAR-10 are 28x28 

and 32x32 sizes respectively, more than more than three layers of convolution are not possible 

without sufficient pooling. Following each convolution with pooling layer, three architectures are 

proposed. 

CNN for MNIST Dataset 

A Convolutional Neural Network is designed for both MNIST and CIFAR-10 Datasets. An 

architecture is designed for MNIST Dataset with following layers’ configuration: 

i. INPUT Layer accepting input of 28x28 image with single channel color 

ii. First CONV Layer with 32 5x5 filters. With RELU activation function. 
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iii. MAXPOOL Layer with size 2x2. 

iv. Second CONV Layer with 32 5x5 filters. With RELU activation function. 

v. Second MAXPOOL Layer with size 2x2 

vi. Dropout Layer with 50% dropout. 

vii. FULL Connection Layer with 256 units Followed by another 50% dropout layer. 

viii. OUTPUT Layer with 10 units. 

 

 

 

 

 

 

 

 

 

 

Figure 17: - CNN Architecture for MNISTDataset 

CNN after training over 10 epochs gives 98.70% accuracy.  

 

 

 

 

 

 

 

 

 

 

Figure 18: - Precision, Recall, f1-score and Support for CNN after 10 epochs 

This information can be viewed on Confusion Matrix can be obtained with above results. 

Obviously results are fascinating with just 10 epochs. If we train model for more epochs, then the 
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output may be around 99% accuracy. This means this architecture is working perfectly for MNIST 

Dataset. 

 

Figure 19: - Confusion Matrix for CNN designed for MNIST Dataset 

CNN Architecture-1 for CIFAR-10 Dataset  

 

Figure 20:- CNN Architecture-1 for CIFAR-10 Dataset 

Different Layers in CNN are: 

i. Input layer is 32x32 images of 3 color channel i.e 3x32x32. Convolution of layer consists 

of 20 5x5 patches with padding size 2 and stride equal to 1. 

ii. Pooling layer after first convolution consists of max function with 2x2 patch size. Hence 

it will reduce the image to 32x14x14.  
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iii. Second convolution layer consists of same properties as that of first convolution layer and 

the image it produces will be of size 32x10x10 followed by pooling layer that reduces 

image to 32x5x5 

iv. Two full connection layer each of 256 units and with 50 % dropout is implemented. 

v. Final Output layer with 10 outputs for different classes. 

CNN Architecture-1 is trained for 34 Iterations.  

 

 

 

 

 

 

 

 

 

  

  

       

Figure 21: - CNN Architecture Train and Test Loss 

CNN Architecture-2 for CIFAR-10 Dataset 

 

 

 

 

 

 

 

 

 

 

Figure 22: - Layer Information for CNN Architecture-2 

Accuracy 

epoch 
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The figure above shows architecture-2. This consists of small two 3x3 convolutions layers, two 

full connection layers with dropout 50%.  In architecture-1, we have used (5x5) convolution filters. 

The CNN is trained for 40 epochs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: - Architecture trained for 40 epochs 

CNN Architecture-3 for CIFAR Dataset 

 

Figure 24:- Layer Information for CNN Architcture-3 for CIFAR-10 Dataset 

Accuracy 



24 
 

This Arhitecture-3 is different from Architecture 1 and 2 above. It consists of 3 convolutions layers 

of different sizes. First convolution layer is of size (3, 3), Second and Third Convolution Layers 

are of size (2, 2). Using such small patches and deeper network allows to better model the problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: - CNN Architecture-3 Trained for 73 epochs 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26:- Convolution Filter of first convolution layer of Architecture 3 

 

Accuracy 
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4.2 Final Results 

 Architecture 1 Architecture 2 Architecture 3 

Maximum Accuracy 

(%) 

65.526 66.564 71.025 

Epochs to obtain 

Max. Accuracy 

27 31 48 

Average Training 

time(seconds) 

72.04 70.13 49.84 

 

Table 1:- Comparison of Three Architectures 

Results obtained from all three architectures are listed above. The first architecture, having two 

convolution layers each with filter size 5x5 and two dropout layers with 50% dropoutgave 65.526% 

accuracy on 27th epoch. After that, it began to over-fit the model. 

In Second Architecture, We have used two convolution layers but with small filter size than that 

of Architecture 1. Each of them are of 3x3 size. With just this arrangement, the accuracy improved 

to 66.564%. Again after 31st epochs the model begins to over-fit. 

Third Architecture exploits 3 convolution layers, the first convolution layer is of size 3x3, second 

and third convolution are of sizes 2x2 each. After three sequence of convolution and pooling, just 

like other architectures, two dropout layers along with two fully connected layer are designed 

before the final layer. On doing so the model gave the accuracy of 71.025 % which is quite good 

than other two architectures. 

 

Figure 27:- Accuracy of different architectures 
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The figure 28 shows the classification results obtained from Architecture-3. 
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Figure 28:- Results obtained from architecture-3 over test dataset 
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Chapter 5: Conclusion 

 This thesis report presented suitable architecture of convolutional neural network for 

solving image classification problem. Machine learning technology has been used to solve the 

problem instead of using advance image processing techniques. The model of Deep Neural 

Network architecture is developed in which deep layer extracts information from data at different 

level of abstractions. Convolutional Neural Network is trained and the images are classified. 

General idea is to use constant filter sizes for convolution layers. New approach discussed on this 

research is of using variable filter sizes for extracting convolved features. The filters must be of 

small size of about 3x3 or 2x2 for obtaining smooth train and valid loss.  

For both MNIST and CIFAR-10 datasets, the three architectures are developed. The 

architecture designed for one dataset did not work well with other. It depends upon image 

properties like size, channels etc. To better train CNN, overall procedure is to use small patches of 

convolution filters instead of bigger one.  It will be better of using variable sized filters instead of 

constant filters among all convolution layers. This thesis showed that using some slightly bigger 

size filter at initial convolution layers and then using smaller filters long the depth gives good 

accuracy and hence the efficient architecture.  

In order for reducing over-fitting, dropout must be used. Dropout significantly improves 

performance of the networks, as it performs model averaging of different networks. It must be used 

in full connection layers. One or two layers of dropout must be implemented. 
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Chapter 6: Limitations and Future Enhancement 

As with every research, the Architectures developed in this thesis have some limitations. Since 

it is very expensive to calculate convolution operations CPUs needs to train the architectures. CPUs 

can exploit their parallelism. High configuration CPUs are required to perform these calculations 

so that training can be done in small time. 

 Neural Networks with 2 or 3 layers of convolution performs well for CIFAR-10 and MNIST 

Dataset but when dealing with larger datasets containing larger image sizes, it won’t be enough 

with just 2 or 3 layers. Networks should contain deeper architectures. 

The architecture developed for MNIST Dataset gave 98 % of accuracy over test dataset with 

only 10 epochs. For CIFAR-10 dataset, accuracy did not do so well. Architectures depend upon 

size of images which is a quite disappointment. 

The accuracy obtained was around 68%. Further processes can be done to improve accuracy 

of the Architectures. One of them is Data Augmentation. It can be used further to minimize over 

fitting. Basically what it does is by performing transformations over images, it produces much 

larger dataset to train the network. Deeper Architectures with more convolution layers can be used 

to better model the problems. 
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