

Tribhuvan University

Institute of Engineering, Pulchowk Campus

A

Final Thesis Report

On

“Comparative Analysis of Backpropagation Algorithm

Variants for Network Intrusion Detection”

Submitted By:

Nabin Neupane

(2071/MSCS/656)

Under the Supervision of

Prof. Dr. Subarna Shakya

Submitted To:

Department of Electronics and Computer Engineering

 October 20, 2016

ii

A

Final Thesis Report

On

“Comparative Analysis of Backpropagation Algorithm

Variants for Network Intrusion Detection”

Nabin Neupane

(2071/MSCS/656)

Department of Electronics and Computer Engineering

IOE, Pulchowk Campus

October 20, 2016

iii

Acknowledgement

I would like to express my sincere gratitude to Prof. Dr. Subarna Shakya, my thesis

supervisor for the constant guidance with his insightful ideas and valuable suggestions

and encouragement during the period of thesis.

I would like to express my sincere thanks and indebtedness to our Head of

Department Dr. Dibakar Raj Pant, Prof. Dr. Sashidhar Ram Joshiand Dr. Aman

Shakya for their encouragement and precious guidance. I would also like to thank Dr.

Sanjeeb Prasad Panday, Program Coordinator, Master’s Degree, for his constant

focus on research activity, choosing Thesis Topic and cooperation to give out the best.

Last but not least I would like to thank everyone who directly or indirectly helped me

to make this thesis successful.

iv

Abstract

The network security has become a very important issue as network attacks have been

increasing with the growth of hacking tools, complexity of networks and intrusions in

number and severity. The intrusion detection is the process that detects possible

network attacks or different security violations, abnormal activities and alerts the

occurrences to network administrator. This research is focused on intrusion detection

by using Multilayer Perceptron (MLP) with different algorithm of backpropagation

neural network. In this research, performance of various backpropagation algorithms

has been evaluated using KDDCup99 dataset. The dataset has been preprocessed to be

made suitable for neural network input and the input set and target set are separated.

The modified dataset has been used to evaluate the performance of BFGS Quasi-

Newton, Levenberg-Marquardt, Gradient Descent with Adaptive lr backpropagation

algorithm. Different performance parameters such as mean square error, attack

detection rate, recall rate, precision rate, epochs has been used for the algorithm

comparison.

Based on the evaluation results, the research purposes Levenberg-Marquardt

backpropagation algorithm to be the best performing and efficient algorithm for the

network intrusion detection for KDDCup dataset. Different classes of attacks have

been also determined comparing the output values obtained with the target set.

Keywords –Intrusion detection, Multilayer Perceptron, KDDCup99, Backpropagation,

Detection Rate, Recall Rate.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS---iii

ABSTRACT---iv

LIST OF FIGURES--vi

LIST OF TABLES--viii

ABBREVIATION--ix

CHAPTER 1: INTRODUCTION

1.1 Background--1

1.2 Problem Statement--5

1.3 Objectives--6

CHAPTER 2: LITERATURE REVIEW---7

CHAPTER 3: METHODOLOGY

3.1 Input Dataset Analysis--9

3.2 Pre Processing--10

3.3 Determining Architecture of MLP--12

3.4 Training and Testing of MLP--14

3.5 Backpropagation Algorithm--14

3.5.1 BFGS Quasi - Newton Backpropagation Algorithm------------------------16

3.5.2 Levenberg-Marquardt backpropagation--------------------------------------17

3.5.3 Gradient descent with adaptive lr backpropagation-------------------------19

3.6 Performance Parameters--20

3.7 Tools---21

CHAPTER 4: RESULTS, ANALYSIS AND COMPARISONS

vi

 4.1 Results and Analysis---22

 4.1.1 Determining Hidden Layer Neurons---22

 4.1.2 Performance Assessment of various Backpropagation Algorithms-----24

4.2 Comparison---31

CHAPTER 5: CONCLUSION---34

REFERENCES---35

BIBLIOGRAPHY--36

vii

LIST OF FIGURES

Figure 1.1: Multilayer Perceptron---2

Figure 1.2: Bipolar Sigmoid Function--5

Figure 3.1: Block diagram of the proposed system---9

Figure 3.2: Back propagation Algorithm Diagram--15

Figure 4.1: MLP Architecture of the System---

152

Figure 4.2: Performance of BFGSBP Algorithm--

155

Figure 4.3: Confusion matrix of BFGS Quasi- Newton algorithm---------------------26

Figure 4.4: Performance of LMBP Algorithm---27

Figure 4.5: Confusion matrix of LMBP algorithm--28

Figure 4.6: Performance of GDABP Algorithm---29

Figure 4.7: Confusion matrix of LMBP algorithm---30

Figure 4.8: Comparison of MSE among BFGSBP, LMBP and GDABP Algorithms31

Figure 4.9: Comparison of Detection Rate among BFGSBP, LMBP and GDABP

Algorithms---32

Figure 4.10: Comparison of Epoch among BFGSBP, LMBP and GDABP Algorithms-

--32

Figure 4.11: Comparison of Recall rate among BFGSBP, LMBP and GDABP

Algorithms---33

Figure 4.12: Comparison of Precision Rate among BFGSBP, LMBP and GDABP

Algorithms---33

file:///D:/ncit/shree_thesis/final_thesis/shree_final/final%20thesis%20-%20Copy.docx%23_Toc402927748
file:///D:/ncit/shree_thesis/final_thesis/shree_final/final%20thesis%20-%20Copy.docx%23_Toc402927750
file:///D:/ncit/shree_thesis/final_thesis/shree_final/final%20thesis%20-%20Copy.docx%23_Toc402927751
file:///D:/ncit/shree_thesis/final_thesis/shree_final/final%20thesis%20-%20Copy.docx%23_Toc402927752
file:///D:/ncit/shree_thesis/final_thesis/shree_final/final%20thesis%20-%20Copy.docx%23_Toc402927753
file:///D:/ncit/shree_thesis/final_thesis/shree_final/final%20thesis%20-%20Copy.docx%23_Toc402927754

viii

LIST OF TABLES

Table 1: KDD feature columns name and type---10

Table 2: Protocol Type---11

Table 3 :Service Type--11

Table 4 : Flag Types--12

Table 5 : Attacks Classification---12

Table 6 : Label Transformation---13

Table 7: Feature Column Before Transformation--13

Table 8 : Feature Column After Transformation--13

Table 9: Selection of Number of Neurons in Hidden Layer------------------------------14

Table 10: Evaluation Results for each Attack Classes (BFGSBP)-----------------------26

Table 11: Evaluation Results for each Attack Classes (LMBP)--------------------------28

Table 12: Evaluation Results for each Attack Classes (BFGSBP)-----------------------30

Table 13: Simulation Result of various BP Algorithms-----------------------------------31

file:///D:/ncit/shree_thesis/final_thesis/shree_final/final%20thesis%20-%20Copy.docx%23_Toc402927761

ix

ABBREVIATION

AFRL Air Force Research Laboratory

ANN Artificial Neural Network

DARPA Defense Advance Research Project Agency

DOS Denial of Service

FN False Negative

FP False Positive

IDS Intrusion Detection System

MIT Massachusetts Institute of Technology

NIDS Network based IDS

R2L Remote to Local

TN True Negative

TP True Positive

U2R User to Root

BFGSBP BFGS Quasi-Newton Backpropagation algorithm

LMBP Levenberg-Marquardt Backpropagtion algorithm

GDABP Gradient Descent with Adative lr Backpropagation algorithm

1

CHAPTER 1: INTRODUCTION

1.1 Background

The word intrusion means the act of wrongfully entering upon, seizing, or taking

possession of the property of another. The number of intrusions into computer

systems is growing. The reason is that new automated hacking tools are appearing

every day, and these tools with variety of system vulnerability information are easily

available on the web [1].

The attack detection tools are very important for providing safety in computer and

network system. These tools fully depend on accuracy of attack detection. Moreover,

the detection is also must for prevention of any attack. Therefore accurate detection of

attack is very important. A number of attempts have been done in the field of attack

detection but they suffered many limitations such as time consuming statistical

analysis, regular updating, non adaptivity, lack of accuracy and flexibility. Therefore,

an Artificial Neural Network (ANN) supports an ideal specification of an attack

detection system and is a solution to the problems of previous systems. As a result, an

ANN inspired by nervous system has become an interesting tool in the applications of

attack detection systems due to its promising features. Attack detection by artificial

neural networks is an ongoing area and thus interest in this field has increased among

the researchers. Neural networks have the ability to classify patterns, and thus can be

used in other aspects of intrusion detection systems such as attack classification and

alert validation [1].

An unauthorized user who tries to enter in network or computer system is known as

intruder. A system that detects and logs inappropriate activities is called as intrusion

detection system (IDS). The intrusion detection systems can be classified into three

categories: host based, network based and vulnerability assessment based. A host

based IDS evaluates information found on a single or multiple host systems, including

contents of operating systems, system files and application files. While network based

IDS evaluates information captured from network communications, analyzing the

stream of packets traveling across the network. Packets are captured through a set of

sensors. Vulnerability assessment based IDS detects vulnerabilities on internal

networks and firewall [2].

2

There are two general methods of detecting intrusions into computer and network

systems:

anomaly detection and signature recognition. Anomaly detection techniques establish

a profile of the subject's normal behavior (norm profile),compare the observed

behavior of the subject with its norm profile, and signal intrusions when the subject’s

observed behavior differs significantly from its norm profile. Signature recognition

techniques recognize signatures of known attacks, match the observed behavior with

those known signatures, and signal intrusions when there is a match [2].

Neural network is an universal classifier and with the proper choosing of its

architecture it can solve any, even very complicated, classification task [3].

Figure 1.1: Multilayer Perceptron [3]

Figure 1 above shows the input layer, hidden layer(s) and output layer of Multilayer

Perceptron (MLP).

Types of attacks

The goal of efficient IDS is to detect novel attacks by unauthorized users in network

traffic. Attacks can be gathered in four main categories. They are as follows:

1. Denial of Service Attack (DoS)

2. User to Root Attack (U2R)

3. Remote to Local Attack (R2L)

4. Probing Attack

3

1) Denial of Service Attack (DoS)

A DoS (Denial of Service) attack is a type of attack in which the attacker or

unauthorized users makes a computing or memory resources too busy or too full

to provide reasonable networking requests and hence denying users access to a

machine e.g. ping of death, neptune, back, smurf, apache, UDP storm, mail bomb

etc. are all DoS attacks.

2) User to Root Attack (U2R)

A user to root (U2R) attack is an attack in which the attacker access to a normal

user account on the system (perhaps gained by sniffing passwords, a dictionary

attack, or social engineering) and is able to exploit some vulnerability to gain root

access to the system. The attacker forwards networking packets to a machine

through the internet, which he/she does not have right of access in order to expose

the machines vulnerabilities and exploit privileges which a local user would have

on the computer e.g. guest, xlock, xnsnoop, sendmail dictionary, phf etc.

3) Remote to Local Attack (R2L)

A remote to local (R2L) attacks are regarded as the exploitations in which the

unauthorized users start off on the system with a normal user account and tries to

misuse vulnerabilities in the system in order to achieve super user access rights e.g.

xterm, perl. It occurs when an attacker who has the ability to send packets to a

machine over a network but who does not have an account on that machine

exploits some vulnerability to gain local access as a user of that machine.

4) Probing Attack

A probing is an attack in which the hacker scans a machine or a networking

device in order to determine weaknesses or vulnerabilities that may later be

exploited so as to negotiate the system. This practice is commonly used in data

mining e.g. portsweep, saint, mscan, nmap etc. Attacker tries to gain information

about the target host. [7]

4

Training and Testing of MLP

In ANN, generally initial weights and biases are set randomly with small values. Once,

these values are set, the network becomes ready to be trained. Training a network

generally means feeding the network with the training sequence. The training

sequences are simply the vectors of input combinations along with the required output.

The network processes the input vector, changes its internal weights and biases to

give the result near to the output. After certain epochs of the training, the weights and

biases are kept constant and real environment data is fed to the network to test the

network. There are quite a few training algorithms developed during the years of time

which provides good result in terms of how fast network converges to problem, how

much memory does the network uses to produce the output etc.

Backpropagation (BP)

Backpropagation is the most well-known and widely used neural network system. It

uses the backpropagation rule for training. The BP learning algorithm can be divided

into two phases: propagation and weight update.

Phase 1: Propagation

Each propagation involves the following steps:

1. Forward propagation of a training pattern's input through the neural network in

order to generate the propagation's output activations.

2. Backward propagation of the propagation's output activations through the

neural network using the training pattern target in order to generate the deltas

of all output and hidden neurons.

Phase 2: Weight update

For each weight-synapse follow the following steps:

1. Multiply its output delta and input activation to get the gradient of the weight.

2. Subtract a ratio (percentage) of the gradient from the weight.

This ratio (percentage) influences the speed and quality of learning; it is called

the learning rate. The greater the ratio, the faster the neuron trains; the lower the ratio,

the more accurate the training is. The sign of the gradient of a weight indicates where

the error is increasing; this is why the weight must be updated in the opposite

direction.

5

Repeat phase 1 and 2 until the performance of the network is satisfactory.

Activation Function:

Multilayer perceptron networks typically use sigmoid transfer functions in the hidden

layers. These functions are often called "squashing" functions, because they compress

an infinite input range into a finite output range.

The bipolar sigmoid function: 𝑓(𝑥) = −1 +
2

1+𝑒−𝑥
…..........……………..........… (1.1)

which has derivative of: 𝑓′(𝑥) = 0.5 ∗ [1 + 𝑓(𝑥)] ∗ [1 − 𝑓(𝑥)] ……..........….... (1.2)

Figure 1.2: Bipolar Sigmoid Function

Mean Square Error (MSE)

The process of training a neural network involves tuning the values of the weights and

biases of the network to optimize network performance, as defined by the network

performance function net.performFcn. The default performance function for

feedforward networks is mean square error - the average squared error between the

network outputs ‘a’ and the target outputs ‘t’. It is defined as follows:

…………………………………………. (1.3)

In this research, MLP is trained with various backpropagation algorithms. Based on

the evaluation results, the proposed research is able to suggest the best model for

network based intrusion detection.

1.2 Problem Statement

IDS is Rule Based Monitoring and Controlling System, therefore, selection of

algorithm used to define standard rule base is a major challenge. The selection of

6

improper algorithm and model can maximize the occurrence of false alarm rate, high

resource consumption, and low intrusion detection rate and may result inefficiency to

entire system and may even lead to security vulnerabilities. The proper selection of

classifier algorithm leads to increase in efficiency of IDS being implemented.

1.3 Objectives

Objectives of the research are as follows:

 To analyze the performance of various backpropagation algorithms and

suggest the efficient model for network intrusion detection based on the

evaluation result.

 To detect intrusion using multilayer perceptron with backpropagation.

7

CHAPTER 2: LITERATURE REVIEW

One preliminary IDS concept consisted of a set of tools intended to help

administrators review audit trails. User access logs, file access logs, and system event

logs are examples of audit trails. Fred Cohen noted in 1984 that it is impossible to

detect an intrusion in every case, and that the resources needed to detect intrusions

grow with the amount of usage [4].

Several research works have already been done and many research papers have been

published regarding improvement of intrusion detection system (IDS). Since, each of

the papers has focused on different algorithmic techniques being implemented in IDS

with their resulted output in simulation tools as well. However, the comparative

analysis is very rare and proposed research is crucial in today’s time in order get the

de-facto standard for efficient IDS implementation. Some of the related works that are

closely related to proposed work are highlighted below along with their scope of

research.

The research work done by XiaoHang Yao put forward an IDS combining with

genetic algorithm and backpropagation. The intrusion detection system model

presented in this paper adopts anomaly detection and misuse detection means. The

system is composed of eight different modules. IDS can offer protection from external

users and internal attackers, where traffic doesn't go past the firewall at all. The

research on IDS attempted to use neural networks for intrusion detection has been

carried on and will continue. Such systems were trained on normal or attack behavior

information and then detect intrusions or attacks. In this paper, five kinds of Neural

Network technologies that are used in IDS. An IDS combining with GA and BP is put

forward, and functions of each module are detailed. The result of experiment shows

that combining genetic algorithm with backpropagation efficiently enhances the

learning speed of backpropagation neural network and improves the detection

accurate rate of IDS. Finally, a discussion of the future neural network technologies,

which guarantee to enhance the detection efficiency of IDS is provided [2].

The research work done by Jingwen Tian, Meijuan Gao and Fan Zhang was network

intrusion detection method based on radial basic function neural network. Aimed at

the network intrusion behaviors are characterized with uncertainty, complexity,

diversity and dynamic tendency and the advantages of radial basic function neural

network (RBFNN), an intrusion detection method based on radial basic function

8

neural network is presented in this paper. They constructed the structure of RBFNN

that used for detection network intrusion behavior, and adopt the K-Nearest Neighbor

algorithm and least square method to train the network. They discussed and analyzed

the impact factor of intrusion behaviors. With the ability of strong function approach

and fast convergence of radial basic function neural network, the network intrusion

detection method based on radial basic function neural network can detect various

intrusion behaviors rapidly and effectively by learning the typical intrusion

characteristic information [3].

There is another research work performed by Farah Jemili, Montaceur Zaghdoud and

Mohamad Ben Ahmed, which uses Bayesian Network to build automatic intrusion

detection system based on signature recognition. A Bayesian Network (BN) is known

as graphical modeling tool used to model decision problems containing uncertainty. In

this paper, a BN is used to build automatic intrusion detection system based on

signature recognition. A major difficulty of this system is that the uncertainty on

parameters can have two origins. The first source of uncertainty comes from the

uncertain character of information due to a natural variability resulting fmm stochastic

phenomena. The second source of uncertainty is related to the imprecise and

incomplete character of information due to a lack of knowledge. The goal of this work

is to propose a method to propagate both the stochastic and the epistemic uncertainties,

coming respectively from the uncertain and imprecise character of information,

through the Bayesian model, in an intrusion detection context [7].

9

CHAPTER 3: MEHODOLOGY

Methodology of the system is shown in the Figure 3.1 below:

Figure 3.1: Block diagram of the system.

3.1 Input Dataset Analysis:

Under the sponsorship of Defense Advanced Research Projects Agency (DARPA)

and Air Force Research Laboratory (AFRL), the MIT Lincoln laboratory has

established a network and captured the packets of different attack types and

distributed the data sets for the evaluation of researches in computer network intrusion

detection systems. The KDDCup99 data set is a subset of the DARPA benchmark

data set [5]. Each KDDCup99 training connection record contains 41 features and is

labeled as either normal or an attack, with exactly one specific attack type. This

dataset will be taken as training data for performing the proposed research work. The

result thus obtained will be compared with the rest of test data set. One of the reasons

for choosing this data set is that the data set is standard. Another reason is that it is

difficult to get another data set which contains so rich a variety of attacks.

Feature Extraction: For each network connection in the data set, the following three

key groups of features for detecting intrusions will be extracted:

Input Dataset

Pre Processing

Determining architecture of MLP

Classification using various

backpropagation algorithms

Training and Testing of MLP

10

 Basic features: This group summarizes all the features that can be extracted

from a TCP/IP connection. Some of the basic features in the KDDCup99 data

sets are protocol_type, service, src_bytes and dst_bytes.

 Content features: These features are purely based on the contents in the data

portion of the data packet.

 Traffic features: This group comprises features that are computed with

respect to a 2 Sec. time window and it is divided into two groups: same host

features and same service features. Some of the traffic features are counted,

rerror_rate, rerror_rate and srv_serror_rate.

Instance Labeling: After extracting KDDCup’99 features from each record, the

instances are labeled based on the characteristics of traffic as Normal, Dos, Probe,

R2L and U2R.

3.2 Pre Processing:

The data set is preprocessed so that it may be able to give it as an input to java

programming and matlab readable format. This data set consists of numeric and

symbolic features and is converted into numeric form so that it can be given as inputs

to our MLP network. Now this modified data set is used as training and testing data

set of the multi-layer perceptron.

Table 1 below shows the feature columns name and type of 10% KDDCup 99 dataset.

Table 1: KDD feature columns name and type [9]

11

Symbolic columns which are protocol_type, service, flag and label are transformed to

numeric values using transformation tables given below.

The protocol_type column has 3 protocol values: TCP, UDP and ICMP. Table 2

demonstrate the transformation table for protocol_type.

Table 2: Protocol Type

Protocol_type No.

TCP 1

UDP 2

ICMP 3

The service column values are transformed to numeric values as shown in Table 3.

Table 3: Service Type

Service No. Service No.

Auth 1 netbios_ssn 34

Bgp 2 Netstat 35

Courier 3 Nnsp 36

csnet_ns 4 nntp 37

Ctf 5 ntp_u 38

Daytime 6 Other 39

Discard 7 pm_dump 40

Domain 8 pop_2 41

domain_u 9 pop_3 42

Echo 10 Printer 43

eco_i 11 Private 44

ecr_i 12 red_i 45

Efs 13 remote_job 46

Exec 14 Rje 47

Finger 15 Shell 48

ftp 16 Smtp 49

ftp_data 17 sql_net 50

Gopher 18 Ssh 51

Hostnames 19 Sunrpc 52

http 20 Supdup 53

http_443 21 Systat 54

imap4 22 telnet 55

Irc 23 tftp_u 56

iso_tsap 24 tim_i 57

12

Service No. Service No.

Klogin 25 Time 58

Kshell 26 urh_i 59

Ldap 27 urp_i 60

Link 28 Uucp 61

Login 29 uucp_path 62

Mtp 30 Vmnet 63

Name 31 Whois 64

netbios_dgm 32 x11 65

netbios_ns 33 z39_50 66

The flag column values are transformed to numeric values as shown in Table 4.

Table 4 : Flag Types

Flag No. Flag No.

Oth 1 S1 7

REJ 2 S2 8

RSTO 3 S3 9

RSTOS0 4 SF 10

RSTR 5 SH 11

S0 6

The Label column has normal and different kinds of sub attack values. Sub attack

values are classified as shown in Table 5 and then the normal and attack values are

transformed into numeric as shown in Table 6 below.

Table 5 : Attacks Classification

Main Attack DOS U2R R2L Prob

Sub Attack

apache2

back

land

mailbomb

neptune

pod

processtable

smurf

teardrop

upstorm

buffer_overflow

load module

perl

ps

rootkit

xterm

ftp_write

guess_passwd

imap

mscam

warezclient

warezmaster

xclock

xsnoop

Ipsweep

nmap

portsweep

satan

13

Table 6 : Label Transformation

Label
Column1 Column2 Column3 Column4 Column5

Normal 1 0 0 0 0

DoS 0 1 0 0 0

U2R 0 0 1 0 0

R2L 0 0 0 1 0

Prob 0 0 0 0 1

The following tables represent the data feature columns before and after

transformation.

Table 7: Feature Column Before Transformation

0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.0

0,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,normal.

Table 8 : Feature Column After Transformation

3.3 Determining Architecture of MLP

There is no certain mathematical approach for obtaining the optimum number of

hidden layers and their neurons. In this research, 3 layered MLP with 41 neurons in

the input layer and 5 neurons in the output layer is used. The numbers of nodes in

hidden layer are chosen by hit and trial method.

Table 9 below shows the performance of multilayer perceptron with different

numbers of hidden layer neurons. The best performance is observed with 20 neurons

in the hidden layer.

0,1,20,10,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,

1.00,0.00,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,1,0,0,0,0.

14

Table 9: Selection of Number of Neurons in Hidden Layer

Hidden Layer No. of Neurons Performance

H1 10 0.0018104

H1 15 0.0024706

H1 20 0.00053962

H1 25 0.00073856

3.4 Training and Testing of MLP

The input dataset is divided into 3 subsets. The first subset is the training set, which is

used for computing the gradient and updating the network weights and biases. The

second subset is the validation set. The error on the validation set is monitored during

the training process. The validation error normally decreases during the initial phase

of training, as does the training set error. However, when the network begins to over-

fit the data, the error on the validation set typically begins to rise. When the validation

error increases for a specified number of iterations (net.trainParam.max_fail), the

training is stopped, and the weights and biases at the minimum of the validation error

are returned. The test set error is not used during training, but it is used to compare

different models (MathWorks Matlab Help, 2013).

In this thesis, 70% data from the input dataset are used for training, 15% for

validation and 15% for testing of the MLP to analyze the performance of various

backpropagation algorithms. The results are shown in chapter 4.

3.5 Backpropagation Algorithm:

The BFGS Quasi-NewtonBackpropagation Algorithm, Levenberg-Marquardt

backpropagationand Gradient descent with adaptive lr backpropagationis used for

training of MLP and performances of these algorithms are compared.

15

Figure 3.2: Backpropagation Algorithm Diagram

Figure 3.2 above shows the flowchart of backpropagation algorithm.

Backpropagation Algorithm Steps:

Step 0: Initialize the weights to small random values.

Step 1: Feed the training sample through the network and determine the final output.

Step 2: Compute the error for each output unit, for unit k it is:

)(')(yyt inkkkk
f ………………………………………………… (3.1)

Step 3: Calculate the weight correction term for each output unit, for unit k if it is:

jkjk
Zw

…………………………………………………………. (3.2)

Step 4: Propagate the delta terms (error) back through the weights of the hidden units

where the delta input for the jth hidden unit is:

m

k

jkkinj W
1

……………………...…………………………………. (3.3)

The delta term for the jth hidden unit is:

16

)(' injinjj zf
………………………………………………………... (3.4)

Step 5: Calculate the weight correction term for the hidden units:

 XiV jij
……………….…………………………………………. (3.5)

Step 6: Update the weights:

)__()()(layeroutputforWoldWnewW jkjkJK
………………….. (3.6)

)__()()(layerhiddenforVoldVnewV ijijij
 …………………...… (3.7)

Step 7: Test for stopping (maximum cycles, small changes, etc).

The BFGS Quasi-Newton, Levenberg-Marquardt and Gradient Descent with Adaptive

lr backpropagation algorithms are used for training of MLP and performance of these

algorithms is compared.

3.5.1 BFGS Quasi - Newton Backpropagation Algorithm:

Quasi-Newton BP (BFGS) method is an alternative to the conjugate gradient methods

for fast optimization. Newton’s method often converges faster than conjugate gradient

methods. The weight update for the Newton’s method is:

w
k+1

=w
k
−H-1

kgk...................………………………………………………………………….(3.8)

Hk is the Hessian matrix of the performance index at the current values of the weights

and biases. When Hk is large, it is complex and time consuming to compute wk+1.

Fortunately, there is a class of algorithms based on the works of Broyden, Fletcher,

Goldfarb, and Shanno (BFGS) that are based on Newton’s method but which don’t

require intensive calculation. This new class of method is called quasi-Newton

method. The new weight wk+1 is computed as a function of the gradient and the

current weight wk.

Training occurs according to training parameters, with default values.Any or all of

these can be overridden with parameter name/value argumentpairs appended to the

input argument list, or by appending a structureargument with fields having one or

more of these names:

 epochs 100 Maximum number of epochs to train

17

 show 25 Epochs between displays

 showCommandLine 0 generate command line output

 showWindow 1 show training GUI

 goal 0 Performance goal

 time inf Maximum time to train in seconds

 min_grad 1e-6 Minimum performance gradient

 max_fail 5 Maximum validation failures

Parameters related to line search methods (not all used for all methods):

 scal_tol 20 Divide into delta to determine tolerance for linear search.

 alpha 0.001 Scale factor which determines sufficient reduction in perf.

 beta 0.1 Scale factor which determines sufficiently large step size.

 delta 0.01 Initial step size in interval location step.

 gama 0.1 Parameter to avoid small reductions in performance. Usually set to

 0.1

 low_lim 0.1 Lower limit on change in step size.

 up_lim 0.5 Upper limit on change in step size.

 maxstep 100 Maximum step length.

 minstep 1.0e-6 Minimum step length.

 bmax 26 Maximum step size.

3.5.2 Levenberg-Marquardt backpropagation:

This method updates weight and bias values according to Levenberg-Marquardt

optimization. It is often the fastest backpropagation algorithm available, and is highly

recommended as a first-choice supervised algorithm, although it does require more

memory than other algorithms.

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to

approach second-order training speed without having to compute the Hessian matrix.

18

When the performance function has the form of a sum of squares (as is typical in

training feedforward networks), then the Hessian matrix can be approximated as

H = JTJ……………………………………………………………………………(3.9)

and the gradient can be computed as

gk = JTe…………………………………………………………………………....(3.10)

where J is the Jacobian matrix that contains first derivatives of the network errors

with respect to the weights and biases, and e is a vector of network errors. The

Jacobian matrix can be computed through a standard backpropagation technique that

is much less complex than computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in

the following Newton-like update:

w
k+1

=w
k
−[J

T
J+μI]

−1

J
T
e ……………………………………………………………. (3.11)

When the scalar µ (mu) is zero, this is just Newton's method, using the approximate

Hessian matrix. When µ is large, this becomes gradient descent with a small step size.

Newton's method is faster and more accurate near an error minimum, so the aim is to

shift toward Newton's method as quickly as possible. Thus, µ is decreased after each

successful step (reduction in performance function) and is increased only when a

tentative step would increase the performance function. In this way, the performance

function is always reduced at each iteration of the algorithm.

Training occurs according to training parameters, with default values. Any or all of

these can be overridden with parameter name/value argument pairs appended to the

input argument list, or by appending a structure argument with fields having one or

more of these names:

 show 25 Epochs between displays

 showCommandLine 0 generate command line output

 showWindow 1 show training GUI

 epochs 100 Maximum number of epochs to train

 goal 0 Performance goal

19

 max_fail 5 Maximum validation failures

 min_grad 1e-10 Minimum performance gradient

 mu 0.001 Initial Mu

 mu_dec 0.1 Mu decrease factor

 mu_inc 10 Mu increase factor

 mu_max 1e10 Maximum Mu

 time inf Maximum time to train in seconds

3.5.3 Gradient descent with adaptive lr backpropagation:

This updates weight and bias values according to gradient descent with adaptive

learning rate. An adaptive learning rate attempts to keep the learning step size as large

as possible while keeping learning stable. The learning rate is made responsive to the

complexity of the local error surface. An adaptive learning rate requires some changes

in the training procedure used by Gradient Descent Backpropagation. First, the initial

network output and error are calculated. At each epoch new weights and biases are

calculated using the current learning rate. New outputs and errors are then calculated.

This method can train any network as long as its weight, net input, and transfer

functions have derivative functions.

Backpropagation is used to calculate derivatives of performance dperf with respect to

the weight and bias variables X. Each variable is adjusted according to gradient

descent:

 𝑑𝑋 = 𝑙𝑟 ∗ 𝑑𝑝𝑒𝑟𝑓/𝑑𝑋………….……………………………………. (3.12)

At each epoch, if performance decreases toward the goal, then the learning rate is

increased by the factor lr_inc. If performance increases by more than the factor

max_perf_inc, the learning rate is adjusted by the factor lr_dec and the change that

increased the performance is not made.

 show 25 Epochs between displays

 showCommandLine 0 generate command line output

 showWindow 1 show training GUI

20

 epochs 10 Maximum number of epochs to train

 goal 0 Performance goal

 lr 0.01 Learning rate

 lr_inc 1.05 Ratio to increase learning rate

 lr_dec 0.7 Ratio to decrease learning rate

 max_fail 5 Maximum validation failures

 max_perf_inc 1.04 Maximum performance increase

 min_grad 1e-10 Minimum performance gradient

 time inf Maximum time to train in seconds

Training stops when any of these conditions occurs:

 The maximum number of epochs (repetitions) is reached.

 The maximum amount of time is exceeded.

 Performance is minimized to the goal.

 The performance gradient falls below min_grad.

 Validation performance has increased more than max_fail times since the last

time it decreased (when using validation).

3.6 Performance Parameters:

Mean Square Error, Total CPU Time of Converge and Accuracy will be the

performance parameters to compare various backpropagation algorithms.

Following parameters will be calculated while training and testing of MLP.

 True Positive (TP): Situation in which a signature is fired properly when an

attack is detected and an alarm is generated.

 False Positive (FP): Situation in which normal traffic causes the signature to

raise an alarm.

 True Negative (TN): Situation in which normal traffic does not cause the

signature to raise an alarm.

 False Negative (FN): Situation in which a signature is not fired when an

attack is detected.

21

 Attack Detection Rate (ADR): The detection rate is defined as the number of

intrusion instances detected by the system (True Positive) divided by the total

number of intrusion instances present in the test set.

Attack Detection Rate (ADR) = (Total detected attacks / Total attacks) * 100 %

 False Alarm Rate (FAR): It is the ratio between the total number of

misclassified instances and the total number of normal connections present in

the data set.

False Alarm Rate (FAR) = (Total misclassified instances / Total normal

instances) * 100 %

 Recall Rate: Recall rate measures the proportion of actual positives which are

correctly identified.

Recall Rate = TP/ (TP + FN)

 Precision Rate: Precision rate is the ratio of true positives to combined true

and false positives.

Precision Rate = TP/ (TP + FP)

3.7 Tools:

Matlab 2013:

Simulation is performed using neural network in MATLAB. Coding is also done to

perform training and testing of MLP in Java. Neural Network Toolbox

supports supervised learning with feed forward, radial basis, and dynamic networks. It

also supports unsupervised learning with self-organizing maps and competitive layers.

With the toolbox we can design, train, visualize, and simulate neural networks.

Notepad++:

Notepad++ is a text editor and source code editor for Windows. It differs from the

built-in Windows text editor Notepad, is that Notepad++ supports tabbed editing,

which allows working with multiple open files in a single window. Notepad++ opens

large files significantly faster than Windows Notepad. Data preprocessing is done

using Notepad++ tool.

22

CHAPTER 4: RESULTS,ANALYSIS AND COMPARISON

4.1 Results and Analysis

4.1.1 Determining Hidden Layer Neurons

The Multilayer Perceptron is trained to find the number of hidden layer neurons using

the following parameters:

Number of input data = 494021

Number of input layer neurons = 41

Number of output layer neurons = 5

Above Table 9 shows the performance of MLP with different number of hidden layer

neurons. The best performance is observed with 20 neurons in the hidden layer.

The required MLP architecture is shown below in Figure 4.1.

The preprocessing step is carried out and obtained dataset is fed to the multilayer

perceptron. Since there is no accurate formula for the selection of hidden layer

neurons, a comparison is made for many cases to find optimum number of neurons.

The simulation is performed in Matlab to find the proper number of neurons in the

hidden layer. Simulation is done to analyze the performance of BFGS Quasi Newton,

Levenberg-Marquardt and Gradient Descent with adaptive lr back propagation

algorithms. The performance, mean square error, detection rate, time, epoch of those

algorithms were compared.

Figure 4.1: MLP Architecture of the System

23

The snapshots of target and actual output for different values of learning rate are

shown below. The best output is observed at learning rate (α) = 0.01.

The target and actual output for learning rate (α) = 0.1.

The target and actual output for learning rate (α)=0.05

24

The target and actual output putting learning rate (α)=0.01

By comparing the values of actual output and Table 6 (label transformation), type of

attack can be identified easily. For example, if first value of actual output is nearly

equal to 1 and other values are nearly equals to 0 that is normal type activity. If

second value of actual output is nearly equal to 1 and other values are nearly equal to

0 that is DoS type attack and so on.

4.1.2 Performance Assessment of various Backpropagation Algorithms

Simulation is done to analyze the performance of BFGS Quasi Newton, Levenberg-

Marquardt and Gradient Descent with adaptive lr back propagation algorithms.

BFGS Quasi Newton Backpropagation (BFGSBP):

The Multilayer Perceptron was trained with BFGSBP algorithm by using following

parameters:

Scale factor that determines sufficient reduction in perf(α)= 0.001

Scale factor that determines sufficiently large stepsize (β)=0.1

Initial step size in interval location step (Δ)=0.01

25

Simulation result of BFGSBP algorithm (Figure 4.2) shows the MSE and number of

epochs. The best performance is observed at epoch 79.

All confusion matrix gives the value of True positive (TP), False Negative (FN) and

True Negative (TN). The diagonal values starting from column 2, row 2 are the values

of TP. The vertical values starting from column 1, row 2 are the values of FP and the

horizontal values starting from column 2, row 1 are the values of FN. Recall and

Precision rate are calculated according to the formula mentioned above.

Figure 4.2: Performance of BFGSBP Algorithm

26

Figure 4.3: Confusion matrix of BFGS Quasi- Newton algorithm.

Table 10 below shows the evaluation results for each attack classes.

Table 10: Evaluation Results for each Attack Classes (BFGSBP)

Attack TP FP FN Recall Precision

DoS 388181 78 3261 99.16% 99.97%

U2R 0 4 52 0% 0%

R2L 0 0 1121 0% 0%

Probe 0 0 302 0% 0%

Total 388181 82 4736 98.79% 99.97%

27

Levenberg – Marquardt Backpropagation (LMBP):

The Multilayer Perceptron was trained with LMBP algorithm by using default

parameters. Simulation result of LMBP algorithm (Figure 4-4) shows the MSE and

number of epochs. The best performance is observed at epoch 240.

Figure 4.4: Performance of LMBP Algorithm

28

Figure 4.5: Confusion matrix of Levenberg-Marquardt algorithm.

Table 11: Evaluation Results for each Attack Classes (LMBP)

Attack TP FP FN Recall Precision

DoS 391407 35 42 99.99% 99.99%

U2R 0 0 32 0% 0%

R2L 915 106 189 82.88% 89.61%

Probe 3898 30 200 95.12% 99.23%

Total 396220 171 463 98.88% 99.95%

29

Gradient Descent with Adaptive lr Backpropagation (GDABP):

The Multilayer Perceptron was trained with GDABP algorithm by using default

parameters. Simulation result of GDABP algorithm (Figure 4.6) shows the MSE and

number of epochs. The best performance is observed at epoch 1000.

 Figure 4.6: Performance of GDABP Algorithm

30

Figure 4.7: Confusion matrix of Gradient Descent with Adaptive lr algorithm.

Table 12: Evaluation Results for each Attack Classes (GDABP)

Attack TP FP FN Recall Rate Precision Rate

DoS 389239 26698 2210 99.4% 93.6%

U2R 0 0 47 0% 0%

R2L 0 0 1090 0% 0%

Probe 0 1 17 0% 0%

Total 389239 26699 3364 99.1% 93.6%

31

On the basis of above confusion matrix, mathematical relation and other performance

parameters the following table is drawn. Table below shows the MSE, Detection Rate,

Epoch, Recall, Precision and Time of various BP algorithms.

Table 13: Simulation Result of various BP Algorithms

SN Algorithm MSE Detection Rate Epoch Recall Precision Time

1 BFGSBP 0.00572 98.3% 79 98.7% 99.97% 14:56

2 LMBP 0.00054 99.9% 240 98.8% 99.95% 15:40

3 GDABP 0.049 97.3% 1000 99.1% 93.6% 28:59

Levenberg-Marquardt Backpropagation has the least mean square error and highest

detection rate. BFGS Quasi-Newton was the faster algorithm with higher precision

but has lower attack detection rate than Levenberg-Marquardt algorithm. Gradient

Descent with adaptive lr back propagation could not improve the performance of the

system.

4.2 Comparison

The graphical representation of obtained result is shown below (Figure 4.8 to 4.12).

Figure 4.8: Comparison of MSE among BFGSBP, LMBP and GDABP Algorithms

0

0.01

0.02

0.03

0.04

0.05

0.06

BFGSBP LMBP GDABP

MSE

MSE

32

Figure 4.9: Comparison of Detection Rate among BFGSBP, LMBP and GDABP

Algorithms

Figure 4.10: Comparison of Epoch among BFGSBP, LMBP and GDABP Algorithms

96.00%

96.50%

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

100.50%

BFGSBP LMBP GDABP

Detection Rate

Detection Rate

0

200

400

600

800

1000

1200

BFGSBP LMBP GDABP

Epoch

Epoch

33

Figure 4.11: Comparison of Recall Rate among BFGSBP, LMBP and GDABP

Algorithms

Figure 4.12: Comparison of Precision Rate among BFGSBP, LMBP and GDABP

Algorithms

98.50%

98.60%

98.70%

98.80%

98.90%

99.00%

99.10%

99.20%

BFGSBP LMBP GDABP

Recall

Recall

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

102.00%

BFGSBP LMBP GDABP

Precision

Precision

34

CHAPTER 5: CONCLUSION

Neural networks have the ability to classify patterns, and thus can be used in intrusion

detection systems for attack classification. Backpropagation algorithm is used

prominently for the training of neural network for its promising features. Different

variants of backpropagation algorithms are available, among which I used three

algorithms viz. BFGS Quasi-Newton, Levenberg-Marquardt and Gradient Descent

with adaptive lr backpropagation. An Intrusion Detection System is designed and the

Levenberg-Marquardt Backpropagation algorithm is suggested as the most efficient

model for network intrusion detection. Also the type of attack has been identified

depending upon the output values.

As a future work, Network Intrusion Detection can be done using other types of

Neural Networks like Radial Basis Function Neural Network and using unsupervised

networks like Self Organizing Map (SOM). Performance of these algorithms can be

analyzed by using real time input dataset. Other various available Backpropagation

algorithms can be used to evaluate the performance of the network.

35

REFERENCES

[1] A. Jaya Lakshmi G. Kalyani, "Performance Assessment of Different

Classification Techniques," IOSR Journal of Computer Engineering

(IOSRJCE), p. 5, 2012.

[2] XiaoHang Yao, “A Network Intrusion Detection Approach combined with

Genetic Algorithm and Back Propagation Neural Network” , IEEE-

International Conference on E-Health Networking, Digital Ecosystems and

Technologies, 2010.

[3] Jingwen Tian, Meijuan Gao and Fan Zhang, "Network Intrusion Detection

Method Based on Radial Basic Function Neural Network", IEEE, 20009

[4] Wang Guojun, Yue Zhiqiang, “Application Research of Support Vector

Machine in the Intrusion Detection”, GUANGXI JOURNAL OF LIGHT

INDUSTRY, no. 7, pp. 51-52, 2008.

[5] Luan Qinglin, Lu Huibin, “Research of intrusion detection based on neural

network optimized by adaptive genetic algorithm”, Computer Engineering and

Design, vol. 29,no. 12, pp. 3022-3025, 2008.

[6] Jiao Licheng. Neural network system theory. Xian: Xi an electronic science

and technology university press, 1995.

[7] Farah Jemili, Montaceur Zaghdoud and Mohamad Ben Ahmed, “Intrusion

Detection based on Hybrid Propagation in Bayesian Networks”, IEEE ISE

2009, Richardson, TX, USA,June 8-11, 2009.

[8] Dr. Richard Spillman, Artificial Intelligence.

http://www.cs.plu.edu/courses/csce330/notes.htm

[9] KDD Cup 1999 dataset. Available on:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

36

BIBLIOGRAPHY

[1] Anderson, James P., "Computer Security Threat Monitoring and

Surveillance," Washing, PA, James P. Anderson Co., 1980.

[2] E. Rich and K. Knight, “Artificial Intelligence”, Tata McGraw-Hill Edition,

26th reprint 2002.

[3] S. Russel and P. Norvig, “Artificial Intelligence, A Modern Approach”,

Pearson Education, Second Edition, First Indian Reprint, 2003.

[4] Michael Negnevitsky, “Artificial Intelligence, A Guide to Intelligent Systems”,

Pearson Education, Second Edition, 2005.

[5] Simon Haykin, “Neural Networks”, Pearson Education, 9th Indian Reprint,

2005.

[6] Wolfgang Ertel, ”Introduction to Artificial Intelligence”, Springer, Second

Edition, 2009.

[7] Chuck Easttom, “Computer Security Fundamentals”, Pearson Education,

Second Edition, 2012.

