
 

 

TRIBHUVAN UNIVERSITY 

INSTITUTE OF ENGINEERING 

PULCHOWK CAMPUS 

 

 

THESIS NO: 071MSCS658 

Enhancing  MD5  Hash  Algorithm  using  Symmetric  Key  Encryption 

 

 

by 

Nitesh Karna 

 

 

 

A THESIS 

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND COMPUTER 

ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR 

THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SYSTEM AND 

KNOWLEDGE ENGINEERING 

 

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING 

LALITPUR, NEPAL 

 

MAY, 2017 



 

 

TRIBHUVAN UNIVERSITY 

INSTITUTE OF ENGINEERING 

PULCHOWK CAMPUS 

 

 

THESIS NO: 071MSCS658 

Enhancing  MD5  Hash  Algorithm  using  Symmetric  Key  Encryption 

 

 

by 

Nitesh Karna 

 

 

 

A THESIS 

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND 

COMPUTER ENGINEERING IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN 

COMPUTER SYSTEM AND KNOWLEDGE ENGINEERING 

 

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING 

LALITPUR, NEPAL 

 

MAY, 2017 



ii 
 

COPYRIGHT © 

The author has agreed that the library, Department of Electronics and Computer 

Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis freely 

available for inspection. Moreover the author has agreed that the permission for extensive 

copying of this thesis work for scholarly purpose may be granted by the professor(s), who 

supervised the thesis work recorded herein or, in their absence, by the Head of the 

Department, wherein this thesis was done. It is understood that the recognition will be 

given to the author of this thesis and to the Department of Electronics and Computer 

Engineering, Pulchowk Campus in any use of the material of this thesis. Copying of 

publication or other use of this thesis for financial gain without approval of the 

Department of Electronics and Computer Engineering, Institute of Engineering, 

Pulchowk Campus and author’s written permission is prohibited. 

Request for permission to copy or to make any use of the material in this thesis in whole 

or part should be addressed to: 

 

 

Head 

Department of Electronics and Computer Engineering 

Institute of Engineering, Pulchowk Campus 

Pulchowk, Lalitpur, Nepal 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

TRIBHUVAN UNIVERSITY 

INSTITUTE OF ENGINEERING 

PULCHOWK CAMPUS, PULCHOWK 

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING 

 

The undersigned certify that they have read, and recommended to the Institute of 

Engineering for acceptance, a project report entitled "Enhancing MD5 Hash Using 

Symmetric Key Encryption" submitted by Nitesh Karna in partial fulfillment of the 

requirements for the degree of Master of Science in Electronics and Computer 

Engineering. 

 

                            ………………………………………………………                                                                                                

                            Supervisor: Dr. Aman Shakya 

                   Assistant Professor                                                                 

                                                    Department of Electronics and Computer Engineering. 

 

 

                                                     ……………………………………………………… 

     External Examiner: Dr. Manish Pokhrel 

                                                     Kathmandu University 

                                                                                                                                                                                  

 

                                                      ....…………………………………………………… 

                                                   Committee Chairperson: Prof. Dr. Subarna Shakya 

                                                      Professor                                                                 

      Department of Electronics and Computer Engineering 

 

 

....……………………… 

Date 



iv 
 

DEPARTMENTAL ACCEPTANCE 

 
The thesis entitled “Enhancing MD5 Hash Algorithm using Symmetric Key 

Encryption”, submitted by Nitesh Karna in partial fulfillment of the requirement for the 

award of the degree of “Master of Science in Computer System and Knowledge  

Engineering” has been accepted as a bonafide record of work independently carried out 

by him in the department. 

 

 

---------------------------------------------------------- 

Dr. Dibakar Raj Pant 

Head of the Department 

Department of Electronics and Computer Engineering, 

Pulchowk Campus, 

Institute of Engineering, 

Tribhuvan University, 

Nepal.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

ACKNOWLEDGEMENT 

First of all, i would like to extend my sincere gratitude to Dr. Aman Shakya, the 

coordinator of Master in Computer System and Knowledge Engineering who kindly 

contributed his supervision in carrying out my thesis. Without his valuable guidance, 

comments and encouragement, this study would not have come successfully to this stage. 

I am also greatly thankful to all the faculty members and my class mates for their 

full fledged support. 

I am also very greatful to Mr. Kumar Pudasaini for his guidance and supervision 

time to time. 

I would like to thank Mr. Amit Karna, Dinesh Nepal, Suresh Pokhrel and all my 

friends for their continuous and valuable advice, technical support and their consistent 

encouragement and inspiration. 

I am indebted to my parents for their love, support and blessings. It is their belief 

in me that kept me going. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

ABSTRACT 

Traditionally, hash functions were designed in the keyless manner, where a hash 

function accepts a variable length input message and produces a fixed length digest as 

output. However, over the years, few significant weaknesses were found in some popular 

keyless hash functions. Many a few recent attacks have been successfully implemented 

on these traditional popular hash functions such as- SHA-1, MD5 etc.  

The proposed solution uses integration of keyed symmetric key block encryption 

algorithm in each step or round of hash compression function. Because symmetric key 

encryption algorithm works on use of single key, both sender and receiver use the same 

key. 

When comparing MD5 hash and proposed algorithm, the time taken by proposed 

algorithm raises by 15-20% for data below 50 KB while the number of operation to 

perform the brute force pre-image attack , second pre-image attack increases from 2
64

 (for 

MD5) to 2
192.

 

 

Keywords: MD5, DES, Cryptographic hash functions 

 



vii 
 

TABLE OF CONTENTS 

COPYRIGHT © ................................................................................................................ ii 

RECOMMENDATION ................................................................................................... iii 

DEPARTMENTAL ACCEPTANCE ............................................................................. iv 

ACKNOWLEDGEMENT ................................................................................................ v 

ABSTRACT ...................................................................................................................... vi 

TABLE OF CONTENTS………………………………………………………………………vii 

LIST OF TABLE ............................................................................................................. ix 

LIST OF FIGURES .......................................................................................................... x 

LIST OF ABBREVIATIONS ......................................................................................... xi 

CHAPTER 1 INTRODUCTION ..................................................................................... 1 

1.1 BACKGROUND ....................................................................................................... 1 

1.2 PROBLEM STATEMENT ....................................................................................... 8 

1.3 OBJECTIVES OF THE THESIS .............................................................................. 8 

1.4 SIGNIFICANCE ....................................................................................................... 8 

1.5 ORGANIZATION OF REPORT .............................................................................. 9 

CHAPTER 2 LITERATURE REVIEW ....................................................................... 10 

2.1 HASH IMPROVEMENT APPROACHES ............................................................. 10 

2.2 COMPARISON OF ENCRYPTION ALGORITHMS ........................................... 13 

2.3 ASYMMETRIC KEY APPROACHES .................................................................. 16 

CHAPTER 3 METHODOLOGY .................................................................................. 19 

3.1 OVERVIEW............................................................................................................ 19 

3.2 FLOW CHART OF THE PROPOSED HASH FUNCTION ALGORITHM ........ 22 

3.3 PSEUDO CODE OF PROPOSED HASH ALGORITHM ..................................... 22 

3.4 DETAIL ANALYSIS OF THE PROPOSED HASH ALGORITHM .................... 23 

3.5 EXPERIMENTAL SETUP ..................................................................................... 29 

CHAPTER 4 RESULT AND ANALYSIS .................................................................... 30 

4.1 RESULT .................................................................................................................. 30 

4.2 SECURITY LEVEL ACHIEVED BY THE PROPOSED HASH ALGORITHM 31 

4.3 COMPARISON WITH EXISTING APPROACHES ............................................. 33 

4.4 ANALYSIS OF TIME REQUIREMENT .............................................................. 35 



viii 
 

4.5 COMPUTATIONAL COMPLEXITY .................................................................... 42 

4.6 DISCUSSION ......................................................................................................... 45 

CHAPTER 5 CONCLUSIONS AND FUTURE WORK ............................................ 47 

5.1 CONCLUSIONS ..................................................................................................... 47 

5.2 LIMITATIONS AND FUTURE WORK ................................................................ 47 

 REFERENCES ............................................................................................................... 49 

APPENDIX ...................................................................................................................... 52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

LIST OF TABLE 

Table 1: The MD5 Primitive Logic Function  .................................................................... 6 

Table 2: Brief history of attacks on some popular hash functions ...................................... 8 

Table 3: Comparison among MD5, SHA1, and MD5 plus . ............................................ 13 

Table 4: Comparison of various encryption algorithms ................................................... 14 

Table 5: Architecture of the proposed digital signature scheme ....................................... 16 

Table 6: Comparison performance of new Digital Signature Scheme ............................. 16 

Table 7: Average Time Required for Exhaustive Key Search. ......................................... 17 

Table 8: Symmetric key length vs. Brute force combination ........................................... 18 

Table 9: Comparison of the Proposed algorithm with the various enhanced approached 

algorithm on the basis of different parameters. ................................................................ 33 

Table 10: Properties of existing hash function and Proposed hash function .................... 34 

Table 11: Time taken by MD5 hash and Proposed algorithm in the range (1KB-50KB) 

data. ................................................................................................................................... 35 

Table 12: Time Taken by Different format (Multimedia, Pdf, jpg) of data by MD5 Hash 

Algorithm .......................................................................................................................... 37 

Table 13: Time Taken by Different format (Multimedia, Pdf, jpg) of data by Proposed 

Algorithm .......................................................................................................................... 39 

 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF FIGURES 

Figure 1: Simplified Broad Categories of Cryptographic Hash Function .......................... 3 

Figure 2: Simple design of block cipher based hash functions compression function. ...... 4 

Figure 3: The MD5 Compression Function ........................................................................ 6 

Figure 4: Step Operation of MD5 ....................................................................................... 7 

Figure 5: Block diagram of overview of the research methodology ................................ 19 

Figure 6: Flow Chart of Proposed Algorithm ................................................................... 22 

Figure 7: An illustrated view of processing of proposed hash function- having keyed 

function in between (HF= hash compression function and EF= keyed function) ............ 27 

Figure 8: S-Box ................................................................................................................. 28 

Figure 9: Screenshots of the program output .................................................................... 30 

Figure 10: Line Diagram of Time taken by MD5 hash and Proposed algorithm in the 

range (1KB- 50KB) data. .................................................................................................. 36 

Figure 11: Bar Diagram of Time taken by MD5 hash and Proposed algorithm in the range 

(1KB- 50KB) data. ............................................................................................................ 36 

Figure 12: Line Diagram Time Taken by Different format (Multimedia, Pdf, jpg) of data 

by MD5 Hash Algorithm .................................................................................................. 38 

Figure 13: Bar Diagram Time Taken by Different format (Multimedia, Pdf, jpg) of data 

by MD5 Hash Algorithm .................................................................................................. 38 

Figure 14: Line Diagram Time Taken by Different format (Multimedia, Pdf, jpg) of data 

by Proposed Hash Algorithm ............................................................................................ 40 

Figure 15: Bar Diagram Time Taken by Different format (Multimedia, Pdf, jpg) of data 

by Proposed Hash Algorithm ............................................................................................ 40 

 

  



xi 
 

LIST OF ABBREVIATIONS 

MD5: Message Digest 5 

DES: Data Encryption Standard 

KDC: Key Distribution Center 

 

 

 

 

 

 

 

 

 

 

 



1 
 

CHAPTER 1  

INTRODUCTION 

1.1 BACKGROUND 

Cryptographic Hash Functions are important tool for message integrity in modern 

Cryptography. Hash function is a function, whose input is any message and output is a 

hash-value, hash-result, hash-code, digest or simply hash [2]. Simply, it may be defined 

as a function h, which maps bit-strings of arbitrary finite length to n-bit fixed length 

string. The output size of hash ranges normally from 128 bit to 512 bits (digest smaller 

than 128 bits are considered to be insecure and larger than 512 bits would create more 

overhead while transmission), depending upon the specific hash function being used. If 

the hash function gives an output of an n-bit digest, it is known as n-bit hash. For a 

domain (denoted as Do) and range (denoted as Ra) with function value HASH: Do →Ra 

and |Do| > |Ra|, the function is many-to-one. It implies that we may not avoid identical 

output as hash value for dissimilar pairs of inputs. In fact, if we may restrict HASH to a 

m-bit input domain where, t>n, and HASH is supposed to be “random” considering all 

outputs to be essentially equi-probable, then about 2
m-n

 inputs would map to every output, 

and probability of two randomly chosen inputs to colloid to the same output is 2
-n

 

(independent of m). The fundamental concept behind hash functions in cryptography is 

that a digest is treated as a small representative image of given input string which can be 

used with an assumption that it is uniquely identifiable with that input string. This small 

representative image is also called an imprint, digest digital finger print, or simply the 

message digests [4]. 

These functions make use of a key in the process of generating a hash value. 

Therefore, these functions require two specific inputs:  

(1) a message of arbitrary finite-length, and  

(2) a key of specific length.  

The fundamental approach behind this is that, if adversary does not know the key, 

he must not be able to forge the message. Such type of hash functions are also known as 

Message Authentication Codes (MAC). Output of MAC depends on both – the message 

and the key. As general property of any hash function, the output of keyed hash functions 

is also of pre-specified length. 

 



2 
 

KEYED HASH FUNCTIONS:  

These functions make use of a key in the process of generating a hash value. 

Therefore, these functions require two specific inputs: (1) a message of arbitrary finite-

length, and (2) a key of specific length. The fundamental approach behind this is that, if 

adversary does not know the key, he must not be able to forge the message. Such type of 

hash functions are also known as Message Authentication Codes (MAC). Output of MAC 

depends on both – the message and the key. As general property of any hash function, the 

output of keyed hash functions is also of pre-specified length. 

DEFINITION-1(KEYED HASH FUNCTIONS): 

“The map HASH :{0,1}* ×{0,1}n →{0,1}m is said to be a keyed hash function 

with m -bit output and n -bit key if H is a deterministic function that takes two inputs, the 

first of an arbitrary length, the second of n -bit length and outputs a binary string of 

length m -bits. Where both n, m are positive integers. {0,1}
m
 and {0,1}

n
 are the sets of all 

binary strings of length m and n respectively and {0,1}* is a set of all finite binary 

strings. Keyed hash function or MACs are majorly concerned with message integrity and 

source authentication both [4]. 

UNKEYED HASH FUNCTIONS: 

These are the hash functions that do not use any key as input to generate hash value. 

Most of the hash functions are unkeyed hash functions. Almost all hash functions that are 

being used since the early 1990‟ s in cryptography come under this category. By appending 

the digest to the message during the transmission, these hash functions are used for error 

detection. The error can be diagnosed, if the digest of the received message, at the receiving 

end is not equal to the received message digest. This is also known as Modification Detection 

and thus such hash functions are also called Manipulation Detection Codes or Modification 

Detection Codes (MDC) or Message Integrity Codes (MIC). Infect, keyed hash functions can 

also be used for error detection but the unkeyed hash functions are easier to use for this 

application because there will not be any problem of secrecy of key used. Unkeyed hash 

functions are only concerned with message integrity [4]. 

DEFINITIONS-2(UNKEYED HASH FUNCTIONS):  

“The map H :{0,1}* →{0,1}m is said to be an unkeyed hash function with m –bit 

output if H is a deterministic function that takes an arbitrary length message as input and 



3 
 

outputs a binary string of length m -bit. The notations m, {0,1}
m 

and {0,1}* are similar as 

that of used in Definition-1. 

 
 

Figure 1: Simplified Broad Categories of Cryptographic Hash Function [2]. 

 

HASH FUNCTIONS BASED ON BLOCK CIPHERS: 

As per S.T. Bartkewitz [7], it is always desirable to use the hash functions that are 

based on already proven and established methods of design. Because block ciphers 

provide some appropriate properties, they could be used in hash function design. Hash 

functions may start working upon input of any random length, but they process them in 

equal sized blocks, so there should be a method to transform these inputs in small and 

equal length blocks. Here comes the use of block ciphers whose fixed-length input is 

much smaller. Merkle-Damgard first used this approach in their Merkle-Damgard 

construction [6]. 

In comparison of the dedicated hash functions, the hash functions will usually 

execute consuming more time if they are based on block ciphers. However it is still 

advisable to use such slower hash functions because they are easy to implement and they 

can be used for both of the purpose that is for generating block cipher encoded form of 

plain text and for generating digital signature through hash function. Few of such block 



4 
 

cipher based hash methods are Davies-Meyer, Matyas-Meyer-Oseas, Miyaguchi-Preneel, 

MDC-2 and MDC-4 compression function. 

Following diagram well describes block ciphers based general construction of a 

compression function for hash functions [6]: 

 

Figure 2: Simple design of block cipher based hash functions compression function. 

In the above figure 1.3(a) “Encrypt ( )” is a block encryption technique which accepts 

“Plain text” as input along with a function key “Key”. X is some arbitrary length message 

which is divided into m number of blocks and it takes one round to process each block. 

We chose various required values such as the input “Plain text”, the key “Key” and the 

XOR value “C” from the set Z = {A, Xj, Yj, Xj ⊕ Yj},[3] 

Where,  

A= a constant value  

Yj = the output of the previous round  

Xj = the current message block being processed  

j = number of message blocks currently being processed. 

 

MD5 Hash Algorithm 

The MD-5 message digest algorithm was also designed by Rivest [25]. As other 

hash functions, it also takes a arbitrary length message as its input and gives a digest 

having 128-bit length as final output. The complete operation of MD5 hash function is 

described in the given steps: 

Step 1: Append padding bits: 

In first step, the message is appended with few bits to make its length congruent 

to 448 modulo 512 bit (length ≡ 448 mod 512). It gives the padded message length 64- 

bits lesser than integer multiple of 512-bits. This is a necessary step and is always 

executed; no matter the message is itself of the required length. The message M is broken 



5 
 

into equal size partitions, known as blocks M= m1, m2 ,.....,mn. Each block is of l –bits 

and there are total n-number of blocks. 

Step 2: Append Message length: 

A sixty-four-bit representation of the original message length (before padding) is 

placed after the output of the step-one. In case the length of initial message is more than 

2
64

 bits then only the 64-last significant bits of the length are accepted. In this way, the 

initial message length modulo 2
64

, is placed in this field. 

Step 3: Initialization of buffer: 

Because the MD5 hash function produces 128-bit long digest, it makes use of a 

128-bit buffer to store initial value, intermediate values and final output of the hash 

operation. The buffer can be represented as 4 thirty two bit words- A, B, C and D. The 

values of the 128-bit buffer words for MD-5 are presented below (in hexadecimal): 

Word A: 67452301 

Word B: EFCDAB89 

Word C: 98BADCFE 

Word D: 10325476 

Step 4: Process the message in blocks with 512-bit length:  

This is the important stage. The message is processed in blocks of 512-bit, 

separately on each block. The important area of the function is the compression 

operation, which comprises of 4 processing rounds. Every round works on the present 

512-bit long block that being processed and is represented as mj where j = 1, 2,...., n and 

it also accepts ABCD, the 128-bit buffer that is modified within every round. It also 

makes use of a T-Table that consists of 64 elements T [1, 2….. 64]. This T table is 

constructed from the sine function. In each round, one fourth of the T-table is used. The 

diagrammatic representation this process is shown in Table 1 [25]. 

All four rounds of MD5 compression function are similar in structure; the only 

difference is that a different primitive logical function is being used in every round, 

which is referred to as F for round 1, G for round 2, H for round 3 and I for round 4. It 

uses three buffer words- B, C and D. The logical operators OR (represented by the 

symbol ∨ ), AND (represented by the symbol ∧ ), and XOR (represented by the symbol 

⊕) are the three functions used in F, G, H and I. 



6 
 

 

Figure 3: The MD5 Compression Function [25] 

Table 1: The MD5 Primitive Logic Function [25] 

Round    
 

Primitive Logical Function ~(B C D) 

1 F(B, C, D)  (B ^ C) v (B ^ D)  

2 G(B, C, D)  (B ^ D) v (C ^ D)  

3 H(B, C, D)  B ⊕ C ⊕ D  

4 I(B, C, D)  C ⊕ (B v D)  

 



7 
 

The output of the last round is then summed up with the input of initial round and 

the sum operation is performed individually for all 4 words A, B, C and D of the buffer 

with every respective word given in the input. 

 

Figure 4: Step Operation of MD5 [25] 

Step 5: Output:  

When all 512 bit blocks have been processed, the output from the final stage becomes the 

128-bit hash value and may be sent to receiver for message integrity. 

 

 

 

 



8 
 

BRIEF HISTORY OF ATTACKS ON SOME POPULAR HASH FUNCTIONS: 

Though, the hash constructions are strong enough to give unique output for each 

unique input value, as per the definitions of strong and weak collision resistance for hash 

requirements, still these constructions are not secure from attacks. The first attempts to 

break the MD-family have targeted the round functions of MD4 and MD5 and were done 

by Merkle, Den Boer and Bosselaers [9, 10] and by Vaudenay. The table illustrates the 

important attack approaches on MD-family. 

Table 2: Brief history of attacks on some popular hash functions [8] 

NAME HASH FUNCTION COMPLEXITY 

Dobbertin MD4 2
20

 

Dobbertin MD5 About 10 Hours 

Chabouad, Joux SHA0 2
61

 

Wang, Yu MD5 2
39

 

Wang, Yin, Yu SHA0 2
39

 

Wang, Yin, Yu SHA1 2
69

 

Wang, Yao, Yao SHA1 2
63

 

 

1.2 PROBLEM STATEMENT 

1. Over the years the traditional keyless hash functions were not found secure. Few 

significant weaknesses are found in some traditional popular hash function as-

MD5, SHA1-etc. 

2. What will be the time overhead if we use key to encrypt the keyless hash function 

so as to make the communication more secure. 

1.3 OBJECTIVES OF THE THESIS 

1. To enhance existing MD5 Hash algorithm using Symmetric Key encryption. 

2. To compare the enhanced algorithm in terms of time complexity and security. 

1.4 SIGNIFICANCE 

This thesis contributes towards more secure message transfer over internet while 

securing message integrity and source authenticity both. It clearly states that any attacker 

requires at least 2
192

 calculations before a successful brute force pre-image and brute 

force second pre-image attack to perform on Proposed Hash. This is quite a large amount 

of calculation, which is considered among secure number of calculations (if calculation is 



9 
 

more than 2
64

, it is considered to be safe) [23], because practically it is not feasible to 

execute such a large number of test. 

The proposed algorithm is best applicable for the low size data as password 

hashing, Virus checking, Message Authentication Code, Digital Signature, the data of 

IOT, Sensors data, military low size secret data and other low size related data. 

1.5 ORGANIZATION OF REPORT 

1. The first chapter discusses on the basic cryptographic hash functions, brief history 

of attacks on some popular hash functions, problem statement of the thesis, 

objective of thesis, its scope of study. 

2. The second chapter briefly explains summary of the research papers which have 

been reviewed for the thesis. 

3. The third chapter is about the design and analysis of the proposed hash function 

while using a key. Here the algorithm is designed, and then executed the function 

for number of input messages. The speed of function is analyzed for different 

sizes of input, as speed plays an important role in security. 

4. The chapter four of the thesis presents the result and analysis of the proposed hash 

algorithm. 

5. Chapter five gives the conclusion, limitation and future work of the thesis. 

 

 

 
 

 
 

 

 
 

 

 

 

 



10 
 

CHAPTER 2  

LITERATURE REVIEW 

 

 The review of literature involves the systematic identification and analysis of 

documents related to the study under taken review of the previous studies helps to 

conduct the new research in systematic manner by providing the general outline of the 

research study and avoids the unnecessary duplications.  

 Realizing the importance of literature review some efforts are made here to 

present the significant results or conclusions of different studies mainly focusing to the 

opinions towards improving the existing MD5 hash algorithm. Some works in opinions 

and the related topics are presented here. 

2.1 HASH IMPROVEMENT APPROACHES 

Solanki and Agarwal [1] proposed an algorithm to enhance the security and 

tensile strength of the MD5 algorithm. They described that the improvement was 

introduced by providing any hash (password + salt + key), that is the system of 

manipulation takes the user defined password, a developer defined salt and a key 

calculated from the system’s input as the initial inputs. According to them "the security of 

message digest algorithm has been raised with the help of hashing this algorithm with 

other mechanism also that is using the salt given from the developer to be implemented 

with IDEA algorithm and quantifying a value through this procedure". Then the salt 

which is created as cipher text is now assumed as a qualifier variable that is, it has to be 

inputted into a quadratic equation which provides two roots. Finally these roots are 

imposed into the message digest algorithm, as the first root is applied as salt in the 

expansion phase, while the second root evaluated from the quadratic equation 

computation is used as the salt in the decompression system phase in the same algorithm. 

Therefore at the final stage the view ability of the cipher text has changed and thus no 

existing frame can decrypt the cipher text created with this implementation entire setup 

from scratch [1].          

Sharma and Pathak used a Genetic algorithm with Ring crossover and other 

operators for the cryptanalysis of Simplified Data Encryption Standard. They found that 

Genetic algorithm is far better than brute force search algorithm for cryptanalysis of S-



11 
 

DES. Although S-DES is a simple encryption algorithm, GA with Ring Crossover 

method can be adopted to handle other complex block ciphers like DES and AES [2].  

Boonkrong and Somboonpattanakit [3] suggested that the main problem with the 

most popular functions for storing passwords is that they were not designed to serve such 

purpose. An attack using a rainbow table is possible. In order to counter this type of 

attack, a salt value has been introduced. Their proposed method [3] begins by checking 

the quality of the original password before randomly generating a salt value suitable for 

the password. From their experiment they found that in order to withstand a rainbow 

table attack, the size of the salt value must be between 80 and 256 bits or 10 and 32 

characters. The salt value is then inserted into the password according to the placement 

pattern. Next, this combination of salt value and password is to be hashed by a one-way 

hash function. The resultant hash value is the value to be stored in the password database. 

It can be seen that, by using the proposed technique, even if an adversary gets hold of the 

hash value and the salt, it is very difficult that the password will be compromised. This is 

because the salt is placed in the password will never be known unless the plaintext 

password is known [3]. 

Ogini and Ogwara [4] from their paper concluded that Hashing algorithms such as 

MD5 used for encrypting plaintext passwords into strings that theoretically cannot be 

deciphered by hackers due to their one-way encryption feature. However, in order to 

prevent hackers that used password guess attacks, they introduced the salting pattern such 

that each password is hashed with a salt which can be in the form of random numbers 

generated during the process of calculating the hashed function or using some parts of 

their logon details which is the salt that is not know even to the user password to reduce 

the incident of being cracked and made stronger compared with that of encryption which 

is a two way process. 

Salih Mohammed [5] introduced and tested an alternative improvement model. 

Their results shows that the suggested model has the ability to increase the security by 

about 4% due to the using of key in the same locations of the expanded data in each 

round. A 12.5% increasing of security was also obtained by using the 64-bit key instead 

of 56-bit used in the standard model. The blocks of DES model and the proposed model 

are the same and without addition of new blocks, also it can be switched between the 



12 
 

proposed and the standard model at any round according to a secure key used for 

switching between models. The last case increased the time required to attack the 

algorithm because we have 16! case for switching between the two models [5]. 

Sombir and Sunil [6] said that the original DES implementation has some 

weaknesses, and to overcome the most of weakness, the Enhanced DES algorithm is 

designed. The Designed system improved the security power of original DES. The only 

drawback of Enhanced DES is extra computation is needed but the today’s computer 

have parallel and high speed computation power so the drawback of the Enhanced DES 

algorithm is neglected because our main aim is to enhance the security of a system. By 

using the Enhanced DES algorithm the security is very tight and approximately 

impossible to crack and break the Enhanced DES algorithm [6].  

Roshdy and Dahab [7] proposed a new secure hash algorithm based on the 

previous algorithms, MD5 and SHA-256 that can be used in any message integrity or 

signing applications where its hash code length is 256 bits. The complexity of the 

proposed hash algorithm is higher than that of SHA-256 and MD5. The test results of the 

proposed algorithm show that its security is higher than that of SHA-256 and MD5.The 

proposed algorithm passes the avalanche test and differential attack test with probability 

greater than SHA-256.The proposed algorithm is immune to differential attack since the 

probability of hash value before and after changing bits in previous position is greater 

than 50% [7]. 

 Priyanka and Vivek [8] implemented a new algorithm from the existing 

algorithm MD5.There may be any input maximum of 512 bit will convert the encrypted 

output of 512 bit. The output is encoded from the input and the output would always is of 

512bit message. They concluded that there is one more application of this algorithm is 

Message Authentication Code (MAC). This is an integrity check mechanism based on 

cryptographic hash functions using a secret key. Typically, message authentication codes 

are used between two parties that share a secret key in order to validate information 

transmitted between these parties [8].  

Sharma and Sunita [9] implemented a new algorithm for 640 bit massage digest. 

According to the paper this new algorithm provides high security in data transfer. For the 

implementation of this algorithm they used message digest5 - 128 bit algorithm as a basic 



13 
 

element and create a application or 640 bit messages. The output would always is of 640 

bit message. In this way the secret information like passwords can be shared with the peer 

[9].  

Chan and Liu [10] worked on an algorithm  that produced 160 bit and that is 

based on MD5, only introducing one excellent assistant function from 160-bit SHA1. 

They named it MD5plus algorithm. They concluded that MD5plus algorithm has palpable 

advantages not only in security, but also in computing time spending. Besides, combining 

with other 160-bit asymmetric algorithms, we could use MD5plus to compose an 

excellent plaintext protection system [10]. 

Table 3: Comparison among MD5, SHA1, and MD5 plus [10]. 

Function MD5 SHA1 MD5 Plus 

Block Length 512 bit 512 bit 512 bit 

Algorithm length 128 bit 160 bit 160 bit 

Rotation Steps 64 steps 80 steps 80 steps 

Initialization 

Variables 

4 5 4 

Collision 

Complexity 

2
64

 2
80

 2
64

+2
80

=2
64

 

 

Singh, Goel [11] often suffer from various security attacks because of its features 

like open medium, topology dynamically, and management, cooperative. This study has 

considered the hybrid system using MD5 & RSA encryption algorithm as a means of data 

security according to attacks. In this method the MD5 & RSA are combined, to improve 

the security of such network. This secures the data as well as preserves the confidentiality 

and secure [11]. 

 2.2 COMPARISON OF ENCRYPTION ALGORITHMS                         

Mahajan & Sachdeva [12] shows the comparison between AES, DES and RSA. 

Based on the text files used and the experimental result they concluded that AES 

algorithm consumes least encryption and RSA consume longest encryption time. From 

their simulation result, they evaluated that AES algorithm is much better than DES and 

RSA algorithm [12].  



14 
 

 Xie, Liu, et al [13] in their paper, shows how to choose right input differences for 

MD5 collision attack, and analyze their complexities and answered Stevens' challenge 

response for a completely new single block MD5 collision in three ways.  

 Firstly, Stevens' single block MD5 collision is not a completely new one, since it 

can be simply derived from our original one.  

 Secondly, Stevens' single block MD5 collision is much more inferior to our 

original one in computational complexity.  

 Thirdly, Stevens had not found the very optimal solution that we preserved and 

had been wishing that someone could also find it, whose collision complexity is 

about 241 MD5 compressions [13].  

Jasek and Sarga [14], proposed that MD5 have been proven insecure against 

several attacks under realistic assumptions and its use is therefore discouraged in favor of 

more resilient, key-stretching iterative hashing algorithms. Despite no SHA-1 hash 

collisions have been produced so far, advances as per Moore’s law, complexity and 

future-proof modifiability should be taken into account when selecting suitable hashing 

functions for sensitive data [14].  

Table 4: Comparison of various encryption algorithms [15] 

Factors AES 3DES DES 

Key length 128,192 or 256 bits (k1,k2,k3)168 bits 

(k1, k2 same)112 bits 

56 bits 

Cipher Type Symmetric block  Symmetric block Symmetric block 

Block Size 128,192 or 256 bits 64 64 

Developed 2000 1978 1977 

Security Consider Secure one only weak which 

is Exit in DES 

Proven 

inadequate 

Possible Keys 2
128

,2
192

,2
256

 2
168

, 2
112

 2
56

 

Time Required to 

check all possible 

keys at 50 billion 

keys per second 

For 128 bit keys: 

5*10
21 

years 

For 112 bit keys: 800 

Days 

for 56 bit key: 

400 Days 



15 
 

Nadeem, Dr Javed [16] has implemented the popular secret key algorithms 

including DES, 3DES, AES (Rijndael), Blowfish and compared their performance by 

encrypting input files of varying contents and sizes. According to the paper, the 

algorithms were implemented in a uniform language, using their standard specifications, 

and were tested on two different hardware platforms, to compare their performance and 

concluded that the Blowfish was the fastest algorithm [16].  

Singh, and Maini [17] on the other hand provides a performance comparison 

between four of the most common encryption algorithms: DES, 3DES, Blowfish and 

AES. The comparison has been conducted by running several encryption settings to 

process different sizes of data blocks to evaluate the algorithm’s encryption/decryption 

speed. They showed that Blowfish has better performance than other commonly used 

encryption algorithms. Since Blowfish has not any known security weak points so far, it 

can be considered as an excellent standard encryption algorithm. AES showed poor 

performance results compared to other algorithms, since it requires more processing 

power [17]. 

 Elminaam and Hadhoud [18] presented a performance evaluation of selected 

symmetric encryption algorithms. The selected algorithms were AES, DES, 3DES, RC6, 

Blowfish and RC2. They concluded following points as:  

 There is no significant difference when the results are displayed either in hexadecimal 

base encoding or in base 64 encoding.  

 in the case of changing packet size, it was concluded that Blowfish has better 

performance than other common encryption algorithms used, followed by RC6.  

 in the case of changing data type such as image instead of text, it was found that 

RC2, RC6 and Blowfish has disadvantage over other algorithms in terms of time 

consumption.  

 3DES still has low performance compared to algorithm DES.  

 in the case of changing key size – it can be seen that higher key size leads to clear 

change in the battery and time consumption [18].  

Seth, Mishra concluded that, based on the text files used and the experimental result it 

was concluded that DES algorithm consumes least encryption time and AES algorithm 



16 
 

has least memory usage while encryption time difference is very minor in case of AES 

algorithm and DES algorithm while RSA consume longest encryption time and memory 

usage is also very high but output byte is least in case of RSA algorithm [19]. 

2.3 ASYMMETRIC KEY APPROACHES 

 A research paper [20] by Kuppuswamy and Dr. Al-Khalidi presents a new variant of 

digital signature algorithm which is based on linear block cipher or Hill cipher initiate 

with Asymmetric algorithm using mod 37. The proposed method of Digital Signature 

Scheme based on the linear block cipher or Hill cipher. It is basically symmetric key 

algorithm. But, here they implemented the Symmetric key algorithm as a Asymmetric 

key algorithm and used in Digital Signature scheme The algorithm executes on PC 

computer of CPU Intel Pentium 4, 2.2 MHz Dual Core. It is tested with messages and 

with different length of 100 characters. In Table 4, it has been mentioned clearly 

architecture of the proposed Digital signature scheme and Table 5 shows the comparison 

performance of new Digital Signature Scheme [20]. 

Table 5: Architecture of the proposed digital signature scheme [20] 

Algorithm Key Selection Procedure 

RSA Digital Signature Between any two large Prime 

Elliptic curve Y
2 

=x
3
+ax+b on real numbers 

Proposed Digital signature Using block cipher symmetric algorithm 

 

Table 6: Comparison performance of new Digital Signature Scheme [20] 

Algorithm Number of 

Characters(Message) 

Execution Timing 

RSA Digital Signature 100 5.6 seconds 

Elliptic curve 100 5.4 seconds 

Proposed Digital signature 100 5.2 seconds 

 

Several points that they concluded from their experimental results are:  

 The proposed method consumes least encryption time (computing time) and 

others has taken maximum time in encryption for same amount of the data  

 The performance of the proposed algorithm is found to be competitive to the most 

of the digital signature algorithms which are based on multiple hard problems 

[20].  



17 
 

Barik and Dr. Karforma [21] proposes a signed transmission scheme using 

standard RSA Digital Signature with implemented version of MD5 algorithm to ensure 

Message Integrity, Privacy, Nonrepudiation and Authenticity. In this paper [21], they 

have proposed asymmetric encryption with Digital Signature to maintain data integrity 

customize hash function. According to them the result will be more efficient when 

someone apply dual Digital Signature [21], [22].  

A book by William Stalling [23], summarize the time taken to encrypt and 

decrypt with various sizes of key (bits) as:- 

Table 7: Average Time Required for Exhaustive Key Search [23]. 

Key Size (bits) Number of 

Alternative Keys 

Time Required at 1 

Decryption/μs 

Time Required at 

10
6
 Decryptions/μs 

32 2
32 

= 4.3 * 10
9
 2

31
μs = 35.8 minutes 2.15 milliseconds 

56 2
56 

= 7.2 * 10
16

 2
55
μs = 1142 years 10.01 hours 

128 2
128

 = 3.4 * 10
38

 2
127
μs = 5.4 * 10

24
 

years 

5.4 * 1018 years 

168 2
168

 = 3.7 * 10
50

 2
167
μs = 5.9 * 10

36 

years 

5.9 * 1030 years 

26 characters 

(permutation) 

26! = 4 * 10
26

 2* 10
26
μs = 6.4 * 

10
12

 years 

6.4 * 106 years 

 

Kasgar and Dhariwal [25] explains that Brute Force Attack or Exhaustive 

KeySearch being an application of Brute Force Search is a Known Plaintext Attack 

(KPA) which requires little bit cipher text and corresponding plaintext. In this technique, 

the correct key is found by checking all possible keys systematically. The practical 

feasibility factor of this attack depends on the key length used for encryption purpose. 

The success rate of this attack depends on the number of keys to be tested and the speed 

of per key test. To make this attack infeasible, key with long key length must be selected. 

For example, the system which could brute-force a 56- bit encryption key in one second, 

would take 149.7 trillion years to brute-force a 128-bit encryption key. The following 

table illustrates the example more clearly- 



18 
 

Table 8: Symmetric key length vs. Brute force combination [25] 

Key Size 

in bits 

Permutations Brute force time for a device checking 256 

permutations per second  

40 2
40

 0.015 milliseconds 

56 2
56

 1 second 

64 2
64

 4 minutes 16 seconds 

128 2
128

 149,745,258,842,898 years  

256 2
256

 50,955,671,114,250,100,000,000,000,000,000,000,00

0,000,000,000,000,000 years  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

CHAPTER 3  

METHODOLOGY 

 

Currently, there are two methods being used to extend or strengthen the 

previously existing designs: First, to perform increased number of rounds of operations 

instead of prescribed number of functions in existing hashing algorithm (for example, 

instead of four primitive functions use more in case of MD5); or add some advanced 

coding or permutation steps (for example, use more scrambling techniques in SHA-1); 

second to increase the total buffer space and use different mixing step in each of the 

round. Building hash functions using block ciphers, as a base, is the most popular and 

most widely applied method. Hash functions that use this method, use a compression 

function that is like a block-cipher consisting of two inputs- a block of message and a 

key. At present, a protocol is considered strong and secure if it requires at least 2
128

 

operations to perform attack on it.  

3.1 OVERVIEW 

 The overview of the Research Methodology can be from the block diagram 

Figure 5: Block diagram of overview of the research methodology 

In designing an algorithm, the first and most important step is to learn the 

previous attempts made in that field. For this thesis, more than 25 research papers have 



20 
 

been reviewed and summarized under various approach as: Hash improvement approach, 

Encryption algorithms comparisons approach and symmetric key approach. 

The main portion of the thesis is the system development. For this stage the main 

difficulty is to design the algorithm with less complexity which also provides more 

security than the existing hash function. The detail of the algorithm steps is explained in 

the next section of the chapter. 

For the experiment, large data has been tested. For data less than 50 KB only text 

type of data is used while for the data size above 100 KB up to 10 MB, various format of 

data as pdf, jpg and multimedia (mp3, mp4, avi) type of data is used to prove that the 

proposed algorithm is suitable for the all format of data. The program is executed in 

Lenovo i5 processor windows 7 with 2GB RAM and 500GB  HDD. 

The result analysis shows that the time taken by the proposed hash algorithm for 

less than 50 KB is only 15-20% more than the existing hash algorithm while the number 

of operations required to perform brute force attack increases from 2
64

 to 2
192

. 

PROPOSED HASH ALGORITHM 

The proposed solution uses integration of keyed symmetric key block encryption 

algorithm in each step or round of hash compression function. Because symmetric key 

encryption algorithm works on use of single key, both sender and receiver use the same 

key. This common key may be shared between them using an encrypted link between 

them by Key Distribution Center (KDC).  

It is the responsibility of KDC to send the common session key to both sender and 

receiver in communication. KDC uses master keys of both parties for this purpose. 

Because only these two parties carry their corresponding private keys, so no other user in 

the network may intercept and read the original message and make use of this session 

key. Except KDC and both parties, involved in the message transmission, no other user 

has any idea of the shared secret key. Thus, this method helps in validating identity of 

source as key with sender and receiver is now same. In this solution, the working of hash 

compression function will be copulated with keyed encryption function. The output of 

compression function in each block will further used as input for keyed operation. 

Compression function will give output of 128 bit long and keyed function will take an 

input block of 64 bit at a time. Thus, first, the output of compression function will be 



21 
 

divided into two equal sized blocks, with a length of 64 bit, then it operates two times: 

initially, with left 64 bits and then with right 64 bits. Then the keyed function (encryption 

function) will be applied on both 64 bit blocks one by one. The final output will be of 64 

bit for each left and right part, making total of 128 bit. This overall 128 bit output will 

then be used as 128 bit CVq for compression function processing of next block of input 

[4].  

Assign IV to CV0  

Assign (E (K, B1) || E (K, B2)) to CVq  

Here,  

IV = MD buffer Initialization value as set by given compression function  

E = Block encryption scheme  

B1 = Left 64 bits from output of hash value of 512 bit block  

B2 = Right 64 bits from output of hash value of 512 bit block  

K= key used for each block  

Designing and implementing a new secure hash function majorly includes 

fundamental two constructs- first, a compression function that may operate on any given 

input string in the form of block of data of a fixed length and then second to use the 

another function in cascade fashion so that output of compression function may extend 

the output length up to the string of arbitrary length. The design principal for the 

algorithm may be stated as: “make use of already proven techniques and build stronger 

one.” For this  

 The proposed hash function is based around two established techniques- 

compression function and keyed function.  

 The compression function accomplishes the requirement of providing basic 

building block for hash algorithm.  

 To combine source authentication along with message integrity, keyed function is 

used.  

 The proposed technique gives a solution for unauthenticated changes made in the 

input message and receiver does not receive it anymore on the assumption that it 

is coming from original sender only.  



22 
 

3.2 FLOW CHART OF THE PROPOSED HASH FUNCTION ALGORITHM 

 
Figure 6: Flow Chart of Proposed Algorithm 

3.3 PSEUDO CODE OF PROPOSED HASH ALGORITHM  

Step 1: Start  

Step 2: Put padding bits at the end of input message  

Step 3: Put length of original message at the output of Step 2.  

Step 4: Divide the output of Step 3 into L blocks of equal size. (512 bit blocks).  

Step 5: Initialize 128 bit MD buffer  

Step 6: Repeat Steps 7 to 11 for all 512 bit L blocks  

Step 7: Calculate 128 bit hash value for the ith block  

Step 8: Break output of Step 7 into two equal size blocks (64 bits each).  

Step 9: Encrypt both blocks (outputs of Step7) using keyed block encryption function.  

Step 10: Combine both 64 bit outputs calculated in Step 9.  

Step 11: Use the output of Step 10 as CV for next 512 bit block.  

Step 12: Transmit the final output of hashing of last block (Lth block) as final hash value 

to the receiver.  

Step 13: End  



23 
 

3.4 DETAIL ANALYSIS OF THE PROPOSED HASH ALGORITHM  

Step 1: Pad the Original Message-  

The original message will be padded by specific number of bits, so that the length 

of input message after padding will becomes congruent to 448 modulo 512 (length ≡ 448 

mod 512). For this purpose, first bit will always be 1 and remaining bits should always be 

0. This is a compulsory step and thus, 1 to 512 bits may be appended, depending upon the 

length of original message.  

Step 2: Append Message Length-  

After padding, length of original message will now put at the end of the result of 

step 1. This length will be in 64 bit representation. After this step, the length of message 

will now in multiples of 512.  

Step 3: Initialize Buffer-  

The algorithm uses a 128 bit buffer (four distinct words B1, B2, B3 and B4, 32 bit 

each), which will be initialized with following hexadecimal values:  

B1 = 0 1 2 3 4 5 6 7  

B2 = 8 9 A B C D E F  

B3 = F E D C B A 9 8  

B4 = 7 6 5 4 3 2 1 0  

This step is done only for once, and then after receiving the output from first 

block acts as buffer for second block and so on. The final result of hashing will also 

stored in this.  

Step 4: Initialize t-table-  

A 64 element t-table will be used in the algorithm, which is prepared by following 

formula for each t value (ranging from 0 to 63):  

Kt= ⌊232
 | sin (t+1) || where, t is in radians.  

Step 5: Four Secondary Functions-  

f1 (B2, B3, B4) = (B2 ∧ B3) ∨ (¬B2 ∧ B4) for t = 0 , . . . , 15 

f2 (B2, B3, B4) = (B2 ∧ B4) ∨ (B3 ∨ ¬B4) for t = 16 , . . . , 31  

f3 (B2, B3, B4) = (B2 ⊕ B3 ⊕ B4) for t = 32 , . . . , 47  

f4 (B2, B3, B4) = B3 ⊕ (B2 ∨ ¬B4) for t = 48 , . . . , 63  

 



24 
 

Step 6: Order of words for processing:  

The processing will be done in 4 rounds. Each round will have 16 individual 

steps. For each step in each round, following sequence of words will be used for 

processing.  

Round no. 1: (j0,... , j15): Set j0 = 0, j1 = 1, j2 = 2, j3 = 3, j4 = 4, j5 = 5, j6 = 6, j7 = 7, j8 

= 8, j9 = 9, j10 = 10, j11 = 11, j12 = 12, j13 = 13, j14 = 14, j15 = 15  

Round no. 2: (j16,... , j31) : Set j16 = 1, j17 = 6, j18 = 11, j19 = 0, j20 = 5, j21 = 10, j22 = 

15, j23 = 4, j24 = 9, j25 = 14, j26 = 3, j27 = 8, j28 = 13, j29 = 2, j30 = 7, j31 = 12  

Round no. 3: (j32,... , j47) : Set j32 = 5, j31 = 8, j32 = 11, j33 = 14, j34 = 1, j35 = 4, j36 = 

7, j37 = 10, j38 = 13, j39 = 0, j40 = 3, j41 = 6, j42 = 9, j43 = 12, j44 = 15, j45 = 2  

Round no. 4: (j48,... , j63) : Set j48 = 0, j49 = 7, j50 = 14, j51 = 5, j52 = 12, j53 = 3, j54 = 

10, j55 = 1, j56 = 8, j57 = 15, j58 = 6, j59 = 13, j60 = 4, j61 = 11, j62 = 2, j63 = 9  

Processing will be done in blocks. Each block will be of 512 bit in length. A word is of 

32 bits, thus, each block will be made up of 16 words (32 × 16 = 512).  

Step 7: Shifting-  

Shifting will be done in following amounts:  

Round no. 1: Set S0 = 7, S1 = 12, S2 = 17, S3 = 22, S4 = 7, S5 = 12, S6 = 17, S7 = 22, S8 

= 7, S9 = 12, S10 = 12, S11 = 22, S12 = 7, S13 = 12, S14 = 17, S15 = 22  

Round no. 2: Set S16 = 5, S17 = 9, S18 = 14, S19 = 20, S20 = 5, S21 = 9, S22 = 14, S23 

= 20, S24 = 5, S25 = 9, S26 = 14, S27 = 20, S28 = 5, S29 = 9, S30 = 14, S31 = 20  

Round no. 3: Set S32 = 4, S33 = 11, S34 = 16, S35 = 23, S36 = 4, S37 = 11, S38 = 16, 

S39 = 23, S40 = 4, S41 = 11, S42 = 16, S43 = 23, S44 = 4, S45 = 11, S46 = 16, S47 = 23  

Round no. 4: Set S48 = 6, S49 = 10, S50 = 15, S51 = 21, S52 = 6, S53 = 10, S54 = 15, 

S55 = 21, S56 = 6, S57 = 10, S58 = 15, S59 = 21, S60 = 6, S61 = 10, S62 = 15, S63 = 21  

Step 8: Processing of message in sixteen 32-bit word (512 bit) blocks-  

a) For I = 0 to n-1 do (here, n= number of blocks)  

b) Divide Mi into words W0,…, W15 where W0 is left most word. 

c) Initialization of 4 words B1B2B3B4. Here each word is of 32 bit, i.e.  

Total length = 32 × 4 = 128 bit.  

Assign B1 to B1’  

Assign B2 to B2’  



25 
 

Assign B3 to B3’  

Assign B4 to B4’  

(’ represents new value of buffer word)  

d) For t = 0 to 63 do  

Assign B2+((B1+ ft (B2, B3, B4) + Wjt + Kt)<<< St to X  

Assign B4 to B1  

Assign B3 to B4  

Assign B2 to B3  

Assign X to B2  

/* end of loop in step d*/  

e) Increment of 4 words B1B2B3B4  

Assign B1 + B1’ to B1  

Assign B2 + B2’ to B2  

Assign B3 + B3’ to B3  

Assign B4 + B4’ to B4  

f) Make two 64 bit blocks Y and Z from B1B2B3B4  

Assign B1B2 to Y  

Assign B3B4 to Z  

g) Generate 64 bit key for internal keyed operation.  

Out of these 64 bits, 8 will be used as parity bits and rest 56 bits are used as 

effective key. Out of this single 56 bit key, 18 keys are generated, each of 48 bit long. 

h) Operations on Y and Z blocks-  

Both Y and Z are treated similarly. Each block will further subdivided into 

two partitions- left half of Y block (Ly) and right half of Y block (Ry), and left half of 

Z block (Lz) and right half of Z block (Rz). Initially the right and left halves (R and 

L) are permuted (swapped), i.e.  

Assign L to X  

Assign R to L  

Assign X to R  

Now next L’ and R’ are produced as follows-  

Assign R to L’  



26 
 

Assign L (+) f (R n-1, Kn) to R’  

Here, (+) is addition modulo 232.  

This process will be repeated for 16 times, each time with a different 48 bit key K.  

Thus,  Assign Rn-1 to Ln  

Assign f (Rn-1, Kn) (+) Ln-1 to Rn  

After sixteenth round of operation, again perform final permutation (swapping of 

left and right half), thus,  

Assign Ln to X  

Assign Rn to Ln  

Assign X to Rn  

(Here X is a 32 bit block used for permutation only.)  

Final X= X XOR K17  

Final Y = Y XOR K18  

The algorithm for function f(R.K) is defined as follows-  

a) Apply expansion permutation and output 48-bit data i.e assign E(R) to X.  

b) XOR 48 bit output with the round key i. e. assign X ^ k to X'.  

c) Apply S boxes function on X’ and generate output 32-bit data i. e. assign 

s(X’) to X". 

d) Apply the specific round permutation i. e. assign P(X") to R'.  

 

i) Combine final 32 bit values of X and Y.  

After combining two 64 bit blocks, Y and Z respectively, we will get one 128 

bit block. These 128 bits will again stored in four 32 bit words B1B2B3B4.  

/* end of loop in step i. */  

j) After processing last 512 bit block, the final hash value is in B1B2B3B4, i.e. 

output is always 128 bit long digest. 

 



27 
 

 

Figure 7: An illustrated view of processing of proposed hash function- having keyed 

function in between (HF= hash compression function and EF= keyed function)  

 

The Encryption Function EF works on a block of 64 bit message, that’s why the 

128-bit output of Hash Function HHF is subdivided into two parts, each of 64-bit. For the 

EF (Encryption Function), a key is used, with 64 bit length. Out of these 64 bits (eight 8-

bit words) 8 bits are used as parity bits and remaining 56 bits are treated as actual 

effective key bits. The EF runs in 16 individual rounds with two permutation steps-one 

before first round and another after sixteenth round. For each round, a 48 bit key is used 

out of 56-bit effective key. Thus, 16 sub-keys are created from one 56-bit key. As 



28 
 

JavaScript supports only 32-bit integers, we need to represent all 48 or 64-bit integers by 

two 32-bit integers in an array. There are 72 quadrillion or more possible combinations of 

the keys. And for each message (or for each message block) a unique key may be 

selected.  

To create 16 individual sub-keys, we begin with conversion of the 8 character 

string, which represents the key, into two integers. Bits of this 8 character string are 

reorganized according to permuted choice1 (Perm1).  

The permutation choice gives the following bits as per their position- 

 

Figure 8: S-Box 

This shows that after permutation, the first bit of the key is generated from 57th 

bit of the original key, second bit of key is generated from 49th bit of original key bit 

sequence, and so on. A specific permutation sequence is being used for permutation in 

this process. The permutation involves an intelligent way of rotation and switching of bits 

between the given two integers. For example, newint = (0x0f0f0f0f & (left >>> 4) ^ 

right) ; right = right ^ newint; left = left ^ (newint << 4); it results in rotation of 4x4 

blocks of bits.  

Now, call the initial 28 bits of Perm1 as X, and remaining 28 bits as Y. These two 

parts X and Y are then left shifted according to a specific pattern until all sixteen 48 bit 

sub-keys are produced. For example, X1 and Y1 are produced by left shifting X and Y by 



29 
 

one bit place, X2 and Y2 are generated by left shifting X1 and Y1 by a further one place, 

and so on. These corresponding array and then the results are all added together.  

3.5 EXPERIMENTAL SETUP 

 For conducting this experiment, different format of data is taken for different 

cases as: 

Case 1: For data below 50 KB 

 Only text file is used 

 Case 2: For data in the range of 100 KB - 10 MB 

 Pdf is used 

 Jpg is used 

 Multimedia (mp3, mp4, avi) is used 

Programming Language used: JAVA 

Specification of machine:  

 Windows 7 

 i5 Processor 

 2GB RAM 

 500 GB HDD 

Program executed in Command Prompt. 

 

 

 

 

 

 

 

 

 

 

 



30 
 

CHAPTER 4  

RESULT AND ANALYSIS 

4.1 RESULT 

In order to become secure that the message is coming from the trusted sender and 

also to get security from various attack as first pre-image attack, second pre-image attack 

and brute force attack, time overhead should be considered. The proposed algorithm time 

complexity increases as compared with the keyless MD5 hash algorithm but the security 

level increase as described in the Table 6, 7, 9. 

A large data set has been tested and run to get the result. The snapshot of the 

sample output is shown in the figure below: 

 

 

Figure 9: Screenshots of the program output 



31 
 

The Figure 7 shows that this program is run by the command line and data can be 

entered in both the way by direct entering or by giving the path of the file. For the size 

less than 50 KB, only text type of data is used as it becomes difficult to get the less than 

50 KB especially for multimedia (mp3, mp4, avi) type of data.  

4.2 SECURITY LEVEL ACHIEVED BY THE PROPOSED HASH ALGORITHM 

A strong cryptographic hash function H is usually expected to satisfy a number of 

requirements, namely collision resistance, preimage resistance, second preimage 

resistance. There are three important attacks on hashes [7]:  

 A "collision attack" allows an attacker to find two messages M1 and M2 that have 

the same hash value in fewer than 2^(L/2) attempts [7].  

 A "first-preimage attack" allows an attacker who knows a desired hash value to 

find a message that results in that value in fewer than 2^L attempts [7].  

 A "second-preimage attack" allows an attacker who has a desired message M1 to 

find another message M2 that has the same hash value in fewer than 2^L attempts 

[7].  

All individual components of the proposed algorithm possess their respective security 

criteria, which ensure that the algorithm is secure and collision free. Few arguments can 

be given for security of the algorithm:- 

 Mathematically secondary functions f1, f2, f3 and f4 are non-invertible and non-

linear [Section 3.4 step 5].  

 If individual bits of B2, B3 and B4 are independent of each other, this implies that 

the overall bits of f(B2, B3, B4) are also independent of each other. It ensures the 

desired one-way property of hash function.  

 During processing, in each of the round, accessing sequence for input words is 

different.  

 In padding step, the padding is always done by 1 and then the number of zeros in 

the output of preprocessing phase to restrict the fixed point attacks in which the 

attacker’s main focus is to generate second pre-image or collisions by insertion of 

extra blocks into the input.  



32 
 

 In each step input is taken from the output of previous step. Thus, changes at any 

one place in any one of the blocks; it will definitely affect the final output of 

algorithm. Thus, two different messages will never result in same output. It 

proves one more desirable hash property- the second pre-image resistance.  

 Number of computations to perform Collisions and attacks depend on key size and 

digest size both. Thus for 128 bit hash Proposed Hash 2
192

 computations are required 

to perform brute force attack.  

 Algorithm works on basic functions, such as modular arithmetic, XOR, addition, 

left shift, right shift, simple permutation etc. Thus, it does not require increased 

time requirement for processing.  

 The required t-table and all 48 bit keys can be generated well in advance, so 

function need not wait in between for table element generation or key generation. 

This also helps in speeding up the execution of the algorithm.  

 Use of XOR makes sure that output depends on all bits, rather than on 

neighboring ones only.  

 

Key Generation and Usage 

  All popular existing keyed hash functions use either of two settings- Dedicated-

Key setting or Integrated-Key setting. Both use fixed keys, i.e. once a key is dedicated, it 

will be used for each iteration of compression function. But, in the proposed solution, 16 

different key combinations are used in an iteration of compression function, individually 

on two word combinations Y and Z respectively. 

Obviously this approach is more time consuming than keyless one, and it also 

increases overhead for computing hash by at least n * 2t, where n is total number of 

blocks and t is computation cost for one block either Y or Z. If run it in parallel for both 

of these blocks simultaneously than computation time will increase by only n * t. Now, 

the efficiency lies in implementation of key function in hashing, because of simpler 

functions it has come out as a light weight function and will not take much time or efforts 

for whole message length. 



33 
 

4.3 COMPARISON WITH EXISTING APPROACHES 

Table 9: Comparison of the Proposed algorithm with the various enhanced 

approached algorithm on the basis of different parameters. 

Hash 

Algorithm 

Block 

size(bit) 

Output 

Size 

(bits) 

Round Brute force 

Attack 

Operation 

Factors for 

enhancing security 

MD5 [23] 512 128 64 2
64

 Round 

 

SHA-1 [23] 

 

512 

 

160 

 

80 

 

2
64

 

Increases in Output 

size and 

Increase in Round 

An Enhanced 

Message 

Digest Hash 

Algorithm for 

Information 

Security [24] 

 

 

 

512 

 

 

 

160 

 

 

 

160 

 

 

 

2
160

 

 

 

Increases in Output 

size and 

Increase in Round 

One Improved 

Hash 

Algorithm 

Based on MD5 

and SHA1 [10] 

 

 

512 

 

 

512 

 

 

64 

 

 

2
128

 

 

 

Increases in Output 

size  

 

 

Proposed 

 

512 

 

128 

 

128 

 

2
192

 

Increase in Round 

Use of Key 

  

When comparing with some of the existing approaches, it is found that most of 

the existing approaches does not uses key to make MD5 secure. So still they does not 

provides source authentication whereas the proposed algorithm uses a key of 128 bit 

which provides both the message integrity and source authentication and according to 

Kasgar and dhariwal [25], the algorithm is found to be secure enough if it uses a key of 

128 bit. So it can be proved that the proposed hash algorithm is better in security 

approach than the traditional keyless hash algorithm. 



34 
 

PROPERTIES OF PROPOSED HASH FUNCTION WITH RESPECT TO 

EXISTING HASH FUNCTION  

Table 10: Properties of existing hash function and Proposed hash function 

Properties of existing hash function Properties of Proposed hash function 

MD2, MD4, MD5, SHA family, RIPEMD, 

BLAKE, TAV etc message detection codes 

do not use “key”. Only message and 

initialization values are used as input to the 

function.  

It uses “key” along with message and 

initialization values are used as input 

to the function.  

 

MD2, MD4, MD5, SHA family,etc 

message detection codes provide only 

message integrity.  

It provides message integrity and 

source authentication both.  

 

Message Authentication codes such as 

HMAC and nested MAC use key but the 

simply prefix or postfix the key to the 

message, So it is easy to forge.  

Key is used in each round of 

operation, not just pre or post fixed, 

which makes it difficult to forge.  

 

In message authentication codes such as 

HMAC and nested MAC, key can easily be 

traced easily if message length is known in 

advance.  

Key cannot be traced from final digest 

as it becomes integral part of hash 

function.  

 

Collisions can be performed as only 

message and IV is put to the function.  

To find collision is more difficult 

because of key  

Number of computations to perform 

Collisions and attacks depend on digest 

size only. Thus for 128 bit MD5 2
128

 

computations are required to perform brute 

force pre-image and brute force second 

pre-image attack.  

For RIPEMD-160, SHA-1, SHA-0, 

required calculations are minimum 2
160

.  

 

Number of computations to perform 

Collisions and attacks depend on key 

size and digest size both. Thus for 128 

bit Proposed Hash 2
192

 computations 

are required to perform brute force 

attack.  

 

 



35 
 

4.4 ANALYSIS OF TIME REQUIREMENT 

 For the data less than 50 KB, only text type of data is used for experimentation. 

Every data is tested three times and an average is taken. The output along with the line 

graph and bar graph for the data is summarized as: 

Table 11: Time taken by MD5 hash and Proposed algorithm in the range (1KB-

50KB) data. 

Data Size in 

KB 

Time Taken by Proposed Algorithm in 

Second 

Time Taken by MD5 

in Second 

1  0.467037956 0.203622368 

2  0.346586704 0.338110466 

3  0.477840691 0.398090032 

4  0.571099918 0.445129448 

5  0.646240773 0.482157356 

8  0.675861606 0.613133924 

10 0.776960662 0.660249677 

12 0.931250181 0.701610605 

15 0.939926339 0.750443612 

18 1.078135002 0.80159429 

20 1.151103277 0.844284213 

25 1.321655376 0.939422 

30 1.382957886 1.024267855 

35 1.427354081 1.09326926 

40 1.575217228 1.129504505 

45 1.858272684 1.256137605 

50 2.026442377 1.56723058 

 



36 
 

 

Figure 10: Line Diagram of Time taken by MD5 hash and Proposed algorithm in 

the range (1KB- 50KB) data. 

 

Figure 11: Bar Diagram of Time taken by MD5 hash and Proposed algorithm in the 

range (1KB- 50KB) data. 

0 

0.5 

1 

1.5 

2 

2.5 

0 10 20 30 40 50 60 

Ti
m

e
 in

 S
e

c 

Data Size in KB 

Time Taken by Proposed 

Time Taken by MD5 

0 

0.5 

1 

1.5 

2 

2.5 

1 2 3 4 5 8 10 12 15 18 20 25 30 35 40 45 50 

Ti
m

e
 in

 S
e

c 

Data Size in KB 

Time Taken by Proposed 

Time Taken by MD5 



37 
 

For the data greater than 100 KB experiment is done on different format like 

Multimedia (mp3, mp4), pdf and jpg types of data since it is very difficult to find the 

multimedia format of data in less than 100 KB size. Every data is tested three times and 

average is taken. The tested result is shown below. 

Table 12: Time Taken by Different format (Multimedia, Pdf, jpg) of data by MD5 

Hash Algorithm 

Data size in 

MB 

Time Taken by Different format of data by MD5 in Second 

Multimedia (mp3, mp4, avi) Pdf jpg 

0.1  1.8127 2.8903 1.5342 

0.2  2.5613 3.0653 2.8022 

0.3 3.1416 3.2412 3.8285 

0.4 3.1893 3.4916 4.3482 

0.5 3.2512 3.8393 5.9856 

1.5 8.0213 10.2342 7.1602 

2 8.952 11.0935 9.8467 

3 15.9154 15.6352 13.4971 

4 18.5782 16.8469 18.7456 

5 19.3216 17.8476 22.4971 

6 20.6739 19.7366 24.1523 

7 21.1734 20.9832 25.8367 

8 22.8646 21.9654 26.746 

9 24.2341 23.0913 28.0173 

10 25.9456 24.2315 30.3215 



38 
 

 

Figure 12: Line Diagram Time Taken by Different format (Multimedia, Pdf, jpg) of 

data by MD5 Hash Algorithm 

 

 

Figure 13: Bar Diagram Time Taken by Different format (Multimedia, Pdf, jpg) of 

data by MD5 Hash Algorithm 

0 

5 

10 

15 

20 

25 

30 

35 

0 2 4 6 8 10 12 

Ti
m

e
 t

ak
e

n
 in

 S
e

c 

Data Size in MB 

Time Taken by  MD5 For 
Multimedia 

Time Taken by  MD5 For Pdf 

Time Taken by  MD5 For jpg 

0 

5 

10 

15 

20 

25 

30 

35 

0.1 0.2 0.3 0.4 0.5 1.5 2 3 4 5 6 7 8 9 10 

Ti
m

e
 t

ak
e

n
 in

 S
e

c 

Data Size in MB 

Time Taken by  MD5 For 
Multimedia 

Time Taken by  MD5 For Pdf 

Time Taken by  MD5 For jpg 



39 
 

Table 13: Time Taken by Different format (Multimedia, Pdf, jpg) of data by 

Proposed Algorithm 

Data size in 

MB 

Time Taken by Different format of data by Proposed in Second 

Multimedia Pdf jpg 

0.1 6.2172 9.0321 9.6734 

0.2 9.8355 9.3254 10.4714 

0.3 16.7466 15.8734 15.8241 

0.4 20.0191 20.123 18.5106 

0.5 20.8685 24.027 25.6849 

1.5  90.7372 60.6534 54.9376 

2  122.6345 65.9876 84.3073 

3  153.0185 130.7635 132.5996 

4  186.7352 179.0764 168.6971 

5  214.9371 212.7672 202.7672 

6  282.6923 267.9473 250.1125 

7  328.8362 335.8462 300.8741 

8  415.3425 386.9473 349.9472 

9  493.6352 403.9364 389.9286 

10  553.4534 442.0205 418.9268 

 

 



40 
 

 

Figure 14: Line Diagram Time Taken by Different format (Multimedia, Pdf, jpg) of 

data by Proposed Hash Algorithm 

 

Figure 15: Bar Diagram Time Taken by Different format (Multimedia, Pdf, jpg) of 

data by Proposed Hash Algorithm 

0 

100 

200 

300 

400 

500 

600 

0 2 4 6 8 10 12 

Ti
m

e
 T

ak
e

n
 in

 S
e

c 

Data Size in MB 

Time Taken by Proposed For 
Multimedia 

Time Taken by Proposed For 
Pdf 

Time Taken by Proposed For 
jpg 

0 

100 

200 

300 

400 

500 

600 

0.1 0.2 0.3 0.4 0.5 1.5 2 3 4 5 6 7 8 9 10 

Ti
m

e
 T

ak
e

n
 in

 S
e

c 

Data Size in MB 

Time Taken by Proposed For 
Multimedia 

Time Taken by Proposed For 
Pdf 

Time Taken by Proposed For 
jpg 



41 
 

      As shown in Figure 13, 14 there is some time difference between various 

format of data for both MD5 hash and Proposed hash. One of the main reason behind this 

difference is that the data length taken here is not exactly same, but an approximate size 

is taken for the all format of data (eg,1.1MB and 0.98 MB size is taken as 1 MB). 

 

ANALYSIS 

 Figure 6, 7 clearly shows that the time taken by MD5 hash is not much greater 

than that of Proposed algorithm in the range (1KB- 50KB) data. The time taken by 

proposed algorithm and MD5 hash is linearly proportional to the size of data. The time 

taken by proposed algorithm is only 15-20% greater than that of MD5 hash algorithm. 

  Figure 8, 9 shows that the time taken by proposed algorithm increases upto 400% 

as the data size increases to 500 KB. The main reason behind increasing the time is that 

the algorithm runs on fixed size block of 512 bit, from which 128 bit intermediate hash is 

generated which is further divided into two equal half blocks and then encryption 

function is applied on each 64 bit block which is then combined to get 128 bit hash. So as 

the data size increases, the number of 512 bit blocks also increases for the further 

processing of data, but in case of MD5 hash algorithm there is no use of any key for the 

encryption function. That's why the time required to get the output hash is less than that 

of the proposed hash algorithm. 

 For the data size above 100 KB, various formats of data as .jpg, .pdf, multimedia 

(.mp3, .mp4, .avi) is tested for both the algorithm (MD5, proposed).The result can be 

seen from the Figure 10, 11 and Figure 12, 13. Here in both the cases there is some time 

difference in between them for different formats. The main reason behind this difference 

is that the data size is not same for all format of data, as the data set is created manually, 

it becomes very difficult to get data of exact size especially for the multimedia (mp3, 

mp4) type of data. 

 

 

 

 



42 
 

 

4.5 COMPUTATIONAL COMPLEXITY  

Initialize the buffer 

B1 = 0 1 2 3 4 5 6 7  

B2 = 8 9 A B C D E F       O(1)  

B3 = F E D C B A 9 8  

B4 = 7 6 5 4 3 2 1 0  

For(i=0 to 63) 

// initialize the T table 

kt =2
32

 sin(t+1)        O(1) 

Four Secondary Functions-  

For(t=0 to 15) 

f1 (B2, B3, B4) = (B2 ∧ B3) ∨ (¬B2 ∧ B4)     16*c1 

For(t=16 to 31) 

f2 (B2, B3, B4) = (B2 ∧ B4) ∨ (B3 ∨ ¬B4)     16*c2 

For(t=32 to 47) 

f3 (B2, B3, B4) = (B2 ⊕ B3 ⊕ B4)      16*c3 

For(t=48 to 63) 

f4 (B2, B3, B4) = B3 ⊕ (B2 ∨ ¬B4)      16*c4 

 

Order of words for processing:  

 Round1(Algo1)       16*c1 

 Round1(Algo2)       16*c2  

 Round1(Algo3)      16*c3  

 Round1(Algo4)       16*c4 

 

Shifting- 

Round 1 

Round 2        O(1) 

Round 3 

Round 4 



43 
 

Processing of message in sixteen 32-bit word (512 bit) blocks-  

For ( i= 0 to n-1) do  

Divide Mi into words W0,…, W15 where W0 is left most word.    16n+c  

Initialization of 4 words B1B2B3B4. Here each word is of 32 bit, i.e.  

B1 -> B1’  

B2 -> B2’         O(1) 

B3 -> B3’  

B4 -> B4’  

For (t=0 to 63) 

Assign B2+((B1+ ft (B2, B3, B4) + Wjt + Kt)<<< St -> X  

Assign B4 to B1  

Assign B3 to B4         64*c 

Assign B2 to B3  

Assign X to B2  

End for loop 

Increment of 4 words B1B2B3B4  

B1 + B1’ -> B1  

B2 + B2’ -> B2         O(1) 

B3 + B3’ -> B3  

B4 + B4’ -> B4  

Make two 64 bit blocks Y and Z from B1B2B3B4  

Assign B1B2 -> Y         O(1) 

Assign B3B4 -> Z 

Operations on Y and Z blocks 

Divide Y into LY and RY  

Divide Z into Lz and Rz 

L -> X           O(1)   

R -> L  

X -> R  

R -> L’          

L (+) f (R n-1, Kn) -> R’  



44 
 

For (i=0 to 16) 

Rn-1 -> Ln  

f (Rn-1, Kn) (+) Ln-1 -> Rn       16*c 

end for 

Ln -> X  

Rn -> Ln          O(1) 

X -> Rn 

Final X= X XOR K17  

Final Y = Y XOR K18  

Combine final 32 bit values of X and Y.      O(1) 

End for loop  

  

Total Time complexity = O(1)+ O(1)+ (16*c1 +16*c2 + 16*c3 + 16*c4)+ (16*c1 + 

16*c2 + 16*c3 + 16*c4) + O(1) +16n (O(1) + 64*c + O(1) + O(1) + O(1) + O(1) +16*c 

+ O(1) + O(1)) 

= O (n) 

 

The time complexity of the proposed hash algorithm is linear i.e. the time taken to 

encrypt data is directly proportional to the size of data. One of the reason that the 

proposed algorithm takes more time than the existing MD5 hash function is that 

 MD5 hash is keyless while in the proposed solution, 16 different key 

combinations are used in an iteration of compression function, 

individually on two word combinations Y and Z respectively which 

obviously is more time consuming than keyless hash algorithm, and it 

also increases overhead for computing hash by at least n * 2t, where n is 

total number of blocks and t is computation cost for one block either Y or 

Z [see section 3.4 step 8(h), (i)]. 

 As the data size increases the number of blocks of 512 bit also increases 

upon which the encryption function has to applied which therefore 

increases time taken to encrypt the data. 



45 
 

4.6 DISCUSSION 

MD5 is a well-known and widely-used cryptographic hash function. It has 

received renewed attention from researchers subsequent to the recent announcement of 

collisions found by Wang et al [14]. MD5 hash function is fast and one-way hash 

function, and provides security in case adversary modifies data in unauthenticated 

manner. But it has been observed that only message integrity does not guarantee 

sufficient security against all of the proven attacks. For example, if the algorithm for 

generating the code is known, an adversary can generate the correct code after modifying 

the data, thus, ordinary error detecting codes are not adequate. Intentional modification is 

undetectable with such codes. That is, suppose a message X is sent by sender along with 

its calculated hash value h. After interruption, intruder fetches the message, and changes 

this X into X’. At the same time, he may also get copy of h and recalculates new hash h’ 

for new message X’, and then transmits it to the receiver. At the receiving end, the 

receiver recalculates hashes on received version of message i.e. X’. Now, it will result in 

verified one, which is not true [23]. 

 However, simple symmetric encryption techniques can be used to produce a 

cryptographic checksum. This checksum can be used to protect against unauthorized data 

modification which may be either accidental or intentional. Additionally, if a hashing 

scheme is combined with a block cipher encryption algorithm, it can be made more 

secured and stronger against attacks. The hash function h is defined in such a manner that 

from the message X, h(X) can be calculated easily, but if one knows h(X), than it should 

be infeasible to find even one message X that will generate this value. Moreover, 

calculating any other message M' that produces the same hash value, i.e., h(X) = h(X'), 

must also be infeasible. The hash value may then be given to any strong block encryption 

function, whose key is already known to sender and receiver both. The sender will use 

this key for calculating hash at its end. And the same corresponding key will be used by 

the receiver to revert the transformation and restore the value h(X). At the receiving end, 

the function h is applied to the received message X, and then he compares two values of 

h(X). Only if the message is original and not modified after generating hash by sender, 

these two hash values will appear to be equal [23]. 



46 
 

 The proposed hash algorithm uses a symmetric key of 128 bit which provides 

both the message integrity and source authentication. It also prevents intentional 

modification of data. 

In the proposed hash algorithm, in each step, input is taken from the output of 

previous step. Thus, if changes at any one place in any one of the blocks, it will definitely 

affect the final output of algorithm. Thus, two different messages will never result in 

same output. It proves one more desirable hash property- the second pre-image 

resistance. 

  This solution use two basic rules: padding and fixed initialization vector. Thus, it 

is also safe from fixed point attack and second pre-image collision attack. At the same 

time, there exists no method for getting original message from hash value. It also uses the 

concept of key for generating hash value, which implies that there is no chance for 

adversary to compute hash value for a new message and to send it to receiver for the 

purpose of forging, because we assume that key is known to receiver and sender only, 

and it is delivered to them by trusted Key Distribution Center (KDC). 

To perform brute force attack on an n-bit message digest an attacker must take 

about 2
n
 computations of hash function to obtain the pre-image with a significant percent 

of probability. Thus for proposed hash (a 128 bit digest) it takes minimum 2
128

 

computations for an attacker before performing a successful brute force pre-image attack 

and brute force second pre-image attack. But as proposed hash also uses a 128 bit key, its 

required minimum calculations are 2
192

, which is better than MD-5. Similarly, it also 

takes 2
192

 computations for brute force collision attack which in practical is not feasible 

to actually produce this huge amount of computational power today. 

 

 

 



47 
 

CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

5.1 CONCLUSIONS 

From the above discussion it can be concluded that, even if the time taken by the 

proposed algorithm is 15-20% more than of the existing keyless MD5 hash algorithm for 

data range between 50 KB-100 KB, the security level increases from 2
64

 to 2
192

 

operations to perform brute force attack. The proposed algorithm can be used instead of 

MD5 hash algorithm because:- 

1. The proposed hash algorithm provides both message integrity and source 

authentication as compared with the existing keyless MD5 hash which provides 

message integrity only but not the source authentication. 

2. The proposed hash algorithm is very much resistant to pre-image attack attacks in 

which the attacker’s main focus is to generate second pre-image or collisions by 

insertion of extra blocks into the input. 

3. The proposed hash algorithm is resistant to second pre-image attack so that two 

different messages will never result in same output. 

4. It requires more number of operation to perform brute force attack as the 

traditional keyless MD5 hash algorithm needs only 2
64

 operation to perform 

collision or second preimage attack, proposed hash algorithm requires 2
192 

operations to perform collision or second preimage attack. 

5. Even it takes 15-20% of time more than that of existing keyless MD5 hash for 

low size data. 

Thus, it can be concluded that the proposed hash algorithm is enhanced than 

the existing hash and can be used in place of MD5 hash algorithm. As far as time 

is concerned it is best suited for the small size below 100 KB as Password 

hashing, Virus Checking, data of IOT, sensors data, Message Authentication 

Code, small size military information etc. however in some cases where the 

security of a document is main priority irrespective of time it is suggested to use 

the proposed hash algorithm in spite of MD5 hash. 



48 
 

5.2 LIMITATIONS AND FUTURE WORK  

During the performance analysis of the proposed algorithm, it is found that the 

time taken to encrypt the data size exceeding (100 KB-150 KB) increases by more 30% - 

50% and reaches upto 400% as the data size reaches more than 10 MB and above. This 

can be overcome if we may use more computational powerful machine. 

The algorithm uses keyed function for a block of 64 bits. In future we may also 

perform the keyed function for smaller or larger block size and see whether it improves 

the security or time taken for overall processing of message. This algorithm uses key of 

128 bits. In future it can be tested for 256 bits and more to check the level of security and 

the time taken to encrypt the data.  

From the point of view of designing, there is always requirement of new types of 

hash functions. These new functions should offer a high level of security as well as their 

performance should also be better than previous ones. To possess more provable security 

properties for hash functions would also be desirable always. For block cipher based hash 

functions it is still an open problem to produce a secure hash 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

REFERENCES 

[1] P. kumar and V. Agarwal, "Crypt Analyzing of Message Digest Algorithms MD5 

Using Quadratic Salt," International Journal Of Engineering And Computer Science 

ISSN, vol. 2, no. 1, pp. 36-42, August,2014. 

[2] L. Pathak, B. K. Sharma and R. Sharma, "Breaking of Simplified Data Encryption 

Standard," Global journal of computer science and technology, vol. 12, no. 5, p. 7, 

March 2012. 

[3] Somboonpattanakit, S. Boonkrong and Chaowalit, "Dynamic Salt Generation and 

Placement for," IAENG International Journal of Computer Science, vol. 43, no. 1, p. 

10, 29th Februrary 2016. 

[4] N. Ogini, N. Oluwole and O. Ogwara, "Securing Database passwords using a 

combination of hashing and salting techniques," IPASJ International Journal of 

Computer Science (IIJCS), vol. 2, no. 8, pp. 2-6, August,2014. 

[5] S. Mohammed, "Modified Key Model of Data Encryption Standard," University of 

Anbar, Iraq, 2014. 

[6] S. Singh, S. K. Maakar and D. Kumar, "Enhancing the Security of DES Algorithm 

Using Transposition Cryptography Techniques," International Journal of Advanced 

Research in Computer Science and Software Engineering, vol. 3, no. 6, pp. 1-8, 

June, 2013. 

[7] R. Roshdy, M. Fouad and M. Aboul-Dahab, "Design and Implementation a New 

Security Hash Algorithm Based On MD5 and SHA-256," International Journal of 

Engineering Sciences & Emerging Technologies, vol. 6, no. 1, pp. 29-36, August, 

2013.. 

[8] V. Thapar and P. Walia, "Implementation of New Modified MD5-512 bit Algorithm 

for Cryptography," International Journal of Innovative Research in Advanced 

Engineering (IJIRAE), vol. 1, no. 6, pp. 87-96, July,2014. 

[9] D. Sharma and P. Sarao, "Implementation of Md5- 640 Bits Algorithm," 

International Journal of Advance Research in Computer Science and Management 

Studies, vol. 3, no. 5, pp. 286-294, May,2015. 



50 
 

[10] X. Chan and G. Liu, "Discussion of One Improved Hash Algorithm Based on MD5 

and SHA1," IOSR Journal of Computer Engineering (IOSRJCE), vol. 2, no. 1, pp. 

36-42, October, 2007. 

[11] K. Singh and C. Goel, "Using MD5 AND RSA Algorithm Improve Security in 

MANETs Systems," International Journal of Advances in Science and Technology 

(IJAST), vol. 2, no. 2, pp. 48-53, June 2014. 

[12] Dr. P. Mahajan and A. Sachdeva, "A Study of Encryption Algorithms AES, DES 

and RSA for Security," Global Journal of Computer Science and Technology 

Network, Web & Security, vol. 13, no. 15, pp. 2-9, 2013. 

[13] T. Xie and F. Liu, "Fast Collision Attack on MD5," The Center for Soft-Computing 

and Cryptology, China, 2014. 

[14] R. Jasek, L. Sarga and R. Benda, "Security Review of the SHA-1 and MD5 

Cryptographic Hash Algorithms," ISBN, Zlin, August,2013. 

[15] Hamdan.O.Alanazi, B.B.Zaidan, A.A.Zaidan, M. Hamid A.Jalab and Y. Al-Nabhani, 

"New Comparative Study Between DES, 3DES and AES within Nine Factors," 

Journal Of Computing, vol. 2, no. 3, pp. 2-12, March, 2010. 

[16] M. Agrawal and P. Mishra, "A Comparative Survey on Symmetric Key Encryption 

Techniques," KTH CSC, Sweden, 2008. 

[17] Nadeem, Aamer and D. M. Y. Javed, "A Performance Comparison of Data 

Encryption Algorithms," Pakistan, April, 2015. 

[18] Elminaam, D. S. Abdul, H. M. A. Kader and M. M. Hadhoud, "Performance 

Evaluation of Symmetric Encryption Algorithms," IJCSNS International Journal of 

Computer Sci 280 ence and Network Security, vol. 8, no. 12, pp. 281-288, 

December, 2008. 

[19] S. M. Seth and R. Mishra, "Comparative Analysis Of Encryption Algorithms For 

Data Communication," International journal of Computer Science and Technology, 

vol. 2, no. 2, pp. 293-294, june, 2011. 

[20] P. Kuppuswamy, P. M. Appa and D. S. Q. Y. Al-Khalidi, "A New Efficient Digital 

Signature Scheme Algorithm based on Block Cipher," IOSR Journal of Computer 



51 
 

Engineering (IOSRJCE), vol. 7, no. 1, pp. 47-52, December, 2012. 

[21] S. R. Masadeh, S. Aljawarneh, Turab, Nedal, Abuerrub and A. M., "Comparison Of 

Data Encryption Algorithms," International Journal of Computer Science and 

Communication, vol. 2, no. 1, pp. 125-127, June, 2011. 

[22] R. P. (Arya), U. Mishra and A. Bansal, "A Survey on Recent Cryptographic Hash 

Function Designs," International Journal Of Emerging Trends and Technology in 

Computer Science (IJETTCS), vol. 2, no. 1, pp. 117-123, February, 2013. 

[23] W. Stallings, Cryptography And Network Security principles and practice, United 

States Of America: Prentice Hall, 2011. 

[24] A. Rawat and D. Agrawal, "An Enhanced Message Digest Hash Algorithm for 

Information Security," International Journal of Recent Research in Electrical and 

Electronics Engineering (IJRREEE), vol. 2, no. 1, pp. 64-52, March, 2015. 

[25] A. K. Kasgar and M. K. Dhariwal, "A Review Paper of Message Digest 5 (MD5)," 

International Journal of Modern Engineering & Management Research, vol. 1, no. 

4, pp. 29-35, December 2013. 

  
 

 

 

 

 

 

 

 



52 
 

APPENDIX 

CODE 

TEST MD5.JAVA 

import java.io.*; 

import java.util.*; 

import java.security.MessageDigest; 

import java.security.NoSuchAlgorithmException; 

import java.util.Formatter; 

import java.util.Scanner; 

 

public class TestMD5 { 

 public static void main(String[] args) { 

  try { 

   Scanner user_input = new Scanner( System.in ); 

   System.out.println("Press1 if you want to enter text, Press 2 for 

entering a file path"); 

   String option = user_input.next(); 

   String s, text = ""; // user text 

   if (option.equals("1")) { 

    System.out.println("Enter text to hash"); 

    text = user_input.next(); 

   } 



53 
 

   else if (option.equals("2")) {  

    // file path 

    System.out.println("Enter file path"); 

    BufferedReader in = new BufferedReader(new  

    FileReader (    user_input.next ( ))); 

    while ((s = in.readLine()) != null) { 

     text = text + s; 

    } 

   in.close();  

   } 

   else { 

    System.out.println("Invalid input. Exit"); 

    System.exit(0); 

   } 

   long startTime = System.nanoTime(); 

   System.out.println("Data length is "+text.length()); 

   System.out.println("Encrypted key:\n "+getMD5HashVal(text)); 

   long endTime = System.nanoTime(); 

   System.out.println("Complutation took "+(endTime -

startTime)/1000000000.0 + "secs ");  

  }  



54 
 

  catch(Exception e) { 

   e.printStackTrace(); 

  } 

 } 

 

 public static String getMD5HashVal(String strToBeEncrypted) { 

  String encryptedString = null, str = "", encryptedString1 = null; 

  String DES_ENCRYPTION_KEY = "12345677"; 

  StringBuilder sb = new StringBuilder(); 

  byte[] bytesToBeEncrypted; 

  try { 

   for (int i =0; i < strToBeEncrypted.length(); i+=8) 

   { 

    int end_limit = i +7; 

    if (strToBeEncrypted.length() < end_limit) 

    { 

     end_limit  = strToBeEncrypted.length(); 

    } 

    bytesToBeEncrypted = 

strToBeEncrypted.substring(i,end_limit).getBytes("UTF-8"); 

    MessageDigest md = MessageDigest.getInstance("MD5"); 



55 
 

    byte[] theDigest = md.digest(bytesToBeEncrypted); 

    Formatter formatter = new Formatter(); 

    for (byte b : theDigest) { 

     formatter.format("%02x", b); 

    } 

    encryptedString = formatter.toString().toLowerCase(); 

    String encryptedMD5 = 

Cryptography.encrypt(encryptedString, DES_ENCRYPTION_KEY); 

    sb.append(encryptedMD5); 

   } 

   bytesToBeEncrypted = sb.toString().getBytes("UTF-8"); 

   MessageDigest md1 = MessageDigest.getInstance("MD5"); 

   byte[] theDigest1 = md1.digest(bytesToBeEncrypted); 

   Formatter formatter1 = new Formatter(); 

   for (byte b : theDigest1) { 

    formatter1.format("%02x", b); 

   } 

   encryptedString1 = formatter1.toString().toLowerCase();   

  }  

  catch (Exception e) { 

   e.printStackTrace(); 



56 
 

  } 

  return encryptedString1; 

 } 

} 

 

TEST PROPOSED.JAVA 

import java.io.*; 

import java.util.*; 

import java.security.MessageDigest; 

import java.security.NoSuchAlgorithmException; 

import java.util.Formatter; 

import java.util.Scanner; 

import java.util.logging.Level; 

import java.util.logging.Logger; 

 

public class Proposed { 

 public static void main(String[] args) { 

  try { 

   Scanner user_input = new Scanner( System.in ); 

   System.out.println("Press 1 if you want to enter text, Press 2 for 

entering a file path"); 



57 
 

   String option = user_input.nextLine(); 

   String s, text = ""; // user text 

   if (option.equals("1")) { 

    System.out.println("Enter text to hash"); 

    text = user_input.nextLine(); 

   }  

   else if (option.equals("2"))  

   { // file path 

    System.out.println("Enter file path"); 

    BufferedReader in = new BufferedReader(new 

FileReader(user_input.nextLine())); 

    while ((s = in.readLine()) != null) { 

     text = text + s; 

    } 

    in.close(); 

   }  

   else { 

    System.out.println("Invalid input. Exit"); 

    System.exit(0); 

   }   

   long startTime = System.nanoTime(); 



58 
 

   System.out.println("Data length is "+text.length()); 

   System.out.println("Encrypted key:\n "+getMD5HashVal(text)); 

   long endTime = System.nanoTime(); 

   System.out.println("Computation took "+(endTime -

startTime)/1000000000.0 + " seconds");  

  }  

  catch(Exception e) { 

   e.printStackTrace(); 

  } 

 } 

 

 public static String getMD5HashVal(String strToBeEncrypted) { 

   

  String encryptedString = null; 

  String DES_ENCRYPTION_KEY = "12345677"; 

  MessageDigest md = null; 

  try { 

   md = MessageDigest.getInstance("MD5"); 

  }  

  catch (NoSuchAlgorithmException ex) { 

   //Logger.getLogger(Md5des.class.getName()).log(Level.SEVERE, 

null, ex); 



59 
 

   ex.printStackTrace(); 

  } 

  StringBuilder sb = new StringBuilder(); 

  byte[] bytesToBeEncrypted; 

  try { 

   for (int i =0; i < strToBeEncrypted.length(); i++) { 

    bytesToBeEncrypted = 

Character.toString(strToBeEncrypted.charAt(i)).getBytes("UTF-8"); 

    //This contains 128 bits 

    byte[] bits_128 = md.digest(bytesToBeEncrypted);  

     

    Formatter str64BitsFormatter1 = new Formatter(); 

    // 64 bits in first string  

    for (int k=0; k < 8; k++) { 

     str64BitsFormatter1.format("%02x", bits_128[k]); 

    } 

    String desString1 = 

str64BitsFormatter1.toString().toLowerCase(); 

    //Applying encryption on first half 

    String encryptedMD51 = Cryptography.encrypt(desString1, 

DES_ENCRYPTION_KEY); 

     



60 
 

    Formatter str64BitsFormatter2 = new Formatter(); 

    // 64 bits in second string  

    for (int j=8; j < 15; j++) { 

     str64BitsFormatter2.format("%02x", bits_128[j]); 

    } 

    String desString2 = 

str64BitsFormatter2.toString().toLowerCase(); 

    //Applying encryption on second half 

    String encryptedMD52 = Cryptography.encrypt(desString2, 

DES_ENCRYPTION_KEY);         

     

    //Combining the two DES Strings 

    String combined = encryptedMD51 + encryptedMD52; 

    //Feeding that input to hashloop again 

    md.update(combined.getBytes()); 

   } 

    

   byte[] finalDigest = md.digest(); 

   Formatter finalFormatter = new Formatter(); 

   for (byte b : finalDigest) { 

    finalFormatter.format("%02x",b); 

   } 



61 
 

   encryptedString = finalFormatter.toString().toLowerCase();   

  }  

  catch (Exception e) { 

   e.printStackTrace(); 

  } 

  return encryptedString; 

 } 

} 

 

 


