

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINERING

PULCHOWK CAMPUS

THESIS NO: 071/MSCS/655

Parallelization of Star Alignment Algorithm for Multiple Sequence Alignment using

MapReduce Model

by

Md Hasan Ansari

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELLECTRONICS AND COMPUTER

ENGINEERING IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SYSTEM AND

KNOWLEDGE ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINNERING

LALITPUR, NEPAL

APRIL, 2017

ii

Parallelization of Star Alignment Algorithm for Multiple Sequence Alignment using

MapReduce Model

by

Md Hasan Ansari

(071/MSCS/655)

Thesis Supervisor:

Prof. Dr. Shashidhar Ram Joshi

A thesis submitted in partial fulfillment of the requirement for

the degree of Master of Science in Computer System and Knowledge Engineering

Department of Electronics and Computer Engineering

Institute of Engineering, Central Campus, Pulchowk

Lalitpur, Nepal

April, 2017

iii

COPYRIGHT

The author has agreed that the library, Department of Electronics and Computer

Engineering, Pulchowk Campus, Institute of Engineering may make this report freely

available for inspection. Moreover, the author has agreed that permission for extensive

copying of this project report for scholarly purpose may be granted by the professors(s)

who supervised the project work recorded herein or, in their absence, by the Head of the

Department wherein the project report was done. It is understood that the recognition will

be given to authors of this report and to the Department of Electronics and Computer

Engineering, Pulchowk Campus, and Institute of Engineering in any use of the material

in this project report. Copying or publication or the other use of this report for financial

gain without approval of the Department of Electronics and Computer Engineering,

Pulchowk Campus, Institute of Engineering and author’s written permission is prohibited.

Request for permission to copy or to make any other use of the material in this report in

whole or in part should be addressed to:

Head

Department of Electronics and Computer Engineering

Pulchowk Campus, Institute of Engineering

Lalitpur, Kathmandu

Nepal

iv

RECOMMENDATION

The undersigned certify that they have read and recommended to the Department of

Electronics and Computer Engineering for acceptance, a thesis entitled “Parallelization of

Star Alignment Algorithm for Multiple Sequence Alignment using MapReduce Model”,

submitted by Mr. Md Hasan Ansari in partial fulfillment of the requirement for the award

of the degree of “Master of Science in Computer System and Knowledge Engineering”.

Supervisor: Prof. Dr. Shashidhar Ram Joshi

Department of Electronics and Computer Engineering

External Examiner:

v

DEPARTMENTAL ACCEPTANCE

The thesis entitled “Parallelization of Star Alignment Algorithm for Multiple Sequence

Alignment using MapReduce Model”, submitted by Md Hasan Ansari in partial

fulfillment of the requirement for the award of the degree of “Master of Science in

Computer System and Knowledge Engineering” has been accepted as a bonafide record

of work independently carried out by him in the department.

Dr. Dibakar Raj Pant

Head of the Department

Department of Electronics and Computer Engineering,

Pulchowk Campus,

Institute of Engineering,

Tribhuvan University,

Nepal.

vi

ACKNOWLEDGEMENT

It is with great pleasure that I would like to thank my respected supervisor Prof. Dr.

Shashidhar Ram Joshi for his expert guidance and mentorship. This piece of work would

not have been possible without his supervision, support, motivation and cooperation

within this period. I would like to acknowledge our Head of Department Dr. Dibakar Raj

Pant, Prof. Dr. Subarna Shakya and Dr. Sanjeeb Prasad Panday for their encouragement

and valuable suggestions.

Also, I would like to thank our Program Coordinator (MSCSKE) Dr. Aman Shakya for

his encouragement and precious guidance. I would like to thanks, Mr. Janeshower Bohara

for his incredible help and suggestions in selection of thesis title.

Sincerely,I am grateful to all those who have directly or indirectly contributed during the

study. I would like to thank my friends for their encouragement, support and help during

the research work, especially Mr. Om Prakash Mahato for his valuable suggestions and

co-operation in my research work. Finally, I don’t have adequate word to express my

indebtedness to my family for their love, support and encouragement.

 Md Hasan Ansari

 March, 2017

vii

ABSTRACT

Multiple sequence alignment (MSA) is an important problem in molecular biology.

Biological sequences are aligned with each other vertically to show possible similarities

or differences among these sequences. To solve an MSA problem is to find an alignment

of multiple sequences with the highest score based on a given scoring criterion among

sequences. Dynamic programming algorithms like Needleman-Wunch and Smith-

Waterman produce accurate alignments but these algorithms are computation intensive,

computational complexity of O(n
2
) and are limited to a small number of short sequences.

Similarly multiple sequence alignment that processes the sequences one by one, called

star alignment, takes time until O(k
2
n

2
). However the computation result still has high

accuracy. Consequently, it is very important to get a better way to improve the

performance. To achieve this, a MapReduce model of star alignment is designed and

implemented that executes in parallel on a hadoop clusters. Since hadoop already handles

work/job dispatching and work balance among distributed worker nodes, we need note

handle node failure and load balancing required with the traditional distributed

computing. The experimental result shows that the MapReduce model of star alignment

improve the execution time by 3 times with 8 physical nodes than single node with

datasets size greater than 1 GB.

Keywords: Bioinformatics, Multiple Sequence Alignment, Needleman-wunch, Star

Alignment, Parallelization, Hadoop, MapReduce.

viii

TABLE OF CONTENTS

COPYRIGHT ... iii

RECOMMENDATION ... iv

DEPARTMENTAL ACCEPTANCE ..v

ACKNOWLEDGEMENT ... vi

ABSTRACT .. vii

TABLE OF CONTENTS ... viii

LIST OF FIGURES ... xi

LIST OF TABLES .. xii

LIST OF ABBREVIATIONS .. xiii

CHAPTER 1: INTRODUCTION ..1

1.1 Background .. 1

1.2 Problem Statement ... 3

1.3 Objective .. 3

1.4 Scope of work... 3

1.5 Organization of the Thesis ... 4

CHAPTER 2: LITERATURE REVIEW ...5

2.1 Needleman Wunsch Algorithm .. 5

2.2 Smith Waterman Algorithm ... 6

2.3 Star Alignment Algorithm .. 6

CHAPTER 3: THEORETICAL BACKGROUND ...7

3.1 DNA ... 7

3.2 MapReduce... 7

3.2.1 Execution Overview...8

ix

3.3 Hadoop ... 10

3.4 Sequence Fundamentals ... 11

3.4.1 Alignment ..11

3.4.2 Sequence Alignment ..11

3.4.3 Multiple Sequence Alignment ...11

3.4.4 Gaps ...12

3.4.5 Substitution Matrix ..12

CHAPTER 4: METHODOLOGY ...14

4.1 Pairwise Sequence Alignment .. 14

4.2 Star Alignment ... 16

4.3 Parallel Implementation ... 18

4.4 Data Collection ... 21

CHAPTER 5: RESULT AND DISCUSSION ...22

5.1 Test Environment ... 22

5.2 Verification of Result ... 22

5.3 Execution Time Analysis ... 24

5.3.1 Varying number of sequences of same size ...24

5.3.2 Varying number of nodes...26

5.4 Sample output ... 29

5.4.1 Job tracker window ..29

5.4.2 First stage of Map Reduce ...30

5.4.3 Second Stage of Map Reduce ..30

5.4.4 Datanode Information ..31

5.4.5 Progress of Map Reduce ..31

5.5 Result Summary ... 32

x

CHAPTER 6: CONCLUSION AND FUTURE WORK ...33

6.1 Conclusion .. 33

6.2 Limitation ... 33

6.3 Future Work ... 34

REFERENCES: ...35

xi

LIST OF FIGURES

Figure 3.1: Structure of DNA Sequence [13] ... 7

Figure 3.2: MapReduce Execution overview [7] .. 9

Figure 3.3: Example of a multiple sequence alignment .. 12

Figure 4.1: Pair-wise sequence alignment using Needleman-Wunsch 14

Figure 4.2: Backtrack matrix traverse flow .. 16

Figure 4.3: Flowchart of Star Alignment Algorithm .. 17

Figure 4.4: Map Reduce model of star alignment algorithm .. 19

Figure 4.5: The input and output of map function in the first stage 20

Figure 4.6: The input and output of map function in the second stage 21

Figure 5.1: Multiple sequence alignment result of data set RefSeqtest.fasta by using

ClustalW ... 23

Figure 5.2: Multiple sequence alignment result of data set RefSeqtest.fasta by using

MapReduce model .. 23

Figure 5.3: Execution time of sequential and parallel algorithm varying the number of

sequences with each sequence average length 1442 bp. ... 25

Figure 5.4: Execution time (in seconds) of sequential and parallel algorithms with

varying number of sequences of average sequence length 8200 bp. 26

Figure 5.5: Execution time (in minutes) with varying sequence file size (102 MB to 1457

MB) in one, two, three and four nodes. .. 27

Figure 5.6: Execution time (in minutes) with varying sequence file size (102 MB to 1457

MB) in four, six and eight nodes .. 29

Figure 5.7: All application shown in job tracker window .. 29

Figure 5.8: Status of first stage of map reduce ... 30

Figure 5.9: Status of second stage of map reduce ... 30

Figure 5.10: Datanode information accessed from master node while running jobs........ 31

Figure 5.11: Progress of map reduce job shown in console ... 31

xii

LIST OF TABLES

Table 3.1: Identity score matrix .. 13

Table 5.1: Hardware of each node .. 22

Table 5.2: Software and Hadoop configuration of each node .. 22

Table 5.3: Execution time of sequential and parallel algorithm varying the number of

sequences with each sequence average length 1442 bp. ... 24

Table 5.4: Execution time (in seconds) of sequential and parallel algorithms with varying

number of sequences of average sequence length 8200 bp. ... 25

Table 5.5: Execution time (in minutes) with varying sequence file size (102 MB to 1457

MB) in one, two, three and four nodes. .. 27

Table 5.6: Execution time (in minutes) with varying sequence file size (102 MB to 1457

MB) in four, six and eight nodes .. 28

xiii

LIST OF ABBREVIATIONS

DNA Deoxyribonucleic Acid

RNA Ribonucleic Acid

MSA Multiple Sequence Alignment

PAM Point Accepted Matrix

BLOSUM Blocks Substitution Matrix

DP Dynamic Programming

HDFS Hadoop Distributed File System

VM Virtual Machine

BLAST Basic Local Alignment Search Tool

1

CHAPTER 1: INTRODUCTION

1.1 Background

Life on earth originated and then evolved from a universal common ancestor

approximately 3.8 billion years ago. Repeated specification and the divergence of life

have occurred throughout this time due to shared sets of biological and morphological

traits, or by the shared DNA sequences [1]. In bioinformatics, sequence alignment deals

with the comparison of two or more Deoxyribonucleic Acid (DNA), Ribonucleic Acid

(RNA) and protein sequences with each other. The comparison aims to identify regions

of similarity that may be a consequence of functional, structural, or evolutionary

relationships between the sequences.

All life on earth contains DNA and many believe that all life originate from the same

DNA (or at least RNA, Walter Gilbert). That is, all DNA have a common ancestor,

meaning that at some point back in time, it is believed that there was a single (very basic)

life form, from which all life known today has evolved. DNA is made of ribose

molecules with one of the four nucleic acids; Guanine (G), Cytosine (C), Adenine (A) or

Thymine (T) attached.

Multiple sequence alignment (MSA), the simultaneous alignment among three or more

nucleotide or amino acid sequences, is one of the most essential tools in molecular

biology. Sequence alignments are used to help demonstrate homology between new and

existing sequences, to suggest primers for polymerase chain reaction, and to predict the

secondary or tertiary structure of RNA and proteins [2]. Therefore, the development of

efficient and accurate automatic methods for multiple sequence alignments is a very

important research topic. Sequence alignment is the arrangement of two or more

sequences of “residues” that maximizes the similarities between them. In order for a

multiple alignment to be meaningful in this context, all sequences in the multiple

alignment must have a common origin. The goal of multiple sequence alignment is to

align sequences according to their evolutionary relationships.

2

MSA is important because it reconstructs phylogenetic trees, which in turn predict the

function of an unknown protein by aligning its sequences with some other known

functions. The various match, mismatch, and gap (“-”) events then represent possible

reconstructions of the evolution of those related sequences. If a sequence alignment

occurs between two sequences, then it is called a pairwise alignment [3], [4] and the main

goal is to find the similar or closely related parts between two sequences. If the alignment

involves more than two sequences, then it is called a multiple sequence alignment and the

main goal is to find the consensus parts among the sequences. For small lengths and

small numbers of sequences, it is possible to create the alignment manually. However,

efficient algorithms to align such sequences are essential for alignments with more than

eight sequences.

MSA problems are solved using several different methods, such as classical, progressive,

and iterative algorithms. These algorithms follow either global or local alignment

strategies. In global alignments, sequences are aligned over their whole length. By

contrast, local alignments identify regions of similarity within a sub sequence [5]. Local

alignments are often preferable, but can be more difficult because of the additional

challenge of identifying the regions of similarity. A general global alignment technique is

the Needleman–Wunsch algorithm [3], which is based on dynamic programming. The

Smith–Waterman algorithm [4] is a general local alignment method which is also based

on dynamic programming. The dynamic programming (DP) approach is good at finding

the optimal alignment for two sequences. However, the complexity of this method grows

significantly for three or more sequences.

Star Alignment method to perform multiple sequence alignment. In this method,

sequences S1-Sk, S2-Sk, S3-Sk, …, Sk-1-Sk are compared one by one in which they will be

pair-wise alignment [6]. In simple terms, the complexity of Star alignment algorithm is

quite high which is O(k
2
 n

2
). To reduce the execution time significantly, it needs to

modify the Star Alignment algorithm by implementing parallel programming using Map

Reduce model of Hadoop. Hadoop [7] is one of the most popular distributed processing

framework/systems in recent years. It provides the Map Reduce programming model and

3

an associated implementation for processing large data sets in parallel, using a cluster of

nodes.

1.2 Problem Statement

Pair-wise sequence alignment is a technique of comparing the similarity of two

organisms. It is the basic technique in DNA sequence alignment. There is an

extraordinary number of data sequences when they are compared. Problems when

comparing the huge data sequences are accuracy and efficiency. Dynamic programming

models like Needleman-Wunsch and Smith-Waterman produce accurate alignments, but

these algorithms are high computational complexity. Similarly, multiple sequence

alignment that processes the sequences one by one, called Star Alignment, takes time

until O(k
2
n

2
) [6]. Therefore, they have a timing issue problem while processing the data.

However, the computation result still has high accuracy. Consequently, it is very

important to get a better way to improve the performance. This can be done by using

parallelization methodology of Map and Reduce framework.

1.3 Objective

The objective of the thesis is to develop a MapReduce model of star alignment algorithm

for multiple sequence alignment.

1.4 Scope of work

The scope of this thesis work is to develop a MapReduce model of star alignment

algorithm for multiple sequence alignment. The main applications of sequence

alignments have included phylogenetic tree reconstruction, Protein family prediction, and

pattern identification.

4

1.5 Organization of the Thesis

The list below presents the organization of the chapters which make up this thesis. Also

given is a brief description of the topics each chapter’s deals with.

 Chapter 2 covers the necessary background relating to previous work done and

general introduction of Needleman-Winch and star alignment algorithms.

 Chapter 3 includes a theoretical basis on DNA, MapReduce, Hadoop and

sequence alignment, building blocks, concepts, uses and current alignment

methods and substitution matrixes.

 Chapter 4 covers the methodologies, system model, algorithms used, and datasets

used in evaluation of the model.

 Chapter 5 provides the test environment, experimental results, and execution time

analysis and sample outputs.

 Chapter 6 provides summary of the works and future work.

.

5

CHAPTER 2: LITERATURE REVIEW

Efficient sequence alignment is one of the most important and challenging activities in

bioinformatics. Many algorithms have been proposed previously to perform sequence

alignment activities. Dynamic Programming (DP) algorithms such as Needleman-Wunsch

[3] and Smith-Waterman [4] produce accurate scores. However, these algorithms are

demand high computational power. The progressive approximation method implemented

in ClustalW [8]. Progressive MSA aligns the closest sequences first and successively adds

in more distant ones. This method is very fast and straightforward but it can easily get

caught in local minima. This is because; once a sequence has been aligned it cannot be

modified again, even if it is suboptimal when other sequences are subsequently aligned. A

time efficient approach to sequence alignment that coupled with data and computational

parallelism of hadoop data grids improves the accuracy and speed of sequence alignment

[9]. Genomic analysis usually includes a pipeline of three stages: sequence alignment, data

conversion, and advanced analysis. Parallelizing genomic analysis is not a simple task. A

distributed analysis pipeline is designed and implemented that executes the pipeline in

parallel on a hadoop cluster (physical machines or VM nodes) [10]. The healthcare

applications can scale well on commercial big data platforms that implement MapReduce

framework [11]. Cloud computing and MapReduce framework play an important role in

bioinformatics intensive application in achieving parallelization since it provides a

consistent performance over time and it provides good fault tolerant mechanism [12].

2.1 Needleman Wunsch Algorithm

The Needleman–Wunsch algorithm performs a global alignment of two sequences. It is

commonly used in bioinformatics to align protein or nucleotide sequences. The algorithm

was published in 1970 by Saul B. Needleman and Christian D. Wunsch [3]. The

Needleman–Wunsch algorithm is an example of dynamic programming and was the first

application of dynamic programming to biological sequence comparison. It is sometimes

referred to as the optimal matching algorithm. This global sequence alignment method

explores all possible alignments and chooses the best one (the optimal global alignment).

6

It does this by reading in a scoring matrix and a gap penalty (penalties) that contains

values for every possible residue or nucleotide match and summing the matches taken

from the scoring matrix.

2.2 Smith Waterman Algorithm

The Smith–Waterman [4] algorithm performs local sequence alignment; that is, for

determining similar regions between two strings or nucleotide or protein sequences.

Instead of looking at the total sequence, the Smith–Waterman algorithm compares

segments of all possible lengths and optimizes the similarity measure.

The algorithm was first proposed by Temple F. Smith and Michael S. Waterman in 1981.

Like the Needleman–Wunsch algorithm, of which it is a variation, Smith–Waterman is a

dynamic programming algorithm. As such, it has the desirable property that it is

guaranteed to find the optimal local alignment with respect to the scoring system being

used (which includes the substitution matrix and the gap-scoring scheme). The main

difference to the Needleman–Wunsch algorithm is that negative scoring matrix cells are

set to zero, which renders the (thus positively scoring) local alignments visible.

Backtracking starts at the highest scoring matrix cell and proceeds until a cell with score

zero is encountered, yielding the highest scoring local alignment.

2.3 Star Alignment Algorithm

Multiple sequence alignment that processes the sequences one by one, called star

alignment. Each sequence is compared one by one in pairs by performing pair-wise

alignment using Needleman-Wunch algorithm. The star alignment algorithm runs faster,

and it is therefore suitable for the MSA of similar DNA sequences [6]. The main

approach underlying the star alignment is to transform MSA into pairwise alignment

based on center sequence. This center sequence is selected and other sequences are

pairwise aligned to the center sequence. Then, all of the inserted spaces are summed to

obtain the final MSA result.

7

CHAPTER 3: THEORETICAL BACKGROUND

3.1 DNA

Deoxyribonucleic acid (DNA) is a molecule that encodes the genetic instructions used in

the development and functioning of all known living organisms and many viruses. Along

with RNA and proteins, DNA is one of the four major macromolecules essential for all

known forms of life. Most DNA molecules are double-stranded helices, consisting of two

long biopolymers of simpler units called nucleotides. Each nucleotide is composed of a

nucleobase (guanine, adenine, thymine, and cytosine), recorded using the letters G, A, T,

and C, as well as a backbone made of alternating sugars (deoxyri-bose) and phosphate

groups (related to phosphoric acid), with the nucleobases (G, A, T,C) attached to the

sugars. DNA is well-suited for biological information storage, since the DNA backbone

is resistant to cleavage and the double-stranded structure provides the molecule with a

built-in duplicate of the encoded information.

Figure 3.1: Structure of DNA Sequence [13]

3.2 MapReduce

MapReduce [14] is a programming model and an associated implementation for

processing and generating large data sets. Users specify a map function that processes a

key/value pair to generate a set of intermediate key/value pairs and a reduce function that

merges all intermediate values associated with the same intermediate key. Programs

8

written in this functional style are automatically parallelized and executed on a large

cluster of commodity machines. The run-time system takes care of the details of

partitioning the input data, scheduling the program’s execution across a set of machines,

handling machine failures and managing the required inter-machine communication. This

allows programmers without any experience with parallel and distributed systems to

easily utilize the resources of a large distributed system. A typical MapReduce com-

putation processes many terabytes of data on thousands of machines. Programmers find

the system easy to use: hundreds of MapReduce programs have been implemented and

upwards of one thousand MapReduce jobs are executed on Googles clusters every day.

MapReduce provides an abstraction that involves the programmer defining a “mapper”

and a “reducer,” with the following signatures:

 Map: (key1, value1) → list (key2, value2)

 Reduce: (key2, list (value2)) → list (key3, value3).

3.2.1 Execution Overview

The Map invocations are distributed across multiple machines by automatically

partitioning the input data into a set of M splits. The input splits can be processed in

parallel by different machines. Reduce invocations are distributed by partitioning the

intermediate key space into R pieces using a partitioning function (e.g., hash (key) mod

R). The number of partitions (R) and the partitioning function is specified by the user.

9

Figure 3.2: MapReduce Execution overview [7]

Figure 3.2 shows the overall flow of a MapReduce operation in the implementation.

When the user program calls the MapReduce function, the following sequence of actions

occurs (the numbered labels in Figure 3.2 correspond to the numbers in the list below):

1. The MapReduce library in the user program first splits the input files into M

pieces of typically 16 megabytes to 128 megabytes (MB) per piece (controllable

by the user via an optional parameter). It then starts up many copies of the

program on a cluster of machines.

2. One of the copies of the program is special the master. The rest are workers that

are assigned work by the master. There are M map tasks and R reduce tasks to

assign. The master picks idle workers and assigns each one a map task or a reduce

task.

3. A worker who is assigned a map task reads the contents of the corresponding

input split. It parses key/value pairs out of the input data and passes each pair to

the user-defined Map function. The intermediate key/value pairs produced by the

Map function are buffered in memory.

10

4. Periodically, the buffered pairs are written to local disk, partitioned into R regions

by the partitioning function. The locations of these buffered pairs on the local disk

are passed back to the master, who is responsible for forwarding these locations to

the reduce workers.

5. When a reduce worker is notified by the master about these locations, it uses

remote procedure calls to read the buffered data from the local disks of the map

workers. When a reduce worker has read all intermediate data, it sorts it by the

intermediate keys so that all occurrences of the same key are grouped together.

The sorting is needed because typically many different keys map to the same

reduce task. If the amount of intermediate data is too large to fit in memory, an

external sort is used.

6. The reduce worker iterates over the sorted intermediate data and for each unique

intermediate key encountered, it passes the key and the corresponding set of

intermediate values to the users Reduce function. The output of the Reduce

function is appended to a final output file for this reduce partition.

7. When all map tasks and reduce tasks have been completed, the master wakes up

the user program. At this point, the MapReduce call in the user program returns

back to the user code.

After successful completion, the output of the mapreduce execution is available in the R

output files (one per reduce task, with file names as specified by the user). Typically,

users do not need to combine these R output files into one file they often pass these files

as input to another MapReduce call, or use them from another distributed application that

is able to deal with input that is partitioned into multiple files.

3.3 Hadoop

Hadoop [7] is a popular open source implementation of MapReduce, which is a powerful

tool designed for deep analysis and transformation of very large datasets which is

inspired by Google’s MapReduce and Google File System. It enables applications to

work with thousands of nodes and petabytes of data.

11

Hadoop uses a distributed file system called Hadoop Distributed File System (HDFS),

which creates multiple replicas of data blocks and distributes them on computer nodes

throughout a cluster to enable reliability and has extremely rapid computations to store

data as well as the intermediate results. The Hadoop runtime system coupled with HDFS

manages the details of parallelism and concurrency to provide ease of parallel

programming with reinforced reliability. In a Hadoop cluster, a master node controls a

group of slave nodes on which the Map and Reduce functions run in parallel.

3.4 Sequence Fundamentals

3.4.1 Alignment

The arrangement of two or more biological sequences in such a way that tells us at what

point the sequences are similar and at what point they differ is known as alignment. An

alignment is said to be the optimal one, if it has more similar sequences as compared to

dissimilar sequences.

3.4.2 Sequence Alignment

Sequence alignment is a way of arranging the biological sequences so as to identify the

region of similarity that may be a result of structural, functional, or evolutionary

relationships between the sequences. In bioinformatics, the aligned sequences of DNA,

RNA, or Protein are represented inside the matrix, in the form of rows. Gaps are inserted

at some point in the sequences to achieve maximum similar character in a column. It aims

to infer clues about the unknown sequence by inferring biological characteristics of the

matched sequence. One of the most challenging tasks in sequence alignment is its

repetitive and time-consuming alignment matrix computations.

3.4.3 Multiple Sequence Alignment

By referring to Figure 1, we can define multiple sequence alignment (MSA) as the

optimal alignment technique of three or more sequences with or without inserting gaps. It

plays an important role in sequence analysis and can also be used to judge and identify

12

the similarity between DNA, RNA or protein sequences. With these features, MSA is

proved as an important tool for prediction of function and/or structure of an unknown

protein sequences.

ATACGAT---------CTACG----GATGAAAGCGGGGGACCTTCGGGCCT---CGCGCT

ATACGCC---------CTACG----GGGGAAAGCAGGGGACCTTCGGGCCT---TGCGCG

ATAGAATTTAGTACCTCTACGAGGTGAGGTAGGCTGAGGAGCAAAAGGGAGGAATCCGCC

ATATTATGCTG----CCTGGATAACCAGGCTGCATCAAAGGCGGCTTTTTGCC-TCCGCT

ATATGTGACGGA---CCTGCATGGGTA--CCGTCTGGAAAG----TTTTT------CGGT

Figure 3.3: Example of a multiple sequence alignment

An MSA can be obtained by inserting gaps “-” at proper places such that no column in

the sequences contains only gap character. Insertion of gaps will result in equal length

sequences in the resulting alignment.

3.4.4 Gaps

In order to have the best resulting alignment, gaps are permitted within the sequences

along with a user defined mechanism for penalizing these gaps. Gaps are inserted

between the residues so that identical or similar characters are aligned in successive

columns.

The values of gap penalties depend on the choice of matrix such as the PAM250,

PAM350 or the Substitution matrices such as BLOSUM which are used for sequence

alignment of proteins. A Substitution matrix assigns a score for aligning any possible pair

of residues and must balance their values. Adopting a high gap plenty scheme will restrict

the appearance of gaps within the alignment. On the other hand, a too low gap plenty

scheme will allow the gaps to appear everywhere in the alignment.

3.4.5 Substitution Matrix

In case of matching DNA sequences, the substitution matrix is simple. It is either 1 or 0

depending on whether a match occurred or not. If there is a perfect match, which is ‘A’

aligns with ‘A’, ‘G’ aligns with ‘G’, and so on. In this case, the substitution matrix for

DNA matching can be written as follows. (It is called identity matrix):

13

Table 3.1: Identity score matrix

 A G C T

A 1 0 0 0

G 0 1 0 0

C 0 0 1 0

T 0 0 0 1

Table 3.1 shows the identity score matrix. This matrix has been used for the alignment of

DNA sequences and also used for calculation of sum of pair score of the aligned

sequences in this thesis. For protein sequence alignment, because the alphabet size

increases from 4 to 20 and also because the scoring scheme of 1 for a match and 0 for a

mismatch is not enough, the score matrix becomes more complicated. A substitution

matrix describes the likelihood that two residue types would mutate to each other in

evolutionary time. This is used to estimate how well two residues of given types match

when they are aligned in a sequence alignment. There are many substitution matrices,

such as PAM (Percent Accepted Mutations or Point Accepted Mutations), BLOSUM

(BLOcks Substitution Matrix), etc.

14

CHAPTER 4: METHODOLOGY

The main approach underlying the star alignment algorithm is to transform MSA into

pairwise alignment based on a “centre sequence”. This centre sequence is selected, and

other sequences are pairwise aligned to the centre sequence. Then, all of the inserted

spaces are summed to obtain the final MSA result.

4.1 Pairwise Sequence Alignment

The sequence alignment DNA using Needleman-Wunsch was introduced in 1970. This

algorithm employs an iterative matrix which is represented in a two-dimensional array for

finding the best score of pair-wise alignment of two sequences. It has complexity of O(n
2
).

The formula for calculating score is defined as follow [3]:

 (4.1)

There are four steps in a pair-wise sequence alignment algorithm. They are the

initialization step, the matrix filling step, the backtracking matrix constructing step, and

the alignment obtaining step.

Input Sequences
S1:ACTG
S1:CATG
S3:CGTA

Score Matrix
Initialization

Score Matrix
Filling

Backtrack
Matrix

Construct

Alignment
Obtaining

Aligned Sequences
S1:AC-TG
S2:-CATG
S3:-CGTA

Figure 4.1: Pair-wise sequence alignment using Needleman-Wunsch

15

In the score initialization step the first row and the first column are filled with decrements

of the gap score. Score matrix initialization and construction is done using Algorithm 4.1

[13].

Aligning sequences sa and sb of length m and n, respectively, with linear gap penalty.

Here F is score matrix of dimensions n, m and d is the gap penalty.

 begin

 initialization:

 F(0, 0) = 0

 for i=0 to m do

 F(0, i) = −i * d

 end

 for j=0 to n do

 F(j, 0) = −j* d

 end

 matrix fill:

 for i=1 to n do

for j=1 to m do

 F(I, j) = max { F(i-1,j-1)+ s(x, y), F(i-1,j) – d, F(i,j-1) – d }

 end

 end

 end

Algorithm 4.1: Score Matrix Initialization and Construction

Backtrack matrix is constructed using Algorithm 4.2. Aligning sequences sa and sb of

length m and n, respectively, with linear gap penalty [13].

begin

for i := 1 to n do

 for j := 1 to m do

 UP_Value = F(i – 1, j)

 Left_Value = F(i, j – 1)

 UP_Left_Value = F(i –1, j – 1)

 if (s
j
a := s

j
b) do

 BM(i, j) = '*'

 else

 if (Left_Value >= U_Value) do

 if (Left_Value + gap_penalty >= UP_Left_Value + Mismatch) do

 fill BM(i, j) with '–'

 else

 fill BM(i, j) with '*'

16

 end

 else

 if (UP_Value + gap_penalty >= UP_Left_Value + Mismatch) do

 fill BM(i, j) with '#'

 else

 fill BM(i, j) with '*'

 end

 end

 end

 end

end

end

Algorithm 4.2: Backtrack Matrix Construction Algorithm

Final alignment process starts from the lower right corner cell and records sequences from

right to left as shown in figure 4.2.

Figure 4.2: Backtrack matrix traverse flow

Above figure shows how to choose the next cell path to obtain an alignment step. If cell

(i, j) is “*”, choose path 2. If cell (i, j) is “-”, choose path 1. If cell (i, j) is “#”, choose

path 3 [13].

4.2 Star Alignment

In Star Alignment, each sequence from S1 to Sk was compared one by one in pairs by

performing pair-wise alignment using Needleman-Wunsch algorithm. Number of pairs of

sequences can be calculated by the following combination of sequence:

 (4.2)

17

After getting the score of each pair, then the center star was chosen. Selection of the star

center has its own mechanism considering each star center candidate sequence has a

different sequence alignment results. In the flowchart [6] below, if Sc has the highest

score with longest string then it becomes center star sequence.

start

Input until k

sequences

Choose one sequence as

candidate center star(Sc)

Pair wise alignment between sc-s1

Pair wise alignment between sc-s2

Pair wise alignment between sc-s3

……

Pair wise alignment between sc-sk

Choose Sc with longest string

Pair wise alignment between sc-s1

Pair wise alignment between sc-s2

Pair wise alignment between sc-s3

……

Pair wise alignment between sc-sk

End

Choose Sc with longest string

 Join Sc with result of

Pair wise alignment between sc-s1

Pair wise alignment between sc-s2

Pair wise alignment between sc-s3

……

Pair wise alignment between sc-sk

Figure 4.3: Flowchart of Star Alignment Algorithm

Next, every input sequence was aligned with the center star (Sc sequence). This process

generated a new Sc. This Sc was then aligned with the next input sequence until the last

sequence. The purpose of that process is to get the highest score representing the

similarity between Sc and the other sequences. The complexity of this process is O(2k

n
2
). Overall complexity using star alignment can be calculated by [6]:

 (4.3)

18

4.3 Parallel Implementation

The map reduce model of star alignment algorithm is outline in figure 4.4. The map

reduce parallel framework is employed in two stages. In the first stage candidate center

star sequence is chosen, and pairwise alignment between candidate center start and other

sequences are done. In the second stage final center start sequence is chosen and pairwise

alignment between center star and other sequences are done.

19

Figure 4.4: Map Reduce model of star alignment algorithm

Entries in Map Reduce are recorded with a (key, value) format. Key is denoted as the

sequence name and value as the DNA sequence. All of the input sequences are formatted

as (key, value) pairs for hadoop. In the first stage of the Map function, the data file is

automatically divided into several split files, which size is default block size of HDFS

(128 MB for Hadoop 2.7.3 version). These split files are sent to different data nodes and

aligned to the centre sequence in parallel. After alignment, the centre sequence and the

sequence in the split file are updated with inserted spaces. They are still recorded with a

(key, value) format, where the key is the sequence name and the value is the two updated

aligned sequences. The flow of the map function is shown in Fig. 4.5 and Algorithm 4.3.

Then, the output (key, value) pairs reach the Reduce stage.

In the first stage of the Reduce function, the data are note processed and are output to the

HDFS file system directly. Then, the data are collected from the HDFS file system on a

local computer, and the aligned centre sequences are extracted and collected. For the k

aligned sequences, maximum spaces between every two neighboring characters are

counted. The maximum spaces are retained for the final centre sequence.

20

 Key Value

Key Value

Figure 4.5: The input and output of map function in the first stage

Algorithm 4.3.Function Map_1

For each Map_1(key=sequence_name[i], value=sequence[i])

1：for sequence i ← 1 to Data_Size/64 M do

2：key ← sequence_name[i]

3：value ←star_alignment_algorithm (center star sequence, sequence[i]);

4：end for

The second Map-Reduce phase is similar to the first stage. All of the aligned sequences

from the first stage are aligned again to the Final Centre Sequence. Because the Final

Centre Sequence has the maximum number of spaces between every character, there will

be no space inserted into the Final Centre Sequence. Therefore, all of the other sequences

will be aligned to the same length as the Final Centre Sequence, which will be the final

alignment result. The input and output of the map function in the second stage are shown

as figure 4.6:

s[1]_name New_center_sequence[1] \t New_sequence[1]

s[2]_name New_center_sequence[2] \t New_sequence[2]

s[3]_name New_center_sequence[3] \t New_sequence[3] s[1]_name s[1]_value

s[2]_name s[2]_value

s[3]_name s[3]_value

s[i]_name s[i]_value

s[k]_name s[k]_value

s[i]_name New_center_sequence[i] \t New_sequence[i]

s[i+1]_name New_center_sequence[i+1] \t New_sequence[i+1]

s[i+2]_name New_center_sequence[i+2] \t New_sequence[i+2]

s[k-2]_name New_center_sequence[k-2] \t New_sequence[k-2]

s[k-1]_name New_center_sequence[k-1] \t New_sequence[k-1]

s[k]_name New_center_sequence[k] \t New_sequence[k]

Map

1

21

 Key Value

Key Value

Figure 4.6: The input and output of map function in the second stage

4.4 Data Collection

The sample data is collected from National Center for Biotechnology Information

(ftp://ftp.ncbi.nlm.nih.gov/genbank) in the FASTA format.

For example:

>gi|292493920|ref|NC_013962.1| Candidatus Riesia pediculicola USDA plasmid

pPAN, complete sequence

ATAAAATTCCCGTCTTCTAAGGAAGAAGTCCCGAAAGAAAGGGAGAGTAAATGAAAAGGAATTGATTTTTTTTTTTCA

AAAAAAAATGGTCTAACAGGTAAGGGAAATTTGAGGTCATGAAGAAGAATCCTAAGTTAAATACAACTATTGAAGATA

TAAGAATTTGGAAGAAGAACTCTTCAAAGTTTGCTGCTTTAA…..

From the collected data different data sets are prepared, that contains the different

number of sequences and different size of the sequence file.

s[1]_name Final_new_sequence[1]

s[2]_name Final_new_sequence[2]

s[3]_name Final_new_sequence[3] s[1]_name New_sequence[1]

s[2]_name New_sequence[2]

s[3]_name New_sequence[3]

s[i]_name New_sequence[i]

s[k]_name New_sequence[k]

s[i]_name Final_new_sequence[i]

s[i+1]_name Final_new_sequence[i+1]

s[i+2]_name Final_new_sequence[i+2]

s[k-2]_name Final_new_sequence[k-2]

s[k-1]_name Final_new_sequence[k-1]

s[k]_name Final_new_sequence[k]

Map

2

22

CHAPTER 5: RESULT AND DISCUSSION

In this section, the test environment is introduced. The result verification for star

alignment algorithm (sequential and parallel) with the result of clustalW is done. Finally

the execution time of the parallel algorithm for different datasets and for different number

of nodes is shown. The scoring schemes for match column is 1, mismatch column is 0

and for gap is -1 have been used. These scores are needed in pairwise sequence alignment

steps.

5.1 Test Environment

The system is deployed on Intel core i3 PC with 4 GB RAM and total 4 cores. The test

environment consists of a total 8 physical nodes hadoop cluster and the hardware

configuration of each node is shown in Table 5.1. The software and Hadoop

configuration is shown in Table 5.2.

Table 5.1: Hardware of each node

CPU Intel core i3 / 4 cores @ 3.30 GHz

Memory 4 GB

Disk Size 100 GB

Table 5.2: Software and Hadoop configuration of each node

OS Ubuntu 16.04.2 / 32 bit

Java 1.8.121 version

Hadoop 2.7.3 version

5.2 Verification of Result

The correctness of the result is verified by comparing it with the sequential result and it

seems result of both is same and also it is compared with the result of clustalW by using

the same input data. The aligned multiples sequences from parallel star algorithm and

clustalW are shown in Figures 5.1 and 5.2 respectively. An asterisk is used to indicate a

match column.

23

CLUSTAL 2.1 multiple sequence alignment

Juniperus --------GGTGTTTCCAGTGGCGAACGGGTGAGTAATG--CGTAAGAACCTGCCCTTGG

Burkholderia -----CACCTGGTGGCGAGTGGCGAACGGGTGAGTAATA--CATCGGAACATGTCCTGTA

Aeromonas TGCTACTTTTGCCGGCGAGCGGCGGACGGGTGAGTAATG--CCTGGGAAATTGCCCAGTC

Acetohalobium -------CAGTTAGTAAAGCGGCGGACGGGTGA-GTAACGCGTGAGTAATCTACCTTTAA

Janibacter -------CGAGTGGATCAGTGGCGAACGGGTGAGTACACACGTGAGCAACCTGCCCCAGA

 ** **** ******** ** * *

Juniperus GAGGGGAACAACAGCTGGAAACGGTTGCTAATACCCCATAGAATTTAGTACCTCT

Burkholderia GTGGGGGATAGCCCGGCGAAAGCCGGATTAATACCGCATACGATCTACGG-----

Aeromonas GAGGGGGATAACAGTTGGAAACGACTGCTAATACCGCATACGCCCTACGGGGG--

Acetohalobium GTCTGATATAACTTCTCGAAAGGGAAGCTAATTTCGGATATTATGCTGCCTGGAT

Janibacter CTCTGGAATAAGCGCTGGAAACGGCGTCTAATACTGGATATGTGACGGACCTGCA

 * * * **** **** ***

Figure 5.1: Multiple sequence alignment result of data set RefSeqtest.fasta by using

ClustalW

The clustalW simulation platform is obtained from the web site

http://www.clustal.org/download/current and it can also be accessed online in

http://www.ch.org/software/ClustalW.html.

Burkholderia GGTGTTTC-CAGTGGCGAACGGGTGA---GT-A-ATGCGTAAG-AACCTGCCCTTGGGAG

Aeromonas CAGTTAGTAAAGCGGCGGACGGGTGA----GTA-ACGCGTGAGTAATCTACCTTTAAGTC

Juniperus CGAGTGGATCAGTGGCGAACGGGTGA---GT-ACACACGTGAGCAACCTGCCCCAGACTC

Acetohalobium CACCTGGTGGCGAGTGGCGAACGGGT-GAGT-A-ATACATCGG-AACATGTCCTGTAGTG

Janibacter TGCTACTTTTGCCGGCGAGCGGCGGACGGGTGAGTAATGCCTGGGAAATTGCCCAGTCGA

 * * * * * * * *

Burkholderia GGGA-ACAACAGCTGGAAACGGTTGCTAATACCCCATAGAATTTAGTACCTCT

Aeromonas T-GATATAACTTCTCGAAAGGGAAGCTAATTTCGGATATTATGCTGCCTGGAT

Juniperus TGGA-ATAAGCGCTGGAAACGGCGTCTAATACTGGATATGTGACGGACCTGCA

Acetohalobium GGGG-ATAGCCCGGCGAAAGCCGGATTAATACCGCATACGAT-CT-ACG-G--

Janibacter GGGGGATAACAGTTGGAAACGACTGCTAATACCGCATACGCC-CT-ACGGGGG

 * * * **** **** ***

Figure 5.2: Multiple sequence alignment result of data set RefSeqtest.fasta by using

MapReduce model

Above figures shows the results from the MapReduce model and ClustalW. An asterisk

has been used to represent the match columns. There is little difference in finding the

number of match columns in these results. This difference is due to the use of different

scoring schemes. In this thesis identity score matrix has been used where as in ClustalW

BLOSUM and PAM matrixes are used.

http://www.clustal.org/download/current
http://www.ch.org/software/ClustalW.html

24

5.3 Execution Time Analysis

In order to evaluate the map reduce model of star alignment approach, two DNA data

files of different sequence length are used. One file is of human mitochondrial genomes,

which contains total 672 genome sequences of average sequence length 8200 bp. Another

data file is 16s rRNA, which contains total 708,129 sequences of average sequence length

1442 bp. The size of the sequence files are 10 MB and 1457 MB respectively.

5.3.1 Varying number of sequences of same size

By using the above two sequence files different reference sequence files are generated of

different sequence numbers, which are tabulated in table 5.3 and also its execution time

with sequential and parallel algorithm are shown.

Table 5.3: Execution time of sequential and parallel algorithm varying the number of

sequences with each sequence average length 1442 bp.

Sequence File

Name

No of

sequences

Size of

sequence file

Sequential

(seconds)

Parallel

(seconds)

RefSeq1.fasta 2 4 KB 1 19

RefSeq2.fasta 3 5 KB 2 22

RefSeq3.fasta 4 7 KB 2 23

RefSeq4.fasta 6 10 KB 5 23

RefSeq5.fasta 8 13 KB 8 24

RefSeq6.fasta 10 16 KB 11 24

RefSeq7.fasta 20 30 KB 40 26

RefSeq8.fasta 30 45 KB 90 26

RefSeq9.fasta 40 60 KB 153 28

RefSeq10.fasta 50 74 KB 235 29

RefSeq11.fasta 100 148 KB 909 32

RefSeq12.fasta 150 222 KB 2094 36

RefSeq13.fasta 200 296 KB 3740 43

RefSeq14.fasta 250 369 KB 5698 49

As shown in the above table, Different reference sequences have been generated by using

the 10 MB data set file. These reference sequences contain different number of

sequences. From the above table it is shown that sequential version of the star alignment

algorithm is good for alignment of 10 numbers of sequences than the MapReduce model.

25

For more than this little increase in time but as the numbers of sequences increases from

50 sequential version of star alignment execution time grows exponentially and it

becomes infeasible where as the MapReduce model execution time is quite low as

compared to the sequential. A line graph plot of the above result is shown in figure 5.3.

Figure 5.3: Execution time of sequential and parallel algorithm varying the number of

sequences with each sequence average length 1442 bp.

Another experiment has been done in human mitochondrial genomes datasets in which

average length of DNA sequences are 8200 base pair. The result of this experiment is

shown in table 5.4.

Table 5.4: Execution time (in seconds) of sequential and parallel algorithms with varying

number of sequences of average sequence length 8200 bp.

0

50

100

150

200

250

3 4 6 8 10 20 30 40 50

Ex
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

No of sequence

Sequential run

Parallel run

Sequence File

Name

Number of

Sequences

Size of

Sequence File

Sequential

(seconds)

Parallel

(seconds)

REFSEQ2.fasta 2 16 KB 41 38

REFSEQ3.fasta 3 24 KB 95 41

REFSEQ4.fasta 4 32 KB 160 44

REFSEQ6.fasta 6 48 KB 333 73

REFSEQ8.fasta 8 63 KB 569 85

REFSEQ10.fasta 10 79 KB 885 96

REFSEQ20.fasta 20 158 KB 3046 171

REFSEQ30.fasta 30 236 KB 11184 282

26

The result shows that for DNA sequences having higher length (approx 8200bp) the

sequential algorithm is not suitable for multiple sequence alignment. For more than 10

number of sequences sequential algorithm is infeasible because it takes time more than 3

hours to align 30 sequences, where as MapReduce model align this in less than 5

minutes. The line graph plot of the above result is shown in figure 5.4.

Figure 5.4: Execution time (in seconds) of sequential and parallel algorithms with

varying number of sequences of average sequence length 8200 bp.

5.3.2 Varying number of nodes

A set of experiments is done in datasets 16srRNA with datasets file size from 102 MB to

1457 MB and the average length of the sequence is 1442 bp. These experiments

execution time in one node cluster, two node cluster, three node cluster, four node cluster,

six node cluster and eight node clusters are shown in table 5.5 and 5.6 and it’s graphical

representation is shown in figure 5.5 and 5.6 respectively. This experiment has been

done by using default block size of the HDFS which is 128 MB for the Hadoop version

2.7.3.

0

500

1000

1500

2000

2500

3000

3500

2 3 4 6 8 10 20

Ex
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

No of sequences

Sequential

Parallel

27

Table 5.5: Execution time (in minutes) with varying sequence file size (102 MB to 1457

MB) in one, two, three and four nodes.

Sequence File

Name

Size of

sequence

file

Number of

sequences

One

node

(min)

Two

node

(min)

Three

node

(min)

Four

node

(min)

RefSeqS1.fasta 102 MB 69512 68 68 68 68

RefSeqS2.fasta 159 MB 108416 91 74 72 70

RefSeqS3.fasta 228 MB 163893 130 110 104 92

RefSeqS4.fasta 433 MB 210446 226 192 168 141

RefSeqS5.fasta 1024 MB 497683 468 326 223 193

RefSeqS6.fasta 1457 MB 708129 - - 255 223

The result shows that for reference sequence file size smaller than HDFS block size

(default block size 128 MB for Hadoop 2.7.3) file is not splitted so it is not distributed to

all the nodes of the cluster so execution times for all the nodes are same. For reference

sequence file size higher than block size. Reference sequence file is split and distributed

no all the data nodes of the cluster. Due to this execution time decreases. The line graph

plot of the above result is shown in below figure 5.5.

Figure 5.5: Execution time (in minutes) with varying sequence file size (102 MB to 1457

MB) in one, two, three and four nodes.

0

50

100

150

200

250

102 MB 159 MB 228 MB 433 MB

Ex
e

cu
ti

o
n

 t
im

e
 in

 m
in

u
te

s

Refseq file size in MB

1 node

2 node

3 node

4 node

28

Table 5.6: Execution time (in minutes) with varying sequence file size (102 MB to 1457

MB) in four, six and eight nodes

Sequence File

Name

Size of

sequence

file

Number of

sequences

Four node

(min)

Six node

(min)

Eight node

(min)

RefSeqS1.fasta 102 MB 69512 68 68 68

RefSeqS2.fasta 159 MB 108416 70 70 70

RefSeqS3.fasta 228 MB 163893 92 88 84

RefSeqS4.fasta 433 MB 210446 141 138 136

RefSeqS5.fasta 1024 MB 497683 193 178 168

RefSeqS6.fasta 1457 MB 708129 223 196 181

This result shows that execution time decreases while increasing the number of data

nodes in the cluster. When the reference sequence is sufficiently large and number of

splits is greater than the nodes of cluster then it is distributed to all the nodes and at that

time actual parallelism is achieved. For reference sequence RefSeqS6.fasta number of

splits = 1457 MB/128 MB ≈ 12. In this case all the nodes execute the split files in parallel

and execution time decreases. The line graph of above result is plotted in figure 5.6.

0

50

100

150

200

250

102 MB 159 MB 228 MB 433 MB 1024 MB 1457 MB

Ex
e

cu
ti

o
n

 t
im

e
 in

 m
in

u
te

s

Refsequence file size in MB

4 node

6 node

8 node

29

Figure 5.6: Execution time (in minutes) with varying sequence file size (102 MB to 1457

MB) in four, six and eight nodes

5.4 Sample output

Below are the sample outputs at different stages:

5.4.1 Job tracker window

Figure 5.7: All application shown in job tracker window

The above figure shows the job tracker window that can be accessed from the master

node. In this window status of the submitted and running jobs can be shown. It displays

the status of running jobs and also shows the completed jobs.

30

5.4.2 First stage of Map Reduce

Figure 5.8: Status of first stage of map reduce

5.4.3 Second Stage of Map Reduce

Figure 5.9: Status of second stage of map reduce

31

5.4.4 Datanode Information

Figure 5.10: Datanode information accessed from master node while running jobs

5.4.5 Progress of Map Reduce

Figure 5.11: Progress of map reduce job shown in console

32

5.5 Result Summary

In this thesis a MapReduce model of star alignment algorithm for multiples sequence

alignment has been developed and implemented using java as programming language and

hadoop as MapReduce framework. This model has been tested using 8 physical node

cluster and its result is verified using the result of sequential model of star alignment and

with external tools ClustalW. The aligned sequences are same as that of the sequential

algorithm, while comparing the result with ClustalW it seems little difference in number

of match columns which are due to the use of different scoring matrixes. In this thesis

identity matrix is used where as in ClustalW BLOSUM and PAM matrixes are used.

The experiments are done by using different reference sequences (number of reference

sequences from 2 to 708129 and reference sequence file size from 4 KB to 1457 MB).

For small number of sequences up to 250 for average sequence length 1442 bp and up to

30 for average length 8200 bp both the sequential and parallel algorithms are run and

results have been compared. From these experiments it is shown that sequential model of

start alignment algorithm is only suitable for few numbers of sequences. For 30 human

genome sequences, sequential model takes execution time more than 3 hours where as

map reduce model only takes 4.7 minutes. Due to high execution time of sequential

model more than 369 KB sequence file size is not tested. Even in a single hadoop node

execution time in quit low that compared to the sequential algorithm.

Another set of experiments have been done in reference sequence of file size from 102

MB to 1457 MB and nodes of cluster are varied from 2 nodes to 8 nodes. In this thesis

default HDFS block size is used (128 MB for Hadoop 2.7.3). The large reference

sequence file is splitted into file size equal or less than block size of the HDFS and

distributed to all the data nodes that executes in parallel. The number of map function is

equal to the number of splits and number of reducer is only one because all the

intermediate results are combined for final result. From these experiments scalability of

this model has been seen that when the number of nodes is increases then execution time

decreases. It is shown from the experiment that speed up of 3 times is achieved from one

node cluster to 8 physical nodes cluster for data sets greater than 1 GB.

33

CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Conclusion

MSA is an important and fundamental tool in bioinformatics, especially for phylogenetic

tree reconstruction. Biological sequences are aligned with each other vertically to show

possible similarities or differences among these sequences. MSA is the process of

aligning three or more nucleotides/amino-acids sequences at the same time. Dynamic

programming algorithms like Needleman-Wunch and Smith-Waterman produce accurate

alignments, but these algorithms are computation intensive and are limited to a small

number of short sequences. It is a complete optimization problem where the time

complexity of finding an optimal alignment raises exponentially when the number of

sequences to align increases.

In this thesis work, a MapReduce model of start alignment algorithm for multiple

sequence alignment has been developed. The dynamic nature of the model couples the

data and computational parallelism of hadoop data grids by improving the speed of

sequence alignment while maintaining the accuracy. To evaluate the performance of the

model several datasets (file size from few KB to 1.4 GB) with different number of

sequences (upto 708129 sequences) has been used. The experiments have been done from

one node cluster to 8 node physical clusters.

From the experimental analysis it is shown that sequential version of star alignment is

only suitable for less than 20 number of sequences. On the other hand, the result reveals

that speed up of 3 times is achieved from one node cluster to 8 physical nodes cluster for

data sets greater than 1 GB.

6.2 Limitation

In this thesis a MapReduce model of star alignment algorithm is developed and tested

using different datasets. This model only align DNA sequences, it do not accept the

protein sequences. Because DNA sequences have only four characters it’s easy to score

34

the alignments but protein sequences have twenty characters and scoring the alignments

of protein sequences is more time consuming.

6.3 Future Work

This model can be extended for the alignment of protein sequences by using the protein

substitution matrix and protein structure information. Substitution matrix is used to fill

the score matrix at the time of alignment and after alignment used for finding the sum of

pair score of aligned sequences and this is more time consuming and it can be reduced by

using more physical nodes in the cluster.

The result of this model is verified by using the result of sequential version of the

algorithm and also with the external tools ClustalW, which can’t align sequences with file

size more than 1 MB. Parallelizing the ClustalW in some way to fit with big data will be

a research topic. The output of this model is aligned multiples sequences which can be

used for phylogenetic tree reconstruction and further analysis of the genome.

In this thesis, only global alignments of sequences using Needleman-Wunsch is

considered, Local alignment can also be done using Smith-Waterman algorithm and its

results can be verified by using external tools like BLAST.

35

REFERENCES:

[1] A. A. K. Saad Khan Zahid, "A Novel Structure of Smith-Waterman Algorithm for

Efficient Sequence Alignment," Bioinformatics, pp. 6-9, 2015.

[2] R. S. D. E. Farhana Naznin, "Progressive Alignment Method Using Genetic

Algorithm for Multiple Sequence Alignment," IEEE Transactions on Evolutionay

Computation, vol. 16, no. 5, pp. 615-630, 2012.

[3] W. Needleman, "A general method applicable to the search for similarities in the

amino acid sequences of two proteins," Molecular Biology, vol. 48, no. 3, pp. 443-

453, 1970.

[4] T. F. S. a. M. S. Waterman, "Identification of common molecular subsequences,"

Molecular Biology, vol. 147, no. 1, pp. 195-197, 1981.

[5] F. P. J. D. Thompson, "A comprehensive comparision of multple sequence

alingnment programs," Nucleic Acids Res., vol. 27, no. 13, pp. 2682-2690, 1999.

[6] w. A. K. H. S. Asril Adi S, "Parallelization of Star Alignment," International

Conference on Instrumentation, Communication, Information Technology and

Biomedical Engineering, pp. 167-171, 2013.

[7] T. White, "Hadoop: The definitive guide.," 2012.

[8] K. Li, "ClustalW-MPI: ClustalW analysis using distributed and parallel computing,"

Bioinformatics, vol. 19, no. 12, pp. 1585-1586.

[9] M. G. B. Dr G Sudha Sadasivam, "A Noval Approach to Multiple Sequence

Alignment using Hadoop Data Grids," 2010.

[10] H.-I. H. S. Y. D. Wei Yi Liu, "Genomic Analysis with MapReduce," 2015 IEEE

International Conference on Big Data, pp. 1330-1335, 2015.

[11] H. Y. a. C. H. Crawford, "Big Data: Cloud Computing in Genomics Applications,"

2015 IEE International Conference on Big Data, pp. 2904-2906, 2015.

[12] L. I. S. Dr. Siddu P. Algur, "Parallelized Genomic Sequencing Model: A Big data

approach for Bioinformatics application," 2015 International Conference on Applied

and Theoretical Computing and Communucation Technology, pp. 69-74, 2015.

36

[13] J. D. Watson, DNA: The Secret of Life, 2004.

[14] J. a. S. G. Dean, "MapReduce: simplified data processing on large clusters,"

Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

[15] W.-S. J. a. S.-F. Su, "Multiple Sequence Alignment using modified dynamic

programming and particle swarm optimization," Journal of the Chinese Institute of

Engineers, vol. 31, no. 4, pp. 659-673, 2008.

