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Abstract 

The network security has become a very important issue as network attacks have been 

increasing with the growth of hacking tools, complexity of networks and intrusions in 

number and severity. The intrusion detection is the process that detects possible 

network attacks or different security violations, abnormal activities and alerts the 

occurrences to network administrator. This research is focused on intrusion detection 

by using Multilayer Perceptron (MLP) with different algorithm of backpropagation 

neural network. In this research, performance of various backpropagation algorithms 

has been evaluated using KDDCup99 dataset. The dataset has been preprocessed to be 

made suitable for neural network input and the input set and target set are separated. 

The modified dataset has been used to evaluate the performance of BFGS Quasi-

Newton, Levenberg-Marquardt, Gradient Descent with Adaptive lr  backpropagation 

algorithm. Different performance parameters such as mean square error, attack 

detection rate, recall rate, precision rate, epochs has been used for the algorithm 

comparison. 

Based on the evaluation results, the research purposes Levenberg-Marquardt 

backpropagation algorithm to be the best performing and efficient algorithm for the 

network intrusion detection for KDDCup dataset. Different classes of attacks have 

been also determined comparing the output values obtained with the target set. 

 

 

Keywords –Intrusion detection, Multilayer Perceptron, KDDCup99, Backpropagation, 

Detection Rate, Recall Rate. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

The word intrusion means the act of wrongfully entering upon, seizing, or taking 

possession of the property of another. The number of intrusions into computer 

systems is growing. The reason is that new automated hacking tools are appearing 

every day, and these tools with variety of system vulnerability information are easily 

available on the web [1]. 

The attack detection tools are very important for providing safety in computer and 

network system. These tools fully depend on accuracy of attack detection. Moreover, 

the detection is also must for prevention of any attack. Therefore accurate detection of 

attack is very important. A number of attempts have been done in the field of attack 

detection but they suffered many limitations such as time consuming statistical 

analysis, regular updating, non adaptivity, lack of accuracy and flexibility. Therefore, 

an Artificial Neural Network (ANN) supports an ideal specification of an attack 

detection system and is a solution to the problems of previous systems. As a result, an 

ANN inspired by nervous system has become an interesting tool in the applications of 

attack detection systems due to its promising features. Attack detection by artificial 

neural networks is an ongoing area and thus interest in this field has increased among 

the researchers. Neural networks have the ability to classify patterns, and thus can be 

used in other aspects of intrusion detection systems such as attack classification and 

alert validation [1]. 

An unauthorized user who tries to enter in network or computer system is known as 

intruder. A system that detects and logs inappropriate activities is called as intrusion 

detection system (IDS). The intrusion detection systems can be classified into three 

categories: host based, network based and vulnerability assessment based. A host 

based IDS evaluates information found on a single or multiple host systems, including 

contents of operating systems, system files and application files. While network based 

IDS evaluates information captured from network communications, analyzing the 

stream of packets traveling across the network. Packets are captured through a set of 

sensors. Vulnerability assessment based IDS detects vulnerabilities on internal 

networks and firewall [2].  
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There are two general methods of detecting intrusions into computer and network 

systems: 

anomaly detection and signature recognition. Anomaly detection techniques establish 

a profile of the subject's normal behavior (norm profile),compare the observed 

behavior of the subject with its norm profile, and signal intrusions when the subject’s 

observed behavior differs significantly from its norm profile. Signature recognition 

techniques recognize signatures of known attacks, match the observed behavior with 

those known signatures, and signal intrusions when there is a match [2]. 

Neural network is an universal classifier and with the proper choosing of its 

architecture it can solve any, even very complicated, classification task [3].  

 

Figure 1.1: Multilayer Perceptron [3] 

Figure 1 above shows the input layer, hidden layer(s) and output layer of Multilayer 

Perceptron (MLP). 

Types of attacks 

The goal of efficient IDS is to detect novel attacks by unauthorized users in network 

traffic.  Attacks can be gathered in four main categories. They are as follows: 

1. Denial of Service Attack (DoS) 

2.  User to Root Attack (U2R) 

3.  Remote to Local Attack (R2L) 

4.  Probing Attack 
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1) Denial of Service Attack (DoS) 

A DoS (Denial of Service) attack is a type of attack in which the attacker or 

unauthorized users makes a computing or memory resources too busy or too full 

to provide reasonable networking requests and hence denying users access to a 

machine e.g. ping of death, neptune, back, smurf, apache, UDP storm, mail bomb 

etc. are all DoS attacks. 

2) User to Root Attack (U2R) 

A user to root (U2R) attack is an attack in which the attacker access to a normal 

user account on the system (perhaps gained by sniffing passwords, a dictionary 

attack, or social engineering) and  is able to exploit some vulnerability to gain root 

access to the system. The attacker forwards networking packets to a machine 

through the internet, which he/she does not have right of access in order to expose 

the machines vulnerabilities and exploit privileges which a local user would have 

on the computer e.g. guest, xlock, xnsnoop, sendmail dictionary, phf etc. 

3) Remote to Local Attack (R2L) 

A remote to local (R2L) attacks are regarded as the exploitations in which the 

unauthorized users start off on the system with a normal user account and tries to 

misuse vulnerabilities in the system in order to achieve super user access rights e.g. 

xterm, perl. It occurs when an attacker who has the ability to send packets to a 

machine over a network but who does not have an account on that machine 

exploits some vulnerability to gain local access as a user of that machine. 

4) Probing Attack 

A probing is an attack in which the hacker scans a machine or a networking 

device in order to determine weaknesses or vulnerabilities that may later be 

exploited so as to negotiate the system. This practice is commonly used in data 

mining e.g. portsweep, saint, mscan, nmap etc.  Attacker tries to gain information 

about the target host. [7]  
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Training and Testing of MLP 

In ANN, generally initial weights and biases are set randomly with small values. Once, 

these values are set, the network becomes ready to be trained. Training a network 

generally means feeding the network with the training sequence. The training 

sequences are simply the vectors of input combinations along with the required output. 

The network processes the input vector, changes its internal weights and biases to 

give the result near to the output. After certain epochs of the training, the weights and 

biases are kept constant and real environment data is fed to the network to test the 

network. There are quite a few training algorithms developed during the years of time 

which provides good result in terms of how fast network converges to problem, how 

much memory does the network uses to produce the output etc. 

Backpropagation (BP) 

Backpropagation is the most well-known and widely used neural network system. It 

uses the backpropagation rule for training. The BP learning algorithm can be divided 

into two phases: propagation and weight update. 

Phase 1: Propagation 

Each propagation involves the following steps: 

1. Forward propagation of a training pattern's input through the neural network in 

order to generate the propagation's output activations. 

2. Backward propagation of the propagation's output activations through the 

neural network using the training pattern target in order to generate the deltas 

of all output and hidden neurons. 

Phase 2: Weight update 

For each weight-synapse follow the following steps: 

1. Multiply its output delta and input activation to get the gradient of the weight. 

2. Subtract a ratio (percentage) of the gradient from the weight. 

This ratio (percentage) influences the speed and quality of learning; it is called 

the learning rate. The greater the ratio, the faster the neuron trains; the lower the ratio, 

the more accurate the training is. The sign of the gradient of a weight indicates where 

the error is increasing; this is why the weight must be updated in the opposite 

direction. 
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Repeat phase 1 and 2 until the performance of the network is satisfactory. 

Activation Function: 

Multilayer perceptron networks typically use sigmoid transfer functions in the hidden 

layers. These functions are often called "squashing" functions, because they compress 

an infinite input range into a finite output range.  

The bipolar sigmoid function: 𝑓(𝑥) = −1 +
2

1+𝑒−𝑥
…..........……………..........… (1.1)  

which has derivative of: 𝑓′(𝑥) = 0.5 ∗ [1 + 𝑓(𝑥)] ∗ [1 − 𝑓(𝑥)] ……..........….... (1.2) 

 

 

 

 

 

 

 

 

Figure 1.2: Bipolar Sigmoid Function 

 

Mean Square Error (MSE) 

The process of training a neural network involves tuning the values of the weights and 

biases of the network to optimize network performance, as defined by the network 

performance function net.performFcn. The default performance function for 

feedforward networks is mean square error - the average squared error between the 

network outputs ‘a’ and the target outputs ‘t’. It is defined as follows: 

…………………………………………. (1.3) 

In this research, MLP is trained with various backpropagation algorithms. Based on 

the evaluation results, the proposed research is able to suggest the best model for 

network based intrusion detection. 

1.2  Problem Statement 

IDS is Rule Based Monitoring and Controlling System, therefore, selection of 

algorithm used to define standard rule base is a major challenge. The selection of 
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improper algorithm and model can maximize the occurrence of false alarm rate, high 

resource consumption, and low intrusion detection rate and may result inefficiency to 

entire system and may even lead to security vulnerabilities. The proper selection of 

classifier algorithm leads to increase in efficiency of IDS being implemented. 

1.3 Objectives 

Objectives of the research are as follows: 

 To analyze the performance of various backpropagation algorithms and 

suggest the efficient model for network intrusion detection based on the 

evaluation result.  

 To detect intrusion using multilayer perceptron with backpropagation. 
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CHAPTER 2: LITERATURE REVIEW 

One preliminary IDS concept consisted of a set of tools intended to help 

administrators review audit trails. User access logs, file access logs, and system event 

logs are examples of audit trails. Fred Cohen noted in 1984 that it is impossible to 

detect an intrusion in every case, and that the resources needed to detect intrusions 

grow with the amount of usage [4]. 

Several research works have already been done and many research papers have been 

published regarding improvement of intrusion detection system (IDS). Since, each of 

the papers has focused on different algorithmic techniques being implemented in IDS 

with their resulted output in simulation tools as well. However, the comparative 

analysis is very rare and proposed research is crucial in today’s time in order get the 

de-facto standard for efficient IDS implementation. Some of the related works that are 

closely related to proposed work are highlighted below along with their scope of 

research. 

The research work done by XiaoHang Yao put forward an IDS combining with 

genetic algorithm and backpropagation. The intrusion detection system model 

presented in this paper adopts anomaly detection and misuse detection means. The 

system is composed of eight different modules. IDS can offer protection from external 

users and internal attackers, where traffic doesn't go past the firewall at all. The 

research on IDS attempted to use neural networks for intrusion detection has been 

carried on and will continue. Such systems were trained on normal or attack behavior 

information and then detect intrusions or attacks. In this paper, five kinds of Neural 

Network technologies that are used in IDS. An IDS combining with GA and BP is put 

forward, and functions of each module are detailed. The result of experiment shows 

that combining genetic algorithm with backpropagation efficiently enhances the 

learning speed of backpropagation neural network and improves the detection 

accurate rate of IDS. Finally, a discussion of the future neural network technologies, 

which guarantee to enhance the detection efficiency of IDS is provided [2].  

The research work done by Jingwen Tian, Meijuan Gao and Fan Zhang was network 

intrusion detection method based on radial basic function neural network.  Aimed at 

the network intrusion behaviors are characterized with uncertainty, complexity, 

diversity and dynamic tendency and the advantages of radial basic function neural 

network (RBFNN), an intrusion detection method based on radial basic function 
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neural network is presented in this paper. They constructed the structure of RBFNN 

that used for detection network intrusion behavior, and adopt the K-Nearest Neighbor 

algorithm and least square method to train the network. They discussed and analyzed 

the impact factor of intrusion behaviors. With the ability of strong function approach 

and fast convergence of radial basic function neural network, the network intrusion 

detection method based on radial basic function neural network can detect various 

intrusion behaviors rapidly and effectively by learning the typical intrusion 

characteristic information [3].  

There is another research work performed by Farah Jemili, Montaceur Zaghdoud and 

Mohamad Ben Ahmed, which uses Bayesian Network to build automatic intrusion 

detection system based on signature recognition. A Bayesian Network (BN) is known 

as graphical modeling tool used to model decision problems containing uncertainty. In 

this paper, a BN is used to build automatic intrusion detection system based on 

signature recognition. A major difficulty of this system is that the uncertainty on 

parameters can have two origins. The first source of uncertainty comes from the 

uncertain character of information due to a natural variability resulting fmm stochastic 

phenomena. The second source of uncertainty is related to the imprecise and 

incomplete character of information due to a lack of knowledge. The goal of this work 

is to propose a method to propagate both the stochastic and the epistemic uncertainties, 

coming respectively from the uncertain and imprecise character of information, 

through the Bayesian model, in an intrusion detection context [7]. 
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CHAPTER 3: MEHODOLOGY 

Methodology of the system is shown in the Figure 3.1 below: 

 

 

 

 

 

 

 

 

 

Figure 3.1: Block diagram of the system. 

3.1 Input Dataset Analysis: 

Under the sponsorship of Defense Advanced Research Projects Agency (DARPA) 

and Air Force Research Laboratory (AFRL), the MIT Lincoln laboratory has 

established a network and captured the packets of different attack types and 

distributed the data sets for the evaluation of researches in computer network intrusion 

detection systems. The KDDCup99 data set is a subset of the DARPA benchmark 

data set [5]. Each KDDCup99 training connection record contains 41 features and is 

labeled as either normal or an attack, with exactly one specific attack type. This 

dataset will be taken as training data for performing the proposed research work. The 

result thus obtained will be compared with the rest of test data set. One of the reasons 

for choosing this data set is that the data set is standard. Another reason is that it is 

difficult to get another data set which contains so rich a variety of attacks. 

Feature Extraction: For each network connection in the data set, the following three 

key groups of features for detecting intrusions will be extracted: 

Input Dataset 

Pre Processing 

Determining architecture of MLP 

Classification using various 

backpropagation algorithms 

Training and Testing of MLP 
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 Basic features: This group summarizes all the features that can be extracted 

from a TCP/IP connection. Some of the basic features in the KDDCup99 data 

sets are protocol_type,  service, src_bytes and dst_bytes. 

 Content features: These features are purely based on the contents in the data 

portion of the data packet. 

 Traffic features: This group comprises features that are computed with 

respect to a 2 Sec. time window and it is divided into two groups: same host 

features and same service features. Some of the traffic features are counted, 

rerror_rate, rerror_rate and srv_serror_rate. 

Instance Labeling:  After extracting KDDCup’99 features from each record, the 

instances are labeled based on the characteristics of traffic as Normal, Dos, Probe, 

R2L and U2R. 

3.2 Pre Processing: 

The data set is preprocessed so that it may be able to give it as an input to java 

programming and matlab readable format. This data set consists of numeric and 

symbolic features and is converted into numeric form so that it can be given as inputs 

to our MLP network. Now this modified data set is used as training and testing data 

set of the multi-layer perceptron.  

Table 1 below shows the feature columns name and type of 10% KDDCup 99 dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: KDD feature columns name and type [9] 
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Symbolic columns which are protocol_type, service, flag and label are transformed to 

numeric values using transformation tables given below. 

The protocol_type column has 3 protocol values: TCP, UDP and ICMP. Table 2 

demonstrate the transformation table for protocol_type. 

Table 2: Protocol Type 

Protocol_type  No. 

TCP 1 

UDP 2 

ICMP 3 

 

The service column values are transformed to numeric values as shown in Table 3. 

Table 3: Service Type 

Service No. Service No. 

Auth 1 netbios_ssn 34 

Bgp 2 Netstat 35 

Courier 3 Nnsp 36 

csnet_ns 4 nntp 37 

Ctf 5 ntp_u 38 

Daytime 6 Other 39 

Discard 7 pm_dump 40 

Domain 8 pop_2 41 

domain_u 9 pop_3 42 

Echo 10 Printer 43 

eco_i 11 Private 44 

ecr_i 12 red_i 45 

Efs 13 remote_job 46 

Exec 14 Rje 47 

Finger 15 Shell 48 

ftp 16 Smtp 49 

ftp_data 17 sql_net 50 

Gopher 18 Ssh 51 

Hostnames 19 Sunrpc 52 

http 20 Supdup 53 

http_443 21 Systat 54 

imap4 22 telnet 55 

Irc 23 tftp_u 56 

iso_tsap 24 tim_i 57 
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Service No. Service No. 

Klogin 25 Time 58 

Kshell 26 urh_i 59 

Ldap 27 urp_i 60 

Link 28 Uucp 61 

Login 29 uucp_path 62 

Mtp 30 Vmnet 63 

Name 31 Whois 64 

netbios_dgm 32 x11 65 

netbios_ns 33 z39_50 66 

 

The flag column values are transformed to numeric values as shown in Table 4. 

Table 4 : Flag Types 

Flag No. Flag No. 

Oth 1 S1 7 

REJ 2 S2 8 

RSTO 3 S3 9 

RSTOS0 4 SF 10 

RSTR 5 SH 11 

S0 6   

 

The Label column has normal and different kinds of sub attack values. Sub attack 

values are classified as shown in Table 5 and then the normal and attack values are 

transformed into numeric as shown in Table 6 below. 

 

Table 5 : Attacks Classification 

Main Attack DOS U2R R2L Prob 

Sub Attack 

apache2 

back 

land 

mailbomb 

neptune 

pod 

processtable 

smurf 

teardrop 

upstorm 

 

 

buffer_overflow 

load module 

perl 

ps 

rootkit 

xterm 

 

ftp_write 

guess_passwd 

imap 

mscam 

warezclient 

warezmaster 

xclock 

xsnoop 

 

 

 

Ipsweep 

nmap 

portsweep 

satan 
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Table 6 : Label Transformation 

Label 
Column1 Column2 Column3 Column4 Column5 

Normal 1 0 0 0 0 

DoS 0 1 0 0 0 

U2R 0 0 1 0 0 

R2L 0 0 0 1 0 

Prob 0 0 0 0 1 

 

The following tables represent the data feature columns before and after 

transformation. 

 

Table 7: Feature Column Before Transformation 

0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.0

0,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,normal. 

 
 

Table 8 : Feature Column After Transformation 

 

3.3 Determining Architecture of MLP 

There is no certain mathematical approach for obtaining the optimum number of 

hidden layers and their neurons. In this research, 3 layered MLP with 41 neurons in 

the input layer and 5 neurons in the output layer is used. The numbers of nodes in 

hidden layer are chosen by hit and trial method.  

Table 9 below shows the performance of multilayer perceptron with different 

numbers of hidden layer neurons. The best performance is observed with 20 neurons 

in the hidden layer. 

 

0,1,20,10,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00, 

1.00,0.00,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,1,0,0,0,0. 
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Table 9: Selection of Number of Neurons in Hidden Layer 

Hidden Layer No. of Neurons Performance 

H1 10 0.0018104 

H1 15 0.0024706 

H1 20 0.00053962 

H1 25 0.00073856 

 

3.4 Training and Testing of MLP 

The input dataset is divided into 3 subsets. The first subset is the training set, which is 

used for computing the gradient and updating the network weights and biases. The 

second subset is the validation set. The error on the validation set is monitored during 

the training process. The validation error normally decreases during the initial phase 

of training, as does the training set error. However, when the network begins to over-

fit the data, the error on the validation set typically begins to rise. When the validation 

error increases for a specified number of iterations (net.trainParam.max_fail), the 

training is stopped, and the weights and biases at the minimum of the validation error 

are returned. The test set error is not used during training, but it is used to compare 

different models (MathWorks Matlab Help, 2013). 

In this thesis, 70% data from the input dataset are used for training, 15% for 

validation and 15% for testing of the MLP to analyze the performance of various 

backpropagation algorithms. The results are shown in chapter 4. 

3.5 Backpropagation Algorithm: 

The BFGS Quasi-NewtonBackpropagation Algorithm, Levenberg-Marquardt 

backpropagationand Gradient descent with adaptive lr backpropagationis used for 

training of MLP and performances of these algorithms are compared. 
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Figure 3.2: Backpropagation Algorithm Diagram 

Figure 3.2 above shows the flowchart of backpropagation algorithm.  

Backpropagation Algorithm Steps: 

Step 0: Initialize the weights to small random values. 

Step 1: Feed the training sample through the network and determine the final output. 

Step 2: Compute the error for each output unit, for unit k it is: 

 )(')( yyt inkkkk
f ………………………………………………… (3.1)

 

Step 3: Calculate the weight correction term for each output unit, for unit k if it is: 

jkjk
Zw 

…………………………………………………………. (3.2)
 

Step 4: Propagate the delta terms (error) back through the weights of the hidden units 

where the delta input for the jth hidden unit is: 

 



m

k

jkkinj W
1


……………………...…………………………………. (3.3)

 

The delta term for the jth hidden unit is:  
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)(' injinjj zf 
………………………………………………………... (3.4)

 

Step 5: Calculate the weight correction term for the hidden units: 

 XiV jij 
……………….…………………………………………. (3.5)

 

Step 6: Update the weights: 

)__()()( layeroutputforWoldWnewW jkjkJK 
………………….. (3.6)

 

)__()()( layerhiddenforVoldVnewV ijijij 
 …………………...… (3.7)

 

Step 7: Test for stopping (maximum cycles, small changes, etc). 

The BFGS Quasi-Newton, Levenberg-Marquardt and Gradient Descent with Adaptive 

lr backpropagation algorithms are used for training of MLP and performance of these 

algorithms is compared. 

3.5.1 BFGS Quasi - Newton Backpropagation Algorithm: 

Quasi-Newton BP (BFGS)  method is an alternative to the conjugate gradient methods 

for fast optimization. Newton’s method often converges faster than conjugate gradient 

methods.  The weight update for the Newton’s method is:  

w
k+1

=w
k
−H-1

kgk...................………………………………………………………………….(3.8) 

Hk is the Hessian matrix of the performance index at the current values of the weights 

and biases.  When Hk is large, it is complex and time consuming to compute wk+1.  

Fortunately, there is a class of algorithms based on the works of Broyden, Fletcher, 

Goldfarb, and Shanno (BFGS) that are based on Newton’s method but which don’t 

require intensive calculation. This new class of method is called quasi-Newton 

method.  The new weight wk+1 is computed as a function of the gradient and the 

current weight wk.   

Training occurs according to training parameters, with default values.Any or all of 

these can be overridden with parameter name/value argumentpairs appended to the 

input argument list, or by appending a structureargument with fields having one or 

more of these names: 

     epochs       100  Maximum number of epochs to train 
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     show                  25  Epochs between displays 

     showCommandLine   0 generate command line output 

     showWindow             1 show training GUI 

     goal                            0  Performance goal 

     time                            inf  Maximum time to train in seconds 

     min_grad                   1e-6  Minimum performance gradient 

     max_fail                     5  Maximum validation failures 

 

Parameters related to line search methods (not all used for all methods): 

     scal_tol        20  Divide into delta to determine tolerance for linear search. 

     alpha          0.001  Scale factor which determines sufficient reduction in perf. 

     beta            0.1  Scale factor which determines sufficiently large step size. 

     delta          0.01  Initial step size in interval location step. 

     gama        0.1 Parameter to avoid small reductions in performance. Usually set to 

  0.1 

     low_lim        0.1 Lower limit on change in step size. 

     up_lim         0.5  Upper limit on change in step size. 

     maxstep       100  Maximum step length. 

     minstep      1.0e-6  Minimum step length. 

     bmax             26  Maximum step size. 

3.5.2 Levenberg-Marquardt backpropagation: 

This method updates weight and bias values according to Levenberg-Marquardt 

optimization. It is often the fastest backpropagation algorithm available, and is highly 

recommended as a first-choice supervised algorithm, although it does require more 

memory than other algorithms. 

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to 

approach second-order training speed without having to compute the Hessian matrix. 
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When the performance function has the form of a sum of squares (as is typical in 

training feedforward networks), then the Hessian matrix can be approximated as 

H = JTJ……………………………………………………………………………(3.9) 

and the gradient can be computed as 

gk = JTe…………………………………………………………………………....(3.10) 

where J is the Jacobian matrix that contains first derivatives of the network errors 

with respect to the weights and biases, and e is a vector of network errors. The 

Jacobian matrix can be computed through a standard backpropagation technique that 

is much less complex than computing the Hessian matrix. 

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in 

the following Newton-like update: 

w
k+1

=w
k
−[J

T
J+μI]

−1

J
T
e ……………………………………………………………. (3.11) 

When the scalar µ (mu) is zero, this is just Newton's method, using the approximate 

Hessian matrix. When µ is large, this becomes gradient descent with a small step size. 

Newton's method is faster and more accurate near an error minimum, so the aim is to 

shift toward Newton's method as quickly as possible. Thus, µ is decreased after each 

successful step (reduction in performance function) and is increased only when a 

tentative step would increase the performance function. In this way, the performance 

function is always reduced at each iteration of the algorithm. 

Training occurs according to training parameters, with default values. Any or all of 

these can be overridden with parameter name/value argument pairs appended to the 

input argument list, or by appending a structure argument with fields having one or 

more of these names: 

     show          25  Epochs between displays 

     showCommandLine 0 generate command line output 

     showWindow    1 show training GUI 

     epochs       100  Maximum number of epochs to train 

     goal           0  Performance goal 
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     max_fail      5  Maximum validation failures 

     min_grad  1e-10  Minimum performance gradient 

     mu        0.001  Initial Mu 

     mu_dec     0.1  Mu decrease factor 

     mu_inc      10  Mu increase factor 

     mu_max    1e10  Maximum Mu 

     time           inf  Maximum time to train in seconds 

 

3.5.3 Gradient descent with adaptive lr backpropagation: 

This updates weight and bias values according to gradient descent with adaptive 

learning rate. An adaptive learning rate attempts to keep the learning step size as large 

as possible while keeping learning stable. The learning rate is made responsive to the 

complexity of the local error surface. An adaptive learning rate requires some changes 

in the training procedure used by Gradient Descent Backpropagation. First, the initial 

network output and error are calculated. At each epoch new weights and biases are 

calculated using the current learning rate. New outputs and errors are then calculated. 

This method can train any network as long as its weight, net input, and transfer 

functions have derivative functions. 

Backpropagation is used to calculate derivatives of performance dperf with respect to 

the weight and bias variables X. Each variable is adjusted according to gradient 

descent: 

 𝑑𝑋 = 𝑙𝑟 ∗ 𝑑𝑝𝑒𝑟𝑓/𝑑𝑋………….……………………………………. (3.12) 

At each epoch, if performance decreases toward the goal, then the learning rate is 

increased by the factor lr_inc. If performance increases by more than the factor 

max_perf_inc, the learning rate is adjusted by the factor lr_dec and the change that 

increased the performance is not made. 

     show             25  Epochs between displays 

     showCommandLine 0 generate command line output 

     showWindow       1 show training GUI 
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     epochs         10  Maximum number of epochs to train 

     goal            0  Performance goal 

     lr            0.01  Learning rate 

     lr_inc        1.05  Ratio to increase learning rate 

     lr_dec         0.7  Ratio to decrease learning rate 

     max_fail        5  Maximum validation failures 

     max_perf_inc 1.04  Maximum performance increase 

     min_grad     1e-10  Minimum performance gradient 

     time           inf  Maximum time to train in seconds 

Training stops when any of these conditions occurs: 

 The maximum number of epochs (repetitions) is reached. 

 The maximum amount of time is exceeded. 

 Performance is minimized to the goal. 

 The performance gradient falls below min_grad. 

 Validation performance has increased more than max_fail times since the last 

time it decreased (when using validation). 

3.6 Performance Parameters: 

Mean Square Error, Total CPU Time of Converge and Accuracy will be the 

performance parameters to compare various backpropagation algorithms. 

Following parameters will be calculated while training and testing of MLP.   

 True Positive (TP): Situation in which a signature is fired properly when an 

attack is detected and an alarm is generated. 

 False Positive (FP): Situation in which normal traffic causes the signature to 

raise an alarm. 

 True Negative (TN): Situation in which normal traffic does not cause the 

signature to raise an alarm. 

 False Negative (FN): Situation in which a signature is not fired when an 

attack is detected.  
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 Attack Detection Rate (ADR): The detection rate is defined as the number of 

intrusion instances detected by the system (True Positive) divided by the total 

number of intrusion instances present in the test set. 

Attack Detection Rate (ADR) = (Total detected attacks / Total attacks) * 100 % 

 False Alarm Rate (FAR): It is the ratio between the total number of 

misclassified instances and the total number of normal connections present in 

the data set. 

False Alarm Rate (FAR) = (Total misclassified instances / Total normal 

instances) * 100 % 

 Recall Rate: Recall rate measures the proportion of actual positives which are 

correctly identified. 

Recall Rate = TP/ (TP + FN)  

 Precision Rate: Precision rate is the ratio of true positives to combined true 

and false positives. 

Precision Rate = TP/ (TP + FP)  

3.7 Tools: 

Matlab 2013: 

Simulation is performed using neural network in MATLAB. Coding is also done to 

perform training and testing of MLP in Java. Neural Network Toolbox 

supports supervised learning with feed forward, radial basis, and dynamic networks. It 

also supports unsupervised learning with self-organizing maps and competitive layers. 

With the toolbox we can design, train, visualize, and simulate neural networks.  

Notepad++:  

Notepad++ is a text editor and source code editor for Windows. It differs from the 

built-in Windows text editor Notepad, is that Notepad++ supports tabbed editing, 

which allows working with multiple open files in a single window. Notepad++ opens 

large files significantly faster than Windows Notepad. Data preprocessing is done 

using Notepad++ tool. 
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CHAPTER 4: RESULTS,ANALYSIS AND COMPARISON 

4.1 Results and Analysis 

4.1.1 Determining Hidden Layer Neurons 

The Multilayer Perceptron is trained to find the number of hidden layer neurons using 

the following parameters: 

Number of input data = 494021 

Number of input layer neurons = 41 

Number of output layer neurons = 5  

Above Table 9 shows the performance of MLP with different number of hidden layer 

neurons. The best performance is observed with 20 neurons in the hidden layer. 

The required MLP architecture is shown below in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

The preprocessing step is carried out and obtained dataset is fed to the multilayer 

perceptron. Since there is no accurate formula for the selection of hidden layer 

neurons, a comparison is made for many cases to find optimum number of neurons. 

The simulation is performed in Matlab to find the proper number of neurons in the 

hidden layer. Simulation is done to analyze the performance of BFGS Quasi Newton, 

Levenberg-Marquardt and Gradient Descent with adaptive lr back propagation 

algorithms. The performance, mean square error, detection rate, time, epoch of those 

algorithms were compared. 

Figure 4.1: MLP Architecture of the System 
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The snapshots of target and actual output for different values of learning rate are 

shown below.  The best output is observed at learning rate (α) = 0.01. 

The target and actual output for learning rate (α) = 0.1. 

 

 

 

The target and actual output for learning rate (α)=0.05 
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The target and actual output putting learning rate (α)=0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

By comparing the values of actual output and Table 6 (label transformation), type of 

attack can be identified easily. For example, if first value of actual output is nearly 

equal to 1 and other values are nearly equals to 0 that is normal type activity. If 

second value of actual output is nearly equal to 1 and other values are nearly equal to 

0 that is DoS type attack and so on. 

4.1.2 Performance Assessment of various Backpropagation Algorithms 

Simulation is done to analyze the performance of BFGS Quasi Newton, Levenberg-

Marquardt and Gradient Descent with adaptive lr back propagation algorithms. 

BFGS Quasi Newton Backpropagation (BFGSBP): 

The Multilayer Perceptron was trained with BFGSBP algorithm by using following 

parameters: 

Scale factor that determines sufficient reduction in perf(α)= 0.001 

Scale factor that determines sufficiently large stepsize (β)=0.1 

Initial step size in interval location step (Δ)=0.01 
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Simulation result of BFGSBP algorithm (Figure 4.2) shows the MSE and number of 

epochs. The best performance is observed at epoch 79. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All confusion matrix gives the value of True positive (TP), False Negative (FN) and 

True Negative (TN). The diagonal values starting from column 2, row 2 are the values 

of TP. The vertical values starting from column 1, row 2 are the values of FP and the 

horizontal values starting from column 2, row 1  are the values of FN. Recall and 

Precision rate are calculated according to the formula mentioned above. 

 

 

 

 

 

 

 

Figure 4.2: Performance of BFGSBP Algorithm 
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Figure 4.3: Confusion matrix of BFGS Quasi- Newton algorithm. 

Table 10 below shows the evaluation results for each attack classes. 

 

Table 10: Evaluation Results for each Attack Classes (BFGSBP) 

 

Attack TP FP FN Recall Precision 

DoS 388181 78 3261 99.16% 99.97% 

U2R 0 4 52 0% 0% 

R2L 0 0 1121 0% 0% 

Probe 0 0 302 0% 0% 

Total 388181 82 4736 98.79% 99.97% 
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Levenberg – Marquardt Backpropagation (LMBP): 

The Multilayer Perceptron was trained with LMBP algorithm by using default 

parameters. Simulation result of LMBP algorithm (Figure 4-4) shows the MSE and 

number of epochs. The best performance is observed at epoch 240. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Performance of LMBP Algorithm 
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Figure 4.5: Confusion matrix of Levenberg-Marquardt algorithm. 

 

Table 11: Evaluation Results for each Attack Classes (LMBP) 

Attack TP FP FN Recall Precision 

DoS 391407 35 42 99.99% 99.99% 

U2R 0 0 32 0% 0% 

R2L 915 106 189 82.88% 89.61% 

Probe 3898 30 200 95.12% 99.23% 

Total 396220 171 463 98.88% 99.95% 
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Gradient Descent with Adaptive lr Backpropagation (GDABP): 

The Multilayer Perceptron was trained with GDABP algorithm by using default 

parameters. Simulation result of GDABP algorithm (Figure 4.6) shows the MSE and 

number of epochs. The best performance is observed at epoch 1000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.6: Performance of GDABP Algorithm  
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Figure 4.7: Confusion matrix of Gradient Descent with Adaptive lr algorithm. 

 

Table 12: Evaluation Results for each Attack Classes (GDABP) 

Attack TP FP FN Recall Rate Precision Rate 

DoS 389239 26698 2210 99.4% 93.6% 

U2R 0 0 47 0% 0% 

R2L 0 0 1090 0% 0% 

Probe 0 1 17 0% 0% 

Total 389239 26699 3364 99.1% 93.6% 
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On the basis of above confusion matrix, mathematical relation and other performance 

parameters the following table is drawn. Table below shows the MSE, Detection Rate, 

Epoch, Recall, Precision and Time of various BP algorithms. 

Table 13: Simulation Result of various BP Algorithms 

SN Algorithm MSE Detection Rate Epoch Recall Precision Time 

1 BFGSBP 0.00572 98.3% 79 98.7% 99.97% 14:56 

2 LMBP 0.00054 99.9% 240 98.8% 99.95% 15:40 

3 GDABP 0.049 97.3% 1000 99.1% 93.6% 28:59 

 

Levenberg-Marquardt Backpropagation has the least mean square error and highest 

detection rate. BFGS Quasi-Newton was the faster algorithm with higher precision 

but has lower attack detection rate than Levenberg-Marquardt algorithm. Gradient 

Descent with adaptive lr back propagation could not improve the performance of the 

system. 

4.2 Comparison 

The graphical representation of obtained result is shown below (Figure 4.8 to 4.12).  

 

 

Figure 4.8: Comparison of MSE among BFGSBP, LMBP and GDABP Algorithms 
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Figure 4.9: Comparison of Detection Rate among BFGSBP, LMBP and GDABP 

Algorithms 

 

 

Figure 4.10: Comparison of Epoch among BFGSBP, LMBP and GDABP Algorithms 
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Figure 4.11: Comparison of Recall Rate among BFGSBP, LMBP and GDABP 

Algorithms 

 

 

Figure 4.12: Comparison of Precision Rate among BFGSBP, LMBP and GDABP 

Algorithms 
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CHAPTER 5: CONCLUSION 

Neural networks have the ability to classify patterns, and thus can be used in intrusion 

detection systems for attack classification. Backpropagation algorithm is used 

prominently for the training of neural network for its promising features. Different 

variants of backpropagation algorithms are available, among which I used three 

algorithms viz. BFGS Quasi-Newton, Levenberg-Marquardt and Gradient Descent 

with adaptive lr backpropagation. An Intrusion Detection System is designed and the 

Levenberg-Marquardt Backpropagation algorithm is suggested as the most efficient 

model for network intrusion detection. Also the type of attack has been identified 

depending upon the output values.  

As a future work, Network Intrusion Detection can be done using other types of 

Neural Networks like Radial Basis Function Neural Network and using unsupervised 

networks like Self Organizing Map (SOM). Performance of these algorithms can be 

analyzed by using real time input dataset. Other various available Backpropagation 

algorithms can be used to evaluate the performance of the network. 
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