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ABSTRACT 

 

Multiple sequence alignment (MSA) is an important problem in molecular biology. 

Biological sequences are aligned with each other vertically to show possible similarities 

or differences among these sequences. To solve an MSA problem is to find an alignment 

of multiple sequences with the highest score based on a given scoring criterion among 

sequences. Dynamic programming algorithms like Needleman-Wunch and Smith-

Waterman produce accurate alignments but these algorithms are computation intensive, 

computational complexity of O(n
2
) and are limited to a small number of short sequences. 

Similarly multiple sequence alignment that processes the sequences one by one, called 

star alignment, takes time until O(k
2
n

2
). However the computation result still has high 

accuracy. Consequently, it is very important to get a better way to improve the 

performance. To achieve this, a MapReduce model of star alignment is designed and 

implemented that executes in parallel on a hadoop clusters. Since hadoop already handles 

work/job dispatching and work balance among distributed worker nodes, we need note 

handle node failure and load balancing required with the traditional distributed 

computing. The experimental result shows that the MapReduce model of star alignment 

improve the execution time by 3 times with 8 physical nodes than single node with 

datasets size greater than 1 GB. 

 

Keywords: Bioinformatics, Multiple Sequence Alignment, Needleman-wunch, Star 

Alignment, Parallelization, Hadoop, MapReduce. 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

TABLE OF CONTENTS 

 

COPYRIGHT ..................................................................................................................... iii 

RECOMMENDATION ..................................................................................................... iv 

DEPARTMENTAL ACCEPTANCE ..................................................................................v 

ACKNOWLEDGEMENT ................................................................................................. vi 

ABSTRACT ...................................................................................................................... vii 

TABLE OF CONTENTS ................................................................................................. viii 

LIST OF FIGURES ........................................................................................................... xi 

LIST OF TABLES ............................................................................................................ xii 

LIST OF ABBREVIATIONS .......................................................................................... xiii 

CHAPTER 1: INTRODUCTION ..................................................................................1 

1.1 Background .......................................................................................................... 1 

1.2 Problem Statement ............................................................................................... 3 

1.3 Objective .............................................................................................................. 3 

1.4 Scope of work....................................................................................................... 3 

1.5 Organization of the Thesis ................................................................................... 4 

CHAPTER 2: LITERATURE REVIEW .......................................................................5 

2.1 Needleman Wunsch Algorithm ............................................................................ 5 

2.2 Smith Waterman Algorithm ................................................................................. 6 

2.3 Star Alignment Algorithm .................................................................................... 6 

CHAPTER 3: THEORETICAL BACKGROUND .......................................................7 

3.1 DNA ..................................................................................................................... 7 

3.2 MapReduce........................................................................................................... 7 

3.2.1 Execution Overview.......................................................................................8 



ix 

 

3.3 Hadoop ............................................................................................................... 10 

3.4 Sequence Fundamentals ..................................................................................... 11 

3.4.1 Alignment ....................................................................................................11 

3.4.2 Sequence Alignment ....................................................................................11 

3.4.3 Multiple Sequence Alignment .....................................................................11 

3.4.4 Gaps .............................................................................................................12 

3.4.5 Substitution Matrix ......................................................................................12 

CHAPTER 4: METHODOLOGY ...............................................................................14 

4.1 Pairwise Sequence Alignment ............................................................................ 14 

4.2 Star Alignment ................................................................................................... 16 

4.3 Parallel Implementation ..................................................................................... 18 

4.4 Data Collection ................................................................................................... 21 

CHAPTER 5: RESULT AND DISCUSSION .............................................................22 

5.1 Test Environment ............................................................................................... 22 

5.2 Verification of Result ......................................................................................... 22 

5.3 Execution Time Analysis ................................................................................... 24 

5.3.1 Varying number of sequences of same size .................................................24 

5.3.2 Varying number of nodes.............................................................................26 

5.4 Sample output ..................................................................................................... 29 

5.4.1 Job tracker window ......................................................................................29 

5.4.2 First stage of Map Reduce ...........................................................................30 

5.4.3 Second Stage of Map Reduce ......................................................................30 

5.4.4 Datanode Information ..................................................................................31 

5.4.5 Progress of Map Reduce ..............................................................................31 

5.5 Result Summary ................................................................................................. 32 



x 

 

CHAPTER 6: CONCLUSION AND FUTURE WORK .............................................33 

6.1 Conclusion .......................................................................................................... 33 

6.2 Limitation ........................................................................................................... 33 

6.3 Future Work ....................................................................................................... 34 

REFERENCES: .................................................................................................................35 

 



xi 

 

LIST OF FIGURES 

 

Figure 3.1: Structure of DNA Sequence [13] ..................................................................... 7 

Figure 3.2: MapReduce Execution overview [7] ................................................................ 9 

Figure 3.3: Example of a multiple sequence alignment .................................................... 12 

Figure 4.1: Pair-wise sequence alignment using Needleman-Wunsch ............................. 14 

Figure 4.2: Backtrack matrix traverse flow ...................................................................... 16 

Figure 4.3: Flowchart of Star Alignment Algorithm ........................................................ 17 

Figure 4.4: Map Reduce model of star alignment algorithm ............................................ 19 

Figure 4.5: The input and output of map function in the first stage ................................. 20 

Figure 4.6: The input and output of map function in the second stage ............................. 21 

Figure 5.1: Multiple sequence alignment result of data set RefSeqtest.fasta by using 

ClustalW ........................................................................................................................... 23 

Figure 5.2: Multiple sequence alignment result of data set RefSeqtest.fasta by using 

MapReduce model ............................................................................................................ 23 

Figure 5.3: Execution time of sequential and parallel algorithm varying the number of 

sequences with each sequence average length 1442 bp. ................................................... 25 

Figure 5.4: Execution time (in seconds) of sequential and parallel algorithms with 

varying number of sequences of average sequence length 8200 bp. ................................ 26 

Figure 5.5: Execution time (in minutes) with varying sequence file size (102 MB to 1457 

MB) in one, two, three and four nodes. ............................................................................ 27 

Figure 5.6: Execution time (in minutes) with varying sequence file size (102 MB to 1457 

MB) in four, six and eight nodes ...................................................................................... 29 

Figure 5.7: All application shown in job tracker window ................................................ 29 

Figure 5.8: Status of first stage of map reduce ................................................................. 30 

Figure 5.9: Status of second stage of map reduce ............................................................. 30 

Figure 5.10: Datanode information accessed from master node while running jobs........ 31 

Figure 5.11: Progress of map reduce job shown in console ............................................. 31 

  



xii 

 

LIST OF TABLES 

 

Table 3.1: Identity score matrix ........................................................................................ 13 

Table 5.1: Hardware of each node .................................................................................... 22 

Table 5.2: Software and Hadoop configuration of each node .......................................... 22 

Table 5.3: Execution time of sequential and parallel algorithm varying the number of 

sequences with each sequence average length 1442 bp. ................................................... 24 

Table 5.4: Execution time (in seconds) of sequential and parallel algorithms with varying 

number of sequences of average sequence length 8200 bp. ............................................. 25 

Table 5.5: Execution time (in minutes) with varying sequence file size (102 MB to 1457 

MB) in one, two, three and four nodes. ............................................................................ 27 

Table 5.6: Execution time (in minutes) with varying sequence file size (102 MB to 1457 

MB) in four, six and eight nodes ...................................................................................... 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

LIST OF ABBREVIATIONS 

 

DNA   Deoxyribonucleic Acid 

RNA   Ribonucleic Acid 

MSA   Multiple Sequence Alignment 

PAM    Point Accepted Matrix 

BLOSUM                   Blocks Substitution Matrix 

DP   Dynamic Programming 

HDFS   Hadoop Distributed File System 

VM   Virtual Machine 

BLAST  Basic Local Alignment Search Tool



1 

 

CHAPTER 1: INTRODUCTION 

1.1 Background 

Life on earth originated and then evolved from a universal common ancestor 

approximately 3.8 billion years ago. Repeated specification and the divergence of life 

have occurred throughout this time due to shared sets of biological and morphological 

traits, or by the shared DNA sequences [1]. In bioinformatics, sequence alignment deals 

with the comparison of two or more Deoxyribonucleic Acid (DNA), Ribonucleic Acid 

(RNA) and protein sequences with each other. The comparison aims to identify regions 

of similarity that may be a consequence of functional, structural, or evolutionary 

relationships between the sequences. 

 

All life on earth contains DNA and many believe that all life originate from the same 

DNA (or at least RNA, Walter Gilbert). That is, all DNA have a common ancestor, 

meaning that at some point back in time, it is believed that there was a single (very basic) 

life form, from which all life known today has evolved. DNA is made of ribose 

molecules with one of the four nucleic acids; Guanine (G), Cytosine (C), Adenine (A) or 

Thymine (T) attached.  

 

Multiple sequence alignment (MSA), the simultaneous alignment among three or more 

nucleotide or amino acid sequences, is one of the most essential tools in molecular 

biology. Sequence alignments are used to help demonstrate homology between new and 

existing sequences, to suggest primers for polymerase chain reaction, and to predict the 

secondary or tertiary structure of RNA and proteins [2]. Therefore, the development of 

efficient and accurate automatic methods for multiple sequence alignments is a very 

important research topic. Sequence alignment is the arrangement of two or more 

sequences of “residues” that maximizes the similarities between them. In order for a 

multiple alignment to be meaningful in this context, all sequences in the multiple 

alignment must have a common origin. The goal of multiple sequence alignment is to 

align sequences according to their evolutionary relationships. 



 

2 

 

MSA is important because it reconstructs phylogenetic trees, which in turn predict the 

function of an unknown protein by aligning its sequences with some other known 

functions. The various match, mismatch, and gap (“-”) events then represent possible 

reconstructions of the evolution of those related sequences. If a sequence alignment 

occurs between two sequences, then it is called a pairwise alignment [3], [4] and the main 

goal is to find the similar or closely related parts between two sequences. If the alignment 

involves more than two sequences, then it is called a multiple sequence alignment and the 

main goal is to find the consensus parts among the sequences. For small lengths and 

small numbers of sequences, it is possible to create the alignment manually. However, 

efficient algorithms to align such sequences are essential for alignments with more than 

eight sequences. 

 

MSA problems are solved using several different methods, such as classical, progressive, 

and iterative algorithms. These algorithms follow either global or local alignment 

strategies. In global alignments, sequences are aligned over their whole length. By 

contrast, local alignments identify regions of similarity within a sub sequence [5]. Local 

alignments are often preferable, but can be more difficult because of the additional 

challenge of identifying the regions of similarity. A general global alignment technique is 

the Needleman–Wunsch algorithm [3], which is based on dynamic programming. The 

Smith–Waterman algorithm [4] is a general local alignment method which is also based 

on dynamic programming. The dynamic programming (DP) approach is good at finding 

the optimal alignment for two sequences. However, the complexity of this method grows 

significantly for three or more sequences. 

 

Star Alignment method to perform multiple sequence alignment. In this method, 

sequences S1-Sk, S2-Sk, S3-Sk, …, Sk-1-Sk are compared one by one in which they will be 

pair-wise alignment [6]. In simple terms, the complexity of Star alignment algorithm is 

quite high which is O(k
2
 n

2
). To reduce the execution time significantly, it needs to 

modify the Star Alignment algorithm by implementing parallel programming using Map 

Reduce model of Hadoop. Hadoop [7] is one of the most popular distributed processing 

framework/systems in recent years. It provides the Map Reduce programming model and 
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an associated implementation for processing large data sets in parallel, using a cluster of 

nodes.  

 

1.2 Problem Statement 

Pair-wise sequence alignment is a technique of comparing the similarity of two 

organisms. It is the basic technique in DNA sequence alignment. There is an 

extraordinary number of data sequences when they are compared. Problems when 

comparing the huge data sequences are accuracy and efficiency. Dynamic programming 

models like Needleman-Wunsch and Smith-Waterman produce accurate alignments, but 

these algorithms are high computational complexity. Similarly, multiple sequence 

alignment that processes the sequences one by one, called Star Alignment, takes time 

until O(k
2
n

2
) [6]. Therefore, they have a timing issue problem while processing the data. 

However, the computation result still has high accuracy. Consequently, it is very 

important to get a better way to improve the performance. This can be done by using 

parallelization methodology of Map and Reduce framework. 

 

1.3 Objective 

The objective of the thesis is to develop a MapReduce model of star alignment algorithm 

for multiple sequence alignment. 

 

1.4 Scope of work 

The scope of this thesis work is to develop a MapReduce model of star alignment 

algorithm for multiple sequence alignment. The main applications of sequence 

alignments have included phylogenetic tree reconstruction, Protein family prediction, and 

pattern identification. 
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1.5 Organization of the Thesis 

The list below presents the organization of the chapters which make up this thesis. Also 

given is a brief description of the topics each chapter’s deals with. 

 Chapter 2 covers the necessary background relating to previous work done and 

general introduction of Needleman-Winch and star alignment algorithms.  

 Chapter 3 includes a theoretical basis on DNA, MapReduce, Hadoop and 

sequence alignment, building blocks, concepts, uses and current alignment 

methods and substitution matrixes.  

 Chapter 4 covers the methodologies, system model, algorithms used, and datasets 

used in evaluation of the model. 

 Chapter 5 provides the test environment, experimental results, and execution time 

analysis and sample outputs. 

 Chapter 6 provides summary of the works and future work.  

. 
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CHAPTER 2: LITERATURE REVIEW 

 

Efficient sequence alignment is one of the most important and challenging activities in 

bioinformatics. Many algorithms have been proposed previously to perform sequence 

alignment activities. Dynamic Programming (DP) algorithms such as Needleman-Wunsch 

[3] and Smith-Waterman [4] produce accurate scores. However, these algorithms are 

demand high computational power. The progressive approximation method implemented 

in ClustalW [8]. Progressive MSA aligns the closest sequences first and successively adds 

in more distant ones. This method is very fast and straightforward but it can easily get 

caught in local minima. This is because; once a sequence has been aligned it cannot be 

modified again, even if it is suboptimal when other sequences are subsequently aligned. A 

time efficient approach to sequence alignment that coupled with data and computational 

parallelism of hadoop data grids improves the accuracy and speed of sequence alignment 

[9]. Genomic analysis usually includes a pipeline of three stages: sequence alignment, data 

conversion, and advanced analysis. Parallelizing genomic analysis is not a simple task. A 

distributed analysis pipeline is designed and implemented that executes the pipeline in 

parallel on a hadoop cluster (physical machines or VM nodes) [10]. The healthcare 

applications can scale well on commercial big data platforms that implement MapReduce 

framework [11]. Cloud computing and MapReduce framework play an important role in 

bioinformatics intensive application in achieving parallelization since it provides a 

consistent performance over time and it provides good fault tolerant mechanism [12]. 

 

2.1 Needleman Wunsch Algorithm 

The Needleman–Wunsch algorithm performs a global alignment of two sequences. It is 

commonly used in bioinformatics to align protein or nucleotide sequences. The algorithm 

was published in 1970 by Saul B. Needleman and Christian D. Wunsch [3]. The 

Needleman–Wunsch algorithm is an example of dynamic programming and was the first 

application of dynamic programming to biological sequence comparison. It is sometimes 

referred to as the optimal matching algorithm. This global sequence alignment method 

explores all possible alignments and chooses the best one (the optimal global alignment). 
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It does this by reading in a scoring matrix and a gap penalty (penalties) that contains 

values for every possible residue or nucleotide match and summing the matches taken 

from the scoring matrix. 

 

2.2 Smith Waterman Algorithm 

The Smith–Waterman [4] algorithm performs local sequence alignment; that is, for 

determining similar regions between two strings or nucleotide or protein sequences. 

Instead of looking at the total sequence, the Smith–Waterman algorithm compares 

segments of all possible lengths and optimizes the similarity measure.  

 

The algorithm was first proposed by Temple F. Smith and Michael S. Waterman in 1981. 

Like the Needleman–Wunsch algorithm, of which it is a variation, Smith–Waterman is a 

dynamic programming algorithm. As such, it has the desirable property that it is 

guaranteed to find the optimal local alignment with respect to the scoring system being 

used (which includes the substitution matrix and the gap-scoring scheme). The main 

difference to the Needleman–Wunsch algorithm is that negative scoring matrix cells are 

set to zero, which renders the (thus positively scoring) local alignments visible. 

Backtracking starts at the highest scoring matrix cell and proceeds until a cell with score 

zero is encountered, yielding the highest scoring local alignment. 

2.3 Star Alignment Algorithm 

Multiple sequence alignment that processes the sequences one by one, called star 

alignment. Each sequence is compared one by one in pairs by performing pair-wise 

alignment using Needleman-Wunch algorithm. The star alignment algorithm runs faster, 

and it is therefore suitable for the MSA of similar DNA sequences [6]. The main 

approach underlying the star alignment is to transform MSA into pairwise alignment 

based on center sequence. This center sequence is selected and other sequences are 

pairwise aligned to the center sequence. Then, all of the inserted spaces are summed to 

obtain the final MSA result. 
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CHAPTER 3: THEORETICAL BACKGROUND 

3.1 DNA 

Deoxyribonucleic acid (DNA) is a molecule that encodes the genetic instructions used in 

the development and functioning of all known living organisms and many viruses. Along 

with RNA and proteins, DNA is one of the four major macromolecules essential for all 

known forms of life. Most DNA molecules are double-stranded helices, consisting of two 

long biopolymers of simpler units called nucleotides. Each nucleotide is composed of a 

nucleobase (guanine, adenine, thymine, and cytosine), recorded using the letters G, A, T, 

and C, as well as a backbone made of alternating sugars (deoxyri-bose) and phosphate 

groups (related to phosphoric acid), with the nucleobases (G, A, T,C) attached to the 

sugars. DNA is well-suited for biological information storage, since the DNA backbone 

is resistant to cleavage and the double-stranded structure provides the molecule with a 

built-in duplicate of the encoded information. 

 

Figure 3.1: Structure of DNA Sequence [13] 

 

3.2 MapReduce 

MapReduce [14] is a programming model and an associated implementation for 

processing and generating large data sets. Users specify a map function that processes a 

key/value pair to generate a set of intermediate key/value pairs and a reduce function that 

merges all intermediate values associated with the same intermediate key. Programs 
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written in this functional style are automatically parallelized and executed on a large 

cluster of commodity machines. The run-time system takes care of the details of 

partitioning the input data, scheduling the program’s execution across a set of machines, 

handling machine failures and managing the required inter-machine communication. This 

allows programmers without any experience with parallel and distributed systems to 

easily utilize the resources of a large distributed system. A typical MapReduce com-

putation processes many terabytes of data on thousands of machines. Programmers find 

the system easy to use: hundreds of MapReduce programs have been implemented and 

upwards of one thousand MapReduce jobs are executed on Googles clusters every day. 

MapReduce provides an abstraction that involves the programmer defining a “mapper” 

and a “reducer,” with the following signatures:  

 

 Map: (key1, value1) → list (key2, value2)  

 Reduce: (key2, list (value2)) → list (key3, value3).  

 

3.2.1 Execution Overview 

The Map invocations are distributed across multiple machines by automatically 

partitioning the input data into a set of M splits. The input splits can be processed in 

parallel by different machines. Reduce invocations are distributed by partitioning the 

intermediate key space into R pieces using a partitioning function (e.g., hash (key) mod 

R). The number of partitions (R) and the partitioning function is specified by the user.  
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Figure 3.2: MapReduce Execution overview [7] 

 

Figure 3.2 shows the overall flow of a MapReduce operation in the implementation. 

When the user program calls the MapReduce function, the following sequence of actions 

occurs (the numbered labels in Figure 3.2 correspond to the numbers in the list below): 

 

1. The MapReduce library in the user program first splits the input files into M 

pieces of typically 16 megabytes to 128 megabytes (MB) per piece (controllable 

by the user via an optional parameter). It then starts up many copies of the 

program on a cluster of machines. 

2. One of the copies of the program is special the master. The rest are workers that 

are assigned work by the master. There are M map tasks and R reduce tasks to 

assign. The master picks idle workers and assigns each one a map task or a reduce 

task. 

3. A worker who is assigned a map task reads the contents of the corresponding 

input split. It parses key/value pairs out of the input data and passes each pair to 

the user-defined Map function. The intermediate key/value pairs produced by the 

Map function are buffered in memory.  
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4. Periodically, the buffered pairs are written to local disk, partitioned into R regions 

by the partitioning function. The locations of these buffered pairs on the local disk 

are passed back to the master, who is responsible for forwarding these locations to 

the reduce workers.  

5. When a reduce worker is notified by the master about these locations, it uses 

remote procedure calls to read the buffered data from the local disks of the map 

workers. When a reduce worker has read all intermediate data, it sorts it by the 

intermediate keys so that all occurrences of the same key are grouped together. 

The sorting is needed because typically many different keys map to the same 

reduce task. If the amount of intermediate data is too large to fit in memory, an 

external sort is used.  

6. The reduce worker iterates over the sorted intermediate data and for each unique 

intermediate key encountered, it passes the key and the corresponding set of 

intermediate values to the users Reduce function. The output of the Reduce 

function is appended to a final output file for this reduce partition.  

7. When all map tasks and reduce tasks have been completed, the master wakes up 

the user program. At this point, the MapReduce call in the user program returns 

back to the user code.  

After successful completion, the output of the mapreduce execution is available in the R 

output files (one per reduce task, with file names as specified by the user). Typically, 

users do not need to combine these R output files into one file they often pass these files 

as input to another MapReduce call, or use them from another distributed application that 

is able to deal with input that is partitioned into multiple files. 

 

3.3 Hadoop 

Hadoop [7] is a popular open source implementation of MapReduce, which is a powerful 

tool designed for deep analysis and transformation of very large datasets which is 

inspired by Google’s MapReduce and Google File System. It enables applications to 

work with thousands of nodes and petabytes of data.  
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Hadoop uses a distributed file system called Hadoop Distributed File System (HDFS), 

which creates multiple replicas of data blocks and distributes them on computer nodes 

throughout a cluster to enable reliability and has extremely rapid computations to store 

data as well as the intermediate results. The Hadoop runtime system coupled with HDFS 

manages the details of parallelism and concurrency to provide ease of parallel 

programming with reinforced reliability. In a Hadoop cluster, a master node controls a 

group of slave nodes on which the Map and Reduce functions run in parallel. 

 

3.4 Sequence Fundamentals 

3.4.1 Alignment 

The arrangement of two or more biological sequences in such a way that tells us at what 

point the sequences are similar and at what point they differ is known as alignment. An 

alignment is said to be the optimal one, if it has more similar sequences as compared to 

dissimilar sequences. 

3.4.2 Sequence Alignment 

Sequence alignment is a way of arranging the biological sequences so as to identify the 

region of similarity that may be a result of structural, functional, or evolutionary 

relationships between the sequences. In bioinformatics, the aligned sequences of DNA, 

RNA, or Protein are represented inside the matrix, in the form of rows. Gaps are inserted 

at some point in the sequences to achieve maximum similar character in a column. It aims 

to infer clues about the unknown sequence by inferring biological characteristics of the 

matched sequence. One of the most challenging tasks in sequence alignment is its 

repetitive and time-consuming alignment matrix computations. 

3.4.3 Multiple Sequence Alignment 

By referring to Figure 1, we can define multiple sequence alignment (MSA) as the 

optimal alignment technique of three or more sequences with or without inserting gaps. It 

plays an important role in sequence analysis and can also be used to judge and identify 
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the similarity between DNA, RNA or protein sequences. With these features, MSA is 

proved as an important tool for prediction of function and/or structure of an unknown 

protein sequences. 

 

ATACGAT---------CTACG----GATGAAAGCGGGGGACCTTCGGGCCT---CGCGCT 

ATACGCC---------CTACG----GGGGAAAGCAGGGGACCTTCGGGCCT---TGCGCG 

ATAGAATTTAGTACCTCTACGAGGTGAGGTAGGCTGAGGAGCAAAAGGGAGGAATCCGCC 

ATATTATGCTG----CCTGGATAACCAGGCTGCATCAAAGGCGGCTTTTTGCC-TCCGCT 

ATATGTGACGGA---CCTGCATGGGTA--CCGTCTGGAAAG----TTTTT------CGGT 

 

Figure 3.3: Example of a multiple sequence alignment 

 

An MSA can be obtained by inserting gaps “-” at proper places such that no column in 

the sequences contains only gap character. Insertion of gaps will result in equal length 

sequences in the resulting alignment. 

3.4.4 Gaps 

In order to have the best resulting alignment, gaps are permitted within the sequences 

along with a user defined mechanism for penalizing these gaps. Gaps are inserted 

between the residues so that identical or similar characters are aligned in successive 

columns. 

 

The values of gap penalties depend on the choice of matrix such as the PAM250, 

PAM350 or the Substitution matrices such as BLOSUM which are used for sequence 

alignment of proteins. A Substitution matrix assigns a score for aligning any possible pair 

of residues and must balance their values. Adopting a high gap plenty scheme will restrict 

the appearance of gaps within the alignment. On the other hand, a too low gap plenty 

scheme will allow the gaps to appear everywhere in the alignment. 

3.4.5 Substitution Matrix 

In case of matching DNA sequences, the substitution matrix is simple. It is either 1 or 0 

depending on whether a match occurred or not. If there is a perfect match, which is ‘A’ 

aligns with ‘A’, ‘G’ aligns with ‘G’, and so on. In this case, the substitution matrix for 

DNA matching can be written as follows. (It is called identity matrix): 
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Table 3.1: Identity score matrix 

 

 A G C T 

A 1 0 0 0 

G 0 1 0 0 

C 0 0 1 0 

T 0 0 0 1 

     

Table 3.1 shows the identity score matrix. This matrix has been used for the alignment of 

DNA sequences and also used for calculation of sum of pair score of the aligned 

sequences in this thesis. For protein sequence alignment, because the alphabet size 

increases from 4 to 20 and also because the scoring scheme of 1 for a match and 0 for a 

mismatch is not enough, the score matrix becomes more complicated. A substitution 

matrix describes the likelihood that two residue types would mutate to each other in 

evolutionary time. This is used to estimate how well two residues of given types match 

when they are aligned in a sequence alignment. There are many substitution matrices, 

such as PAM (Percent Accepted Mutations or Point Accepted Mutations), BLOSUM 

(BLOcks Substitution Matrix), etc. 
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CHAPTER 4: METHODOLOGY 

 

The main approach underlying the star alignment algorithm is to transform MSA into 

pairwise alignment based on a “centre sequence”. This centre sequence is selected, and 

other sequences are pairwise aligned to the centre sequence. Then, all of the inserted 

spaces are summed to obtain the final MSA result.  

4.1 Pairwise Sequence Alignment 

The sequence alignment DNA using Needleman-Wunsch was introduced in 1970. This 

algorithm employs an iterative matrix which is represented in a two-dimensional array for 

finding the best score of pair-wise alignment of two sequences. It has complexity of O(n
2
). 

The formula for calculating score is defined as follow [3]:  

               

                                          

                   

                  

     (4.1) 

 

There are four steps in a pair-wise sequence alignment algorithm.  They are the 

initialization step, the matrix filling step, the backtracking matrix constructing step, and 

the alignment obtaining step. 

Input Sequences
S1:ACTG
S1:CATG
S3:CGTA

Score Matrix 
Initialization

Score Matrix 
Filling

Backtrack 
Matrix

Construct

Alignment
Obtaining

Aligned Sequences
S1:AC-TG
S2:-CATG
S3:-CGTA

 

Figure 4.1: Pair-wise sequence alignment using Needleman-Wunsch 
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In the score initialization step the first row and the first column are filled with decrements 

of the gap score.  Score matrix initialization and construction is done using Algorithm 4.1 

[13].   

 

Aligning sequences sa and sb of length m and n, respectively, with linear gap penalty. 

Here F is score matrix of dimensions n, m and d is the gap penalty. 

         begin 

 initialization:   

                      F(0, 0) = 0  

                      for i=0 to m do 

  F(0, i) = −i * d  

                      end 

                      for j=0 to n do 

                           F(j, 0) = −j* d  

         end 

 matrix fill: 

                     for i=1 to n do 

for j=1 to m do 

         F(I, j) = max { F(i-1,j-1)+ s(x, y), F(i-1,j) – d, F(i,j-1) – d }  

              end 

                     end 

 end 

 

Algorithm 4.1:  Score Matrix Initialization and Construction  

 

Backtrack matrix is constructed using Algorithm 4.2. Aligning sequences sa and sb of 

length m and n, respectively, with linear gap penalty [13]. 

begin 

for i := 1 to n do 

     for j := 1 to m do 

          UP_Value = F(i – 1, j) 

          Left_Value = F(i, j – 1) 

          UP_Left_Value = F(i –1,  j – 1) 

          if (s
j
a := s

j
b) do 

               BM(i, j) = '*' 

          else 

               if (Left_Value >= U_Value) do 

                    if (Left_Value + gap_penalty >= UP_Left_Value + Mismatch) do 

                         fill BM(i, j) with '–' 

                    else 

                         fill BM(i, j) with '*' 
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                    end 

               else 

                    if (UP_Value + gap_penalty >= UP_Left_Value + Mismatch) do 

                         fill BM(i, j) with '#' 

                    else 

                         fill BM(i, j) with '*' 

                    end 

               end 

          end 

     end 

end 

end 

Algorithm 4.2:   Backtrack Matrix Construction Algorithm 

 

Final alignment process starts from the lower right corner cell and records sequences from 

right to left as shown in figure 4.2. 

 

Figure 4.2: Backtrack matrix traverse flow 

 

Above figure shows how to choose the next cell path to obtain an alignment step. If cell 

(i, j) is “*”, choose path 2. If cell (i, j) is “-”, choose path 1. If cell (i, j) is “#”, choose 

path 3 [13].  

 

4.2 Star Alignment 

In Star Alignment, each sequence from S1 to Sk was compared one by one in pairs by 

performing pair-wise alignment using Needleman-Wunsch algorithm. Number of pairs of 

sequences can be calculated by the following combination of sequence: 

                                        (4.2) 
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After getting the score of each pair, then the center star was chosen. Selection of the star 

center has its own mechanism considering each star center candidate sequence has a 

different sequence alignment results. In the flowchart [6] below, if Sc has the highest 

score with longest string then it becomes center star sequence. 

 

start

Input until k 

sequences

Choose one sequence  as 

candidate center star(Sc) 

Pair wise alignment between sc-s1

Pair wise alignment between sc-s2

Pair wise alignment between sc-s3

……

Pair wise alignment between sc-sk

Choose Sc with longest string

Pair wise alignment between sc-s1

Pair wise alignment between sc-s2

Pair wise alignment between sc-s3

……

Pair wise alignment between sc-sk

End

Choose Sc with longest string

   Join Sc with result of 

Pair wise alignment between sc-s1

Pair wise alignment between sc-s2

Pair wise alignment between sc-s3

……

Pair wise alignment between sc-sk

 

Figure 4.3: Flowchart of Star Alignment Algorithm 

 

Next, every input sequence was aligned with the center star (Sc sequence). This process 

generated a new Sc. This Sc was then aligned with the next input sequence until the last 

sequence. The purpose of that process is to get the highest score representing the 

similarity between Sc and the other sequences. The complexity of this process is O(2k 

n
2
). Overall complexity using star alignment can be calculated by [6]:  

       (4.3) 
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4.3 Parallel Implementation 

The map reduce model of star alignment algorithm is outline in figure 4.4.  The map 

reduce parallel framework is employed in two stages. In the first stage candidate center 

star sequence is chosen, and pairwise alignment between candidate center start and other 

sequences are done. In the second stage final center start sequence is chosen and pairwise 

alignment between center star and other sequences are done.  
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Figure 4.4: Map Reduce model of star alignment algorithm 

 

Entries in Map Reduce are recorded with a (key, value) format. Key is denoted as the 

sequence name and value as the DNA sequence. All of the input sequences are formatted 

as (key, value) pairs for hadoop. In the first stage of the Map function, the data file is 

automatically divided into several split files, which size is default block size of HDFS 

(128 MB for Hadoop 2.7.3 version). These split files are sent to different data nodes and 

aligned to the centre sequence in parallel. After alignment, the centre sequence and the 

sequence in the split file are updated with inserted spaces. They are still recorded with a 

(key, value) format, where the key is the sequence name and the value is the two updated 

aligned sequences. The flow of the map function is shown in Fig. 4.5 and Algorithm 4.3. 

Then, the output (key, value) pairs reach the Reduce stage. 

 

In the first stage of the Reduce function, the data are note processed and are output to the 

HDFS file system directly. Then, the data are collected from the HDFS file system on a 

local computer, and the aligned centre sequences are extracted and collected. For the k 

aligned sequences, maximum spaces between every two neighboring characters are 

counted. The maximum spaces are retained for the final centre sequence. 



 

20 

 

                         Key                 Value 

 

Key                 Value      

 

 

 

 

 

  

 

 

 

 

Figure 4.5: The input and output of map function in the first stage 

 

Algorithm 4.3.Function Map_1 

For each Map_1( key=sequence_name[i], value=sequence[i]) 

1：for sequence i ← 1 to Data_Size/64 M do 

2：key ← sequence_name[i] 

3：value ←star_alignment_algorithm (center star sequence, sequence[i]); 

4：end for 

 

The second Map-Reduce phase is similar to the first stage. All of the aligned sequences 

from the first stage are aligned again to the Final Centre Sequence. Because the Final 

Centre Sequence has the maximum number of spaces between every character, there will 

be no space inserted into the Final Centre Sequence. Therefore, all of the other sequences 

will be aligned to the same length as the Final Centre Sequence, which will be the final 

alignment result. The input and output of the map function in the second stage are shown 

as figure 4.6:  

 

 

 

 

s[1]_name New_center_sequence[1] \t New_sequence[1] 

s[2]_name New_center_sequence[2] \t New_sequence[2] 

s[3]_name New_center_sequence[3] \t New_sequence[3] s[1]_name s[1]_value 

s[2]_name s[2]_value 

s[3]_name s[3]_value 

s[i]_name s[i]_value 

s[k]_name s[k]_value 

s[i]_name New_center_sequence[i] \t New_sequence[i] 

s[i+1]_name New_center_sequence[i+1] \t New_sequence[i+1] 

s[i+2]_name New_center_sequence[i+2] \t New_sequence[i+2] 

s[k-2]_name New_center_sequence[k-2] \t New_sequence[k-2] 

s[k-1]_name New_center_sequence[k-1] \t New_sequence[k-1] 

s[k]_name New_center_sequence[k] \t New_sequence[k] 

Map

1 
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                                Key                            Value 

 

Key                 Value      

 

 

 

 

 

 

 

 

 

 

Figure 4.6: The input and output of map function in the second stage 

 

4.4 Data Collection 

The sample data is collected from National Center for Biotechnology Information 

(ftp://ftp.ncbi.nlm.nih.gov/genbank) in the FASTA format.  

For example: 

>gi|292493920|ref|NC_013962.1| Candidatus Riesia pediculicola USDA plasmid 

pPAN, complete sequence 

ATAAAATTCCCGTCTTCTAAGGAAGAAGTCCCGAAAGAAAGGGAGAGTAAATGAAAAGGAATTGATTTTTTTTTTTCA

AAAAAAAATGGTCTAACAGGTAAGGGAAATTTGAGGTCATGAAGAAGAATCCTAAGTTAAATACAACTATTGAAGATA

TAAGAATTTGGAAGAAGAACTCTTCAAAGTTTGCTGCTTTAA….. 

 

From the collected data different data sets are prepared, that contains the different 

number of sequences and different size of the sequence file.  

 

 

 

 

 

 

s[1]_name Final_new_sequence[1] 

s[2]_name Final_new_sequence[2] 

s[3]_name Final_new_sequence[3] s[1]_name New_sequence[1] 

s[2]_name New_sequence[2] 

s[3]_name New_sequence[3] 

s[i]_name New_sequence[i] 

s[k]_name New_sequence[k] 

s[i]_name Final_new_sequence[i] 

s[i+1]_name Final_new_sequence[i+1] 

s[i+2]_name Final_new_sequence[i+2] 

s[k-2]_name Final_new_sequence[k-2] 

s[k-1]_name Final_new_sequence[k-1] 

s[k]_name Final_new_sequence[k] 

Map

2 
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CHAPTER 5: RESULT AND DISCUSSION 

 

In this section, the test environment is introduced. The result verification for star 

alignment algorithm (sequential and parallel) with the result of clustalW is done. Finally 

the execution time of the parallel algorithm for different datasets and for different number 

of nodes is shown. The scoring schemes for match column is 1, mismatch column is 0 

and for gap is -1 have been used. These scores are needed in pairwise sequence alignment 

steps. 

5.1 Test Environment 

The system is deployed on Intel core i3 PC with 4 GB RAM and total 4 cores. The test 

environment consists of a total 8 physical nodes hadoop cluster and the hardware 

configuration of each node is shown in Table 5.1. The software and Hadoop 

configuration is shown in Table 5.2. 

 

Table 5.1: Hardware of each node 

 

CPU Intel core i3 / 4 cores @ 3.30 GHz 

Memory 4 GB 

Disk Size 100 GB 

 

Table 5.2: Software and Hadoop configuration of each node 

 

OS Ubuntu 16.04.2 / 32 bit 

Java 1.8.121 version 

Hadoop  2.7.3 version 

 

5.2 Verification of Result 

The correctness of the result is verified by comparing it with the sequential result and it 

seems result of both is same and also it is compared with the result of clustalW by using 

the same input data. The aligned multiples sequences from parallel star algorithm and 

clustalW are shown in Figures 5.1 and 5.2 respectively. An asterisk is used to indicate a 

match column. 
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CLUSTAL 2.1 multiple sequence alignment 

 

Juniperus          --------GGTGTTTCCAGTGGCGAACGGGTGAGTAATG--CGTAAGAACCTGCCCTTGG 

Burkholderia       -----CACCTGGTGGCGAGTGGCGAACGGGTGAGTAATA--CATCGGAACATGTCCTGTA 

Aeromonas          TGCTACTTTTGCCGGCGAGCGGCGGACGGGTGAGTAATG--CCTGGGAAATTGCCCAGTC 

Acetohalobium      -------CAGTTAGTAAAGCGGCGGACGGGTGA-GTAACGCGTGAGTAATCTACCTTTAA 

Janibacter         -------CGAGTGGATCAGTGGCGAACGGGTGAGTACACACGTGAGCAACCTGCCCCAGA 

                                    ** **** ********              **  *  *      

 

Juniperus          GAGGGGAACAACAGCTGGAAACGGTTGCTAATACCCCATAGAATTTAGTACCTCT 

Burkholderia       GTGGGGGATAGCCCGGCGAAAGCCGGATTAATACCGCATACGATCTACGG----- 

Aeromonas          GAGGGGGATAACAGTTGGAAACGACTGCTAATACCGCATACGCCCTACGGGGG-- 

Acetohalobium      GTCTGATATAACTTCTCGAAAGGGAAGCTAATTTCGGATATTATGCTGCCTGGAT 

Janibacter         CTCTGGAATAAGCGCTGGAAACGGCGTCTAATACTGGATATGTGACGGACCTGCA 

                       *  * *       ****       ****     ***                

 

Figure 5.1: Multiple sequence alignment result of data set RefSeqtest.fasta by using 

ClustalW 

 

The clustalW simulation platform is obtained from the web site 

http://www.clustal.org/download/current and it can also be accessed online in 

http://www.ch.org/software/ClustalW.html.  

 
 

Burkholderia       GGTGTTTC-CAGTGGCGAACGGGTGA---GT-A-ATGCGTAAG-AACCTGCCCTTGGGAG 

Aeromonas          CAGTTAGTAAAGCGGCGGACGGGTGA----GTA-ACGCGTGAGTAATCTACCTTTAAGTC 

Juniperus          CGAGTGGATCAGTGGCGAACGGGTGA---GT-ACACACGTGAGCAACCTGCCCCAGACTC 

Acetohalobium      CACCTGGTGGCGAGTGGCGAACGGGT-GAGT-A-ATACATCGG-AACATGTCCTGTAGTG 

Janibacter         TGCTACTTTTGCCGGCGAGCGGCGGACGGGTGAGTAATGCCTGGGAAATTGCCCAGTCGA 

                                *  *       *       *         *  *  *  *         

 

Burkholderia       GGGA-ACAACAGCTGGAAACGGTTGCTAATACCCCATAGAATTTAGTACCTCT 

Aeromonas          T-GATATAACTTCTCGAAAGGGAAGCTAATTTCGGATATTATGCTGCCTGGAT 

Juniperus          TGGA-ATAAGCGCTGGAAACGGCGTCTAATACTGGATATGTGACGGACCTGCA 

Acetohalobium      GGGG-ATAGCCCGGCGAAAGCCGGATTAATACCGCATACGAT-CT-ACG-G-- 

Janibacter         GGGGGATAACAGTTGGAAACGACTGCTAATACCGCATACGCC-CT-ACGGGGG 

                     *  * *       ****       ****     ***                

 

Figure 5.2: Multiple sequence alignment result of data set RefSeqtest.fasta by using 

MapReduce model 

 

Above figures shows the results from the MapReduce model and ClustalW. An asterisk 

has been used to represent the match columns. There is little difference in finding the 

number of match columns in these results. This difference is due to the use of different 

scoring schemes. In this thesis identity score matrix has been used where as in ClustalW 

BLOSUM and PAM matrixes are used.   

http://www.clustal.org/download/current
http://www.ch.org/software/ClustalW.html
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5.3 Execution Time Analysis 

In order to evaluate the map reduce model of star alignment approach, two DNA data 

files of different sequence length are used. One file is of human mitochondrial genomes, 

which contains total 672 genome sequences of average sequence length 8200 bp. Another 

data file is 16s rRNA, which contains total 708,129 sequences of average sequence length 

1442 bp. The size of the sequence files are 10 MB and 1457 MB respectively. 

5.3.1 Varying number of sequences of same size 

By using the above two sequence files different reference sequence files are generated of 

different sequence numbers, which are tabulated in table 5.3 and also its execution time 

with sequential and parallel algorithm are shown. 

 

Table 5.3: Execution time of sequential and parallel algorithm varying the number of 

sequences with each sequence average length 1442 bp. 

 

Sequence File 

Name 

No of 

sequences 

Size of 

sequence file 

Sequential  

(seconds) 

Parallel  

(seconds) 

RefSeq1.fasta 2 4 KB 1 19 

RefSeq2.fasta 3 5 KB 2 22 

RefSeq3.fasta 4 7 KB 2 23 

RefSeq4.fasta 6 10 KB 5 23 

RefSeq5.fasta 8 13 KB 8 24 

RefSeq6.fasta 10 16 KB 11 24 

RefSeq7.fasta 20 30 KB 40 26 

RefSeq8.fasta 30 45 KB 90 26 

RefSeq9.fasta 40 60 KB 153 28 

RefSeq10.fasta 50 74 KB 235 29 

RefSeq11.fasta 100 148 KB 909 32 

RefSeq12.fasta 150 222 KB 2094 36 

RefSeq13.fasta 200 296 KB 3740 43 

RefSeq14.fasta 250 369 KB 5698 49 

 

As shown in the above table, Different reference sequences have been generated by using 

the 10 MB data set file. These reference sequences contain different number of 

sequences. From the above table it is shown that sequential version of the star alignment 

algorithm is good for alignment of 10 numbers of sequences than the MapReduce model. 
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For more than this little increase in time but as the numbers of sequences increases from 

50 sequential version of star alignment execution time grows exponentially and it 

becomes infeasible where as the MapReduce model execution time is quite low as 

compared to the sequential. A line graph plot of the above result is shown in figure 5.3. 

 

 
 

Figure 5.3: Execution time of sequential and parallel algorithm varying the number of 

sequences with each sequence average length 1442 bp. 

 

Another experiment has been done in human mitochondrial genomes datasets in which 

average length of DNA sequences are 8200 base pair. The result of this experiment is 

shown in table 5.4. 

 

Table 5.4: Execution time (in seconds) of sequential and parallel algorithms with varying 

number of sequences of average sequence length 8200 bp. 
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No of sequence 

Sequential run 

Parallel run 

Sequence File 

Name 

Number of 

Sequences 

Size of 

Sequence File 

Sequential 

( seconds) 

Parallel 

(seconds) 

REFSEQ2.fasta 2 16 KB 41 38 

REFSEQ3.fasta 3 24 KB 95 41 

REFSEQ4.fasta 4 32 KB 160 44 

REFSEQ6.fasta 6 48 KB 333 73 

REFSEQ8.fasta 8 63 KB 569 85 

REFSEQ10.fasta 10 79 KB 885 96 

REFSEQ20.fasta 20 158 KB 3046 171 

REFSEQ30.fasta 30 236 KB 11184 282 
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The result shows that for DNA sequences having higher length (approx 8200bp) the 

sequential algorithm is not suitable for multiple sequence alignment. For more than 10 

number of sequences sequential algorithm is infeasible because it takes time more than 3 

hours to align 30 sequences, where as MapReduce model align this in less than 5 

minutes. The line graph plot of the above result is shown in figure 5.4. 

  

 
 

 

Figure 5.4: Execution time (in seconds) of sequential and parallel algorithms with 

varying number of sequences of average sequence length 8200 bp. 

 

5.3.2 Varying number of nodes 

A set of experiments is done in datasets 16srRNA with datasets file size from 102 MB to 

1457 MB and the average length of the sequence is 1442 bp. These experiments 

execution time in one node cluster, two node cluster, three node cluster, four node cluster, 

six node cluster and eight node clusters are shown in table 5.5 and 5.6 and it’s graphical 

representation is shown in figure 5.5 and 5.6 respectively.  This experiment has been 

done by using default block size of the HDFS which is 128 MB for the Hadoop version 

2.7.3.  
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Table 5.5: Execution time (in minutes) with varying sequence file size (102 MB to 1457 

MB) in one, two, three and four nodes. 

 

Sequence File 

Name 

Size of 

sequence 

file 

Number of 

sequences 

One 

node 

(min) 

Two 

node 

(min) 

Three 

node 

(min) 

Four 

node 

(min) 

RefSeqS1.fasta 102 MB 69512 68 68 68 68 

RefSeqS2.fasta 159 MB 108416 91 74 72 70 

RefSeqS3.fasta 228 MB 163893 130 110 104 92 

RefSeqS4.fasta 433 MB 210446 226 192 168 141 

RefSeqS5.fasta 1024 MB 497683 468 326 223 193 

RefSeqS6.fasta 1457 MB 708129 - - 255 223 

 

The result shows that for reference sequence file size smaller than HDFS block size 

(default block size 128 MB for Hadoop 2.7.3) file is not splitted so it is not distributed to 

all the nodes of the cluster so execution times for all the nodes are same. For reference 

sequence file size higher than block size. Reference sequence file is split and distributed 

no all the data nodes of the cluster. Due to this execution time decreases. The line graph 

plot of the above result is shown in below figure 5.5. 

 

 

Figure 5.5: Execution time (in minutes) with varying sequence file size (102 MB to 1457 

MB) in one, two, three and four nodes. 
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Table 5.6: Execution time (in minutes) with varying sequence file size (102 MB to 1457 

MB) in four, six and eight nodes 

Sequence File 

Name 

Size of 

sequence 

file 

Number of 

sequences 

Four node 

(min) 

Six node 

(min) 

Eight node 

(min) 

RefSeqS1.fasta 102 MB 69512 68 68 68 

RefSeqS2.fasta 159 MB 108416 70 70 70 

RefSeqS3.fasta 228 MB 163893 92 88 84 

RefSeqS4.fasta 433 MB 210446 141 138 136 

RefSeqS5.fasta 1024 MB 497683 193 178 168 

RefSeqS6.fasta 1457 MB 708129 223 196 181 

 

 

This result shows that execution time decreases while increasing the number of data 

nodes in the cluster. When the reference sequence is sufficiently large and number of 

splits is greater than the nodes of cluster then it is distributed to all the nodes and at that 

time actual parallelism is achieved. For reference sequence RefSeqS6.fasta number of 

splits = 1457 MB/128 MB ≈ 12. In this case all the nodes execute the split files in parallel 

and execution time decreases. The line graph of above result is plotted in figure 5.6. 
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Figure 5.6: Execution time (in minutes) with varying sequence file size (102 MB to 1457 

MB) in four, six and eight nodes 

5.4 Sample output 

Below are the sample outputs at different stages: 

5.4.1 Job tracker window 

 

Figure 5.7: All application shown in job tracker window 

 

The above figure shows the job tracker window that can be accessed from the master 

node. In this window status of the submitted and running jobs can be shown. It displays 

the status of running jobs and also shows the completed jobs. 
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5.4.2 First stage of Map Reduce 

 

Figure 5.8: Status of first stage of map reduce 

 

5.4.3 Second Stage of Map Reduce 

 

Figure 5.9: Status of second stage of map reduce 
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5.4.4 Datanode Information 

 

Figure 5.10: Datanode information accessed from master node while running jobs 

 

5.4.5 Progress of Map Reduce  

 

Figure 5.11: Progress of map reduce job shown in console 
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5.5 Result Summary 

In this thesis a MapReduce model of star alignment algorithm for multiples sequence 

alignment has been developed and implemented using java as programming language and 

hadoop as MapReduce framework. This model has been tested using 8 physical node 

cluster and its result is verified using the result of sequential model of star alignment and 

with external tools ClustalW. The aligned sequences are same as that of the sequential 

algorithm, while comparing the result with ClustalW it seems little difference in number 

of match columns which are due to the use of different scoring matrixes. In this thesis 

identity matrix is used where as in ClustalW BLOSUM and PAM matrixes are used.     

 

The experiments are done by using different reference sequences (number of reference 

sequences from 2 to 708129 and reference sequence file size from 4 KB to 1457 MB). 

For small number of sequences up to 250 for average sequence length 1442 bp and up to 

30 for average length 8200 bp both the sequential and parallel algorithms are run and 

results have been compared.  From these experiments it is shown that sequential model of 

start alignment algorithm is only suitable for few numbers of sequences. For 30 human 

genome sequences, sequential model takes execution time more than 3 hours where as 

map reduce model only takes 4.7 minutes. Due to high execution time of sequential 

model more than 369 KB sequence file size is not tested. Even in a single hadoop node 

execution time in quit low that compared to the sequential algorithm. 

 

Another set of experiments have been done in reference sequence of file size from 102 

MB to 1457 MB and nodes of cluster are varied from 2 nodes to 8 nodes. In this thesis 

default HDFS block size is used (128 MB for Hadoop 2.7.3). The large reference 

sequence file is splitted into file size equal or less than block size of the HDFS and 

distributed to all the data nodes that executes in parallel. The number of map function is 

equal to the number of splits and number of reducer is only one because all the 

intermediate results are combined for final result.  From these experiments scalability of 

this model has been seen that when the number of nodes is increases then execution time 

decreases. It is shown from the experiment that speed up of 3 times is achieved from one 

node cluster to 8 physical nodes cluster for data sets greater than 1 GB. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

MSA is an important and fundamental tool in bioinformatics, especially for phylogenetic 

tree reconstruction. Biological sequences are aligned with each other vertically to show 

possible similarities or differences among these sequences. MSA is the process of 

aligning three or more nucleotides/amino-acids sequences at the same time. Dynamic 

programming algorithms like Needleman-Wunch and Smith-Waterman produce accurate 

alignments, but these algorithms are computation intensive and are limited to a small 

number of short sequences. It is a complete optimization problem where the time 

complexity of finding an optimal alignment raises exponentially when the number of 

sequences to align increases.  

 

In this thesis work, a MapReduce model of start alignment algorithm for multiple 

sequence alignment has been developed. The dynamic nature of the model couples the 

data and computational parallelism of hadoop data grids by improving the speed of 

sequence alignment while maintaining the accuracy. To evaluate the performance of the 

model several datasets (file size from few KB to 1.4 GB) with different number of 

sequences (upto 708129 sequences) has been used. The experiments have been done from 

one node cluster to 8 node physical clusters.  

 

From the experimental analysis it is shown that sequential version of star alignment is 

only suitable for less than 20 number of sequences. On the other hand, the result reveals 

that speed up of 3 times is achieved from one node cluster to 8 physical nodes cluster for 

data sets greater than 1 GB. 

6.2 Limitation 

In this thesis a MapReduce model of star alignment algorithm is developed and tested 

using different datasets. This model only align DNA sequences, it do not accept the 

protein sequences. Because DNA sequences have only four characters it’s easy to score 
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the alignments but protein sequences have twenty characters and scoring the alignments 

of protein sequences is more time consuming.  

6.3 Future Work 

This model can be extended for the alignment of protein sequences by using the protein 

substitution matrix and protein structure information. Substitution matrix is used to fill 

the score matrix at the time of alignment and after alignment used for finding the sum of 

pair score of aligned sequences and this is more time consuming and it can be reduced by 

using more physical nodes in the cluster.  

 

The result of this model is verified by using the result of sequential version of the 

algorithm and also with the external tools ClustalW, which can’t align sequences with file 

size more than 1 MB. Parallelizing the ClustalW in some way to fit with big data will be 

a research topic. The output of this model is aligned multiples sequences which can be 

used for phylogenetic tree reconstruction and further analysis of the genome. 

 

In this thesis, only global alignments of sequences using Needleman-Wunsch is 

considered, Local alignment can also be done using Smith-Waterman algorithm and its 

results can be verified by using external tools like BLAST. 
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