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ABSTRACT 

 

Musculoskeletal Disorders (MSDs) are the abnormalities related to bones and muscles, 

affecting majority of the world population. Radiographic studies are the most common 

technique for the detection of these abnormalities as part of the medical diagnoses. An 

attention-based graph convolutional neural network (AGCNN) is implemented, in this 

thesis work, for the classification of such abnormalities in musculoskeletal radiograph 

images. The AGCNN network model is firstly implemented on the standard benchmark 

MURA dataset, consisting of 40,561 upper extremity radiograph images, for the binary 

classification of radiograph images into normal and abnormal. The performance of the 

network model is compared with that of the DenseNet169 baseline model. The network 

model showed improved performance results than the baseline model. The network model 

is then implemented on Xtremity dataset, consisting of 15,701 extremity radiograph 

images, for the multi-class classification of radiograph images into five different classes. 

The network model, that is implemented, is an ensembled network of soft attention-based 

Inception-ResNet-v2 network and graph convolutional network (GCN). Soft Attention 

map is used to localize the abnormality regions in the radiograph images for qualitative 

evaluation of the network. The network model achieved an accuracy of 0.884, average 

recall of 0.874, average F1 score of 0.876, and average AUC score of 0.976. The network 

model achieved above average results in the classification task. Furthermore, the 

performance results of the classification task by the ensembled AGCNN network are 

compared with that of different state-of-the-art pre-trained CNN architectures. 

 

Keywords: 

MSDs, AGCNN, MURA, Soft Attention, Inception-ResNet-v2, GCN, AUC 
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CHAPTER ONE: INTRODUCTION 

 

1.1 Background 

 

Musculoskeletal abnormalities involve problems related majorly to muscles, bones, and 

joints. These abnormalities include fractures, dislocations, degenerative joint diseases, 

lesions, etc.  Some of these abnormalities such as fractures have a short-term effect only, 

but the conditions with prevalent pain or permanent disability have an effect for a lifetime. 

These abnormalities are broadly known as Musculoskeletal Disorders (MSDs). These 

disorders are very common, affecting the majority of world population. According to a 

recent study report on Global Burden of Disease in 2019 [1], over 1.7 billion people were 

affected worldwide due to musculoskeletal disorders. The conducted study found that 

musculoskeletal disorders were the second leading cause of global disability with almost 

30% of the world's population suffering from such debilitating conditions. Age, family 

history, exercise level, and using bad gestures at work have all been linked to the 

development of musculoskeletal problems. Musculoskeletal problems can be cured with 

proper therapy based on the diagnosis. The diagnoses of such abnormalities often require 

physical examination by radiologists and their inspection of medical images such as X-ray, 

Ultrasonography, PET scan, CT scan, MRI, etc. Among all of the medical images used for 

examination, X-rays – also known as radiographs, are the most common and widely used. 

The cheaper cost and shorter examination time with availability of results within few hours 

are, most probably, the reasons for the popularity of radiographs for being used in 

examination by radiologists for the diagnosis of musculoskeletal abnormalities. Since these 

abnormalities affect a large population, a proportionally huge number of radiologists are 

required. However, this is not the case, as there are a limited number of radiologists 

available for examining a relatively large number of people with such disorders. Such huge 

workload can significantly affect the diagnostic performance of radiologist. According to 

a recent study report, over one billion radiologic tests were performed worldwide each 

year, the most of which were clarified by radiologists [2]. In most cases, the clinical affairs 

or conditions of patients, their relevant history, and earlier medical imaging had a 

substantial impact on radiological explanation. As a remedy, a system model that can 
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perform automated detection of such abnormalities might be developed for radiologists 

with the goal of preventing issues from worsening as a result of failing to recognize 

warning indications. The automated system model can significantly reduce the 

radiologists’ workloads and improve their diagnostic performance. Furthermore, the 

system takes relatively less time for detection as compared to the time-consuming manual 

detection. 

The thesis work aims to develop a model with the application of deep learning that can 

classify musculoskeletal radiographs according to the abnormalities present. The 

application of deep learning in the medical images have been very effective, showing that 

the deep learning techniques can perform some medical tasks with comparable accuracy as 

that of medical experts. The classification of musculoskeletal abnormalities is done by the 

application of deep learning techniques in radiograph images. In this thesis work, an 

ensembled network, comprising of an inception residual neural network (Inception-

ResNet-v2) [3] with attention mechanism and Graph Convolutional Network (GCN) [4], 

is trained on radiograph images to classify the images on the basis of musculoskeletal 

abnormalities present. The classification task takes X-ray images as input, and outputs the 

prediction score of the type of abnormality present in the image. Furthermore, qualitative 

and quantitative evaluations of the ensembled network are done by performing different 

visualizations and calculating the evaluation metrics related to the classification task.  

 

1.2 Problem Statement 

 

Musculoskeletal disorders involve pain and injuries related to bones, joints, muscles, 

ligaments, and tendons such as fractures, degenerative joint diseases, lesions, subluxations, 

etc. These disorders affect people of every age group from children to adults to old-aged 

people. There is a rapid increase in the number of people with musculoskeletal conditions 

because of the worldwide population increase and ageing. The detection of these kinds of 

disorders requires medical expertise examining the medical imaging, which are time-

consuming procedures. There are an insignificant number of radiologists when compared 

to huge number of people with such disorders. As a result, with the majority of the world 

population affected by these disorders, the radiologists' workloads are massive and are 

increasing for the manual detection. Automated detection, with the usage of deep learning 
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techniques for the probabilities of such disorders in radiographs, can significantly reduce 

the radiologists' workloads, and, therefore, reduce the rate of diagnostic error compared to 

tedious manual procedure. Moreover, the automated detection speeds up the process of 

diagnosis for the radiologists. 

 

1.3 Thesis Objectives 

 

The objectives of this thesis are: 

 

1. To implement an ensembled network, comprising of an inception residual neural 

network with soft attention mechanism and graph convolutional network, for the 

multi-class classification of the radiograph images on the basis of musculoskeletal 

abnormalities present. 

2. To validate the implemented network both qualitatively and quantitatively using 

different measures. 

3. To compare the performance of the ensembled network with that of the state-of-

the-art CNN architectures. 

 

1.4 Contribution of the Thesis 

 

The contribution of this thesis work involves the application of deep learning techniques 

for the multi-class classification of musculoskeletal abnormalities present in the radiograph 

images collected from multiple sources. The major contributions of this thesis are: 

 

1. The radiographic images from various sources are collected forming the 

musculoskeletal radiograph image dataset which contains 15,701 labelled images 

and categorized into five different classes. 

2. The application of graph convolutional network in image dataset is explored for 

extracting the latent correlational features among a group of images for the 

classification task. 
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1.5 Structure of the Thesis 

 

The thesis is structured into six chapters. In chapter one, a brief overview of the problem 

is given along with motivations and importance of doing research in this particular field. 

Chapter two states the related works regarding this work and presents the research gap in 

those already done works. Chapter three describes the theories related to understand the 

concept behind the work. Chapter four includes the research methodology for performing 

the work to meet the objectives. Chapter five presents the experimental settings and 

implementation results along with some analytical discussions. 

Finally, chapter six draws conclusion of the research done and mentions some future works 

that can be done in this subject area.  
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CHAPTER TWO: LITERATURE REVIEW 

 

The application of Machine Learning (ML) has been common for the task of image analysis 

as they produce notable results in such situations. In image analysis, machine learning 

algorithms have achieved fair precision, however, they typically require very unique 

manually-engineered features to function, which dramatically reduces their capability to 

generalize to similar problems. In contrast, Deep Learning (DL) algorithms extract features 

on its own. The deep learning methods have relatively overshadowed the traditional 

machine learning methods in image processing and computer vision domains. 

ImageNet project by Deng et al. [5] is a very large-scale image database designed for visual 

object recognition and consists of more than 14 million images that are categorized into 

more than 20,000 classes. The ImageNet project laid a foundation for the development of 

many state-of-the-art convolutional neural network architectures. The work of Krizhevsky 

et al. [6] can be seen as a landmark in computer-aided image analysis using deep neural 

networks. Their proposed deep convolutional neural network, named as AlexNet, won the 

ILSVRC-2012 challenge for classification of about 1.2 million images – a smaller 

ImageNet version of the larger ImageNet project database – into 1,000 distinct categories.  

 

2.1 Deep Learning in Medical Imaging 

 

Medical image analysis and their interpretation with significant accuracy are very crucial 

for better diagnoses. Deep Learning application in the analysis of medical images is gaining 

attention of many researchers worldwide. The widely used medical images for analysis are 

X-rays, Medical Resonance Imagings (MRIs), Computer Tomography (CT) scans, etc. 

These works of [7, 8, 9] laid significant foundations in the research world and paved a path 

for future work enhancements in the medical image analysis using deep learning 

techniques.  

Gulshan et al. [7] implemented a deep learning algorithm in retinal fundus images for the 

detection of different grades of diabetic retinopathy and diabetic macular edema. They used 

a deep convolutional neural network and trained it on a large dataset of 128,175 retinal 

images. The implemented network was validated using 2 different datasets: EyePACS-1 

dataset consisting of 9,963 retinal images and Messidor-2 consisting of 1,748 retinal 
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images. Their network implementation achieved AUC score of 0.991, sensitivity of 0.903, 

and specificity of 0.981 on EyePACS-1 dataset. On Messidor-2 dataset, the network 

achieved AUC score of 0.990, sensitivity of 0.87, and specificity of 0.985. 

Esteva et al. [8] implemented a deep convolutional neural network for the classification of 

skin cancer. They trained the network on a large dataset of 129,450 images of skin lesions 

consisting of more than 2,000 different diseases. They validated their results, from the tasks 

of binary classification of skin lesions on test set, by performing a comparative test with 

board-certified dermatologists. They claimed that their network achieved performance that 

is comparable to that of the dermatologists. 

Wang et al. [9] released a huge medical dataset, named ChestX-ray8, and benchmarked on 

different CNN models pre-trained on ImageNet. The dataset consists of over 100,000 

multi-labeled antero-posterior view of chest X-ray images. They later updated the dataset 

to include more images of different diseases and named the dataset as ChestX-ray14. The 

ChestX-ray dataset released by Wang et al. has been the most used medical dataset for 

research purposes. Rajpurkar et al. [10] used a 121-layered densely connected 

convolutional neural network for pneumonia detection with the network model trained on 

the ChestX-ray14 dataset. They compared the performance results of their implemented 

network model with that of the radiologist. They concluded that the performance of their 

network model for detecting pneumonia was beyond that of a radiologist. 

 

2.2 Deep Learning in Musculoskeletal Abnormality Detection 

 

Rajpurkar et al. [11] released a huge dataset, named as MURA, which consists of over 

40,000 multi-view musculoskeletal radiographic images of seven study types of upper 

body extremities. They used a 169-layered densely connected convolutional network 

model – DenseNet169 – for the prediction of abnormality in radiograph images. The 

network was trained end-to-end on MURA dataset. They proposed an ensembled model by 

combining five models with the lowest validation losses. Their model attained an AUC 

score of 0.929, sensitivity of 0.815 and specificity of 0.887. They concluded that the 

performance of the model was comparable to the radiologist’s best performance in finger 

and wrist study parts, however, the model’s performance in detecting abnormalities in 
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hand, humerus, forearm, elbow, and shoulder study parts was lower than the best 

performance of the radiologist. 

For the identification of musculoskeletal anomalies in radiographs, Mondol et al. [12] 

proposed an ensemble model combining VGG-19 architecture [13] and ResNet-50 

architecture [14]. The proposed ensembled model, named as Computer-Aided Diagnosis 

(CADx), was trained on four study types – Elbow, Finger, Humerus, and Wrist – of MURA 

dataset. The results showed that the ensembled model performed relatively better than the 

individual VGG-19 architecture and ResNet-50 architecture. They concluded their work 

by comparing the results of baseline model of Rajpurkar et al. [11] with their proposed 

ensembled model. They claimed their model’s performance was better than the baseline 

model on most of the study types. 

Thian et al. [15] proposed a model using object detection CNN for detecting radius and 

ulna fractures and localizing the areas of those fractures in radiographic images of the wrist. 

The proposed model was based on Inception-ResNet architecture and the final model was 

a Faster R-CNN [16] architecture. The model was evaluated on per-image and per-study 

basis achieving high sensitivity and specificity. Chung et al. [17] attempted to discover the 

capability of CNN to recognize and classify the humerus fractures using the dataset which 

contains 1,891 radiograph images of normal shoulder and 1,376 radiograph images with 

the proximal humerus fracture. These fractures were classified into four types and, then, 

evaluated to obtain the final results. After excluding the radiographs of normal shoulder, 

the fracture types were classified. Their implemented CNN model achieved high accuracy 

of 96%, AUC-ROC of 1.00, sensitivity of 0.99, and specificity of 0.97 to classify normal 

shoulder radiographs and radiographs with proximal humerus fractures. 

Maya Varma et al. [18] used a 161-densely connected convolutional network for the 

detection of musculoskeletal abnormalities in lower extremity radiograph images. They 

used a large dataset of 93,455 radiograph images of multiple lower extremity body parts, 

labelled as abnormal or normal. Their model achieved an AUC score of 0.880, sensitivity 

of 0.714 and specificity of 0.961. Furthermore, they explored the effect that the size of the 

dataset, pretraining the model with relevant datasets, and model architecture have on the 

model’s performance for performing deep learning analysis on extremity radiographs. 
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2.3 Graph Neural Networks for Medical Image Classification 

 

Recent development in the medical image classification field explored the use of graph 

neural network (GNN) and its different variants such as graph convolutional network 

(GCN), graph attention network (GAT), etc. Xiang Yu et al. [19] proposed a graph neural 

network as classifier on the features extracted from ResNet101 network from the chest CT 

images for the COVID-19 detection. The model, named as ResGNet-C, performed binary 

classification of lung CT images into normal and COVID-19. The model achieved 96.6% 

accuracy, 97.3% sensitivity, and 95.9% specificity, using five-fold cross-validation on the 

dataset comprising of 296 lung CT images. They claimed their work as the first effort in 

combining knowledge of graph into the COVID-19 detection task. Graph structures were 

built on the basis of Euclidean distance metric calculated among the features extracted by 

ResNet101-C, and then, the graph structures are encoded with the extracted features to 

perform the prediction. They claimed their high-performance model surpassed all state-of-

the-art methods. 

Wang et al. [20] implemented Convolutional Neural Network and Graph Convolutional 

Network for the task of COVID-19 detection in chest CT images. They fed the individual 

image-level representation features extracted from self-created CNN to the GCN for the 

extraction of relation-aware representation features and then fused both the features. They 

compared their model, named as FGCNet, with 15 state-of-the-art methods, and concluded 

their model attained comparatively better performance in detecting COVID-19. 

 

2.4 Research Gap 

 

Many research works regarding the detection of the musculoskeletal abnormality in 

radiograph images has been done before. Those works dealt with only binary classification 

of radiograph images as normal and abnormal. After the consultation with few radiologists 

from local hospitals, it became evident that the common abnormalities that can be 

diagnosed from radiographic studies were fractures, dislocations, lesions, and degenerative 

joint diseases. Moreover, the radiographic studies were also used to observe the orientation 

of orthopedic hardware devices that were implanted as a treatment procedure of many 

musculoskeletal abnormalities. The research work with further classification, that is, multi-

class classification of the specific classes of musculoskeletal abnormalities such as fracture, 
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orthopedic hardware, lesion, and joint disorder had not been performed before. This issue 

was being addressed, in this thesis work, by classifying the radiograph images according 

to the major types of abnormalities present in the images. 

Almost all of the works related to the classification of radiograph images involved the 

utilization of convolutional neural networks only. Convolutional neural networks are 

capable of capturing only the individual image representational features. However, they 

are not capable to capture the correlational representation features among a group of 

images. Graph Convolutional Network (GCN) have the capability of capturing the 

correlational features among images. This research gap was attempted to be filled by 

capturing relational features in addition to individual image features, by ensembling 

convolutional neural network and graph convolutional network together in hierarchical 

fashion for the classification of radiograph images. 
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CHAPTER THREE: THEORETICAL BACKGROUND 

 

 

3.1 Inception-ResNet-v2 Network 

 

The pre-trained Inception-ResNet-v2 network [3] was used in this thesis work as CNN sub-

network since it achieved high performance results for the classification of images in the 

ImageNet dataset. It is a 164-layered deep convolutional neural network architecture pre-

trained on ImageNet dataset. The network integrates the concept of residual connections 

into the Inception module structure. The Inception-ResNet network introduces residual 

connections that add the inception module’s convolution output to the input. These 

connections, also called skip connections, help with vanishing gradient and exploding 

gradient problems. They also help in the reduction of training time. Figure 1 shows 

schematic diagram of compressed view of Inception-ResNet-v2 network. 

 
Figure 1: Schematic diagram of Inception-ResNet-v2 network. 

The stem block comprises of initial set of operations that are needed to be performed on 

input before introducing the input to Inception modules. The concept of an inception 

module in the Inception-ResNet network incorporates convolutional kernels with multiple 

sizes operating on the same level so that a larger kernel and a smaller kernel can be 

effectively utilized for capturing information that are distributed both globally and locally, 

respectively. A filter expansion layer, which is actually a 1x1 convolution without 
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activation function, follows each inception block in the network. The filter expansion layer 

is used for scaling up the dimensionality of the filter bank before performing addition so 

that the depth of the output matches the depth of the input. An auxiliary classifier is 

incorporated into the network which prevents the deep network from dying out. The 

auxiliary loss of the auxiliary classifier is only used for training purposes and is ignored 

during inference. 

 

3.2 Soft Attention Mechanism 

 

The concept of attention mechanism is employed in neural network architectures in order 

to focus on relevant features that contribute more to the results. One such technique is soft 

attention mechanism which was originally employed in image captioning task [22]. The 

concept is inspired from the implementation of skin lesion image classification [23] which 

showed improved performance results. Figure 2 shows the diagrammatic representation of 

soft attention block unit. 

 

Figure 2: Diagrammatic representation of Soft Attention block unit. 

The feature tensor (t) that streams down the convolutional neural network is fed as input 

to the soft-attention block unit. The soft attention map is calculated mathematically as:  

𝑓𝑠𝑎 = 𝛾𝑡(∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑘 ∗ 𝑡)𝐾
𝑘=1 )    3.1 

Here, 

𝑡 ∈ ℝℎ𝑥𝑤𝑥𝑑 represents an input feature tensor to 3D convolutional layer, 

𝑊𝑘 ∈ ℝℎ𝑥𝑤𝑥𝑑𝑥𝐾 represents the kth 3D weight, and 

K represents the number of 3D weights. 
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The output from the 3D convolution is fed to the softmax activation function, which 

performs normalization operation, to produce K = 16 attention maps. As shown in Figure 

2, the resulting attention maps are combined to yield an integrated attention map which 

performs as a weighting function (𝛼). The resulting integrated attention map represented 

by (𝛼) is then multiplied with the feature tensor (𝑡) to scale the salient feature values 

attentively. The resulting feature values are further scaled by a learnable scalar parameter 

(𝛾). Finally, the resulting features (𝑓𝑠𝑎) that are attentively scaled are then concatenated 

with the input feature tensor (𝑡) as a residual connection. 

 

3.3 Graph Convolutional Network 

 

Graph Convolutional Network (GCN) [4] is one of the many variants of Graph Neural 

Network family which operates on arbitrarily-structured graph data or simply graphs. 

Neural Networks could only be implemented on regular-structured data or, in other words, 

Euclidean data. However, most of the real-world data are non-regular in structure and can 

be represented by non-regular or graphical data. The non-regular data structures have led 

to recent improvements in Graph Neural Networks. Graph Convolutional Network is one 

of the most popular Graph Neural Network variants. The convolution operation in GCN is 

basically the same as in convolutional neural networks. However, the convolution in GCN 

is done on graph-structured data while the convolution in CNN is done on image which is 

grid-structured data. Figure 3 illustrates a schematic diagram of graph convolutional 

network. 

The GCN learns the features by aggregating the features from the neighboring nodes. It 

takes the weighted average of neighbor’s feature vectors. The idea of weighted average is 

based on the assumption that low-degree nodes would have bigger influence on their 

neighbors whereas, high-degree nodes yield lower impact as they scatter their influence at 

a greater number of neighbors. 



 13 

 

 
Figure 3: Schematic diagram of Graph Convolutional Network. 

The propagation rule for each GCN layer is summarized as: 

𝐻(𝑙+1) = 𝜎(𝐴
^

𝐻(𝑙)𝑊(𝑙))     3.2 

Here, 

𝐻 is the hidden state (or node features when layer, 𝑙 = 0),  

𝐴
^

= 𝐷
~

−1/2𝐴
~

𝐷
~

−1/2 is the normalized version of adjacency matrix, 

𝐴
~

 is the adjacency matrix taking individual self-nodes into account, 

𝐷
~

  is the diagonal degree matrix of adjacency matrix 𝐴
~

, 

𝑊 is the trainable weight matrix, 

𝜎 is the activation function, and 

𝑙 is the layer number. 

The term A
^

 represents the average of features of all the neighbors including the feature of 

itself. The adjacency matrix is normalized by both rows and columns to get the weighted 

average preferring features on low-degree nodes. 
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CHAPTER FOUR: RESEARCH METHODOLOGY 

 

4.1 Block Diagram 

 

 
Figure 4: Diagrammatic representation of methodology for the classification task. 
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4.2 Data Collection 

The radiographic image data were curatively collected from various local hospitals of 

Nepal and public repositories of Artificial Intelligence in Medicine & Imaging Center of 

Stanford University1, Radiopaedia2, and Medpix3. The collected dataset is comprised of 

high-quality extremity radiograph images of patients who went under radiographic 

examination for the diagnosis of musculoskeletal disorder. The dataset, henceforth, named 

as Xtremity dataset, contains radiograph images of upper and lower extremities – ankle, 

elbow, finger, foot, hand, hip, knee, and shoulder. The collected radiograph images were 

labelled manually with the help of NMC-certified radiologist having professional 

experience of more than five years. The radiograph images were categorized, according to 

the presence or absence of major musculoskeletal abnormalities in the images, into five 

classes: Normal, Fracture, Lesion, Arthritis, and Hardware. Figure 5 shows samples of 

radiograph images of each class from the Xtremity dataset. 

The standard benchmark dataset – MURA dataset [11], was collected from the official 

repository of Stanford Machine Learning Group4. The dataset consists of 40,561 multi-

view radiograph images, collected from 14,863 studies of 12,173 patients. Each study, 

comprising of one or more views (images), were labeled manually as either abnormal or 

normal by expert radiologists from the Stanford Hospital. The dataset included radiograph 

images of the upper extremity – wrist, humerus, hand, shoulder, finger, elbow, and forearm. 

The dataset was partitioned into training set, validation set and test set where the training 

set consisted of 36,808 images from 13,457 studies of 11,184 patients, the validation set 

consisted of 3,197 images from 1,199 studies of 783 patients, and the test consisted of 556 

images from 207 studies of 206 patients. The usage of MURA dataset, in this thesis work, 

was two folds. Firstly, the MURA dataset being the standard benchmark dataset was used 

to evaluate the classification results with the implemented network. The evaluated 

classification results were compared to the results of baseline model. Secondly, the large-

scale MURA dataset was used to explore the effect of pre-training the CNN architecture.  

 
1 https://aimi.stanford.edu/lera-lower-extremity-radiographs-2 
2 https://radiopaedia.org 
3 https://medpix.nlm.nih.gov 
4 https://stanfordmlgroup.github.io/competitions/mura 
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Figure 5: Sample radiograph images from each class of the Xtremity dataset.  
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Figure 6: Sample radiograph images from each class of the MURA dataset. 

 

4.3 Pre-processing 

 

As the radiographic images were collected from multiple sources, they had varying sizes, 

resolutions, and colors. Therefore, comprehensive pre-processing techniques were applied 

to standardize all images. 

• CLAHE (Contrast Limited Adaptive Histogram Equalization) [21] transformation 

technique was applied to enhance the contrast of radiograph images. It is a 

modification of the adaptive histogram equalization technique to prevent the 

tendency to overamplify noise in relatively homogeneous regions of an image by 

restricting the amplification.  First of all, the neighborhood histogram for each pixel 

was computed in the image. Each histogram was clipped at a predefined value and 

the clipped histogram was redistributed equally among all the histogram bins. The 

Cumulative Distribution Function (CDF) and transformation function were 

computed for each pixel using the clipped histogram. Finally, the transformation 

function was applied to each pixel to get the equalized image. 

● The variable-sized radiographic images were re-scaled to 299𝑥299 image size. The 

rescaling was done since the CNN sub-network only accepts the square-shaped 

images and the particular 299𝑥299 image format was selected because the 
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Inception-ResNet-v2 network was trained on ImageNet images of that very image 

size. The mathematical interpretation of scaling operation on an image is given as:  

𝑥′ = 𝑆𝑥 ∗ 𝑥      4.1 

𝑦′ = 𝑆𝑦 ∗ 𝑦      4.2 

Here,  

(x, y) are the spatial co-ordinates of a pixel in the image,  

(x', y') are the spatial co-ordinates after scaling, and 

Sx and Sy are scaling factors. 

𝑆𝑥 =
𝑁𝑒𝑤 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 𝑖𝑚𝑎𝑔𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒
   4.3 

𝑆𝑦 =
𝑁𝑒𝑤 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 𝑖𝑚𝑎𝑔𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒
   4.4 

• After re-scaling, all the images were normalized pixel-wise so the pixel values in 

the image ranges between 0 and 1. This process is called min-max normalization. 

The process of normalization helps to reduce the computational complexity during 

training the model. 

𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
     4.5 

Here,  

x represents the value of pixels in the image, 

𝑥𝑚𝑖𝑛 = 0, represents the minimum pixel value, and 

𝑥𝑚𝑎𝑥 = 255, represents the maximum pixel value in the image. 

 

4.4 Dataset Split 

 

After preprocessing, the curatively collected Xtremity dataset, consisting of 15,701 

radiograph images, was divided into approximately 90% train set and 10% test set. The test 

set was carefully created with best efforts so that the test set comprised of radiograph 

images of all the extremity body parts in equal proportion. Table 1 shows the distribution 

of radiograph images in the Xtremity dataset. 
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Table 1: Distribution of images in Xtremity Dataset. 

Class Train Set Test Set Total 

Normal 4,138 348 4,486 

Fracture 2,643 294 2,937 

Lesion 2,210 246 2,456 

Arthritis 2,312 257 2,569 

Hardware 2,927 326 3,253 

Total 14,230 1,471 15,701 

 

The standard benchmark MURA dataset was partitioned into train set, validation set and 

test set. Table 2 shows the distribution of radiograph images in MURA dataset. 

Table 2: Distribution of images in MURA dataset 

Class Train Set Validation Set Test Set Total 

Normal 21,935 1,667 290 23,892 

Abnormal 14,873 1,530 266 16,669 

Total 36,808 3,197 556 40,561 

 

4.5 Augmentation 

 

During the training phase, in order to prevent the model from the problem of overfitting, 

augmentation technique was applied to introduce diversity to the images in the dataset. The 

techniques that were applied for augmentation were: 

● The images in the train set were laterally inverted, that is, horizontally flipped with 

random probability of 0.5. The mathematical interpretation is given as: 

𝑥′ = −1 ∗ 𝑥      4.6 

𝑦′ = 𝑦       4.7 
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• The radiograph images were randomly rotated up to ±30 degrees. The mathematical 

representation for rotation is: 

𝑥′ = 𝑐𝑜𝑠 𝜃  ∗ 𝑥 +  𝑠𝑖𝑛 𝜃 ∗ 𝑦     4.8 

𝑦′ = −𝑠𝑖𝑛 𝜃 ∗ 𝑥 +  𝑐𝑜𝑠 𝜃 ∗ 𝑦    4.9 

Here, θ is the angle of rotation (θ = 30o). 

• The radiograph images were shifted laterally and vertically with shift range in the 

interval [-0.2, +0.2] of the total width and height, respectively. 

𝑥′ = 𝑥 +  𝑡𝑥     4.10 

𝑦′ = 𝑦 +  𝑡𝑦     4.11 

Here, 𝑡𝑥 and 𝑡𝑦 are the translational factors in horizontal and vertical directions, 

respectively. 

 

4.6 Ensembled Network Model 

 

An ensembled network of convolutional neural network with attention mechanism and 

graph convolutional network, hereafter, named as AGCNN network model, was used for 

the radiograph image classification task. Convolutional neural network was employed for 

pre-training on the radiograph image dataset and extracting the visual features of individual 

images. The extracted features from CNN were then fed to the graph convolutional network 

for exploring the latent correlation among visual features. 

The pre-processed radiograph images were fed to an Inception-ResNet-v2 network 

integrated with soft attention block for the extraction of features, after pre-training on the 

images. The final classification layer of the Inception-ResNet-v2 network was removed. A 

soft attention block unit was added to the truncated network. The soft attention block unit 

was used to focus on the more salient features that are related to the classification task. 

This was achieved by providing higher weights to feature maps that are more relevant and 

lower weights to the feature maps that are less relevant to the prediction. After the soft 

attention block, a dropout layer [24] with drop rate of 0.2 was added. The dropout layer 

prevents the model from overfitting during training phase by making the neurons less 

dependent on each other. The dropout layer was then followed by a fully connected layer 

consisting of 128 neurons. The fully connected layer was used as a feature encoder which 

converts the higher dimensional feature vectors of the network to 128-dimensional feature 
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vectors. This process of encoding for dimensionality reduction was employed for 

decreasing the computational complexity. 

The final fully connected layer of the modified Inception-ResNet-v2 network, pre-trained 

by radiograph image classification task, was used to extract the individual image 

representation features. However, the CNN leaves out the relational representation among 

a group of images. In contrast, the latent relational representation between radiograph 

images can be captured by implementing graph convolutional network. Therefore, a GCN 

network was used to establish the connectivity analysis and augment the relational 

representation features to the CNN extracted individual image-level features. A two-

layered GCN was used to learn over the graph structure and node features, targeting to 

generate the relational representations of nodes. 

The feature vectors with 128-dimensions were extracted from the final fully connected 

layer after feeding the Inception-ResNet network with radiograph images. Each feature 

vector which represents an image was considered as a node in graph 𝐺 for building the 

graph structure representation for GCN input. Graph (𝐺) is represented by 𝐺 = (𝑉, 𝐸), 

where 𝑉 represents the set of nodes (or vertices) in the graph, and 𝐸 represents the set of 

edges. Edges in the graph were represented by the adjacency matrix (𝐴). The 

corresponding element in the adjacency matrix, 𝐴(𝑖, 𝑗), was set to one when there falls an 

edge between nodes 𝑖 and 𝑗,  otherwise it was set zero. It was assumed that there exists a 

connection or edge when the node falls into the top k nearest neighbors of another node. 

The nearest neighbors were calculated according to the cosine similarity metric. It 

characterizes the latent correlations of nodes and discovers the possible relationships 

among images. The cosine similarity between node i and j is calculated as: 

𝑐𝑜𝑠𝑖𝑛𝑒(𝑋𝑖. 𝑋𝑗) =
𝑋𝑖.𝑋𝑗

|𝑋𝑖|∗|𝑋𝑗|
     4.12 

Here, 𝑋𝑖 ∈ ℝ1𝑥𝑀 and 𝑋𝑗 ∈ ℝ1𝑥𝑀 represent feature vectors of node i and j of extracted 

features  𝑋 ∈ ℝ𝑁𝑥𝑀. 

The adjacency matrix representing the graph structure was constructed as: 

𝐴𝑖𝑗 = {
 1,     𝑖𝑓 𝑋𝑗 ∈ 𝑘𝑛𝑛(𝑋𝑖) 𝑜𝑟 𝑋𝑖 ∈ 𝑘𝑛𝑛(𝑋𝑗) 

0,                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   4.13 

Here, 𝑘𝑛𝑛(𝑋𝑖) represents the k nearest neighbors of node 𝑋𝑖 based on cosine similarity. 
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Correspondingly, a degree matrix 𝐷, having dimensions 𝑁𝑥𝑁 which is same as that of 

adjacency matrix (𝐴), can be calculated as: 

𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗
𝑁
𝑗=1       4.14 

Here, 𝐷𝑖𝑖 is an element of the diagonal degree matrix 𝐷. 

With the graph structure representation by normalized adjacency matrix and feature 

vectors, the convolution operation was performed in GCN as defined in equation 3.2. The 

node representation was improved by the GCN layer by taking the average of all neighbors’ 

features including itself. GCN with two stacked layers were used to capture the latent 

relational representations out of the CNN extracted features. After each convolution layer, 

ReLU activation function was applied. Mathematically, ReLU activation function is 

defined as: 

𝑅𝑒𝐿𝑈(𝑧) = max (0, 𝑧)    4.15 

Here, 𝑧 represents the input vector. 

After performing convolution on graph, the nodes were classified into different classes by 

using a dense layer with softmax function. The mathematical interpretation of softmax 

activation function is defined as: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐶

𝑗=1

    4.16 

Here, 𝑧 represents the input vector, and 𝐶 represents the number of classes. 

 

The algorithm of the ensembled AGCNN network model is summarized as: 

Step-1: Load the 164-layered ImageNet pre-trained Inception Residual neural network – 

Inception-ResNetV2; 

Step-2: Modify the network by replacing the top layer with new layers that are soft attention 

layer, dropout layer, fully connected layer and softmax classification layer for the 

radiograph image classification task; 

Step-3: Train the modified Inception-ResNet network with the train set of the dataset;  

Step-4: Generate the feature vectors through the final fully connected layer in the trained 

network; 

Step-5: Find the top k nearest neighbors for each feature vector based on cosine similarity 

and build the graph structure which is represented by adjacency matrix; 
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Step-6: Combine the feature vectors with graph structure representation by multiplicative 

fusion of feature vectors with the normalized version of adjacency matrix; 

Step-7: Train the two-layered GCN with combined feature representation and update the 

parameters; 

Step-8: Finally, classify the nodes representing the images by a dense layer with softmax 

activation function into different classes. 

 

4.7 Evaluation Metrics 

 

4.7.1 Qualitative Evaluation 

 

The qualitative evaluation of the ensembled AGCNN model was done in two stages. First, 

attention map was extracted from the soft attention block of the network for visualizing the 

abnormality region in radiograph image that the network was focusing on for making the 

prediction for the classification task. Second, the node feature representations that were 

learned by each node in the GCN network are visualized using t-SNE visualization 

technique [25]. 

 

4.7.1.1 Soft Attention Map 

 

The radiograph images consisted of specific regions that were prominent for the 

classification task. The soft attention mechanism that was implemented focused on salient 

regions that contribute more to the prediction score related to the classification task. The 

attention map from the soft attention module showed where the implemented network was 

looking before making the prediction. The visualization of attention map represents the 

visual interpretation of the Inception-Resnet network. Furthermore, rectangular bounding 

box for localizing the abnormality region was constructed from the contour of the generated 

attention map. The visualization results of soft attention map were compared to the results 

that were achieved by implementing Grad-CAM [26] technique.  

 

4.7.1.2 t-SNE Visualization of Node Embeddings 

 

Node Embedding represents the embedding of the nodes into a latent lower-dimensional 

vector space that captures the information that the network has learnt about the nodes and 

their neighborhoods. The visualization was done to illustrate the feature representations 
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that were learned from the graph convolutional network. The underlying motivation for 

node embeddings was to capture the features learned by the graph nodes after training the 

graph convolutional network. The t-SNE visualization technique was used to represent the 

node embeddings. The t-SNE visualization is a tool to visualize high-dimensional data. It 

converts similarities between nodes to joint probabilities and tries to minimize the 

Kullback-Leibler (KL) divergence between the joint probabilities of the low-dimensional 

embedding and the high-dimensional data. The KL divergence is a measure of how similar 

or different two probability distributions are. The higher the value of the divergence, the 

more dissimilar are the distributions. 

 

4.7.2 Quantitative Evaluation 

 

The quantitative evaluation of the network signifies the ability of generalization of the 

network. The network model that is evaluated using one metric may give satisfactory 

results, however, when evaluated using another metric, it may give unsatisfactory results. 

The network model was, therefore, assessed in terms of several evaluation metrics to test 

the model with respect to diversity. 

Table 3: Confusion Matrix 

  Predicted Class 

  Negative Positive 

 

True Class 

Negative True Negative False Positive 

Positive False Negative True Positive 

 

True Positive (TP):  It represents the number of positive samples that the classifier 

identified correctly.  

True Negative (TN): It represents the number of negative samples that the classifier 

identified correctly.  

False Positive (FP):  It represents the number of negative samples that the classifier 

identified incorrectly. 
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False Negative (FN): It represents the number of positive samples that the classifier 

identified incorrectly. 

 

Accuracy: It simply measures the ratio of number of samples that are identified correctly 

to the overall number of samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
    4.17 

 

Precision: It is the ratio of number of samples that the classifier model predicted as true, 

which were actually true. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
     4.18 

 

Recall: It is the ratio of number of positive samples that the classifier model correctly 

predicted to the total number of actual positive samples. It is also referred to as sensitivity 

or hit rate or true positive rate. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
     4.19 

 

F1 Score: It is the harmonic mean between recall and precision, which gives a measure of 

balance between them. The F1 score ranges from the worst value 0 to the best value 1. 

 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃 + 
1

2
 (𝐹𝑃 + 𝐹𝑁)

   4.20 

 

AUC Score: The AUC score is equal to the probability that a classifier would rank an 

arbitrarily chosen positive sample higher than an arbitrarily chosen negative one. The score 

can be obtained by plotting True Positive Rate (TPR) against False Positive Rate (FPR) at 

varying classification thresholds. The AUC score ranges from 0 to 1, where 1 means a 

perfect classifier, 0.5 a random classifier, and 0 a completely wrong classifier. 

 

Cohen’s Kappa Score: The Cohen’s Kappa score is a more robust metric which aims to 

measure the degree of agreement between the input and the predictions, excluding the 

agreement by chance [27].  

𝑘 =  
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
       4.21 
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The term po is the observed proportion of agreement, which is same as the accuracy, and 

the term pe is the expected proportion of agreements by chance. For 𝑐 classes, 𝑁 samples 

to classify and ncithe number of times rater i predicted class 𝑐: 

𝑝𝑒 =
1

𝑁
∑ 𝑛𝑐1𝑛𝑐2𝑐      4.22 

The Kappa score value ranges between -1 and 1, where -1 represents complete 

disagreement, 0 represents no agreement or disagreement, and 1 represent perfect 

agreement. 

 

4.8 Tools and Resources 

 

The tools and resources that were used in this thesis work were: 

 

• Google Colaboratory resource provides free browser-based Jupyter notebook 

environment. Colab is used because it provides free NVIDIA Tesla K80 GPU with 

12 GB RAM. 

• Python is used as the programming language for implementation of the thesis work. 

The libraries used in the work were: 

• Keras:  The Keras library provides high-level APIs for neural networks. It 

executes on top of Tensorflow which is an open-source machine learning 

platform. 

• NetworkX: This python library is used for creating, manipulating, and 

studying the structure, dynamics, and functions of networks. 

• StellarGraph: This python library is used for machine learning 

implementation on graphs.  

• Scikit-Learn: This library features various Machine Learning algorithms 

such as classification, regression, and clustering.  

• Matplotlib: It is used for creating static, animated, interactive 

visualizations. The pyplot module of this library consists of functions that 

make matplotlib plotting like that of MATLAB. 

• OpenCV: This library is used to solve image processing and computer 

vision related problems. 
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• Scipy: It is used for scientific computing purposes. It contains modules for 

linear algebra, optimization, integration, interpolation, signal and image 

processing. 

• Pandas: It is a python library that provides high-performance data 

structures and analysis tools that are easy-to-use. 

• Numpy: The Numerical Python library provides multi-dimensional array 

objects and functions for their processing. 
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CHAPTER FIVE: RESULTS AND DISCUSSION 

 

5.1 Preprocessing Results 

 

The radiograph images were pre-processed for making the images appropriate as inputs to 

the network model. The preprocessing techniques that were applied, in this thesis work, 

were CLAHE, Rescaling and Normalization. 

 

5.1.1 Contrast Limited Adaptive Histogram Equalization 

 

The radiograph images were, at first, pre-processed by applying Contrast Limited Adaptive 

Histogram Equalization (CLAHE) transformation technique for enhancing the contrast of 

the images. Figure 7 illustrates the CLAHE transformation results on the radiograph 

images. The images in the left indicate the input images before transformation and the 

images in the right indicate the images after transformation. 

 

 

Figure 7: CLAHE transformation of the radiograph 

images.  

5.1.2 Rescaling 

 

The CLAHE transformed radiograph images were, then, rescaled to 299x299 pixel format. 

Figure 8 shows the rescaled radiograph images of the variable-sized images. The images 

in the left indicate the input images before performing rescaling operation and the images 

in the right indicate the output images after rescaling. 
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Figure 8: Rescaling of the radiograph images.  

5.1.3 Normalization 

 

The pixels of the rescaled radiographic images were, then, normalized so that the values 

range between 0 to 1. There were no visual changes in the normalized output images as 

compared to the input images.  

The preprocessed radiograph images were then partitioned into train set and test. The 

samples of the resulting preprocessed radiograph images after the partition are illustrated 

in Appendix A. 

 

5.2 Augmentation Results 

 

The radiograph images, after pre-processing, were augmented on the fly during training to 

introduce diversity in the dataset. The techniques adopted for the augmentation were 

Lateral Inversion, Rotation, and Shifting of the radiograph images.  

 

5.2.1 Lateral Inversion 

 

The preprocessed radiograph images were augmented, during training stage, by randomly 

flipping the images horizontally. Figure 9 illustrates the horizontally flipped radiograph 

images. The images in the left indicate the input images before performing horizontal flip 

and the images in the right indicate the output images after the flip. 
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Figure 9: Horizontal flip of the radiograph images.  

5.2.2 Rotation 

 

The preprocessed images were augmented by applying random rotation up to 30 degrees. 

Figure 10 illustrates the radiograph images after performing rotation at different angles. 

The radiograph images in the left most indicate the input images before performing 

rotation, the images in the middle indicate the output images after performing anti-

clockwise rotation of 15 and 30 degrees, respectively, and the images in the right indicate 

the output images after performing clockwise rotation of 15 and 30 degrees, respectively. 

 

 

Figure 10: Rotation of the radiograph images. 

5.2.3 Shifting 

 

The images were randomly shifted both in horizontal and vertical directions. Figure 11 

illustrates shifting operation on the radiograph images in horizontal and vertical directions. 



 31 

 

The images in the left indicate the input images before performing shifting operation, the 

images in the middle indicate the output images after performing horizontal and vertical 

shifting of 20 pixels, and the images in the right indicate the output images after performing 

horizontal and vertical shifting by 20 pixels. 

 

 
Figure 11: Shifting of the radiograph images. 

 

5.3 Experimental Settings 

 

The pre-processed radiograph images were fed to the attention-based inception residual 

neural network model for pre-training. The network model was trained with batch size of 

32. Adam optimizer [28] with cross-entropy loss function was used with an early learning 

rate of 10-4. After every epoch, the value of learning rate was set to decrease by a factor of 

10 whenever there seem no improvement in the validation loss. The early stopping 

technique was used to prevent the model from overfitting. 

After training the modified Inception-ResNet network model with the radiograph images, 

128-dimensional feature vectors were extracted from the final fully connected layer – 

named as feature extraction layer. The adjacency matrix representing the graph structure 

was constructed by performing k-nearest neighbors (k-nn) search on every node based on 

cosine similarity metric. The value of k that achieved best results was explored by trying 

out different values. The extracted features characterizing the individual image-level 

representation and adjacency matrix representing the graph structure were fed as inputs to 

the graph convolutional network with two stacked layers of size 128 each for capturing the 

relational representation. Finally, a dense layer with softmax activation function was used 
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to classify the nodes which represent the radiograph images. The GCN was trained with 

Adam optimizer with learning rate of 10-3.  

 

5.4 Implementation on MURA dataset 

 

The ensembled graph convolutional neural network was firstly implemented on the 

standard benchmark MURA dataset. Figure 12 shows the graphical representation of 

accuracy and loss curves obtained by the GCN sub-network on training set and validation 

set of MURA dataset. 

(a) (b) 

Figure 12: (a) Accuracy and (b) Loss curve plots against Epoch. 

The graphical representations illustrate that the GCN model converged well achieving 

stable accuracy and loss. The best model, which is the model with minimum value of 

validation loss, was taken into consideration for evaluation. 

 

5.4.1 Qualitative Results 

 

5.4.1.1 Localization of Abnormality Regions 

 

The key areas of the radiograph images highlighting the regions of musculoskeletal 

abnormality were localized by extracting Soft Attention Map from the output of soft 

attention block of the network. The key area localization was done, by highlighting the 

class discriminative region that the network focuses, with heatmap and bounding box. 

Bounding boxes were constructed from the contour of normalized heatmaps to represent 

real clinical work environment and to make the localization results more evident. The jet 
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color map was used in the heatmap in which the high intensity red color indicates the most 

salient region where the network actually focused for making the prediction. The 

localization results of soft attention map were compared with that of Grad-CAM 

implementation as shown in Figure 13. The images in the leftmost column indicate the 

input images to the network model. The images in the second column represent the 

respective soft attention heatmap and Grad-CAM heatmap of the input images. The images 

in the third column indicate the superimposed images resulting from the combination of 

input images and their respective heatmaps. The rightmost column comprises the images 

with bounding boxes enclosing the abnormality regions in the radiograph images. 
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Figure 13: Localization of abnormality regions in the radiograph images. 

The key area localization results on the radiograph images of the MURA dataset depicts 

that the soft attention mechanism improved the network’s focusing ability on relevant 

features of the images. The localization using soft attention maps showed better results 
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than the localization with standard Grad-CAM technique. The key area localization results 

of some additional radiograph images are illustrated in Appendix B. 

 

5.4.1.2 t-SNE visualization of Node Embeddings 

 

The t-SNE visualization of the node embeddings was done which illustrates the feature 

representations of nodes that were learned by the Graph Convolutional Network. The 

visualization was done to get a detailed picture of information that the network has learnt 

about the nodes and their neighborhoods. Figure 14 demonstrates t-SNE visualization of 

the GCN node embeddings. The features of all nodes were extracted from the final graph 

convolution layer of the GCN sub-network. Each node in the visualization represents an 

individual radiograph image. 

(a) 2D embedded space 
 

(b) 3D embedded space 

Figure 14: t-SNE visualization of GCN embeddings for MURA dataset. 

The two well-separated clusters in the t-SNE visualization of the node embeddings 

represents that the model classified the radiograph images of the MURA dataset efficiently 

as normal and abnormal. 

 

5.4.2 Quantitative Results 

 

The performance of the graph convolutional network was evaluated on the validation set 

of the MURA dataset by varying the hyperparameter values. One such hyperparameter 

considered was the number of nearest neighbors (k) for constructing the graph structure, 

which was one of the two inputs to the GCN sub-network. Table 4 represents the 
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performance results achieved with varying the value of k. The values of k considered were 

first three multiples of 10. 

Table 4: Performance results of the network when varying the value of k. 

 Accuracy Sensitivity Specificity AUC score 

k=10 0.835±0.013 0.789±0.014 0.876±0.011 0.897±0.011 

k=20 0.839±0.013 0.763±0.015 0.889±0.011 0.893±0.011 

k=30 0.838±0.013 0.762±0.015 0.908±0.01 0.893±0.011 

 

The values that are highlighted in bold represent the best results of the specific metrics. 

The values were reported with the 95% confidence interval. The maximum value of 

sensitivity and AUC score was achieved when the value of k was set to 10. Therefore, the 

graph structure, that was constructed by setting the value of k equal to 10, was used as input 

to the GCN sub-network for further evaluation.  

The value of the evaluation metrics in Table 4 were calculated on validation set of 3,197 

radiograph images. However, the DenseNet169 baseline model [11] was implemented on 

holdout test set of 556 images. The baseline model was formed by ensembling the five best 

models which achieved the lowest validation loss. The test set representations each 

consisting of 556 images were created by performing random stratified sampling for ten 

times on the validation set. The performance of the ensembled AGCNN model was 

calculated by averaging the results obtained on those samples. Table 5 represents the 

comparison of different values of evaluation metrics achieved by the ensembled network 

with that of DenseNet169 baseline model. 

Table 5: Comparison of the network performance with the baseline implementation. 

 Image 

Size 

Accuracy Sensitivity Specificity AUC score Kappa 

score 

Baseline [11] 320x320 - 0.815±0.013 0.887±0.011 0.929±0.009 0.705±0.016 

AGCNN 299x299 0.856±0.012 0.82±0.013 0.89±0.011 0.902±0.01 0.711±0.016 

 

The symbol ‘-’ in the table represents the value of accuracy of the baseline model was not 

mentioned in the baseline implementation [11]. The implemented ensembled network 
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when compared with the DenseNet169 baseline model showed better performance results 

in most of the metrics even with the smaller input image size. This showed that the 

ensembled AGCNN model performed better on standard benchmark MURA dataset than 

the baseline model. 

 

5.5 Implementation on Xtremity dataset 

 

The ensembled AGCNN model was then applied on the Xtremity dataset. Figure 15 shows 

the graphical representation of accuracy curves and loss curves in both train and test sets 

of the Xtremity dataset. 

(a) (b) 

Figure 15: (a) Accuracy and (b) Loss curve plots against Epoch. 

The graph curves demonstrate that the GCN model achieved steady results which represent 

the convergency of the network model. The best model with minimum value of loss was 

taken into consideration for evaluation. 

 

5.5.1 Qualitative Results 

 

5.5.1.1 Localization of Abnormality Regions 

 

The prominent parts of the radiograph images of Xtremity dataset that illustrate the regions 

of abnormalities were localized with the Soft Attention Map. Figure 16 demonstrates the 

localization results, highlighting the discriminative regions that the network concentrates, 

with heatmaps and bounding boxes. The localization results with soft attention maps were 

again compared with that of Grad-CAM implementation. 
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Figure 16: Localization of abnormality regions in the radiograph images. 

The localization results highlighting the abnormality regions showed that the soft attention 

implementation improved the network’s focusing ability of relevant features in the 

radiograph images of Xtremity dataset as well. The key area localization with soft attention 

maps showed more compact and accurate results signifying improved results than the 

localization with standard Grad-CAM technique. The visualization results of some 

additional radiograph images are illustrated in Appendix B. 

 

5.5.1.2 t-SNE Visualization of Node Embeddings 

 

The t-SNE visualization of the node embeddings was done on Xtremity dataset. Figure 17 

illustrates t-SNE visualization of the GCN node embeddings in 2D embedded space (left) 

as well as 3D embedded space (right).  
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(a) 2D embedded space (b) 3D embedded space 

Figure 17: t-SNE visualization of GCN node embeddings for Xtremity dataset. 

The t-SNE visualization illustrates the GCN features formed five distinguishable clusters 

representing Normal, Fracture, Lesion, Arthritis, and Hardware classes. The fine-

partitioned clusters represented that the network classified the nodes, which represent the 

radiograph images, into five different classes very efficiently. 

 

5.5.2 Quantitative Results 

 

The performance of the GCN sub-network was evaluated by varying the hyperparameter 

value k, representing the number of nearest neighbors for constructing the graph structure. 

Table 6 represents the results achieved with varying the value of k. The values of k that 

were considered in the study were first four multiples of 5. 

Table 6: Performance results of the network with varying k. 

k Accuracy Precision Recall F1 score AUC score 

5 0.8763±0.0168 0.8733±0.017 0.8652±0.0175 0.8680±0.0173 0.9768±0.0077 

10 0.8838±0.0164 0.8797±0.0166 0.8741±0.017 0.8762±0.0168 0.9764±0.0078 

15 0.8797±0.0166 0.8764±0.0168 0.8681±0.0173 0.8709±0.0171 0.9769±0.0077 

20 0.8783±0.0167 0.8747±0.0169 0.8677±0.0173 0.8702±0.0172 0.9763±0.0078 

 

The best results were achieved when the number of nearest neighbors for graph structure 

construction was set to 10. The ensembled graph convolutional neural network model 

achieved an accuracy of 88.4% and Cohen’s Kappa score of 85.38% when evaluated on 
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the test set of Xtremity dataset containing 1,471 radiograph images. The confusion matrix 

heatmap is shown in Figure 18. 

 

Figure 18: Confusion Matrix Heatmap. 

The ROC curve obtained after the evaluation is shown in Figure 19. 

 
Figure 19: One vs. Rest ROC curve for multi-class classification. 

The ROC curves of every single class with respect to rest of the classes were incorporated 

in a single representation with their respective AUC scores. The AUC score ranges between 

0.952 of class Lesion and 0.997 of class Hardware. 
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The results depicted in the confusion matrix heatmap and ROC curves show the ensembled 

network model classified the radiograph images of class Hardware excellently. The model 

performed above average in classification of radiograph images of classes Normal and 

Fracture. However, the model showed average results in classifying radiograph images of 

classes Lesion and Arthritis. The average classification performance of radiograph images 

with Lesion and Arthritis might be because of two reasons. Firstly, the number of images 

of classes Lesion and Arthritis are less compared to images of other classes. It is evident 

that the performance of deep learning models is directly proportionate to the number of 

images in the dataset. Secondly, the radiograph images of class Lesion incorporates images 

of multiple lesion types such as bone cyst, giant cell tumor, osteochondroma, etc. Likewise, 

the radiograph images of class Arthritis incorporates images of three arthritis types – 

osteoarthritis, rheumatoid arthritis and psoriatic arthritis. The subtle difference in 

radiographs with these abnormalities might have adversely affected the performance of the 

ensembled network model.  

The mean value of precision, recall and F1 score evaluation metrics for quantitative 

evaluation are depicted in the bar graph as shown in Figure 20. 

 
Figure 20: Bar graph showing the performance results of individual classes. 

The network achieved lowest value of precision, recall and F1 score of Lesion classification 

and highest value of Hardware classification. The evaluation scores achieved by the 

network for other classes were in between the results of these two classes. 
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The implemented ensembled graph convolutional neural network achieved par results in 

overall for the radiograph image classification task. 

 

5.5.3 Ablation Study 

 

The ablation study of the AGCNN network model was also carried out. Different 

evaluation metrices were taken into consideration for individual network performance 

analysis. Table 7 shows the performance results of the network with the integration of soft 

attention mechanism and graph convolutional network into the pre-trained Inception-

ResNet-v2 network. 

Table 7: Ablation Study 

Network Accuracy Precision Recall F1 score AUC score 

Inception-ResNet-v2 

(IRv2) 

0.853±0.018 0.848±0.018 0.843±0.019 0.844±0.019 0.971±0.009 

Soft Attention-based 

Inception-ResNet 

0.872±0.017 0.868±0.017 0.862±0.018 0.864±0.018 0.975±0.008 

AGCNN 0.884±0.016 0.879±0.017 0.874±0.017 0.876±0.017 0.976±0.008 

 

The analytical study showed the soft attention mechanism integration into the pre-trained 

Inception-ResNet-v2 network improved the classification accuracy by 1.9%. Furthermore, 

the addition of Graph Convolutional Network resulted in an improvement of overall 

accuracy by 1.2%. This individual network analysis showed that the ensemble of soft 

attention mechanism and graph convolutional network achieved improved performance 

results for the classification. 

 

5.5.4 Effect of pre-training with MURA dataset 

 

The performance of ImageNet pre-trained Inception-ResNet-v2 network was evaluated by 

pre-training the network with MURA dataset. The evaluation was based on the assumption 

that the MURA dataset comprised of radiograph images of upper extremity which were 

more relevant than the natural images of ImageNet dataset. However, the performance of 

the Inception-ResNet-v2 network degraded when pre-trained with MURA dataset. There 
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might be two main reasons for the degraded performance. First, the MURA dataset 

consisted of about 40,000 images, however, ImageNet dataset consisted of about 1.4 

million images. The deep neural network perform well on large datasets and ImageNet is 

the largest of them all. Second, MURA dataset included radiograph images of upper 

extremity only, however, the Xtremity dataset included radiograph images of both upper 

and lower extremities. The images in MURA dataset were of low resolution whereas the 

images in Xtremity dataset were of high resolution. 

 

5.5.5 Comparative Study 

 

The comparative study was performed on seven different state-of-the-art pre-trained CNN 

architectures. The pre-trained architectures were evaluated on different evaluation metrics. 

All the architectures were trained up to 10 epochs with batch size of 32. Table 8 shows the 

performance results of different network architectures that were considered in the study. 

Table 8: Comparison of the ensembled network with SOTA CNN architectures 

Network Accuracy Precision Recall F1 score AUC score 

AlexNet [6] 0.719±0.023 0.723±0.023 0.709±0.023 0.711±0.023 0.922±0.014 

VGG16 [13] 0.759±0.022 0.748±0.022 0.739±0.022 0.739±0.022 0.93±0.013 

GoogLeNet [29] 0.792±0.021 0.787±0.021 0.781±0.021 0.781±0.021 0.954±0.011 

ResNet50v2 [14] 0.806±0.02 0.803±0.02 0.795±0.021 0.80±0.02 0.957±0.01 

Xception [30]  0.823±0.02 0.820±0.02 0.810±0.02 0.812±0.02 0.964±0.01 

DenseNet121 [31] 0.820±0.02 0.824±0.019 0.811±0.02 0.811±0.02 0.964±0.01 

IRv2224x224 0.831±0.019 0.831±0.019 0.821±0.02 0.822±0.02 0.967±0.009 

IRv2299x299 0.853±0.018 0.848±0.018 0.843±0.019 0.844±0.019 0.971±0.009 

AGCNN 0.884±0.016 0.879±0.017 0.874±0.017 0.876±0.017 0.976±0.008 



 43 

 

 

After observing the results from the comparison table of different pre-trained architectures, 

three findings can be inferred. Firstly, the network models performed the classification task 

better on increasing the number of layers, that is, the depth of the network. In addition to 

the depth of the network, width of the network also played crucial role in the improvement 

of the network performance which was illustrated by the better results of wider Xception 

model than the DenseNet121 model, even though DenseNet121 model is deeper network. 

Secondly, the input image size to the network model when increased from 224𝑥224 to 

299𝑥299 format showed better performance results. Lastly, the ensembled graph 

convolutional neural network showed better classification results which proved that the 

ensembled network can outperform any single end-to-end pre-trained architectures.  
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CHAPTER SIX: CONCLUSIONS AND FUTURE WORKS 

 

6.1 Conclusions 

 

An ensembled attention-based graph convolutional neural network (AGCNN) model is 

effectively implemented for the multi-class classification of musculoskeletal abnormalities 

in extremity radiographs. The ensembled network, when first implemented on the standard 

benchmark MURA dataset for the binary classification of radiograph images, achieved 

better performance results than the baseline implementation. The ensembled network 

achieved above average performance results with the implementation on Xtremity dataset 

for the multi-class classification of radiograph images. The ensembled network model 

achieved an accuracy of 88.38%, average precision of 87.9%, and average recall of 87.4% 

on musculoskeletal radiograph image classification task. The AGCNN network model 

achieved high performance results in the classification task despite the large variation of 

radiograph images of upper and lower extremities. The abnormality region localized on the 

radiographic images, using soft attention map extracted from the network, were precise 

and accurate. The localization results of abnormality regions using soft attention 

mechanism on the radiograph images, when compared to the standard Grad-CAM 

technique, showed better results. This indicates that automated classification of 

musculoskeletal abnormalities and their localization has strong potential application in real 

clinical environments. The automated abnormality classification helps medical 

professionals to prioritize their worklist giving quicker diagnosis and treatment to patients 

with critical conditions. The localization of abnormality in the radiographs helps 

radiologists combat fatigue, which in turn helps them increase their performance. 

 

6.2 Challenges 

 

The most challenging part that was faced, during this thesis work, was the radiograph 

image dataset collection from various local hospitals and public repositories, and labelling 

them with the help of radiologists. It took approximately seven weeks to collect the 

radiograph images from multiple sources and label them with the help radiologists. The 

current COVID-19 pandemic situation laid many obstacles in this process of data 
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collection. Another challenging part was the implementation of graph convolutional 

network for image classification task since this is a new approach to the image 

classification task. 

 

6.2 Future Works 

 

The collection of image dataset is a time consuming and tedious task. Moreover, the 

collection of medical image dataset is much more challenging. The labelling of the 

collected medical images is yet another difficult task. Since it is difficult to collect such 

images in large scale, it might be better opting for the classification technique that can be 

applied on limited images. One such technique in deep learning is the Few-shot Learning 

technique. The ensembled graph convolutional neural network can be used for Few-shot 

classification of images as future work scope. 

The X-ray medical imaging is not enough for the accurate detection of wider range of 

abnormalities. In real clinical environment, orthopedic doctors prefer CT scan and MRI 

images for the accurate confirmation of more complicated abnormalities. Therefore, such 

CT scan and MRI images can also be considered as possible future study. 
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APPENDIX A: Pre-processed Images  

 

A.1 Preprocessed radiograph images from MURA dataset 
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Figure 21: Samples of preprocessed radiograph images from MURA dataset. 
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A.2: Preprocessed radiograph images from Xtremity dataset 
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Figure 22: Samples of preprocessed radiograph images from Xtremity dataset. 
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APPENDIX B: Localization Results 

 

B.1 Localization results on MURA dataset 

 

 

 

 

 

 

Figure 23: Localization of abnormality regions in radiographs of MURA dataset.  
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B.2: Localization results on Xtremity dataset 

 

 

 

 

 

 

 

Figure 24: Localization of abnormality regions in radiographs of Xtremity dataset. 
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