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ABSTRACT

Biological sequences Longest Common Subsequence (LCS) identification has significant

applications in bioinformatics. Due to the emerging growth of bioinformatics applications,

new biological sequences with longer length have been used for processing, making it a great

challenge for sequential LCS algorithms. Few parallel LCS algorithms have been proposed

but their efficiency and effectiveness are not satisfactory with increasing complexity and size

of the biological data. An non-alignment based method of sequence comparison using single

layer map reduce based scalable parallel algorithm is presented with some optimization for

computing LCS between genetic sequences.

Keywords: Bioinformatics, Longest Common Subsequence, MapReduce, Hadoop
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1. INTRODUCTION

1.1. Background

Biological sequence comparison programs have revolutionized the practice of biochemistry,

molecular and evolutionary biology. Pairwise comparison is the method of choice for many

computational tools developed to analyze the deluge of genetic sequence data [1]. A fun-

damental operation in bioinformatics involves the comparison of genetic (DNA) sequences.

The similarity between genetic sequences is a strong indicator of evolutionarily preserved

characteristics. This property has been successfully used in determining pathologically im-

portant bacteria, viruses and fungi. Among the many sequence comparison tools for mining

genetic information, an extremely common technique includes the alignment-based meth-

ods. These involve aligning the entire (global alignment, Needleman-Wunsch [2]) or smaller

sections (local alignment, Smith - Waterman [3]) of the genetic sequences. The choice of

global or local alignment is based on the type of analysis desired. However, both these meth-

ods are heavily dependent on the quality of sequence data. Slight discrepancies resulting

from experimental or technical limitations can significantly affect the comparison results.

An alternative approach of sequence analysis is becoming increasingly important in dealing

with the exponential growth of genetic sequence data, classification and the grouping of or-

ganisms based on these sequences. Such alternative approaches include the alignment-free

methods, which match the relative (as opposed to the exact) order of the base pairs in the

sequence. Advancements in sequencing technology have provided a deluge of genetic data.

The Genbank, a public repository of genetic sequence data, reported 194463572 sequence

records in its 214th release on June 15, 2016. Analyzing such large datasets on uniprocessor

machines is an extremely time-consuming process. It is imperative, therefore, to harness the

power of high-performance computing to facilitate our understanding of this high throughput

data.

1.2. Problem Definition

Longest Common Subsequences approach required a large amount of time for the deluge of

genetic data which is represented by billions of characters. Time for finding longest com-
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mon subsequence can be reduced tremendously if we can be able to solve the problem using

non-alignment based distributed algorithm.

1.3. Objective

The purpose of this study is to investigate non-alignment based map-reduce model to com-

pute longest common subsequence.

1.4. Scope of Work

When a new gene sequence is found, It is important to know what other sequences it is most

similar to. Sequence comparison has been used successfully to establish the link between

cancer-causing genes and a gene evolved in normal growth and development. One way of

detecting the similarity of two or more sequences is to find their LCS.

Because of the larger number of gene sequences increasing day by day and extremely large

length of single gene sequence, there is a need for parallel computing to find the LCS of gene

sequences. MapReduce programming is emerging technologies for distributed computing

especially in the case of big data. So, the non-alignment based LCS using map-reduce based

model is really the good candidate of research.

The scope of this thesis work is to develop non-alignment based LCS finding algorithm

using map-reduce based model.
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2. Literature Review

A large number of research has been conducted in finding similarities between two gene

species. The NeedlemanWunsch [2] algorithm was the first application of dynamic pro-

gramming which provides a global alignment between two sequences. This algorithm leads

to the evolution of various efficient LCS algorithms. It is only suitable if the two sequences

are of similar length. The Hirschberg [4] algorithm evolved from Needleman- Wunsch al-

gorithm provides optimize version of Needleman-Wunsch. Hunt-Szymanski [5] propose an

optimization to Hirschberg algorithm. Various parallel algorithms like CREW PRAM model,

Systolic arrays have been proposed in the earlier days to reduce the computation time. In the

recent time Wan, Liu, Chen proposed Fast LCS algorithm [6]. Fast LCSs efficiency has

been further improved by Efficient Fast Pruned LCS EFP LCS [7]. A parallel LCS algo-

rithm [8] based on dynamic programming has also been proposed. Li, Wang Bao [9] tried

to solve LCS problem using automaton based technique in multi-level hadoop mapreduce.

Beside that, Bohara Joshi [10] implement multi-level alignment based hadoop mapreduce

technique to solve the lcs problem.

2.1. Needleman-Wunsch algorithm

The NeedlemanWunsch algorithm performs a global alignment of two sequences. It is com-

monly used in bioinformatics to align protein or nucleotide sequences. The algorithm was

published in 1970 by Saul B. Needleman and Christian D. Wunsch. The NeedlemanWunsch

algorithm is an example of dynamic programming and was the first application of dynamic

programming to biological sequence comparison. It is sometimes referred to as the Optimal

matching algorithm. This global sequence alignment method explores all possible align-

ments and chooses the best one (the optimal global alignment). It does this by reading in a

scoring matrix and a gap penalty (penalties) that contains values for every possible residue

or nucleotide match and summing the matches taken from the scoring matrix.

2.2. Hirschberg algorithm

Hirschberg’s algorithm [4] is a dynamic programming algorithm that finds the optimal se-

quence alignment between two strings. Optimality is measured with the Levenshtein dis-

3



tance, defined to be the sum of the costs of insertions, replacements, deletions, and null ac-

tions needed to change one string into the other. Hirschberg’s algorithm is simply described

as a divide and conquer version of the NeedlemanWunsch algorithm. Hirschberg’s algorithm

is commonly used in computational biology to find maximal global alignments of DNA

and protein sequences. If x and y are strings, where length(x) = n and length(y) = m,

the Needleman-Wunsch algorithm finds an optimal alignment in O(nm) time using O(nm)

space. Hirschberg’s algorithm is a clever modification of the Needleman-Wunsch Algorithm

which still takes O(nm) time, but needs only O(min{n,m}) space.

2.3. Hunt-Szymanski algorithm

Hunt-Szymanski algorithm [5] present an improved version of the Hirschberg algorithm. It

used row-wise processing technique where right to left traversal is done to find the lcs. It

solves the problem of recovering an LCS in O(|M |log(n)) where |M | denotes the number

of all matches.

2.4. Fast LCS algorithm using Map Reduce

Li, Wang Bao [9] purpose finite automaton based technique that implements fast lcs [6] al-

gorithm to find the multiple longest common subsequences. The authors suggested that time

required for calculating MLCS is reduced significantly using FACC Technique in compared

to the time required using fast LCS [6], it uses multilevel map reduce technique and map

reduce is used particularly to construct successor table of different string. Multilevel map

reduce program based on fast lcs algorithm is presented by Bohara Joshi in [10]. Though it

is implemented via map reduce and time might be reduced if number of the cluster devices

increase but much of the time is invested in creating, managing the map reduce jobs and

waiting for the results of the previous job so it fails in utilizing the power of the distributed

computing due to the multilevel map reduce strategy.
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3. THEORETICAL BACKGROUND

3.1. DNA

Deoxyribonucleic acid (DNA) is a molecule that encodes the genetic instructions used in

the development and functioning of all known living organisms and many viruses. Along

with RNA and proteins, DNA is one of the three major macromolecules essential for all

known forms of life. Most DNA molecules are double-stranded helices, consisting of two

long biopolymers of simpler units called nucleotideseach nucleotide is composed of a nucle-

obase (guanine, adenine, thymine, and cytosine), recorded using the letters G, A, T, and C,

as well as a backbone made of alternating sugars (deoxyribose) and phosphate groups (re-

lated to phosphoric acid), with the nucleobases (G, A, T, C) attached to the sugars. DNA is

well-suited for biological information storage, since the DNA backbone is resistant to cleav-

age and the double-stranded structure provides the molecule with a built-in duplicate of the

encoded information

Figure 3.1: Structure of DNA Sequence

3.2. MapReduce

MapReduce [11] is a programming model and an associated implementation for processing

and generating large data sets. Users specify a map function that processes a key/value pair to

generate a set of intermediate key/value pairs and a reduce function that merges all interme-
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diate values associated with the same intermediate key. Programs written in this functional

style are automatically parallelized and executed on a large cluster of commodity machines.

The run-time system takes care of the details of partitioning the input data, scheduling the

program’s execution across a set of machines, handling machine failures and managing the

required inter-machine communication. This allows programmers without any experience

with parallel and distributed systems to easily utilize the resources of a large distributed sys-

tem. A typical MapReduce computation processes many terabytes of data on thousands of

machines. Programmers find the system easy to use: hundreds of MapReduce programs have

been implemented and upwards of one thousand MapReduce jobs are executed on Googles

clusters every day. MapReduce provides an abstraction that involves the programmer defin-

ing a ”mapper” and a ”reducer,” with the following signatures:

Map: (value 1, key1) list (key2, value2)

Reduce: (key2, list (value2) list (value2).

3.2.1. Execution Overview

The Map invocations are distributed across multiple machines by automatically partitioning

the input data into a set of M splits. The input splits can be processed in parallel by different

machines. Reduce invocations are distributed by partitioning the intermediate key space into

R pieces using a partitioning function (e.g., hash(key) mod R). The number of partitions (R)

and the partitioning function is specified by the user.
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Figure 3.2: MapReduce Execution overview

Figure 3.2 shows the overall flow of a MapReduce operation in the implementation.

When the user program calls the MapReduce function, the following sequence of actions

occurs (the numbered labels in Figure 3.2 correspond to the numbers in the list below):

1. The MapReduce library in the user program first splits the input files into M pieces of

typically 16 megabytes to 64 megabytes (MB) per piece (controllable by the user via

an optional parameter). It then starts up many copies of the program on a cluster of

machines.

2. One of the copies of the program is special the master. The rest are workers that are

assigned work by the master. There are M map tasks and R reduce tasks to assign. The

master picks idle workers and assigns each one a map task or a reduce task.

3. A worker who is assigned a map task reads the contents of the corresponding input

split. It parses key/value pairs out of the input data and passes each pair to the user-

defined Map function. The intermediate key/value pairs produced by the Map function

are buffered in memory.
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4. Periodically, the buffered pairs are written to local disk, partitioned into R regions by

the partitioning function. The locations of these buffered pairs on the local disk are

passed back to the master, who is responsible for forwarding these locations to the

reduce workers.

5. When a reduce worker is notified by the master about these locations, it uses remote

procedure calls to read the buffered data from the local disks of the map workers.

When a reduce worker has read all intermediate data, it sorts it by the intermediate

keys so that all occurrences of the same key are grouped together. The sorting is

needed because typically many different keys map to the same reduce task. If the

amount of intermediate data is too large to fit in memory, an external sort is used.

6. The reduce worker iterates over the sorted intermediate data and for each unique inter-

mediate key encountered, it passes the key and the corresponding set of intermediate

values to the users Reduce function. The output of the Reduce function is appended to

a final output file for this reduce partition.

7. When all map tasks and reduce tasks have been completed, the master wakes up the

user program. At this point, the MapReduce call in the user program returns back to

the user code. After successful completion, the output of the mapreduce execution is

available in the R output files (one per reduce task, with file names as specified by the

user). Typically, users do not need to combine these R output files into one file they

often pass these files as input to another MapReduce call, or use them from another

distributed application that is able to deal with input that is partitioned into multiple

files.

3.3. Hadoop

Hadoop [12] is a popular open source implementation of MapReduce, which is a powerful

tool designed for deep analysis and transformation of very large datasets which is inspired

by Google’s MapReduce and Google File System. It enables applications to work with thou-

sands of nodes and petabytes of data.

Hadoop uses a distributed file system called Hadoop Distributed File System (HDFS), which

8



creates multiple replicas of data blocks and distributes them on computer nodes throughout

a cluster to enable reliability and has extremely rapid computations to store data as well as

the intermediate results. The Hadoop runtime system coupled with HDFS manages the de-

tails of parallelism and concurrency to provide ease of parallel programming with reinforced

reliability. In a Hadoop cluster, a master node controls a group of slave nodes on which the

Map and Reduce functions run in parallel.

9



4. RESEARCH METHODOLOGY

The longest common subsequence algorithm finds the longest subsequence between two

strings. In contrast to the substring, the subsequence denotes a series of letters from the

string which while being in order, need not be consecutive. For example, between ATCG

and CTCAG, the longest common substring is TC, while the longest common subsequence

is TCG.

LCS can help identify the key nucleotides across genetic sequences and is considerably less

affected by the occasional sequencing error. This method is also useful for identifying po-

tential regions of small mutations by analyzing the portions of the string not present in the

LCS.

4.1. Computing LCS using Row-wise processing Technique

The row-wise processing technique [5] is inherited from the traditional approach for filling

the dynamic programming table. However, this time, we concentrate only on those table

entries which correspond to a match. Each dominant match defines a new corner to a contour

line. To maintain the columns where all contour lines cross the current row, we use the

array MinYPrefix[1..p], where MinYPrefix[l] gives the Y-index where the l’th contour line is

located. As the name of the array suggests, the value of MinYPrefix[l] may be regarded as a

cursor, which indicates the minimum length prefix of Y that is needed to produce a common

subsequence of length l with the first i elements of X. Value p denotes r(X[1..i], Y[1..n]),

that is, the number of contour lines crossing row i. Initially, the values of MinYPrefix are

initialized to ’undefined’.

Given the example strings X=abcdbb and Y=cbacbaaba, the values of the array change as

follows (undefined values are represented by n+1; the leftmost entry acts as sentinel and is

set to zero):

To maintain the MinYPrefix values when moving from row to row, we need the result

10



Table 4.1: Table for computing lcs

Row MinYPrefix
0 1 2 3 4 5 6

0 0
1 0 3
2 0 2 5
3 0 1 4
4 0 1 4
5 0 1 2 5
6 0 1 2 5 8

given in [5].

Update rule: Let us assume that we are processing row i. For each open interval MinYPre-

fix[l]..MinYPrefix[l+1], (l=0..r), find the matches (i,j) which fall into it (i.e. matches for

which the j value is in the interval). The right boundary of the interval is kept unchanged, of

no such match exists. Otherwise, it is updated to the smallest such j value (leftmost match in

the interval). Note that the updates are simultaneous.

For example, when moving from row 2 to row 3 in the above example, we notice that X[3] =

Y[4] and MinYPrefix[1] <4 <MinYPrefix[2], so we update MinYPrefix[2] to 4. The general

scheme for advancing in the dynamic programming table is the following

begin

for i:=1 to m do MinYPrefix[i] := n+1;

MinYPrefix[0] := 0; r := 0;

for i := 1 to m do

/* Update the array values for row i. */

for j := 0 to r

if range[MinYPrefix[j]+1..MinYPrefix[j+1]-1]

contains matches then

begin

MinYPrefix[j+1] :=

min{l|(i, l) is a match in this range};

11



if j=r then r:=r+1;

end

return r;

end;

The Algorithm used to backtrack the LCS is as follow

begin

last_char = True

lcs_str1_index = []

for i := lcs_length to 0

for j := x_str_length to 0

if i+1 > len(MinYPrefix[j-1]) or

MinYPrefix[j][i] < MinYPrefix[j-1][i]

if last_char

last_char = False

lcs_str1_index.append(j-1)

elif MinYPrefix[j][i] == MinYPrefix[j-1][i] &

not last_char &

str1[j-1] = str2[MinYPrefix[j][i]]

lcs_str1_index.append(j-1)

lcs_str = ’’

for s_index in lcs_str1_index

lcs_str = str1[s_index] + lcs_str

return lcs_str

end;

In this backtracking algorithm, different logic is implemented between last char of the

LCS index and other indexes. This is done in order to extract the LCS that has minimum

ending index among all possible ending indexes.

4.2. Parallel Implementation

A scalable parallel version of the LCS algorithm purposed by Bastola [1] is outlined in 4.1.

First, each string is divided across the processors and the LCS of the substrings in each pro-
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cessor (LCS1 and LCS2) are computed. Then the portions of strings (gray areas) that were

beyond the first and last positions in the LCS are interchange and LCS for these previously

unused strings is computed. Finally, the respective portions are combined to obtain the com-

plete LCS.

Figure 4.1: A Schematic Diagram of the Parallel LCS Algorithm

4.3. Map Reduce Strategy

In order to apply map-reduce strategy on the given two string, first, we do some preprocessing

task to make data fit to map-reduce process. Those preprocessed data is fed to mapper

process which applies row-wise LCS computing technique to compute LCS between two

small sub-string. After that, parallel algorithm is applied in combiner and reducer to merger

small sub-string LCS. The basic program flow is shown in 4.2.

13



Figure 4.2: Program Execution Block Diagram

The basic block diagram of the program execution is shown in figure 4.2 and explained

below.

1. Input string. It is converted to hadoop input by splitting it into multiple parts. The

process of splitting given string to the multiple parts is known as preprocessing.

2. Splitted String. It is now fed to mapper to calculated the LCS of each small chunk.

3. Preliminary LCS. This is the output of the mapper. Now it is feed to combiner which

used parallel algorithm to find intermediate LCS.

4. Intermediate LCS. This is output of the combiner. In reducer, Multiple intermediate

LCS are merged together using parallel algorithm recursively until final LCS is gener-

ated.

5. Final LCS. An output of the reducer.

14



4.4. Data Collection

Sample data is collected from GenBank. (www.ncbi.nlm.nih.gov/genbank/)

4.5. Tools Used

For doing this thesis, following tools will be used

• Git - for Version Controlling

• PyCharm - ids for coding

• Sharelatex - for documentation

• Elastic Map Reduce framework

4.6. System description

System description that will be used to run the algorithm is as follow.

1. Local Development

• OS: Ubuntu 14.04

• Processor: Core i5

• RAM: 8GB

• Python: 2.7

• Hadoop: 2.7.2

2. Hadoop Test Environment

• instance type: m1.medium (Compute Unit:2, vCPU: 1)

• OS: Ubuntu

• RAM: 3.75 GB

• Hadoop: 2.7.2
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5. RESULT AND DISCUSSION

In implementing MapReduce strategy, the program is divided into 4 steps, that are 1. Prelim-

inary Step, 2. Mapper Step, 3. Combiner Step and 4. Reducer Step. The output of the one

step is fed to the consequent next step as input and final step output is received as program

output. We have used JSON format as an intermediate data format. The example of input

data and output data format for each of the processes is as follows:

1. Preliminary Step

Here, we have to calculate the LCS of strings str1 and str2. First, we take partition size

as 15 and divide each string as a 15 char substring and keep the string sequence order.

This work is done in Preliminary Step.

Input

str1=ABCBDABATCGACGATCGGGGTTCTTCACCACGGGGTTCTTCACCAG

AGTTATCT

str2=BDCABACTCAGGCACCGCAGTGACAAAAGTCGCAGTGACAAAAGTCA

GGACGGC

Partition size: 15

Output

1 ”a”: ”ABCBDABATCGACGA”, ”index”: 0, ”b”: ”BDCABACTCAGGCAC”

2 ”a”: ”TCGGGGTTCTTCACC”, ”index”: 1, ”b”: ”CGCAGTGACAAAAGT”

3 ”a”: ”ACGGGGTTCTTCACC”, ”index”: 2, ”b”: ”CGCAGTGACAAAAGT”

4 ”a”: ”AGAGTTATCT”, ”index”: 3, ”b”: ”CAGGACGGC”

2. Mapper Step

The preprocess string is fed to the mapper. Mapper Process is responsible for finding

LCS of the small substring of str1 and str2. Along with LCS, it also calculates A, B,

E, F and its index which is helpful to calculate combine LCS in an upcoming step.

Input

Mapper1: ’a’: ’ABCBDABATCGACGA’, ’index’: 0, ’b’: ’BDCABACTCAGGCAC’
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Mapper2: ’a’: ’TCGGGGTTCTTCACC’, ’index’: 1, ’b’: ’CGCAGTGACAAAAGT’

Mapper3: ’a’: ’ACGGGGTTCTTCACC’, ’index’: 2, ’b’: ’CGCAGTGACAAAAGT’

Mapper4: ’a’: ’AGAGTTATCT’, ’index’: 3, ’b’: ’CAGGACGGC’

3. Combiner Step

Combiner step combines the output of the 2 mappers within the system to give inter-

mediate output.

Input

Combiner1:

Key: 0

Value: [[0, ’A’: ’ABC’, ’a’: 0, ’B’: u”, ’E’: u”, ’lcs’: ’BDABATCAGA’, ’F’: ’C’,

’s2’: ’BDCABACTCAGGCAC’, ’s1’: ’ABCBDABATCGACGA’, ’f’: 15, ’b’: 15,

’e’: 0], [1, ’A’: ’T’, ’a’: 0, ’B’: u”, ’E’: u”, ’lcs’: ’CGGTAC’, ’F’: ’AAAAGT’, ’s2’:

’CGCAGTGACAAAAGT’, ’s1’: ’TCGGGGTTCTTCACC’, ’f’: 15, ’b’: 15, ’e’: 0]]

Combiner2:

Key: 1

value: [[2, ’A’: ’A’, ’a’: 0, ’B’: u”, ’E’: u”, ’lcs’: ’CGGTAC’, ’F’: ’AAAAGT’,

’s2’: ’CGCAGTGACAAAAGT’, ’s1’: ’ACGGGGTTCTTCACC’, ’f’: 15, ’b’: 15,

’e’: 0], [3, ’A’: u”, ’a’: 0, ’B’: u”, ’E’: ’C’, ’lcs’: ’AGGAC’, ’F’: ’GGC’, ’s2’:

’CAGGACGGC’, ’s1’: ’AGAGTTATCT’, ’f’: 9, ’b’: 10, ’e’: 0]]

4. Reducer Process

Finally, reducer step reduces the intermediate output from all combiner to one final

lcs.

Input:

Key: lcs

value: [[0, ’a’: 0, ’A’: u”, ’b’: 30, ’e’: 0, ’lcs’: ’BDABATCAGACCGGTAC’, ’f’: 30,

’s2’: ’BDCABACTCAGGCACCGCAGTGACAAAAGT’, ’s1’: ’ABCBDABATCGAC-

GATCGGGGTTCTTCACC’, ’F’: u”, ’B’: u”, ’E’: u”], [1, ’a’: 0, ’A’: u”, ’b’: 25, ’e’:

0, ’lcs’: ’CGGTACAGGAC’, ’f’: 24, ’s2’: ’CGCAGTGACAAAAGTCAGGACGGC’,
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’s1’: ’ACGGGGTTCTTCACCAGAGTTATCT’, ’F’: u”, ’B’: u”, ’E’: u”]]

Output:

”length”: 28, ”lcs”: ”BDABATCAGACCGGTACCGGTACAGGAC”

The parallel algorithm suggested by [1] highly depend on both starting index and ending

index of LCS in both string. If we are able to extract LCS that lie in middle of both given

string then the parallel algorithm would give us the sequential equivalent result in much more

less time.

With modified LCS backtracking algorithm, for the repetition character, the index of the

character that lies toward center is selected. The example cases are:

1. LCS(’TCG’, ’TCAGGGGGGGGGGGGGGGG’) = ’TCG’

index: str1 = [0,1,2], str2 = [0,1,3]

2. LCS(’TTTTTTTTTTTTTTTTCG’, ’TCAG’) = ’TCG’

index: str1 = [15, 16, 17], str2 = [0,1,3]

3. LCS(’TCGGGGGGGGGGGGGGGGG’, ’TCAG’) = ’TCG’

index: str1 = [0,1, 2], str2 = [0, 1, 3]

4. LCS(’TCG’, ’TTTTTTTTTTCAG’) = ’TCG’

index: str1 = [0,1, 2], str2= [0, 12, 10]

Here, cases 1, 2, 3 work as expected but case 4 doesn’t work as expected. This is because,

when constructing matrix we only take least possible index of string 2 required to get LCS

of length x when selecting n first character in string 1.

5.1. Complexity Analysis

The time complexity of core LCS computing algorithm is O(|M |log(n)) where |M | denotes

the number of all matches. The space complexity of the algorithm is O(n2).
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5.2. Run Time of Algorithm

Performance is measured by running this algorithm for two input sequences. Table 5.1 shows

the time taken to get result with a single node. Two input sequences are run for 10 times and

the average time is computed. The time taken by this algorithm is listed below.

Time to compute LCS between 2 strings with length 17990 and 17990 with per process

length of 1500, 500, 100 and 50 is shown in Table 5.1.

Table 5.1: Output time (in sec) comparison with different per process length of the string

S.N. Per Process Length
1500 500 100 50

1 188 23 2.010 .940
2 190 22 1.951 .961
3 204 22 2.030 .919
4 197 22 2.024 .958
5 200 22 2.093 .961
6 191 23 2.012 .943
7 197 22 1.960 .961
8 195 22 1.981 .927
9 206 38 2.057 .909

10 204 24 2.021 .949
average 197 24 2.014 .943

lcs length 17984
actual length 17984

As shown in Table 5.1, time taken by algorithm is decrease with decreasing number of

per process string length.

5.3. Hadoop Runtime Analysis

The scalability of the algorithm is studied by measuring the time taken to compute LCS on a

different number of node which is shown on Table 5.2 and Table 5.3 respectively.
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Table 5.2: LCS time (in sec.) comparison on different per process string length and processor
number of 2 string with length 10,000

No. of Per Process String Length
Processor 200 500 1000 1500 2000

1 132.9 184 262.4 499.7 609
3 119.8 133.2 160.6 332.3 435
5 116.6 128.1 182.4 286.5 343.5

10 - 109.5 - - -
20 - 106.2 - - -

lcs length 6317 6416 6464 6466 6485
actual length 6514

Table 5.3: LCS time (in sec.) comparison on different processor number of 2 string with
length 200,000

No. of Per Process String Length
Processor 500

10 609.8
20 587.3

lcs length 128,667
actual length 130,814

With reference to the time taken to computer LCS as presented in Table 5.2, it is fair to

say that the algorithm is scalable. The accuracy of the algorithm goes on increasing with

increase in per process length as with increase in per-process length there are less number of

parallel merge.

Table 5.3 shows the time required to compute LCS of the strings with length 2,00,000. It

is discovered that the time required to compute the LCS of strings having length 2,00,000

with 500 per process string length using 10 nodes is equal to the time taken to compute the

LCS of strings having length 10,000 with 2000 per process string length using 1 node. This

shows that, it is feasible to compute the LCS between 2 strings having very large length using

group of low processing power computer. This will help to do cost effective analysis of the

similarities between genetic sequences within no time.
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The time required to find the LCS between 2 string is better than the MapReduce algo-

rithm proposed by Bohara et. al [10]. Bohara et. al performed the study to find whether it is

possible or not to find LCS using MapReduce approach. Bohara suggested that it is possible

to calculate the LCS using MapReduce and time required will be reduced with the addition

of the node. But Bohara didn’t included the length of the input string so it is difficult to

conclude how fast this algorithm is.

5.4. Verification

The output result is verified by comparing it with sequential program result. Total runtime is

calculated by taking an average of 10 runtimes and it is later compared with corresponding

sequential program runtime.
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6. Conclusion

A basic model for MapReduce-based parallel algorithm for gene sequence comparison has

been developed. Although there are few parallel algorithms for LCS computation, they are

not reliable as the MapReduce-based solution in the context of fault tolerance and concur-

rency control. This MapReduce-based model handles all the different aspects of distributed

computing from load balancing to synchronization automatically. The algorithm is highly

scalable and cost effective. Hence, the large number of gene data can be processed at short

period if we use a large number of nodes created from commodity computers. The time

to calculate LCS can also reduce by decreasing the per process string length. But it might

result in a decrease in LCS length, as there is trade-off between per process string length and

accuracy.

6.1. Limitation

The parallel algorithm might not return longest common subsequence as multiple starting

and ending point are possible for the same length of the LCS substring between two strings.

This is because, with a different value of starting and ending sequence, we have different A,

B, E, F. So, there is always a possibility of not having longest subsequence.

6.2. Further Enhancement

There is a special case where this algorithm dont work which is listed in limitation. So

we can optimize algorithm to overcome the listed problem. This thesis can be extended to

study relation between occurrences of multiple LCS across the same species to intra-species

mutations. Also, we can enhance it to compare the runtime between different distributed

platform like Apache Spark, Google dataflow and Hadoop cascading.

22



References

[1] Bhowmick, Sanjukta, et al. ”A Parallel Non-Alignment Based Approach to Efficient Se-

quence Comparison using Longest Common Subsequences.” Journal of Physics: Con-

ference Series. Vol. 256. No. 1. IOP Publishing, 2010.

[2] Needleman, Saul B., and Christian D. Wunsch. ”A general method applicable to the

search for similarities in the amino acid sequence of two proteins.” Journal of molecular

biology 48.3 (1970): 443-453.

[3] Smith, Temple F., and Michael S. Waterman. ”Comparison of biosequences.” Advances

in applied mathematics 2.4 (1981): 482-489.

[4] Hirschberg, Daniel S. ”A linear space algorithm for computing maximal common sub-

sequences.” Communications of the ACM 18.6 (1975): 341-343.

[5] Hunt, James W., and Thomas G. Szymanski. ”A fast algorithm for computing longest

common subsequences.” Communications of the ACM 20.5 (1977): 350-353.

[6] Chen, Yixin, Andrew Wan, and Wei Liu. ”A fast parallel algorithm for finding the longest

common sequence of multiple biosequences.” BMC bioinformatics 7.4 (2006): 1.

[7] Eswaran S and RajaGopalan SP, ”An Efficient Fast Pruned Parallel Algorithm for finding

LCS in Biosequences”, Anale Seria Informatica. Vol. VIII fasc.1, 2010.

[8] Dhraief, Amine, Raik Issaoui, and Abdelfettah Belghith. ”Parallel computing the

Longest Common Subsequence (LCS) on GPUs: efficiency and language suitability.”

The 1st International Conference on Advanced Communications and Computation (IN-

FOCOMP). 2011.

[9] Li, Yanni, Yuping Wang, and Liang Bao. ”FACC: a novel finite automaton based on

cloud computing for the multiple longest common subsequences search.” Mathematical

Problems in Engineering 2012 (2012).

[10] Bohara Jnaneshwar, Joshi Shashidhar Ram, ”A MapReduce Based Parallel Algorithm

for Finding Longest Common Subsequence in Biosequences”, IOE Graduate Conference

Journal (2013)

23



[11] Dean, Jeffrey, and Sanjay Ghemawat. ”MapReduce: simplified data processing on large

clusters.” Communications of the ACM 51.1 (2008): 107-113.

[12] White, Tom. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

24


	APPROVAL PAGE
	COPYRIGHT
	ACKNOWLEDGEMENT
	ABSTRACT
	TABLE OF CONTENT
	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS
	INTRODUCTION
	Background
	Problem Definition
	Objective
	Scope of Work

	Literature Review
	Needleman-Wunsch algorithm
	Hirschberg algorithm
	Hunt-Szymanski algorithm
	Fast LCS algorithm using Map Reduce

	THEORETICAL BACKGROUND
	DNA
	MapReduce
	Execution Overview

	Hadoop

	RESEARCH METHODOLOGY
	Computing LCS using Row-wise processing Technique
	Parallel Implementation
	Map Reduce Strategy
	Data Collection
	Tools Used
	System description

	RESULT AND DISCUSSION
	Complexity Analysis
	Run Time of Algorithm
	Hadoop Runtime Analysis
	Verification

	Conclusion
	Limitation
	Further Enhancement

	REFERENCES

