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ABSTRACT

Fetal echocardiography is a standard diagnostic tool used to evaluate and monitor fetuses with
a compromised cardiovascular system associated with a number of fetal conditions. Deep
learning is a computer technology which can perform specific tasks with specific goals. Deep
learning techniques is used to evaluate fetal cardiac ultrasound cine loops and improve the
evaluation of fetal abnormalities. In this study, I implemented convolutional neural network
and recurrent neural network as CNN+LSTM, CNN+GRU and 3DCNN, deep learning models
for the processing and classification of ultrasonographic cine loops into various classes. The
CNN+LSTM, CNN+GRU, and 3D CNN algorithms were able to sort the fetal cardiac cine
loops into 5 standard views with 92.63%, 94.99%, and 82.69% accuracy, respectively. Further-
more, the CNN+LSTM, CNN+GRU, and 3D CNN were able to accurately diagnose Tricuspid
atresia (TA) and Hypoplastic left heart syndrome (HLHS) with 94.61%, 91.99%, and 86.54%,
respectively. These deep learning-based algorithms found to be an effective tool for evaluating
and monitoring normal and abnormal fetal heart cine loops.

Keywords:
Deep Learning, Fetal Cardiac Cine loops, CHD Lesions, CNN, RNN, 3D CNN

x



TABLE OF CONTENTS

COPYRIGHT iii

DECLARATION iv

RECOMMENDATION v

DEPARTMENTAL ACCEPTANCE vi

ACKNOWLEDGEMENT vii

DEDICATION ix

ABSTRACT x

LIST OF FIGURES xiii

LIST OF TABLES xvi

LIST OF ABBREVIATIONS xvii

1 INTRODUCTION 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 LITERATURE REVIEW 7
2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Feature Based Techniques . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Deep Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 RATIONALE OF THE STUDY 10
3.1 Rationale of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 METHODOLOGY 11
4.1 Dataset Collection and Description . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 Dataset Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Baseline Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1 Convolutional Neural Network(CNN) . . . . . . . . . . . . . . . . . . 12
4.2.2 Recurrent Neural Network(RNN) . . . . . . . . . . . . . . . . . . . . 15

xi



4.3 Main Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 CNN+RNN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 3D CNN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.1 Sensitivity, Specificity and Accuracy . . . . . . . . . . . . . . . . . . . 24
4.4.2 The AUCROC curve (Receiver Operating Characteristics) (Area Under

The Curve) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Tools and Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 METHODOLOGY IMPLEMENTATION 27
5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Development of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Identification and classification into five standard planes . . . . . . . . 30
5.2.2 Diagnosis of Normal Heart vs. CHD lesions . . . . . . . . . . . . . . 31

6 RESULTS AND DISCUSSION 33
6.1 Classification and performance evaluation of five standard view fetal heart . . . 33

6.1.1 Comparison of 3D CNN, CNN+GRU, and CNN+LSTM Models for
five standard view of fetal heart . . . . . . . . . . . . . . . . . . . . . 40

6.1.2 Comparison of CNN, CNN+GRU, and CNN+LSTM models for five
standard view of fetal heart . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Classification and performance evaluation of normal fetal heart vs. Congenital
heart disease(CHD) lesions . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.1 Comparison of 3D CNN, CNN+GRU, and CNN+LSTMModels for the

classification of normal fetal heart vs. CHD lesions . . . . . . . . . . 48
6.2.2 Comparison of CNN, CNN+GRU, and CNN+LSTM Models for the

classification of normal fetal heart vs. CHD lesions . . . . . . . . . . . 49

7 CONCLUSION 50

REFERENCES 51

APPENDIX 54

xii



LIST OF FIGURES

Figure 1.1: Tricuspid Atresia(TA) of fetal heart (a) Gray-Scale (b) Colour Doppler 2
Figure 1.2: Hypoplastic left heart syndrome(HLHS) heart . . . . . . . . . . . . 3
Figure 4.1: Block diagram Convolutional neural network (CNN) . . . . . . . . . 12
Figure 4.2: Convolution Layer for Model Building. . . . . . . . . . . . . . . . . 13
Figure 4.3: ReLU Activation Function. . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4.4: Max Pooling Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4.5: Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 4.6: Block diagram of long short term memory(LSTM) . . . . . . . . . . 16
Figure 4.7: Memory cell of LSTM . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 4.8: Forget gate of LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 4.9: Input gate of LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 4.10: LSTM cell state update . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 4.11: LSTM output gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 4.12: Diagram of gated recurrent units . . . . . . . . . . . . . . . . . . . . 19
Figure 4.13: System Block Diagram for CNN+RNN Spatiotemporal Fetal Heart

Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 4.14: Spatiotemporal feature extraction of heart using CNN and RNN(LSTM) 21
Figure 4.15: Spatiotemporal feature extraction of heart using CNN and GRU . . . 21
Figure 4.16: Block diagram of 3D CNN . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 4.17: Graphic representation of 3D-convolution layer . . . . . . . . . . . . 23
Figure 4.18: Confusion Matrix for evaluating spatiotemporal fetal cardiac models. . 24
Figure 4.19: ROC Curve for evaluating a given model . . . . . . . . . . . . . . . . 25
Figure 5.1: The Overall proposed system architecture of spatiotemporal fetal car-

diac imaging system . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 5.2: Five standard views of fetal heart (a) Four Chamber (4Chamber) (b)

Three Vessel View (3VV) (c) Left Ventricular Outflow Tract(LVOT)
(d) Right Ventricular Outflow Tract(RVOT) (e) Abdominal(ABDO) . 28

Figure 5.3: Spatiotemporal Cardiac image sequences (Voxel) . . . . . . . . . . . 29
Figure 5.4: CNN+RNN(LSTM/GRU) architecture for standard five view classifi-

cation of fetal heart. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 5.5: 3D CNN architecture for standard five view classification of fetal heart. 30
Figure 5.6: CNN+RNN(LSTM/GRU) architecture for normal heart vs. CHD

lesions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 5.7: 3D CNN architecture for Normal Heart vs. CHD lesions. . . . . . . . 31
Figure 6.1: Random test result of the five standard screening views of the fetal heart 34

xiii



Figure 6.2: Bar diagram of training accuracy of CNN+LSTM, CNN+GRU and
3D CNN models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 6.3: Training Accuracy and loss curves for CNN+LSTM model . . . . . . 35
Figure 6.4: Accuracy and loss curves for CNN+GRU model . . . . . . . . . . . . 35
Figure 6.5: Accuracy and loss curves for 3D CNN model . . . . . . . . . . . . . 35
Figure 6.6: CNN+LSTM model confusion matrix . . . . . . . . . . . . . . . . . 36
Figure 6.7: CNN+GRU model confusion matrix . . . . . . . . . . . . . . . . . . 36
Figure 6.8: 3D CNN model confusion matrix . . . . . . . . . . . . . . . . . . . 37
Figure 6.9: Bar chart for performance evaluation metrics of a CNN+LSTMmodel

for five Views of fetal heart . . . . . . . . . . . . . . . . . . . . . . 37
Figure 6.10: Bar chart for performance evaluation metrics of a CNN+GRU model

for five Views of fetal heart . . . . . . . . . . . . . . . . . . . . . . 38
Figure 6.11: Bar chart for performance evaluation metrics of a CNN+GRU model

for five Views of fetal heart . . . . . . . . . . . . . . . . . . . . . . 38
Figure 6.12: CNN+LSTM ROC (Receiver operating characteristics) curve for five

standard spatiotemporal views of the fetal heart . . . . . . . . . . . . 39
Figure 6.13: CNN+GRU ROC (Receiver operating characteristics) curve for five

standard spatiotemporal views of the fetal heart . . . . . . . . . . . . 39
Figure 6.14: 3D CNN ROC (Receiver operating characteristics) curve for five stan-

dard spatiotemporal views of the fetal heart . . . . . . . . . . . . . . 40
Figure 6.15: Bar chart of performance evaluation of the three models . . . . . . . 40
Figure 6.16: Bar chart of performance evaluation of the three models . . . . . . . 41
Figure 6.17: Bar chart for the training accuracy of normal fetal heart vs. CHD

lesions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 6.18: Accuracy and loss curves for CNN+LSTM model . . . . . . . . . . . 43
Figure 6.19: Accuracy and loss curves for CNN+GRU model . . . . . . . . . . . . 43
Figure 6.20: Accuracy and loss curves for 3D CNN model . . . . . . . . . . . . . 43
Figure 6.21: CNN+LSTM model confusion matrix . . . . . . . . . . . . . . . . . 44
Figure 6.22: CNN+GRU model confusion matrix . . . . . . . . . . . . . . . . . . 44
Figure 6.23: 3D CNN model confusion matrix . . . . . . . . . . . . . . . . . . . 45
Figure 6.24: Bar chart of performance evaluation metrics of a CNN+LSTMmodel

for normal fetal heart vs. CHD lesions . . . . . . . . . . . . . . . . . 45
Figure 6.25: Bar chart of performance evaluation metrics of a CNN+GRU model

for normal fetal heart vs. CHD lesions . . . . . . . . . . . . . . . . . 46
Figure 6.26: Bar chart of performance evaluation metrics of a 3D CNN model for

normal fetal heart vs. CHD lesions . . . . . . . . . . . . . . . . . . 46
Figure 6.27: CNN+LSTM ROC (Receiver operating characteristics) curve for nor-

mal fetal heart vs. CHD lesions . . . . . . . . . . . . . . . . . . . . 47

xiv



Figure 6.28: CNN+GRU ROC (Receiver operating characteristics) curve for nor-
mal fetal heart vs. CHD lesions . . . . . . . . . . . . . . . . . . . . 47

Figure 6.29: 3D CNN ROC (Receiver operating characteristics) curve for normal
fetal heart vs. CHD lesions . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 6.30: Bar chart of performance evaluation of the three models . . . . . . . 48
Figure 6.31: Bar chart of performance evaluation of the three models . . . . . . . 49

xv



LIST OF TABLES

Table 4.1: Number of cine loops in each category of spatiotemporal fetal cardiac
imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Table 6.1: Performance evaluationmetrics of a CNN+LSTMmodel for five Views
of fetal heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 6.2: Performance evaluation metrics of CNN+GRU model for five Views
of fetal heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 6.3: Performance evaluation metrics of 3D CNN model for five Views of
fetal heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 6.4: Comparison of 3D CNN, CNN+GRU, and CNN+LSTM models . . . . 40
Table 6.5: Comparison of CNN, CNN+GRU, and CNN+LSTM models . . . . . . 41
Table 6.6: Performance evaluation metrics of a CNN+LSTM model for normal

fetal heart vs. CHD lesions . . . . . . . . . . . . . . . . . . . . . . . 45
Table 6.7: Performance evaluation metrics of CNN+GRU model for normal fetal

heart vs. CHD lesions . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 6.8: Performance evaluation metrics of 3D CNN model for normal fetal

heart vs. CHD lesions . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 6.9: Comparison of 3D CNN, CNN+GRU, and CNN+LSTM models . . . . 48
Table 6.10: Comparison of CNN, CNN+GRU, and CNN+LSTM models . . . . . . 49

xvi



LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

RNN Recurrenrt Neural Network

LSTM Long Short-term memory

CHD Congenital Heart Disease

4C Four Chamber

3VV Three Vessel View

LVOT Left Ventricular Outflow Tract

RVOT Right Ventricular Outflow Tract

ABDO Abdominal

HLHS Hypoplastic Left Heart Syndrome

FCN Fully Convolutional Network

ReLu Rectified Linear Unit

TP True Positive

FP False Positive

TN True Negative

FN False Negative

ROC Receiver Operating Characteristics

AUC Area Under The Curve

TA Tricuspid Atresia

xvii



CHAPTER 1

INTRODUCTION

1.1 Background

Congenital heart disease(CHD) represents the wide range of anomaly present since birth which
affects the normal structure of fetal heart and results in its defective functioning. Any condition
which is present since birth is termed as congenital. CHD largely contributes to infant morbidity
and mortality that results due to congenital anomaly. It is estimated that there are around 4-13
cases of CHD per thousand live births[1]. According to the World Health Organization’s data
(WHO), heart anomalies contributed to 42% of infant deaths from 1950 and 1994[2]. It has
also been observed that heart defects affecting the fetal cardiac structure are often missed in
routine antenatal fetal scanning [3]. Precise antenatal diagnosis offers potential clinical benefit
with regards to later prognosis. This is true especially in cases where some form of intervention
or surgery can be offered in utero itself (e.g. in utero aortic valvuloplasty for HLHS).These
potential benefits all rely on accurate fetal diagnosis of CHD.

A routine fetal anomaly scan is recommended for all pregnant mothers between 18-22 weeks.
This includes basic examination of all the major organ system of the fetus to rule out any
structural defect. The majority of the information gathered from basic cardiac ultrasonography
is done by study of the four chamber(4C) view of the fetal cardia. The next step includes
the survey of three vessel(3VV and 3VT) and pulmonary and aortic outflow tracts(RVOT and
LVOT vies). This extended basic cardiac evaluation improvises the diagnosis rates for heart
abnormalities as shown in Figure ??. Systematic assessment of the fetal heart can be done
using a sweep technique which includes a transverse sweep of the probe from the fetal abdomen
towards upper mediastinum. In this sweep, fetal four chamber(4C) is visualised followed by 3V,
3VT and then the outflow tracts(LVOT, RVOT). If any structural defect is detected during basic
cardiac sonography or if specific condition ( e.g. Maternal diabetes, suspected chromosomal
anomalies, teratogenic drug intake) warrants, a further detailed evaluation of fetal heart is done
which is called Fetal echocardiography. Fetal echocardiography is described as comprehensive
sonographic assessment that is used to recognize and distinguish fetal cardiac abnormalities in
the antenatal period. This dedicated diagnostic modality is an augmentation to the "basic" and
"extended basic" fetal heart screening framework[4].

Major anomalies considered in this study are

1. Tricuspid atresia (TA)

Tricuspid atresia is a congenital defect affecting the tricuspid valve. Its incidence is
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around 0.7 percent in the fetal life and 2 percent in the neaonatal period.The tricuspid
valve, located on the right side of the heart, regulates blood flow from the right atrium
to the right ventricle. When the tricuspid valve fails to develop, no blood can flow
from the right atrium to the right ventricle and further to the pulmonary arteries. The
valve can be entirely atretic, with a fibrous bar replacing the connection, or it can be
imperforate. The little rudimentary right ventricle is shifted anteriorly and fills via inlet
VSD which is usually associated with this condition. The ventriculo-arterial connection
can be concordant or discordant (less frequently) [5].

Tricuspid atresia is a birth defect that is classified as a "critical congenital heart prob-
lem" because a newborn with tricuspid atresia will probably require surgery or other
interventions soon after birth if it survives in utero.

The four-chamber ultrasound image is used to make the diagnosis: there is a dominant
left ventricle, a rudimentary right ventricular chamber, and a minor VSD that allows the
right ventricle to fill as shown in Figure 1.1(a). The between the right atrium and ventricle
is absent and in its place, hyperechoic fibrous tissue is seen. To validate the absence of
right atrioventricular filling and demonstrate flow across the VSD, color Doppler can be
employed as shown in Figure 1.1(b). The ventriculoatrial connection can be assessed
using four-dimensional echocardiography. Given the radically distinct prognoses of the
two lesions, it’s important to determine the side of the hypoplastic chamber to avoid
mistaking a tricuspid atresia for a hypoplastic left heart or vice versa.

(a) (b)

Figure 1.1: Tricuspid Atresia(TA) of fetal heart (a) Gray-Scale (b) Colour Doppler

One of the most critical poor prognostic variables is the presence of ventriculoarterial
discordance and/or a double-outlet connection. A narrow VSD is also a poor prognostic
factor, indicating the need for surgery relatively soon.
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Early and accurate diagnosis helps the clinicians to advise and perform appropriate
surgical intervention in time which increases the 3 years survival of the baby by more
than 80 percent.

2. Hypoplastic Left Heart Syndrome(HLHS)

The term "HLHS" refers to a group of disorders characterized by significant hypoplasia
of the left cardiac ventricle and left ventricular outflow tract. HLHS affects about one in
every 10,000 live births. There are two types of HLHS. In the first variety, both mitral
and aortic valves are atretic. The second type second has aortic atresia and a hypoplastic
but patent mitral valve. Due to mitral atresia or imperforation, there is no contact between
the left atrium and the left ventricle in the former kind. As a result, the left ventricle
functions as a virtual cavity that is sometimes only visible from the outside of the heart
in an autopsy sample owing to the route of the anterior and posterior coronary branches.
In the latter case, left ventricle is hypoplastic in this case, but it does have an identifiable
lumen [5].

In the four-chamber view, a small globular ventricle with endocardial fibroelastosis or an
aslitlike ventricle (mitral and aortic atresia) can be seen on the left side of the heart. The
apex of the heart is never reached by the hypoplastic left ventricle Figure 1.2. The atretic
or hypoplastic annulus of the mitral valve is noted. A threadlike ascending aorta and the
highly hypoplastic annulus of the aortic valve can be seen with difficulty in the long-axis
image of the left ventricle.

Figure 1.2: Hypoplastic left heart syndrome(HLHS) heart

In patients with a patent and dysplastic mitral valve, color Doppler confirms the absence
of left ventricle filling and displays reverse (left-to-right) flow across the foramen ovale
and mitral regurgitation on the four-chamber image.

It can be difficult to tell the difference between critical aortic stenosis, severe coarctation,
and HLHS. The diagnosis of HLHS is more likely if there is no forward blood flow over
the mitral or aortic valve.

3



Prognosis: HLHS remains the congenital heart abnormality with the highest fatality rate,
notwithstanding recent brilliant accomplishments in pediatric cardio-surgery.

Despite all the technical advancements, there is a significant discrepancy in the sensitivities of
ultrasonography for the detection of anomalies and the most likely reason for the same is the
effect of the skill and experience of themonograph. In the RADIUSTrial, for example, there was
a significant difference in the rates of anomaly detection between participating tertiary and non
tertiary level centers [1]. Non tertiary level centers detected only 13% of congenital anomalies
in the RADIUS Trial and were unable to detect any craniofacial, cardiac, gastrointestinal, or
skeletal malformations. Tertiary level centers performed significantly better, detecting 35%
of anomalies. Similarly, there is a significant variation in the skill levels of different doctors
performing fetal echocradiography at different centers. Some other attributable factors include
frequency of transducer, maternal build, period of gestation, abdominal scars, amniotic fluid
index and position of the fetus.

The assessment of fetal echocardiography using cine loops is based on computer-assisted
analysis of video frames in order to automatically monitor and evaluate fetuses without the
need for manual intervention. Deep learning is a computer technology that generates feature
maps based on artificial neural networks that can do specialized jobs with specified goals. Deep
learning has made tremendous progress in the disciplines of computer vision. However, deep
learning applications have not been extensively used in the field of fetal medicine as it’s a
relatively newer concept. Meanwhile, due to the diagnostic difficulty posed by a small and
fast-beating fetal heart and caregivers’ relatively little exposure to congenital heart disease, fetal
echocardiography is very complicated, with inadequate/uneven skill in interpreting fetal cardiac
pictures.

Artificial neural networks have an effective and promising structural innovation. Deep learning
methods are continuously optimized. The study of fetal heart will be influenced by factors such
as orientation, illumination, angle of view, and resolution.

Computer vision is a type of machine vision in which computers assist humans in recognizing,
tracking, and understand visual objects. The rapid growth of computer vision and deep learning
expands the uses of our vision while also deepening deep learning research. Manual annotation,
on the other hand, is clearly inconvenient and time consuming. Because these labels are
subjective, they cause bias and poor pattern categorization and retrieval accuracy.

The dataset used for training and validating deep learning models have been very important
in estimating the precision and universality of the method. Hence, collection of data and its
prepossessing has been very crucial and clearly defined in terms of

1. Selecting an appropriate study model.
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2. Imaging modality.

3. Taking advice from experts in the respective field.

Preprocessing image datasets is a critical step inmedical imaging that helps deep learningmodels
perform better. There are various preprocessing techniques available for spatiotemporal image
dataset. Cropping and selecting the regions of interest, scaling, filtering, and normalization
of sequences are examples of such procedures. Data augmentation is another such technique
which can be used to enhance spatiotemporal frames of time-series data.

1.2 Problem Statement

Deep learning is effective in video pattern recognition and has been applied to adult echocar-
diographic images, providing efficient classification of datasets that have been down sampled.
Deep learning, however, has not been profoundly applied on fetal echocardiography cine loops
either for classification into various standard planes or for anomaly detection.

Deep learning is the most effective method of completing the image recognition process. Al-
though machine learning algorithms can recognize images, the majority of the feature selection
work is done by humans.

The current deep learningmethod has shownwonderful results in a variety of domains, including
image, voice, and natural language processing. Thus, I develop the research direction for deep
learning in spatiotemporal fetal cardiac imaging. In this thesis, I purpose three deep learning
algorithms to identify and classify the given fetal cardiac cine loop into standard planes and
predict the CHD lesions. The three recognition models are CNN+LSTM, CNN+GRU and 3D
CNN that will deal the visual time series problems in cine loops of fetal cardiac imaging. The
methods need to be evaluated so as to achieve the best accuracy for fetal cardiac imaging.

I hypothesized that using input data curated according to clinical guidelines (i.e., selecting only
the five screening cardiac views) would allow our models to detect diagnostic signals on small
datasets and differentiate structurally normal fetal heart from the two major congenital heart
abnormality i.e. Hypoplastic left heart syndrome (HLHS) and Tricuspid atresia (TA).
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1.3 Objective

• To identify and classify the given cardiac cine loop into one of the five standard planes of
fetal cardia used in fetal echocardiography.

• To demonstrate a deep learning based video processing tool for the prediction of common
CHD lesions in particular Tricuspid atresia (TA) and Hypoplastic left heart syndrome
(HLHS).
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CHAPTER 2

LITERATURE REVIEW

2.1 Literature Review

There have been numerous video classification techniques proposed. Feature-based algorithms
were used in older video classification techniques, while deep learning techniques have been
used in the latest classification methods.

2.1.1 Feature Based Techniques

Classically text-based features, audio-based features and video-based features have been used
perform the task of video classification. The methods employed by Rezeale andWuwas "closed
captioning" [6] [7]. This is a useful method for hearing-impaired people in which the text of the
speech is displayed on the screen as a text feature. Lin detected video clips using audio and video
features, and these clips were then grouped into scenes [8]. To classify video, they used OCR
(Optical Character Recognition) from detected clips and shut captioning. Brezeale used RGB
color histograms as text-based features for video classification [6]. Jasinschi used probability
values to represent six audio-based features: noise, speech, speech + speech, speech + noise,
music, and speech + music. Hence, various feature based techniques have been implemented
for video classification [9].

2.1.2 Deep Learning Methods

Deep Belief Networks (DBNs) were introduced by Hinton as a superior method of training each
layer of the network [10]. This ignited research in deep neural networks resulting in numerous
deep learning based models for video classification. A video clip was seen as a sequence of
several frames in specific chronological order. Frame classification, a deep learning approach,
is one of the most common video classification methods. In this method, features of each
frame were extracted using Convolutional Neural Network(CNN). All frame-level features were
averaged into a video-level representation as input to a classifier. Zha studied the performance
of image-based video pattern recognition with features from different layers of deep learning
models and several convolutional kernels for classification [11]. They showed this by integrating
CNN features with kernel SVMs, they could achieve proper recognition performance. Frame
classification methods do not account the relationship between frames and time which results
in loss of temporal aspect and motion information.

CNNs are very successful at a wide range of activities since they learn features from data in the
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form of an end-to-end pipeline focused at a given job. As a result, in contrast to image-based
classification techniques, there are several works that specialize in usingCNNmodels to discover
hidden spatiotemporal feature patterns in extremely long videos. The temporal features in a
video were used by end-to-end CNN architectures. Ji developed a 3D CNN model that runs on
stacked video frames, extending the standard 2DCNNdesigned for images to the spatiotemporal
domain [12]. Li introduced a 3DCNNalgorithm that works on stacked sequence of video frames
as an extension of the traditional 2D CNN design for images [13]. In 3D CNN, 3D kernels
are used to extract spatiotemporal features. CNN training with 3D volume inputs is typically
time-consuming. Ji introduced factorized spatiotemporal convolutional neural networks, in
which the initial 3D convolution kernel learning is factorized as a sequential process of learning
2D spatial kernels within the bottom layer to efficiently handle 3D data [12].

Yi developed a two-stream technique after being motivated by the observation that movies
may readily be split into spatial and temporal components [14]. This technique divided video
representation learning into spatial and temporal cue feature learning. Using rawRGB frames as
inputs, the authors initially gatheredCNN to represent appearance information in a typical spatial
context. Several frames Dense optical flows for temporal cues between neighboring frames were
created, leading in temporal CNN training. The authors announced encouraging findings on
two action recognition benchmarks. Ye considered a variety of alternatives, including dropout
ratios and network topologies, because the two-stream method gave several implementation
options that may impact performance [15].

Yi described a two-stream temporal CNN that collectedmotion information between consecutive
frames [14]. However, the movements were only shown for a brief period of time. Because
complex events in movies generally consist of numerous activities taking place over a lengthy
period of time, the above-mentioned approach was insufficient for video analysis. This has
motivated researchers to use RNN models in order to account for the temporal dynamics in
movies. LSTM is one such RNN-based model that provides a good fit while avoiding the
"vanishing gradient" effect. Its efficiency has been demonstrated in a variety of tasks, including
image/video captioning. Akilan developed a combination of LSTM and CNN model outputs to
simultaneously represent spatio-temporal cues for movie classification [16]. CNNs and LSTMs
are highly complementary, according to the research. Feichtenhofer improved on the two-stream
approach by investigating a more efficient method of combining spatial and temporal streams
[17]. The two-stream approach was found to be superior at modeling correlations of spatial and
temporal streams in their study [18] [19].

Kong suggested a technique for automated cardiac phase identification based on a CNN and
RNN [20]. The researcher developed an LSTM to create a temporal regression that detects
frames comprising the ED and ES phase throughout a cardiac cycle in their study. Xue
and Debus, on the other hand, presented deep learning techniques to perform automated LV
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evaluation and quantification directly from CMR cine sequences throughout the cardiac cycle
[21] [22]. A deep multitask relationship learning network (DMTRL) for LV indices estimation
and cardiac phase recognition was described in the study of Xue [21]. An LSTM was used in
this study to represent the complicated temporal dynamics of the myocardium, which was then
used to force the spatiotemporal consistency of successive frames. The design is made up of
two parallel LSTMs, the first of which learns the LV deformation during the cardiac cycle to
estimate the cardiac indices, and the latter of which records the spatiotemporal changes between
successive frames to identify the cardiac phases. Similarly, Debus and Ferrante [28] carried
out the identical tasks, but instead of employing an RNN, they added a spatiotemporal CNN
that extracts spatial and temporal information using 3D convolutional kernels [22]. These 3D
convolutions use the spatiotemporal information of successive frames to enhance quantification
and cardiac phase detection accuracy [21] [22].
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CHAPTER 3

RATIONALE OF THE STUDY

3.1 Rationale of the study

Fetal scanning and fetal echocardiography are specialties which require highly skilled expertise.
Such training programs are very competitive and expensive. None such training programs are
available in our country. As such very few doctors with the required skills are available in our
country. The program which I have tried to develop can be used as a screening tool in any setup
to identify high risk cases with fetus having possibility of having CCDs and they can be further
be scanned by the experts for confirmation. This will reduce the work load on the experts and
prevent diagnosis lapse in hospitals where experts are not available.

The main contribution of this thesis is to find out the best method for the identification and
classification of the given fetal echocardiography into five standard planes and predict the CHD
lesions. The evaluations are based on analyzing the optimal model. The current goal is aimed at
finding the optimal algorithm. Multiple deep learning methods, i.e. CNN+LSTM, CNN+GRU
and 3D CNN are proposed and presented on details. These three approaches based on deep
learning will be justified and analyzed. Based on the outcomes of the experiments, the best
recognition algorithm will be determined.
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CHAPTER 4

METHODOLOGY

4.1 Dataset Collection and Description

Ultrasound (US) is still an important diagnostic technique for fetal echocardiography. This
method allows for detailed morphological assessment of fetal cardiac structures. Ultrasound
uses a physical medium such as air, water, or tissue to propagate high frequency sound waves
from a transducer. Medical ultrasound devices employ pressure pulses with frequencies ranging
from 1 to 15 MHz for diagnostic purposes. The examinations are often carried out in real time
and with the ability to observe multiple planes of the fetal heart depending on the location of
the transducer.

In this study, five standard screening views of normal fetal heart and CHD ultrasound data
were used to diagnose fetal cardiac health. With waived consent, all data were de-identified
to maintain the privacy of the person. The data set was split into three sections: training,
validation, and testing, in the proportions of 60%, 20%, and 20%, respectively.

4.1.1 Dataset Collection

The data for this study was collected from several ultrasound centers. These data were recorded
on Samsung HS40, GE Voluson S10, GE Voluson E8, GE Voluson E10 and Samsung HERA
W10. It consists of videos of 5 different standard views of normal fetal heart and CHD
lesions. The 5 canonical views used were – "Abdominal view (ABDO)", "4 Chamber (4C)",
"3 Vessel View (3VV)", "Left ventricular outflow tract (LVOT)" and "Right ventricular outflow
tract (RVOT)". Similarly, congenital heart diseases considered in this study were Tricuspid
atresia(TA) and Hypoplastic left heart syndrome(HLHS) . There were a total of 564 videos.
The video was recorded at a rate of 30 FPS(frames per second) by fetal medicine experts. The
average length of each the video was about 6 to 10 seconds. Table 4.1 represents number of
cine loops collected.
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Table 4.1: Number of cine loops in each category of spatiotemporal fetal cardiac imaging

4.2 Baseline Models

4.2.1 Convolutional Neural Network(CNN)

Figure 4.1: Block diagram Convolutional neural network (CNN)

CNNs are great at finding patterns and using them to classify images. They are made up of
numerous hidden layers. It is made up of filters, kernels, or neurons with learnable weights and
parameters. Each channel receives a few inputs and performs convolution as shown in Figure
4.1. The components of CNN comprise of :

i. Convolutional Layer

ii. Rectified Linear Unit (ReLU) Layer
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iii. Pooling Layer

iv. Fully Connected Layer

Convolutional Layer

Convolution layer calculates the output of the neurons that depends only on a small number of
inputs, each computing a dot product between a small number of inputs and their corresponding
weights. This layer is the central component of a CNN and is responsible for the majority of
the computational calculations. Its main function is feature extraction. It retains the spatial
relation between pixel and input image. A simple example of Convolution layer is shown in
Figure 4.2

Figure 4.2: Convolution Layer for Model Building.

Activation function

Activation function has the ability to add non-linearity to the network in order to learn complex
patterns in the data. It converts the output from the previous cell into some other form that can
be used as the input to the next cell. The most commonly used activation function is ReLU. It
is a component wise operation that reconstitutes all negative values within the highlight outline
to zero. It is defined as R(z) = max (0, z), is not differentiable at z = 0. The plot of ReLU
activation function is shown in Figure 4.3
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Figure 4.3: ReLU Activation Function.

Pooling Layer

Pooling layers are frequently used in convolution neural networks to reduce the dimension of
the input for faster computation. It is applied to shrink the stack of images. To design pooling
layer, we need hyperparameters as

5 : filter size
B: stride

Here,Max Pooling is shown in Figure 4.4with kernel size 2 and stride 2. Steps for implementing
Max Pooling layer are

1. Choose a window size (2).

2. Select a stride.

3. Window should be walked across filtered images..

4. Take the maximum value for each window.

Figure 4.4: Max Pooling Layer.
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There is no parameter to learn in pooling.

Fully Connected Layer

Classification of data into various classes can be done using fully connected neural network.
The fully connected layer’s primary function is to use the input from the previous convolution
layer or pooling layer to classify the given image into its corresponding label. The previous
layer’s input is connected to the activation unit of the next layer in this layer. layer[23][24]. It
can be implemented as

1. Fully connected input layer(Flatten):- The fully connected input layer takes input from
the previous layer, flattens it, and converts it into a single vector that may be used as input
to the following layer.

2. Fully Connected Layer:- The fully connected layer takes the previous layer’s input and
predicts the label based on feature analysis.

3. Fully Connected Output Layer:- The probabilities of each label in the data are computed
by the fully connected output layer.

Softmax Classification

Softmax is an activation function often used to classify multiclass problem. It normalizes the
output of a network into a probability distribution of each of possible outputs. It is also called
a vector of probability distribution. It produces values in the range of 0-1, therefore used as the
final layer in classification models[25].

f(I)8 =
4I
8∑ 

9=1 4
I
9

(1)

4.2.2 Recurrent Neural Network(RNN)

Recurrent neural networks are a type of neural network that can interpret information and can
recognize patterns in ordinal, temporal or sequential data.
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Figure 4.5: Recurrent Neural Network

Figure 4.5 shows that A is a neural network block that takes -C as an input and produces
ℎC as an output. The loop transports information from one step of the network to the next.
This loop may be regarded as many clones of the same network, each transmitting information
to the next phase. But, RNN has difficulty in accessing information from the remote past-
long-term dependency problem. It uses backpropagation algorithm for every timestamp, called
back-propagation through time(BTT). Additionally, RNN has vanishing gradient problem and
exploding gradient problem.

Long Short-Term Memory Networks(LSTM)

LSTM are a special type of RNN that are specifically designed to address the issue of long-term
dependency. They can remember the given information for very long durations of time. So,
they are mainly focused on resolving the vanishing gradient problem itself.

Figure 4.6: Block diagram of long short term memory(LSTM)
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1. Memory Cell(Cell State)

Figure 4.7: Memory cell of LSTM

The memory cell is used to remember and forget things based on the context of the input.
It is the horizontal line running across the top of the diagram with some minor linear
interactions as shown in Figure 4.7.

2. Forget Cell

Figure 4.8: Forget gate of LSTM

The first step in LSTM is decidingwhich information should be removed from thememory
cell. The forget gate sigmoidal layermakes this decision. This layer examines the previous
state ℎC−1 and the current input GC to compute a value between 0 and 1 for each number in
the memory cell �C−1.

5C = f(, 5 ∗ [ℎC−1, GC] + 1 5 )
where 5C = forget gate
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3. Input Gate

Figure 4.9: Input gate of LSTM

The quality and quantity of information stored in the memory state are determined by the
input layer. This procedure is carried out in two stages.

(a) Sigmoidal function decides which values will be allowed to pass.

(b) A tanh function generates a vector of new candidate values 2C that assigns weightage
to the values passed to it..

8C = f[,8 ∗ [ℎC−1, GC] + 18]
2C = C0=ℎ[,2 ∗ [ℎC−1, GC] + 12]

where 8C = input gate

The old cell state, �C−1, is now updated to the new cell state, �C . The next step includes
implementation of previously decided plan.

Figure 4.10: LSTM cell state update

And the updated equation is given as

�C = 5C ∗ �C−1 + 8C ∗ �C
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4. Output Gate

Figure 4.11: LSTM output gate

Concatenation of information is again passed through the sigmoidal function. Then the
information from the memory cell is passed through the tanh function. To obtain the
output, the point-by-point operation is now performed.

>C = f ∗ (,> ∗ [ℎC−1, GC] + 1>)
ℎC = >C ∗ C0=ℎ(�C)

Where >C = Output gate

Gated recurrent units (GRUs)

GRU is a relatively new addition to the Recurrent Neural Networks family and is very similar
to LSTM.

Figure 4.12: Diagram of gated recurrent units

It only has two gates: one for reset gate and another for update gate.

1. Update gate-combines the forget and input gates into the Update gate.
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2. Reset gate-combines the hidden and the cell states to determine how much information
to forget.

Mathematical expressions of GRU is given as

IC = f(,I ∗ [ℎC−1, GC])
AC = f(,A ∗ [ℎC−1, GC])

ℎC = C0=ℎ(, ∗ [AC ∗ ℎC1 , GC])
ℎC = (1 − IC) ∗ ℎC−1 + IC ∗ ℎC

GRU has fewer tensor operations than LSTM; hence , they are slightly faster to train in GRU
than LSTM.

4.3 Main Models

Modern medical imaging technology allows for the recording of cine loops and time series
sequences for analysis of the fetal heart and diagnosis of any abnormalities[18]. Figure 5.3
highlights the most widely utilized dynamic imaging modalities as well as therapeutic applica-
tions for deep learning in 3D/4D cardiac image sequences.

4.3.1 CNN+RNN Model

The spatiotemporal classification process consists of the following steps :

i. Data Collection .

ii. Pre-processing.

iii. Spatial Feature Extraction by CNN .

iv. Temporal Feature Extraction by RNN.

v. Classification

vi. Recognition.

Figure 4.13: System Block Diagram for CNN+RNN Spatiotemporal Fetal Heart Imaging
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Deep learning and machine learning have been utilized effectively in a variety of medical
image analysis applications. The spatiotemporal analysis of fetal cardiac imaging sequences
requires the extraction of spatial and temporal features in order to properly represent the relevant
information throughout time. The CNN+ RNN (LSTM/GRU) architecture includes CNN layers
for spatial feature extraction on 2D image input data combined with RNN(LSTM/GRU) to
support temporal sequence predictions.

Figure 4.14: Spatiotemporal feature extraction of heart using CNN and RNN(LSTM)

Figure 4.15: Spatiotemporal feature extraction of heart using CNN and GRU
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CNNs are effective at finding spatial features and using them to classify images. They are made
up of numerous hidden layers. They are made up of filters, kernels, or neurons with learnable
weights and parameters. Each channel takes a few inputs and convolves them. Max pooling
layer and fully-connected layers come next. Different CNN architectures have been utilized
in clinical image analysis for anatomical structure classification and segmentation. Recurrent
neural networks are special a type of neural network that can interpret information and can
recognize patterns in ordinal, temporal or sequential data. But, as described earlier RNN has
a long-term dependency problem and a vanishing gradient problem. To address these issues,
LSTM and GRU were used for temporal sequence prediction. Therefore, CNN+LSTM and
CNN+GRU model was used for spatiotemporal fetal cardiac imaging.

4.3.2 3D CNN Model

3D CNN are similar to 2D CNN. 2D Convolutional Neural Network (2D CNN) performs well
for spatial feature extraction from 2D images, but it does not account for temporal information
from the same image. Therefore, 3D CNN is used which is suitable for spatiotemporal feature
extraction. Block diagram is shown in Figure 4.16. Some of the 3D CNN properties are

1. 3D CNN can model both spatial and temporal features simultaneously.

2. 3D filter of the size 3x3x3 includes spatial as well as temporal features.

Figure 4.16: Block diagram of 3D CNN

The components of 3D CNN are similar to that of 2D CNN and is given as

1. Convolution Layer : Voxels are used in 3D CNN in place of pixels which were used in
2D CNN. The operation of 3D CNN is illustrated in Figure 4.17.
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Figure 4.17: Graphic representation of 3D-convolution layer

2. 3D maxpool(2x2x2) : In 3D Maxpool layer, the maximum value within the volume is
selected. In this case, the maximum element within the cube of size 2 is selected.

3. Fully Connected Layer : A fully connected layer is also known as a feed forward neural
network. The output of the last pooling layer or convolutional layer is flattened and then
fed into the fully connected layer as its input.

4.4 Model Evaluation

The performance of a classification model is measured by the number of test records correctly
and erroneously predicted by the model. The confusion matrix gives a more detailed view that
includes not only the performance of a predictive model, but also which classes are predicted
correctly and erroneously, as well as the types of errors produced.
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Figure 4.18: Confusion Matrix for evaluating spatiotemporal fetal cardiac models.

1. True Positive (TP): The model classifies the example as positive, and also positive for the
actual mark.

2. False Positive (FP): The model categorizes the example as positive, but negative is the
actual mark.

3. Real Negative (TN): The model categorizes the example as negative, and negative is also
the actual mark.

4. False Negative (FN): The model labels the example as negative, but the mark remains
positive.

4.4.1 Sensitivity, Specificity and Accuracy

Sensitivity tests the percentage of positives recognized correctly (e.g. the proportion of images
that are correctly identified as true images). It is calculated as,

(4=B8C8E8CH = )%/(�# + )%)

Specificity tests the number of negatives correctly recognized (e.g. the percentage of false
images which are correctly identified as false images). It is expressed as,

(?428 5 828CH = )#/(�% + )#)

Thus, the accuracy that reflects a better measurement metric can be obtained as:
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�22DA02H = (4=B8C8E8CH ∗ %A4E0;4=24 + (?428 5 828CH ∗ (1 − %A4E0;4=24)
or

�22DA02H = ()# + )%)/(�% + �# + )% + )#)

Where prevalence is defined as the ratio of the number of anomaly cases in a given popula-
tion..

4.4.2 The AUC ROC curve (Receiver Operating Characteristics) (Area
Under The Curve)

Figure 4.19: ROC Curve for evaluating a given model

The given model will predict the true positives or negatives and all other metrics mentioned
above based on the assumption of a threshold that dictates what output label is considered
positive and negative. A receiver operating characteristics (ROC) curve, which is developed at
various threshold settings by plotting, is a method that helps us see how the threshold plays out
the model’s decision. False Positive Rate vs. True Positive Rate [26].

AUC ROC provides us the measure of goodness of fit, summarizes the model output across all
thresholds, and provides a good sense of the discriminative power of a given model.
F1 Score
The F1 score is a measure that combines precision and recall into a single rating. It is a harmonic
mean of sensitivity and precision[27]. It is preferable to obtain a single score that reflects both
sensitivity and precision.

�1 =
2

1
'420;;

+ 1
%A428B8>=
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4.5 Tools and Resources

The following tools and resources will be used in this study:

1. Python: Python is a high-level, interpreted programming language that was employed in
this study.

2. Anaconda: Anaconda is a data science platform to simplify package management and
deployment for scientific computing.

3. Jupyter Notebook: Jupyter notebook is a computational notebook that allows us to write
and execute the python code in local web browsers.

4. Tensorflow: Tensorflow is a machine learning library that is available as open-source
software. Its library can be run on all kind of computers irrespective of their processing
powers.

5. Keras: Keras is an open source library which supports almost all types of neural network
models.

6. OpenCV: OpenCV is a free and open source computer vision library that may be used
in real-time.

7. Numpy: Numpy is a MATLAB-style library for numerical operations that is well opti-
mized.

8. Tflearn: Tflearn is a high level API built on top of Tensorflow which supports deep
learning models.

9. Matplotlib: Matplotlib is a Python-based data visualization and plotting library.

10. Scikit Learn: Scikit-learn is a Pythonmachine learning library for analysis and prediction
of scientific computing.

11. Theano: Theano is a Python library that allows you to define, optimize, and evaluate
multi-dimensional arrays quickly.

12. TensorBoard: TensorBoard is a tensorflow visualization toolkit.
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CHAPTER 5

METHODOLOGY IMPLEMENTATION

5.1 Implementation

Figure 5.1: The Overall proposed system architecture of spatiotemporal fetal cardiac imaging system

Figure 5.1 illustrated the overall system for fetal cardiac cine loops identification and classifica-
tion along with the prediction of common CHD lesions. 30 FPS cine loops of varying lengths
(6-10 seconds) were converted into images and then passed through the preprocessing pipeline.
Image capturing, shuffling, gray scale conversion, resizing, histogram equalization and rotation
were done during the preprocessing method. The preprocessed data was then divided into
three groups: "training", "validation", and "testing", in proportions of 60%, 20%, and 20%
respectively. The models CNN+LSTM, CNN+GRU and 3D CNN were trained using the train-
ing dataset and training accuracy and loss were calculated after each epoch or training steps.
The validation loss and accuracy were also obtained during the training phase. Finally, the
performances of the trained models were evaluated with evaluation metrics, confusion matrix,
accuracy, sensitivity, specificity, AUC and F1-score.

Google Colab and anaconda 4.10.1 has been used to implement the deep learning model. Colab
is a cloud environment for Jupyter notebook that includes GPUs and TPUs and it is used for high
computation. Python programming has been used to create the code. For data pre-processing
opencv-python, numpy, pandas and theano has been used to generate feature matrix and target
vector. The resulting datasets were split into training, validation and testing using scikit-learn.
The Keras and Tensorflow library have been used to implement the spatiotemporal CNN+LSTM
and CNN+GRU model in google colab. Tensorflow 2.2.0 and keras 2.3.1 have been used to
implement 3D CNN model in local anacoda enviroment. Scikit-learn has been used for model
evaluation. For graph visualization, the Matplotlib and tensorboard have been used.
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5.1.1 Pre-processing

A video is a collection of set of images called frames, arranged in specific chronological
order. For spatiotemporal classification, 30 FPS cine loops of varying lengths (6-10 seconds)
were converted into images then passed through the preprocessing pipeline. Image capturing,
shuffling, gray scale conversion, resizing, histogram equalization and rotation were done during
the preprocessing.

The network architecture and the data format have been crucial while constructing an efficient
neural network model. The number of images, number of channels, image depth, image height,
and image width were all common parameters.

Pre-processing for CNN+RNN Model

All images collected from different sources, including RGB images were converted to grayscale
images (size - 150 X 150). The histogram equalization technique was used to improve image
contrast by stretching the intensity range. Following that, image augmentation was done. Before
resizing the image, the region of interest was extracted to emphasize the five standard cardiac
planes as shown in Figure 5.2 .

(a) (b) (c)

(d) (e)

Figure 5.2: Five standard views of fetal heart (a) Four Chamber (4Chamber) (b) Three Vessel View (3VV) (c)
Left Ventricular Outflow Tract(LVOT) (d) Right Ventricular Outflow Tract(RVOT) (e) Abdominal(ABDO)
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Pre-processing for 3D CNN Model

Videos were of varying number of frames per second so it was normalized to a sequence
duration of 30 frames. This was accomplished by erasing or repeating equidistantly spaced
frames. Following that, each video frame was converted into grayscale frame. Finally, both
channels of each sequence (Grayscale and Depth) were normalized to have a mean of zero and
a variance of one unit. This was done so the system could converge faster. Further, images
were resized to 150 x 150 x 43 voxel to enable them to fit in the 3D-CNN model as shown in
Figure 5.3.

Figure 5.3: Spatiotemporal Cardiac image sequences (Voxel)

The fetal heart rate ranges between 110-160 beats per minute. On an average, I have considered
130 beats per minutes which signifies that 1 fetal cardiac cycle cycle is completed in 0.47
seconds. To ensure reliability, 3 cardiac cycles were considered in a sequence averaging
1.41 seconds. As, there are 30 frames in 1 second, there will be 43 frames in 1.41 second
(1.41x30=42.3). Hence, voxel size of 43 frames was considered in this study.

5.2 Development of Models

The proposed models were developed as CNN+LSTM, CNN+GRU and 3D CNN for fetal
cardiac cine loops identification and classification, as well as the prediction of common CHD
lesions.
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5.2.1 Identification and classification into five standard planes

Combined CNN+RNN(LSTM/GRU) models

A combined method was developed to automatically identify and classify five types fetal
cardiac images. The CNN+ RNN (LSTM/GRU) architecture includes 2D CNN layers for
spatial feature extraction on 2D image input data combined with RNN(LSTM/GRU) to support
temporal sequence predictions.

Figure 5.4: CNN+RNN(LSTM/GRU) architecture for standard five view classification of fetal heart.

Figure 5.4 illustrates the combined CNN+RNN(LSTM/GRU) models for spatiotemporal fetal
cardiac imaging. The network has 7 convolutional layers followed by pooling layer, one fully-
connected layer, two LSTM/GRU layer and one output layer with the softmax function. The
convolutional layer is used for feature extraction that is activated by the RELU function. The
max pooling layer with size of 2x2 kernels is used for dimensionality reduction of the given
input image. In the last part, the function map is transferred to the LSTM layer followed
second LSTM layer to extract temporal information. After analyzing the temporal features, the
architecture sorts the fetal cardiac images through a fully connected layer to predict whether
they belong under any of the five categories.

3D CNN model

Figure 5.5: 3D CNN architecture for standard five view classification of fetal heart.

Figure 5.5 illustrates 3D CNN model for spatiotemporal fetal cardiac imaging. The network
has three 3D convolutional layers followed by pooling layer, one fully-connected layer and one
output layer with the softmax function. The 3D convolutional layer is used for spatiotemporal
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feature extraction that is activated by the RELU function. The 3Dmax pooling layer with size of
3x3x1 kernels is used for dimensionality reduction of the given input image. In the final layer,
the architecture sorts the fetal cine loops through a fully connected layer to predict whether they
belong under any of the five categories.

5.2.2 Diagnosis of Normal Heart vs. CHD lesions

Combined CNN+RNN(LSTM/GRU) models

Figure 5.6: CNN+RNN(LSTM/GRU) architecture for normal heart vs. CHD lesions.

Figure 5.6 illustrates the combined CNN+RNN(LSTM/GRU) models for spatiotemporal fetal
cardiac imaging. The network has 9 convolutional layers followed by pooling layer, one fully-
connected layer, two LSTM/GRU layer and one output layer with the softmax function. The
convolutional layer is used for feature extraction that is activated by the RELU function. The
max pooling layer with size of 2x2 kernels is used for dimensionality reduction of the given
input image. In the last part, the function map is transferred to the LSTM layer followed
second LSTM layer to extract temporal information. After analyzing the temporal features, the
architecture sorts the fetal cardiac images through a fully connected layer to predict whether
they belong under any of the three categories.

3D CNN model

Figure 5.7: 3D CNN architecture for Normal Heart vs. CHD lesions.

Figure 5.7 illustrates 3D CNN model for spatiotemporal fetal cardiac imaging. The network
has three 3D convolutional layers followed by pooling layer, one fully-connected layer and one
output layer with the softmax function. The 3D convolutional layer is used for spatiotempoal
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feature extraction that is activated by the RELU function. The 3Dmax pooling layer with size of
3x3x1 kernels is used for dimensionality reduction of the given input image. In the final layer,
the architecture sorts the fetal cine loops through a fully connected layer to predict whether they
belong under any of the three categories.
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CHAPTER 6

RESULTS AND DISCUSSION

A fetal cardiac imaging system with fully functional Spatiotemporal deep learning models
CNN+LSTM, CNN+GRU, and 3D CNN has been developed. The data was split into three
categories: training, validation, and testing, with a 60%, 20%, and 20% split, respectively.

6.1 Classification and performance evaluation of five stan-
dard view fetal heart

The three systems were able to classify 364 fetal cardiac cine loops into five standard fetal heart
views, namely ABDO, 4C, 3VV, LVOT, and RVOT with an accuracy of 97.39%, 98.02% and
91.35% respectively.

• Total Samples of videos : 364

• Number of epochs : 10

• Learning Rate : 0.001

• Optimizer : Adam Optimizer

• Training Accuracy :

1. CNN+LSTM : 97.39%

2. CNN+GRU : 98.02%

3. 3DCNN : 91.35%

A random test result of the classification of five standard views of fetal heart is shown in Figure
6.1
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Figure 6.1: Random test result of the five standard screening views of the fetal heart

The training accuracy of CNN+LSTM, CNN+GRU, and 3D CNN is 97.39%, 98.02%, and
91.35% respectively, with corresponding crossentropy losses of 0.14912, 0.10478, and 5.8198.
Figure 6.18, Figure 6.19 and Figure 6.20 depicts a plot of accuracy vs. epochs (training steps)
for respective models. The training accuracy summary is explained using the bar diagram
Figure 6.2 . The given figures indicate that the model performance has been improving over
time leading to conclusion that the models are learning.

Figure 6.2: Bar diagram of training accuracy of CNN+LSTM, CNN+GRU and 3D CNN models
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Figure 6.3: Training Accuracy and loss curves for CNN+LSTM model

Figure 6.4: Accuracy and loss curves for CNN+GRU model

Figure 6.5: Accuracy and loss curves for 3D CNN model
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Confusion matrices for five standard views of spatiotemporal fetal cardiac classifier are shown
in Figures 6.6,Figure 6.7 and Figure 6.8. They were used to describe a classifier’s performance
on test samples with known labels. It addressed the class imbalance problem.

The rows of confusion matrix represented the true labels and columns represented the predicted
labels. The trained model did predictions on the test data. The confusion matrix parameters
were calculated based on these predictions as true positives, true negatives, false positives, and
false negatives. CNN+LSTM, CNN+GRU and 3D CNN spatiotemporal models predicted on
unseen data with an accuracy of 92.63%, 94.99% and 82.69%.

Figure 6.6: CNN+LSTM model confusion matrix

Figure 6.7: CNN+GRU model confusion matrix
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Figure 6.8: 3D CNN model confusion matrix

The calculation and distribution of evaluation matrix for five standard planes of spatiotemporal
fetal cardiac images with their corresponding values are shown in table 6.1, table 6.2, table 6.3
and its bar diagram are showon in Figure 6.9, Figure 6.10, Figure 6.11.

Figure 6.9: Bar chart for performance evaluation metrics of a CNN+LSTM model for five Views of fetal heart

Table 6.1: Performance evaluation metrics of a CNN+LSTM model for five Views of fetal heart
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Figure 6.10: Bar chart for performance evaluation metrics of a CNN+GRU model for five Views of fetal heart

Table 6.2: Performance evaluation metrics of CNN+GRU model for five Views of fetal heart

Figure 6.11: Bar chart for performance evaluation metrics of a CNN+GRU model for five Views of fetal heart
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Table 6.3: Performance evaluation metrics of 3D CNN model for five Views of fetal heart

Finally, the ROC AUC curves for the five standard spatiotemporal classification views were
plotted, with the X-axis representing the false positive rate and the Y-axis representing the true
positive rate, as shown in Figure 6.12, Figure 6.13 and Figure 6.14. The areas under the
curve for the given CNN+LSTM, CNN+GRU and 3D CNN models were plotted as shown in
above Figures . These ROC AUC values represent the probability that the model will be able to
differentiate between positive and negative classes.

Figure 6.12: CNN+LSTM ROC (Receiver operating characteristics) curve for five standard spatiotemporal views
of the fetal heart

Figure 6.13: CNN+GRU ROC (Receiver operating characteristics) curve for five standard spatiotemporal views of
the fetal heart
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Figure 6.14: 3D CNN ROC (Receiver operating characteristics) curve for five standard spatiotemporal views of
the fetal heart

6.1.1 Comparison of 3D CNN, CNN+GRU, and CNN+LSTM Models for
five standard view of fetal heart

In this section, comparisons are made between implemented 3D CNN, CNN+GRU, and
CNN+LSTM models. The table shows 6.4 performance of the three models. Specific bar
diagram is shown in Figure 6.15

Figure 6.15: Bar chart of performance evaluation of the three models

Table 6.4: Comparison of 3D CNN, CNN+GRU, and CNN+LSTM models

For five standard views spatiotemporal classification, the CNN+LSTM, CNN+GRU, and 3D
CNN models achieved training accuracy of 97.39%, 98.02%, and 91.35%, respectively, and
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testing accuracy of 92.63%, 94.99%, and 82.69%. CNN+GRUmodel has higher value of recall
(94.174%) and specificity (98.79%). As we know, high value of recall gives low false negatives
and high value of specificity gives high true negatives. Precision and F1 score of CNN+GRU
model is also higher compared to other two models.

The CNN+GRUmodel performed better than the other twomodels as its testing accuracy on test
dataset is better than other twomodels. CNNproved to be good at spatial feature extractionwhile
RNN(LSTM and GRU) was efficient in temporal feature extraction. The training performance
of LSTMandGRUwere comparable but the testing performance of GRUwas higher than LSTM
though it had fewer gates than LSTM. Furthermore, while 3D CNN’s training performance was
comparable to the other models, its testing accuracy was significantly lower than the other two
models. The probable reason for this lower performance was lower datasets.

Hence, CNN+GRU performed better than the other two spatiotemporal models.

6.1.2 Comparison of CNN, CNN+GRU, and CNN+LSTMmodels for five
standard view of fetal heart

In this section, the results of CNN, CNN+LSTM and CNN+GRU models for classification of
five standard view of fetal heart is presented (Table 6.5). Its bar diagram is shown in Figure
6.16

Figure 6.16: Bar chart of performance evaluation of the three models

Table 6.5: Comparison of CNN, CNN+GRU, and CNN+LSTM models
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The experimental outcomes of CNN, CNN+LSTM and CNN+GRU is shown in Table 6.5. The
Overall performance of CNN+GRUwas shown to be better than the other two models with a test
accuracy of 94.99%. The performance of CNN+LSTM model was less than CNN+GRU but
it supersheded the CNN model. Furthermore, when the performance of CNN was compared
with CNN+LSTM and CNN+GRU, the performance of CNN+LSTM and CNN+GRU came
out to be much better than the CNN model. The resason for this better result being that the
CNN+LSTM and CNN+GRU can deal with sequential data and resolve long term dependency
problem along with spatial feature detection.

6.2 Classification andperformance evaluation of normal fetal
heart vs. Congenital heart disease(CHD) lesions

The three systems were able to classify 352 fetal cardiac cine loops into three categories namely
normal-4C, HLHS, and TAwith an accuracy of 94.61%, 91.99% and 86.54% respectively.

• Total Samples of videos : 352

• Number of epochs : 10

• Learning Rate : 0.001

• Optimizer : Adam Optimizer

• Training Accuracy :

1. CNN+LSTM : 98.60%

2. CNN+GRU : 98.63%

3. 3DCNN : 97.03%

Figure 6.17: Bar chart for the training accuracy of normal fetal heart vs. CHD lesions

CNN+LSTM,CNN+GRU, and 3DCNNhad training accuracy of 98.60%, 98.63%, and 97.03%,
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respectively, with crossentropy losses of 0.08566, 0.07725, and 0.7429. Figure 6.18, Figure
6.19 and Figure 6.20 represents a plot of accuracy vs epochs(training steps) for the respective
models and training accuracy summary is shown in Figure 6.17. The graphs shows the model’s
performances have been improving over time, which means that the models are learning.

Figure 6.18: Accuracy and loss curves for CNN+LSTM model

Figure 6.19: Accuracy and loss curves for CNN+GRU model

Figure 6.20: Accuracy and loss curves for 3D CNN model
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Confusionmatrices for three views normal heart vs. CHD lesions of spatiotemporal fetal cardiac
classifier are shown in Figures 6.21, Figure 6.22 and Figure 6.23. They are used to describe a
classifier’s performance on test samples with known labels. Class imbalance problem was also
addressed by this classifier.

The rows of confusion matrix represented the true labels and columns represented the predicted
labels. The trainedmodel did predictions on the test data. The confusionmatrix parameters were
calculated based on these predictions as true positives, false negatives, true negatives, and false
positives. CNN+LSTM, CNN+GRU and 3D CNN spatiotemporal models made predictions on
the test data with an accuracy of 94.61%, 91.99% and 86.54%.

Figure 6.21: CNN+LSTM model confusion matrix

Figure 6.22: CNN+GRU model confusion matrix
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Figure 6.23: 3D CNN model confusion matrix

The calculation and distribution of performance evaluation for normal heart vs CHD lesions
with their corresponding values are shown in table 6.1, table 6.2, table 6.3 and its bar diagrams
are shown in Figure 6.24, Figure 6.25, Figure 6.26.

Figure 6.24: Bar chart of performance evaluation metrics of a CNN+LSTM model for normal fetal heart vs. CHD
lesions

Table 6.6: Performance evaluation metrics of a CNN+LSTM model for normal fetal heart vs. CHD lesions
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Figure 6.25: Bar chart of performance evaluation metrics of a CNN+GRU model for normal fetal heart vs. CHD
lesions

Table 6.7: Performance evaluation metrics of CNN+GRU model for normal fetal heart vs. CHD lesions

Figure 6.26: Bar chart of performance evaluation metrics of a 3D CNN model for normal fetal heart vs. CHD
lesions

Table 6.8: Performance evaluation metrics of 3D CNN model for normal fetal heart vs. CHD lesions
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Finally, the ROC AUC curves for normal heart vs. CHD lesions spatiotemporal classification
views were plotted, with the X-axis representing the false positive rate and the Y-axis repre-
senting the true positive rate, as shown in Figure 6.27, Figure 6.28 and Figure 6.29. The
areas under the curve for the given three models were plotted as shown in above figures . These
ROC AUC values represent the probability that the model will be able to differentiate between
positive and negative classes.

Figure 6.27: CNN+LSTM ROC (Receiver operating characteristics) curve for normal fetal heart vs. CHD lesions

Figure 6.28: CNN+GRU ROC (Receiver operating characteristics) curve for normal fetal heart vs. CHD lesions

Figure 6.29: 3D CNN ROC (Receiver operating characteristics) curve for normal fetal heart vs. CHD lesions
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6.2.1 Comparison of 3D CNN, CNN+GRU, and CNN+LSTM Models for
the classification of normal fetal heart vs. CHD lesions

In the section mentioned below, comparisons are made between implemented 3D CNN,
CNN+GRU, and CNN+LSTMmodels. Bar diagram shown in Figure 6.30 shows the graphical
representation of the data shown in table 6.9.

Figure 6.30: Bar chart of performance evaluation of the three models

Table 6.9: Comparison of 3D CNN, CNN+GRU, and CNN+LSTM models

For normal vs. CHD lesions spatiotemporal classification, the CNN+LSTM, CNN+GRU, and
3D CNNmodels gained training accuracy of 98.60%, 98.63%, and 97.30% and testing accuracy
of 94.61%, 91.99%, and 86.54%, respectively. Table 6.9 shows that the overall performace of
CNN+LSTMmodel for normal vs. CHD lesions is better than CNN+GRU and 3D CNN.

The CNN+LSTM model performed better than the other two models as its testing accuracy
is higher. CNN proved to be good at spatial feature extraction while RNN(LSTM and GRU)
was efficient in temporal feature extraction. The training performance of LSTM and GRU were
comparable but the testing performance of GRU was lower than LSTM as GRU had fewer gates
than LSTM. Furthermore, while 3D CNN’s training performance was comparable to the other
models, its testing accuracy was significantly lower than the other two models. The probable
reason for this lower performance was lower datasets.

Hence, CNN+LSTM outperformed than the other two spatiotemporal models.

48



6.2.2 Comparison of CNN, CNN+GRU, and CNN+LSTMModels for the
classification of normal fetal heart vs. CHD lesions

The outcomes of the CNN, CNN+LSTM, and CNN+GRU models for classification of normal
fetal heart vs. CHD lesions are reported in this section (Table 6.10). Figure 6.31 depicts its
bar diagram.

Figure 6.31: Bar chart of performance evaluation of the three models

Table 6.10: Comparison of CNN, CNN+GRU, and CNN+LSTM models

The experimental outcomes of CNN, CNN+LSTM and CNN+GRU is shown in Table 6.10.
With a test accuracy of 94.61%, CNN+LSTM outperformed the other two models. The per-
formance of the CNN+GRU model was lower than that of the CNN+LSTM model, but it
outperformed the CNN model. Furthermore, when CNN’s performance was compared to
CNN+LSTM and CNN+GRU, CNN+LSTM and CNN+GRU performed significantly better
than the CNN model. The reason for this improved performance being that CNN+LSTM and
CNN+GRU can deal with sequential data and handle long-term dependency problems while
detecting spatial features.
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CHAPTER 7

CONCLUSION

Hence, the proposed spatiotemporal deep learning models i.e. CNN+LSTM, CNN+GRU and
3D CNN were able to classify the fetal cardiac images into the five standard views with an
accuracy of 92.63%, 94.99% and 82.69% respectively. CNN+GRU outperforms the other two
models in terms of accuracy when compared to experimental findings.

Similarly, these algorithms were able to identify and diagnose normal heart vs. Tricuspid atresia
and HLHS with an accuracy of 94.61%, 91.99% and 86.54% respectively. When compared to
the experimental findings, CNN+LSTM surpasses the other two models.

CNN+LSTM and CNN+GRU performed significantly better than the CNN model. The reason
for this improved performance being that CNN+LSTM and CNN+GRU can deal with sequential
data and handle long-term dependency problems while detecting spatial features.
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