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ABSTRACT 

 

This work analyze the official data of coronavirus (Infected, Recovered and Death) and 

predict the evolution of the epidemic in Nepal. The generalized SEIR model has been applied 

with hybrid of ETS-ARIMA time series model for the time series analysis and predictions of 

evolution of Covid-19 cases (Quarantined, Recovered and Deaths). The prediction has been 

made for 30 days using the past data of thirteen months.  

The prediction made by generalized SEIR model has been corrected using two time 

series models, ETS and ARIMA model. The estimation error of generalized SEIR model is fed 

to ETS model to predict the error. Then, the predicted error by ETS model is added to the 

prediction made by generalized SEIR model. Now, the remaining error is again fed to ARIMA 

model to predict the error. The predicted error by ARIMA model is added to the prediction 

made by generalized SEIR model to get final prediction.  Use of generalized SEIR model along 

with ETS and ARIMA model improve the time series prediction of coronavirus spread in case 

of Nepal as compared to generalized SEIR model. Also, the SEIR-ETS-ARIMA model reduce 

the estimation error as compared to SEIRD-ARIMA model. Improvement in all quality 

measures, MAE, MSE, RMSE and MAPE, has been observed. 
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CHAPTER 1: INTRODUCTION 

1.1 Background: 

The COVID-19, first reported in Wuhan, China spread in nearly every country on the 

planet with more than 140 million global infection (April, 2021). COVID-19 was declared a 

global pandemic by the World Health Organization (WHO) on March 11, 2020 [1].  

Thailand was the first country to report the COVID-19 case outside of China while 

Nepal becomes the first in South Asian country. From banning international air travel to 

monitoring Nepal-China and Nepal-India ground crossing Points of Entry, from strict 

lockdown to partially executed lockdown, the Government of Nepal tries different strategy to 

prevent the outbreak. The intervention with vaccination has just been started. 

COVID-19 is a disease that spreads rapidly and endangers the health of many people 

within a short period of time. COVID-19 is caused by a new form of coronavirus belonging to 

the coronavirus family along with MERS and SARS, which can spread to humans [2]. Fever, 

shortness of breath, cough, losing smell and taste and diarrhea are some common symptoms 

the infected person could show. COVID-19 has a two-week or longer incubation time [3]. In 

its latent period, the disease can still be contagious. The virus can be transmitted from person 

to person via respiratory droplets and close contact. 

While Nepal is trying to put off the possible pandemic in the country but due to lack of 

clarity on strategy to be followed, its response is not showing such effective results. The 

trajectory of COVID-19 for Active, Recovered and Deaths was predicted for the cases of Nepal 

using generalized SEIR model in previous project work. The model we proposed here predicts 

the coronavirus spread in Nepal for next 30 days, expecting less erroneous than the previous 

work. The policy maker can use this prediction to find the number of quarantined bed, number 

of ICU and ventilators required for the next 30 days.  

 

 

 

 

 

 

 

Figure 1.1 Ultrastructural morphology exhibited by coronavirus 

Source: Centers for Disease Control and Prevention (CDC), US 
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1.2 Problem Statement:   

 Maher Ala’raj, et al used SEIRD model to simulate COVID-19 outbreak in US and the 

prediction error is reduced by using ARIMA time series model [28]. This model consists of 

two parts: the modified SEIRD model and ARIMA models. The model fit SEIRD model 

parameters against historical values of infected, recovered and deceased population. Residuals 

of the first model for infected, recovered, and deceased populations are then corrected using 

ARIMA models. However, the hybrid model wouldn’t handle the seasonality factor present in 

the data. To incorporate the seasonality factor, another time series model, the Error-Trend-

Seasonality (ETS) model is added in between generalized SEIR and ARIMA model.  

The epidemiological model incorporates parameters which describe the nature of 

coronavirus. The time series model, the ARIMA and ETS models can predict the time series 

evolution of the disease, but they have very few parameters which cannot represent the 

coronavirus spread in real scenario. The generalized SEIR model can give us the tentative idea 

on how the outbreak will go in future, but it cannot exactly predict the number of cases. 

Knowing the nature of coronavirus spread in Nepal, the generalized SEIR, ETS and ARIMA 

models separately would not efficiently predict the future value of COVID-19 cases. To 

address the limitations of epidemiological model as well as time series model, a new hybrid 

model of three layer, the SEIR-ETS-ARIMA is proposed. The proposed model also introduce 

the time and intervention dependency in the infection rate.  

We have used three different models to address following issues. 

i. Generalized SEIR model: To incorporate the parameters that describe the nature of 

coronavirus like protection rate, infection rate (mobility, population demography, 

and intervention), latent time of the virus, average quarantine time, recovery rate, 

deaths rate 

ii. ETS model: To address any trend and/or seasonality present in the reported data 

iii. ARIMA model: To incorporates random disruptions 
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1.3 Objectives 

• To reduce the prediction error made by generalized SEIR model by using ETS and 

ARIMA statistical models  

• To evaluate the SEIR-ETS-ARIMA hybrid model using active, recovered and deaths 

case of Nepal and validate the SEIR-ETS-ARIMA hybrid model by comparing with 

SEIRD-ARIMA hybrid model 

 

1.4 Scope and limitation of work 

The model can be used to predict the possibility of a second peak or to predict the 

eventual seasonal peaks. The work addresses all possible parameters that explains the 

nature of COVID-19 and other parameters that would affect the spread of the virus. The 

generalized SEIR model incorporates parameters like protection rate, infection rate 

(mobility, population demography, and intervention), latent time of the virus, average 

quarantine time, recovery rate, deaths rate. The time series model, the ARIMA and ETS 

incorporates parameters like time, auto-regression, moving average, trend coefficient, 

seasonality coefficient and no. of periods in seasonal cycle. 

However, the work will not cover the case of new variant of virus separately. This work 

will not include the effect of vaccination over time.  The total population will be considered 

constant, which means the natural birth and deaths are not considered in the proposed 

model. 

  



4 
 

CHAPTER 2: LITERATURE REVIEW 

 

Mathematics in biology have made great contribution in modelling of epidemiological 

diseases like smallpox [4], tuberculosis transmission [5], Ebola [6], SARS pandemic [7] and 

the list goes on. After the outbreak of novel coronavirus in December 2019 in Wuhan, different 

studies is being carried out to find the nature of spread of the disease. Since the found 

intervention method (the vaccination) is under test till date, it is more important than ever to 

understand the current epidemiological models for disease spread, mortality, and recovery. The 

widely used compartmental model (SEIR model) have been used along with many variations 

to model the nature of coronavirus [8] [9] [10] [11] [12]. Improved version of SEIR model was 

designed by Shaobo. He et al by dividing Infective compartment into two class: the infectious 

without intervention and infectious with intervention, and considering the Quarantined and 

Hospitalized compartment to represent real scenario. They applied Particle Swarm 

Optimization algorithm to approximate the model’s parameters. The model is applied to show 

SARS-COV-2 virus spread in Hubei, China [11]. Alberto Godio et al apply a generalized SEIR 

model, use PSO to fit the model parameters, and linked model equations to vary the infection 

rate for COVID-19 outbreak in Italy and its different region to enhance the accuracy of 

predictions for 30 days [12]. Although by using a very complex equations to represent the 

scenario of COVID-19 spread along with heuristic machine learning algorithm like PSO, they 

could only predict trend of the spread, not the exact number of cases. 

Time series statistical models are extensively been used in forecasting since years. Oleg 

Ostashchuk used the ARIMA model to predict IBM stock price (in USD) [13]. C. A. Jofipasi 

et al forecast weather in the Aceh Besar District, Indonesia, using the ETS model [14]. In 2017, 

In Wuhan, China, the seasonal ARIMA model was used to forecast the occurrence of Hand-

Foot-Mouth disease [15]. Similarly, infectious diseases like tuberculosis and Dengue fever 

were forecasted using ARIMA models [16] [17]. Leila Ismail, et al had an extensive case 

studies of 187 countries. They suggest best time series model with least RMSE and MAPE for 

each country for given dataset of COVID-19 [18]. 

After COVID-19 spread all over the world, along with epidemiological model, various 

time series model are being used in different research to predict the cases of COVID-19 in 

respective region. Ovidiu-Dumitru Ilie et al forecast the spread of coronavirus in nine different 

countries using ARIMA model. They use non-seasonal ARIMA (p,d,q) model [19]. Ram 

Kumar Singh et al. create a spatial map of the COVID-19 cumulative data for over 170 
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countries and territories. The spatial map is used to determine the severity of COVID-19 

infections in the top 15 countries and continents [20]. Using ARIMA, X. Duan and Xi. Zhang 

model and forecast irregularly patterned covid-19 outbreaks using data from Japan and South 

Korea. For the ARIMA model, the Box-Jenkins method is used for model detection, estimation, 

diagnostic testing, and forecasting. On some nonstationary time series, the differencing 

transformation was used to achieve stationarity [21]. K.E. Arun Kumar, et. al. use ARIMA and 

SARIMA model separately to forecast the scenario of COVID-19 cases. They use RMSE, 

MAE, MAPE to select the best model and AIC, BIC to evaluate the model [22].  

S. Makridakis et al compares various time series models and machine learning model 

to make prediction, and suggest that ETS and ARIMA are best to make time series prediction 

with less error [23]. Zhang GP use hybrid ARIMA-NN model for time series forecasting [24]. 

In time series forecasting of tourist travel, Aslanargun A, et al compared ARIMA, neural 

networks, and hybrid models [25].  Yu L, et al apply hybrid of SARIMA and NARNN to 

forecast the cases of HFMD in Shenzhen, China [26]. Aman Swaraj, et al used a hybrid model 

ARIMA-NAR in COVID-19 data of India, and suggest that using hybrid model significantly 

reduce RMSE, MAE and MAPE [27]. Maher Ala’raj, et al used SEIRD model to simulate 

COVID-19 outbreak in US and the prediction error is reduced by using ARIMA time series 

model. The hybrid model was used for short and long term forecast of the disease [28]. 

 

Table 2.1 Evolution of SEIR model 

S.N. Author/s Year Epidemiological Model 

1. Daniel Bernoulli  1760 Use of a simple mathematical method to 

evaluate the effectiveness (in terms of an 

improvement in life expectancy) of the 

technique of variolation to protect against 

smallpox infection 

2. Ronald Ross 1908 Pioneer model for transmission dynamics of 

malaria in continuous time framework, the 

SIR model 

3. Kermack and McKendrick  1927 SIR model for closed population with 

threshold density population 

4. Stavros N. Busenberg, 

Kenneth L. Cooke 

1979 Effect of Incubation period in SIR model, 

delayed SIR or SEIR model 

5. Roy M. Anderson 1991 Partition of transmission coefficient into two 

different components – one representing the 

likelihood of transmission between a 

susceptible and an infected, and the other 

denoting the probability of contact between 

individuals in different groups 

https://www.ncbi.nlm.nih.gov/pubmed/?term=ArunKumar%20K%5BAuthor%5D&cauthor=true&cauthor_uid=33584158
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6. Michael Y. Li et. al. 1999 SEIR model that incorporates exponential 

natural birth and death, as well as disease-

caused death so that the total population size 

may vary in time 

7. Lekone et. al.  2006 Probabilistic approach focused on a 

stochastic discrete-time approximation to the 

SEIR method integrating control intervention 

to model Ebola epidemics 

8. Mukkai S. Krishnamoorthy 

et. al.  

2010 Hybrid model for disease spread which 

discuss about local and global spread of the 

SARS pandemic. Local spread is largely 

correlated with population density and global 

spread is due to people’s mobility 

9. Nuri Ozalp and Elif 

Demirci 

2011 Fractional order SEIR model with 

transmission in a non-constant population. 

This solved the limitation of integer-order 

differential equations 

10. Syahrini et. al. 2017 Susceptible compartment is further divided 

into two – people with vaccination and 

without vaccination for tuberculosis 

transmission 

11. Zhou Tang et. al.  2020 Modify classical SEIR for coronavirus 

considering latent period is infectious in 

closed population 

12. Kiran Raj Pandey et. al.  2020 Age-structured SEIR model to investigate the 

effects of COVID-19 control intervention 

and finding of an active case  

13. Shaobo. He et. al.  2020 Infective compartment are divided into two 

compartments, the infectious without 

intervention and infectious with intervention, 

and considering the Quarantined and 

Hospitalized compartment 

14. Alberto Godio et. al.  2020 Generalized SEIR model, PSO is used to fit 

the model parameters 

 

 

Table 2.2: Use of different statistical time series models and their variations  

Author/s Model Application 

Oleg Ostashchuk ARIMA Predict IBM stock price (in USD) 

C. A. Jofipasi, et al ETS Forecast weather in the Aceh Besar 

District, Indonesia 

Y. PENG, et al SARIMA Forecast the occurence of hand-foot-

mouth disease in Wuhan, China. 

Zhang X. SARIMA Typhoid fever forecasting 
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Ovidiu-Dumitru 

Ilie, et al 

ARIMA Forecast the spread of coronavirus 

in nine different countries. 

X. Duan and Xi. 

Zhang 

ARIMA, Box-Jenkins 

method, differencing 

transformation 

Forecast covid-19 outbreaks using 

the data from Japan and South 

Korea. 

K.E. Arun Kumar, 

et al 

ARIMA, SARIMA, RMSE, 

MAE, MAPE, AIC, BIC 

Forecast the dynamics of COVID-

19 cases. 

S. Makridakis, et 

al 

ETS, ARIMA, SARIMA, 

SES, Holt, SVR, RNN, KNN, 

LSTM, etc. 

Compares various time series 

models and machine learning model 

to make prediction, and suggest that 

ETS and ARIMA are best to make 

time series prediction 

Leila Ismail, et al SA, SMA, LT, QT, ST, DT, 

ARIMA, LSTM, HWA, SSM 

case study of COVID-19 dynamics 

on 187 countries 

 

Table 2.3 Hybrid models 

Zhang GP Hybrid ARIMA-NN Time series forecasting of sunspot 

data 

Aslanargun A, et 

al 

ARIMA, neural networks and 

hybrid models 

Time series in forecasting tourist 

travel 

Yu L, et al Hybrid SARIMA-NARNN Forecast the cases of HFMD in 

Shenzhen, China 

Aman Swaraj, et al Hybrid ARIMA-NAR Forecast COVID-19 data of India, 

and suggest that using hybrid model 

significantly reduce RMSE, MAE 

and MAPE 

Maher Ala’raj, et 

al 

Hybrid SEIRD-ARIMA fit SEIRD model parameters for 

COVID-19 cases, residuals of 

SEIRD model are then corrected 

using ARIMA models, provide long 

and short-term forecasts with 95% 

confidence intervals 

 

  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Duan%20X%5BAuthor%5D&cauthor=true&cauthor_uid=32537480
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20X%5BAuthor%5D&cauthor=true&cauthor_uid=32537480
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20X%5BAuthor%5D&cauthor=true&cauthor_uid=32537480
https://www.ncbi.nlm.nih.gov/pubmed/?term=ArunKumar%20K%5BAuthor%5D&cauthor=true&cauthor_uid=33584158
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CHAPTER 3: METHODOLOGY 

3.1 Proposed model:  

For time series analysis of the COVID-19 outbreak in Nepal, our model employed the 

generalized SEIR model which is then corrected with an ETS-ARIMA hybrid statistical model, 

for the prediction of the infection, recovery and death case for next 10 days. The generalized 

SEIR model incorporates parameters like protection rate, infection rate (mobility, population 

demography, and intervention), latent time of the virus, average quarantine time, recovery rate 

and deaths rate. The epidemiological model give us the tentative idea on how the outbreak will 

go in future, but it cannot exactly predict the number of cases. ARIMA model incorporates 

trends, regular changes and even random disruptions and the ETS model comprises error, 

trends and seasonality. Thus these three models on stack will be appropriate for the prediction 

of COVID-19 cases.  AIC estimator, ACF and PACF plots has been used to select appropriate 

ARIMA (p,d,q) and ETS decomposition method has been used to select appropriate ETS 

model. 

A training set and a testing set are created from the dataset. To evaluate the model's 

performance, we train it on the training set and make predictions on the test set. The evaluation 

is done by calculating RMSE, MAE and MAPE between test set and predicted value. Then the 

model has been used to forecast future values. In our case the test set is the data of last 30 days, 

all previous data is in training set and the prediction is made for next 30 days. 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 3.1 General Overview of Proposed Model 

Original time series data 

Error (Residual_1) 

Error (Residual_2) 

Generalized SEIR model 

Prediction by ETS model 

Prediction by generalized SEIR model 

ARIMA model 

ETS model 

Prediction by ARIMA model 
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 The general overview of proposed model is shown in figure 3.1. Using the original time 

series data, the generalized SEIR model make a prediction. The difference between the original 

time series data and the prediction made by generalized SEIR model is the first residual 

(Residual_1). Using the Residual_1 data, which is again a time series data, the ETS model 

makes another prediction. However, this prediction is the prediction of the error (Residual_1). 

The first correction (or the prediction made by the combination of the generalized SEIR and 

the ETS model) is made by adding the prediction made by generalized SEIR model with the 

prediction of Residual_1.  

 The difference between the original time series data and the prediction made by the 

combination of the generalized SEIR and the ETS model, is the second residual (or the 

Residual_2). Using the Residual_2 data, (a time series data) the ARIMA model makes another 

prediction. This prediction is the prediction of the error (Residual_2). The second correction 

(or the prediction made by the combination of the generalized SEIR, the ETS model and the 

ARIMA model) is made by adding the prediction made by generalized SEIR model with the 

prediction of Residual_2. The second correction is the output of SEIR-ETS-ARIMA model.  

 Figure 3.2 shows the detail representation of workflow of proposed model.  
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Figure 3.2: Graphical representation of proposed model 
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The proposed model use three layer of models, the generalized SEIR model, the ETS 

model and the ARIMA model. The infection rate in generalized SEIR model is a parameter 

which depends on number of other factors such as mobility, time and population density. The 

ETS model mainly handles the seasonality and trends on the evolution of COVID-19. The 

ARIMA model further make correction on the prediction made by generalized SEIR model and 

ETS model on stack. The ARIMA model basically corrects the prediction by following the 

nature of time series data. The hybrid of epidemiological and time series model minimizes the 

limitation of each of the models as compared to when used separately. 

 The Prediction_1 in the block diagram is the prediction of generalized SEIR model. 

Prediction_1 is subtracted from original time series data to get the first residual (Residual_1). 

Then, the ETS model is used to make correction in the prediction made by the generalized 

SEIR model. The input for the ETS model is the residual from the generalized SEIR model, 

i.e, Residual_1. The ETS model makes the prediction of Residual_1, which is denoted as 

“Prediction of Residual_1” in the block diagram. The first correction is made by adding 

“Prediction of Residual_1” with “Prediction_1”. “ETS correction in Prediction_1” denotes the 

first correction; the corrected prediction by using generalized SEIR model with the ETS model. 

 The ARIMA model is used to make second correction. The residual of SEIR-ETS 

hybrid model is used as input for the ARIMA model. “ETS correction in Prediction_1” is 

subtracted from the original time series data to get second residual (Residual_2). The ARIMA 

model is implied on Residual_2 to make prediction of Residual_2, i.e, “Prediction of 

Residual_2”. The second correction is made by adding “Prediction of Residual_2” with the 

prediction made by generalized SEIR model, i.e, “Prediction_1”.  

 The epidemiological model cannot explain the time series nature of the data. The time 

series model doesn’t incorporate the unique nature of coronavirus spread. Using three layer 

hybrid model minimizes the limitation of both epidemiological model and the time series 

model. The generalized SEIR model incorporates parameters like protection rate, infection rate 

(mobility, population demography, and intervention), latent time of the virus, average 

quarantine time, recovery rate and deaths rate. The epidemiological model give us the tentative 

idea on how the outbreak will go in future, but it cannot exactly predict the number of cases. 

ARIMA model incorporates trends, regular changes and even random disruptions and the ETS 

model comprises error, trends and seasonality. Thus these three models on stack is appropriate 

for the prediction of COVID-19 cases. 
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3.2 Generalized SEIR model: 

The SEIR model in its classical form, models complex interaction of number of 

population between four different conditions, the susceptible (S), exposed (E), infective (I), 

and recovered (R). The generalized SEIR model adds new compartments Quarantined and 

Insusceptible and consider the key epidemic parameters for COVID-19 like the latent time, 

quarantine time and basic reproduction number.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: The generalized SEIR epidemic model for COVID-19  
where,  

S: susceptible cases      

E: exposed cases 

I: infective cases      

Q: quarantined cases 

R: recovered cases      

D: death cases 

P: insusceptible cases 

 

The differential equations of generalized SEIR model is given below: 
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𝑑𝑆(𝑡)

𝑑𝑡
=  −ꞵ𝐼(𝑡).

𝑆(𝑡)

𝑁
− 𝛼𝑆(𝑡) 

𝑑𝐸(𝑡)

𝑑𝑡
= ꞵ𝐼(𝑡).

𝑆(𝑡)

𝑁
− ꭇ𝐸(𝑡) 

𝑑𝐼(𝑡)

𝑑𝑡
= ꭇ𝐸(𝑡) − 𝛿𝐼(𝑡) 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛿𝐼(𝑡) −  𝜆(𝑡)𝑄(𝑡) −  𝜅(𝑡)𝑄(𝑡) 

𝑑𝑅(𝑡)

𝑑𝑡
=  𝜆(𝑡)𝑄(𝑡) 

𝑑𝐷(𝑡)

𝑑𝑡
=  𝜅(𝑡)𝑄(𝑡) 

𝑑𝑃(𝑡)

𝑑𝑡
=  𝛼𝑆(𝑡) 

The output of the model are α, ꞵ, ꭇ, δ, λ and κ parameters. These parameters are called 

problem unknowns. Here,  

α : recovery rate. S* α gives number of people transferred from susceptible to the protected 

class each day. 

ꞵ : infection rate. Rate of infection from an infective person.  

ꭇ : 1/ꭇ is the average latent time . The time difference between exposure to infection and 

experiencing symptoms 

δ : 1/ δ  is the average time a person with symptoms need to be quarantined.  

λ : recovery rate. Recovery rate is time dependent parameter. 

κ: death rate. Death rate is time dependent parameter. 

N: Total number of population 

Since the health system can improve its capability to treat people over time, λ and κ are 

time-dependent parameter. λ and κ are required to fit an exponential function because as time 

increases, the death rate should be closer to zero and the recovery rate converges towards a 

constant value. 

𝐿𝑎𝑚𝑏𝑑𝑎 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 1 =
𝑎(1)

1 +  e (𝑎(2) ∗ (𝑡 − 𝑎(3)))
 

 

𝐿𝑎𝑚𝑏𝑑𝑎 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 2 = a(1) + exp (−𝑎(2) ∗ (𝑡 + 𝑎(3))) 

 

 

 

 

Equation 1 

Equation 2 
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𝐾𝑎𝑝𝑝𝑎 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 1 =
𝑎(1)

e (𝑎(2) ∗ (𝑡 − 𝑎(3)))
+ exp (−𝑎(2) ∗ (𝑡 − 𝑎(3)))) 

 

𝐾𝑎𝑝𝑝𝑎 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 2 = 𝑎(1) ∗ exp ((−𝑎(2) ∗ (𝑡 − 𝑎(3)))^2) 
 

𝐾𝑎𝑝𝑝𝑎 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 3 = a(1) + exp (−𝑎(2) ∗ (𝑡 + 𝑎(3)))) 
 

Where, 

For lambda function, 

a(1):  the final asymptotic value of the cure rate.  

a(2): the rate of adaptation to the emergency 

a(3): constant 

For kappa function, 

a(1): the initial value of the mortality rate 

a(2): changed mortality rate with time.  

a(3): constant   

 

Originality: 

 We proposed the infection rate (ꞵ) to be dependent on time, mobility and 

intervention. Furthermore, the mobility depends on population density. Higher the population 

density higher will be the mobility, and mobility of people can transmit the disease from person 

to person. Also, the application of the intervention may lead to reduce infection rate. . ꞵ fits an 

exponential function because as time increases, the infection rate should be closer to zero if 

intervention is applied and converge towards a constant value if intervention is weak or is not 

applied.  

𝐵𝑒𝑡𝑎 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 1 = 𝑘1. 𝑘2[
𝑎(1)

e (𝑎(2) ∗ (𝑡 − 𝑎(3)))
+ exp (−𝑎(2) ∗ (𝑡 − 𝑎(3))))] 

 

𝐵𝑒𝑡𝑎 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 2 = 𝑘1. 𝑘2[
𝑎(1)

1 + e (𝑎(2) ∗ (𝑡 − 𝑎(3)))
] 

 

Where, k1 is correlation coefficient between population density and covid-19 case 

 k2 is correlation coefficient between intervention measure and covid-19 case 

a(1) : the initial value of the infection rate 

a(2) : changed infection rate with time.  

a(3): constant 

Equation 3 

Equation 4 
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3.3 ARIMA model: 

 Auto- Regressive Integrated Moving Average (ARIMA) is basically constituent of 

three different section, AR, I and MA. ARIMA model is written as ARIMA (p,d,q) where p 

stands for the order of Auto-regression, d for difference and q for Moving-average. Akaike 

information criterion (AIC) determines the best value for p, d and q. 

AR model: The previous time series observation is used to forecast the future value. The 

number of previous observations used to establish the AR model's order. 

      𝑌(𝑡) =  ɸ1𝑌(𝑡 − 1) + ɸ2𝑌(𝑡 − 2) + ⋯ +  ɸ𝑛𝑌(𝑡 − 𝑛) +  휀(𝑡)  

Where, Φ is parameter that indicate the auto-regression, t is time, Y(t) is observed value at time 

t; ε(t) is value of a random shock as a function of t and n is past value. 

Integrated: Any time series data that has to be modeled must be stationary which means that 

the statistical properties like mean, variance, seasonality, and so on are nearly constant over 

time. We should convert the dataset to a stationary series if it is not stationary. To make it 

stationary, a difference operation is performed. Differencing with previous d value indicate 

order d integration.  

 To confirm seasonality and stationarity, the Autocorrelation Function (ACF) and 

Partial Autocorrelation Function (PACF) will be used. ACF determines whether the previous 

values in a series are related to the next one, whereas PACF highlights the degree of correlation 

between a variable and its lag.  

𝑑𝑒𝑙𝑡𝑎, ∆ = 𝑌(𝑡) − 𝑌(𝑡 − 1)  

Where, Y(t) is observed value at time t and Y(t-1) is observed value at previous time t-1. 

MA model: The previous errors is used to make the future prediction. The number of previous 

errors used, determines the order of the MA model. 

      𝑌(𝑡) =  θ1휀(𝑡 − 1) + θ2휀(𝑡 − 2) + ⋯ +  θ𝑛휀(𝑡 − 𝑛) +  휀(𝑡)   

Where, θ is parameter that indicate the moving average, t is time, Y(t) is observed value at time 

t, ε(t) is value of a random shock as a function of t and n is past value. 

 

ARMA model: The ARMA model is a hybrid of AR and MA models. ARMA model expresses 

the current and previous values as well as their residuals in linear form. It is expressed as 

ARMA (p,q).  

      𝑌(𝑡) =∝ + [ ɸ1𝑌(𝑡 − 1) + ɸ2𝑌(𝑡 − 2) + ⋯ +  ɸ𝑛𝑌(𝑡 − 𝑛)] 

−[θ1휀(𝑡 − 1) + θ2휀(𝑡 − 2) + ⋯ +  θ𝑛휀(𝑡 − 𝑛)] +  휀(𝑡) 

Equation 5 

Equation 7 

Equation 6 

Equation 8 
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Where, α is constant, Φ and θ are parameters that indicate auto-regression and the moving 

average respectively, t is time, Y(t) is observed value at a time t, ε(t) is value of the random 

shock dependent by t and n is past value. 

 In ARIMA model, firstly the dataset should be made stationary if it is not using equation 

2 (higher order can be achieved by using equation 2 repeatedly, if required). Then apply ARMA 

model in equation 4. The order of ARIMA will be determined by using model selection method. 

 

ARIMA model selection: 

The Akaike Information Criterion (AIC) will be used for the model selection. For the 

given data and given sets of models, the AIC estimates the quality of each model. AIC score 

compares different models and determine the best model among given models and dataset. 

Lower the AIC score, better is the model. 

In time series analysis, the most recent data is the most valuable data. But this data is 

often stuck in the test set and validation set. Therefore traditional train-validation-test method 

of model selection cannot select the best model. We can train a model on all the data and use 

the AIC for improved model selection. 

𝐴𝐼𝐶 =  −2 ln(𝐿) + 2𝑘 

Where L is likelihood and k is the number of parameters 

For the given model, log-likelihood measures how likely one is to their observed data. 

The best-fit model has the maximum likelihood. AIC is low for models with high log-

likelihoods. For models with higher parameter complexity, a penalty term 2k is added.  

AIC score is the probabilistic ranking of the models that are likely to reduce the 

information loss. After calculating the AIC score for each possible ARIMA model by varying 

p, d and q, the probability that the ith model reduces the information loss can be calculated as, 

𝑝 = exp (
𝐴𝐼𝐶𝑚𝑖𝑛−𝐴𝐼𝐶𝑖

2
)  

Where, AICmin is the lowest AIC score. 

Lower value of the p indicates the better model. 

 

Equation 9 

Equation 10 
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3.4 ETS model: 

 The ETS models comprises of three component, error component (E), trend component 

(T), and seasonal component (S).  

Forecast Error:  𝐸(𝑡) =  𝑌(𝑡 − 1) − 𝑍(𝑡 − 1) 

Trend: 𝑇(𝑡) =  𝛾(𝑍(𝑡) − 𝑍(𝑡 − 1)) + (1 − 𝛾)𝑇(𝑡 − 1) 

Seasonality: 𝑆(𝑡) =  𝛿
𝑌(𝑡)

𝑍(𝑡)
+ (1 − 𝛿)𝑆(𝑡 − 𝑠) 

Where, Y(t) is observed value at time t, Z(t) is estimated value at time t. 

T(t) is trend term at time t, 𝛾 is trend coefficient. 

I(t) is seasonal term, s = number of periods in seasonal cycles, 𝛿 is seasonality 

coefficient. 
𝑌(𝑡)

𝑍(𝑡)
 capture seasonal effects. 

The trend (T) and seasonal (S) components of ETS model is shown as below: 

Trend Component 

(T) 

Seasonal component (S) 

None (N) Additive (A) Multiplicative (M) 

None (N) N, N N, A N, M 

Additive (A) A, N A, A A, M 

Multiplicative (M) M, N M, A M, M 

 

The combination of ETS models: 

Additive 

Error  

(A) 

A, 

N, 

N 

A, 

N, 

A 

A, 

N, 

M 

A, 

A, 

N 

A, 

A, 

A 

A, 

A, 

M 

A, 

M, 

N 

A, 

M, 

A 

A, 

M, 

M 

Multiplicat

ive Error 

(M) 

M, 

N, 

N 

M, 

N, 

A 

M, 

N, 

M 

M, 

A, 

N 

M, 

A, 

A 

M, 

A, 

M 

M, 

M, 

N 

M, 

M, 

A 

M, 

M, 

M 

 

Among 18 ETS models, the best model will be selected. 

  

Equation 11 
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3.5 Evaluation measures: 

  The error will be calculated as the misfit between observed and estimated values. Then 

the error will be normalized by dividing by the range of observed values. The normalized error 

is squared, and mean of squared error is calculated. Finally the squared root of mean square 

error is calculated as NRMSE. 

Mathematically, 

𝑒𝑟𝑟𝑜𝑟 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =
𝑒𝑟𝑟𝑜𝑟

max(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒) − min (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)
 

 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 =  √ 
1

𝑁
∑(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐸𝑟𝑟𝑜𝑟)^2

𝑁

1=1

 

 

Average error (percentage) is calculated as, 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝑅𝑀𝑆𝐸

𝑀𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒
∗ 100% 

The mean absolute error, 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑒𝑟𝑟𝑜𝑟|

𝑛

𝑡=1

 

The Mean Absolute Percentage error, 

𝑀𝐴𝑃𝐸 =  
100%

𝑁
∑ |

𝑒𝑟𝑟𝑜𝑟

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
|

𝑛

𝑡=1

 

Where, N is number of time points.  

The Mean Squared Error (also known as Mean Squared Deviation), 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑒𝑟𝑟𝑜𝑟)^2𝑛

𝑡=1   

The model which has the lowest value of RMSE, MAE, MSE and MAPE is the best model. 

 

  

Equation 12 

Equation 13 

Equation 14 

Equation 15 

Equation 16 
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3.6 Dataset: 

 COVID-19 data: COVID-19 data has been collected from dashboard by the John 

Hopkins University in the USA, the World Health Organization (WHO) and Health 

Emergency Operation Center (HEOC) Nepal. The data consists of number of daily 

positive, recovered and death case. 

 Data from 1 May 2020 to 8 June 2021 (404 days) is taken for analysis. 

 The dataset consists of data of number of Confirmed case (cumulative number of all 

positive cases), number of Recovered case (cumulative number of recovered cases) and 

number of Deaths case (cumulative number of deaths cases) 

 The number of Active case is determined by removing the number of recovered case 

and deaths case. The number of active case is the total number new positive cases 

reported within 24 hours plus number of those who are not recovered yet or died out of 

coronavirus after infected. 

 Out of 1212 data (404 for each case), 1122 data (374 for each case) are used for training 

the model, while 90 (30 for each case) are used to validate the model.  

 

Table 3.1: Sample statistics of COVID-19 outbreak in Nepal 

 

  
  

                    Case 
Date 

Active Recovered Deaths 

1 May 2020 

43 16 0 

1 Jan 2021 

6048 253107 1864 

8 Jun 2021 

82736 504530 8098 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

Ensemble of different model in prediction is quite common to find to reduce the 

generalization error (difference between the error of the training data and the one of the test 

data). In the predictive modelling, reducing the error between observed data and estimated data 

has always been an issue. Using the combination of two models has found to be one of the 

approach to reduce the prediction error [Table 2.3].  

 In the prediction of evolution of epidemiology, the compartment [SEIR] model has 

widely been used since years [Table 2.1]. It is obvious that the spread of epidemic is dependent 

on the nature of the virus (infection rate, latent time, etc.), also it is a function of time 

component, and hence, the use of time series model in the prediction of epidemic is not novel 

[Table 2.2]. 

 Maher Ala’raj, et al used SEIRD model to simulate COVID-19 outbreak in US and the 

prediction error is reduced by using ARIMA time series model [28]. This model consists of 

two parts: the modified SEIRD model and ARIMA models. The model fit SEIRD model 

parameters against historical values of infected, recovered and deceased population. Residuals 

of the first model for infected, recovered, and deceased populations are then corrected using 

ARIMA models. However, the hybrid model wouldn’t handle the seasonality factor present in 

the data. To incorporate the seasonality factor, another time series model, the Error-Trend-

Seasonality (ETS) model is added in between generalized SEIR and ARIMA model. 

 The hybrid of generalized SEIR, ETS and ARIMA model significantly reduce the error 

between observed data and its estimation as compared to SEIRD-ARIMA model, and hence 

improve the future prediction.  

 

4.1 Results of SEIR model: 

The optimized values of model parameter α, ꞵ, ꭇ, δ, λ and κ for three time period has been 

calculated. The optimized values of model parameter α, ꞵ, ꭇ, δ, λ and κ for no lockdown period 

are found to be 0.0185, 4.9992, 0.0177, 0.4297, [ 0.0851, 0.0062, 49.9999] and [3.7130*10-4, 

0.2238, 70.1418] respectively. The optimized values of model parameter α, ꞵ, ꭇ, δ, λ and κ for 

lockdown period are found to be 0.2646, 1.2262, 0.6166, 0.0302, [0.1151, 0.0343, 5.3275] and 

[0.0050, 0.0101, 1.8263*102] respectively. The optimized values of model parameter α, ꞵ, ꭇ, δ, 

λ and κ for partial lockdown period are found to be 0.0689, 1.1895, 0.1888, 0.0779, [0.2346, 
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0.0294, 87.0693] and [0.0031, 0.0075, 1.2882*102] respectively. The optimized parameters 

and initial condition of generalized SEIR model is shown in table below.  

Table 4.1: Optimized values of parameters of generalized SEIR model 

 

The model parameters (optimized values) are used to fit the generalized SEIR model described 

by equation 1. Figure 4.1(a), figure 4.2(a) and figure 4.3(a) shows the prediction by using 

generalized SEIR model for active, recovered and deaths cases respectively. Figure 4.1(b), 

4.5(b) and 4.6(b) shows the estimation error of generalized SEIR model for each cases. 

Parameter Initial 

values 

Optimized values 

(Lockdown) 

[ 2020/05/01 to 

2020/09/31 ] 

Optimized values 

(Partial Lockdown) 

[ 2021/04/01 to 

2021/06/08 ] 

 

Optimized values 

(No Lockdown) 

[ 2020/10/01 to 

2021/03/31 ] 

α 0.06 0.0185 0.0689 0.2646 

ꞵ 1.0 4.9992 1.1895 1.2262 

ꭇ 0.2 0.0177 0.1888 0.6166 

δ 0.1 0.4297 0.0779 0.0302 

λ [0.01, 

0.001, 

10] 

[ 0.0851,    

0.0062,    

49.9999] 

[0.2346,          

0.0294,        

87.0693] 

[0.1151,       

0.0343,        

5.3275] 

κ [0.001, 

0.001, 

10] 

[3.7130*10-4, 

0.2238,    

70.1418] 

[0.0031,         

0.0075,    

1.2882*102] 

[0.0050,       

0.0101, 

1.8263*102] 
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Figure 4.1(a) Prediction of active case using Generalized SEIR model 

 

Figure 4.1(b) Estimation error of generalized SEIR model (Active case) 
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Figure 4.2(a) Prediction of recovered case using Generalized SEIR model 

 

Figure 4.2(b) Estimation error of generalized SEIR model (Recovered case) 
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Figure 4.3(a) Prediction of deaths case using Generalized SEIR model 

 

 

Figure 4.3(b) Estimation error of generalized SEIR model (Deaths case) 

 

The estimation error of generalized SEIR model is then used as input to the ETS model. 

Table 4.2 shows the appropriate ETS model for each cases. Seasonal period for active, 

recovered and deaths cases are found to be 30, 50 and 15 days respectively. Appropriate ETS 

model for active, recovered and deaths cases are found to be (M,M,M), (M,M,M) and (M,A,M) 

respectively, where M stands for multiplicative and A for Additive model. 
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Table 4.2 Appropriate ETS models with seasonal period 

Case Appropriate ETS model Seasonal period (days) 

Active M,M,M 30 

Recovered M,M,M 50 

Deaths M,A,M 15 

 

The estimation error of SEIR-ETS model is then used as input to the ARIMA model. 

The appropriate ARIMA model is selected by observing ACF and PACF plot. Appropriate 

ARIMA model for each cases is shown in table 4.3. 

Table 4.3: ARIMA model for each cases 

Cases Appropriate ARIMA model p-value 

Active (2,0,0) 0.03531017 

Recovered (3,1,2) 3.946795*10-11 

Deaths      - 2.172609*10-5 

 

 

4.2 Prediction using SEIR-ETS-ARIMA model: 

The prediction after using generalized SEIR-ETS-ARIMA model for each case is 

shown in figure 4.10, figure 4.11 and figure 4.12. The prediction of active case shows that there 

is decrease in cases for next 15 days (9 June, 2020 to 23 June, 2020) and slight increase in case 

after that for 7 days (24 June, 2020 to 30 June, 2020) and then increasing trend then after. The 

prediction for recovered and deaths cases shows increasing graph. Recovered cases would 

increase from 520 thousands to 600 thousands plus in next month. The deaths case would 

increase from 8 thousands to nearly 10 thousands in next month (8 June, 2020 to 8 July, 2020). 
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Figure 4.4 (a): Generalized SEIR-ETS-ARIMA model prediction for active case 

 

Figure 4.4 (b): Error of Generalized SEIR-ETS-ARIMA model prediction for active case 
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Figure 4.5(a): Generalized SEIR-ETS-ARIMA model prediction for recovered case 

 

Figure 4.5(b): Error of Generalized SEIR-ETS-ARIMA model prediction for recovered case 
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Figure 4.6(a): Generalized SEIR-ETS-ARIMA model prediction for deaths case 

 

Figure 4.6(b): Error of Generalized SEIR-ETS-ARIMA model prediction for deaths case 
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4.3 Improvement compared to SEIR model: 

Table 4.4, Table 4.5, Table 4.6 and Table 4.7 shows various quality measures for using 

Generalized SEIR model and on using SEIR-ETS-ARIMA model. We can see that SEIR-ETS-

ARIMA model improves in all quality measures than in generalized SEIR model. 

Table 4.4: MAE and Normalized MAE on using Generalized SEIR model versus using SEIR-

ETS-ARIMA model 

Cases Active Improve

ment % 

Recovered     Improve

ment % 

Deaths Improve

ment % 

MAE  

(SEIR-ETS-ARIMA) 

2.811*10-5  

75.39% 

 

 

1.41*10-5  

94.21% 

5.51*10-7  

89.71% 

MAE 

(Generalized SEIR) 

0.00011 0.000243 5.35*10-6 

Normalized MAE 

(SEIR-ETS-ARIMA) 

0.024425  

16.45% 

0.004312  

70.15% 

0.00838  

57.73% 

Normalized MAE 

(Generalized SEIR) 

0.029236 0.014441 0.01984 

 

Table 4.5: MSE and Normalized MSE on using Generalized SEIR model versus using SEIR-ETS-

ARIMA model 

Cases Active Improve

ment % 

Recovered     Improve

ment % 

Deaths Improve

ment % 

MSE  

(SEIR-ETS-ARIMA) 

4.87*10-10  

98.92% 

6.14*10-10  

99.52% 

2.29*10-12  

97.41% 

MSE  

(Generalized SEIR) 

4.49*10-08 1.2876*10-7 8.83*10-11 

Normalized MSE  

(SEIR-ETS-ARIMA) 

0.00104  

64.66% 

13.103*10-5  

93.18% 

0.000125  

89.71% 

Normalized MSE  

(Generalized SEIR) 

0.002939 0.000455 0.0012115 

 

Table 4.6: RMSE and Normalized RMSE on using Generalized SEIR model versus using SEIR-

ETS-ARIMA model 

Cases Active Improve

ment % 

Recovered     Improve

ment % 

Deaths Improve

ment % 

RMSE 

(SEIR-ETS-ARIMA) 

1112.77  

82.49% 

1123.772  

89.56% 

48.87397  

82.66% 

RMSE 

(Generalized SEIR) 

6354.897 10764.8003 281.8702 

Normalized RMSE 

(SEIR-ETS-ARIMA) 

0.03223  

40.55% 

0.00557  

73.89% 

0.011164  

67.93% 

Normalized RMSE 

(Generalized SEIR) 

0.054214 0.021337 0.03481 
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The MAE for active, recovered and deaths case are 2.81*10-5, 1.41*10-5 and 5.51*10-7 

respectively. The Normalized MAE for active, recovered and deaths cases are 0.024425, 

0.004312 and 0.00838 respectively. The MSE for active, recovered and deaths case are 

4.87*10-10, 6.14*10-10 and 2.29*10-12 respectively. The Normalized MSE for active, recovered 

and deaths cases are 0.00104, 13.103*10-5 and 0.000125 respectively. The Root Mean Square 

Error (RMSE) for active, recovered and deaths cases are 1112.77, 1123.772 and 48.87397 

respectively. The Normalized RMSE for active, recovered and deaths cases are found to be 

0.03223, 0.00557 and 0.011164 respectively. The Mean Absolute Percentage Error (MAPE) 

for active, recovered and deaths cases are 0.798 %, 0.22 % and 0.691 % respectively. Value of 

every quality measures for each cases has been reduced by new model (SEIR-ETS-ARIMA) 

as compared to generalized SEIR model. 

The greatest reduction in MAE with respect to generalized model is achieved for 

recovered case (94.21% each), followed by deaths case (89.71%) and active case (75.39%).  

Normalized MAE has been improved by 16.45%, 70.15% and 57.73% for active, recovered 

and deaths cases using SEIR-ETS-ARIMA model than using generalized SEIR model. The 

MSE has been improved by around 98% each cases using SEIR-ETS-ARIMA model. 

Similarly, normalized MSE has been improved by 64.66%, 93.18% and 89.71% for active, 

recovered and deaths cases using SEIR-ETS-ARIMA model. RMSE has been improved by 

82.49%, 89.56% and 82.66% for active, recovered and deaths cases using SEIR-ETS-ARIMA 

model than using generalized SEIR model. Normalized RMSE has been improved by 40.55%, 

73.89% and 67.93% for active, recovered and deaths cases using SEIR-ETS-ARIMA model 

than using generalized SEIR model. The MAPE has been improved by around 97% for each 

cases using SEIR-ETS-ARIMA model than using generalized SEIR model. We can observe 

that the improvement in quality is less for active case as compared to other two cases. 

 

 

 

Table 4.7: MAPE and Normalized MAPE on using Generalized SEIR model versus using SEIR-

ETS-ARIMA model 

Cases Active Improve

ment % 

Recovered     Improve

ment % 

Deaths Improve

ment % 

MAPE 

(SEIR-ETS-ARIMA) 

0.798 %  

96.96% 

0.22 %  

98.49% 

0.691 %  

96.66% 

MAPE 

(Generalized SEIR) 

26.221% 14.573% 20.72% 
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4.4 Comparison with baseline paper: 

4.4.1 Prediction on test set of baseline paper: 

We have used the same data as used in the reference paper [28]. The dataset includes 

the daily number of cases of active, recovered and deaths incidence of United State from 

January 30, 2020 to September 16, 2020. Figure 4.7(a), 4.8(a) and 4.9(a) shows prediction of 

active, recovered and deaths case on test set of dataset of United State. Figure 4.7(b), 4.8(b) 

and 4.9(b) shows estimation error. Error for recovered and deaths cases largely reside around 

zero value. Also, for active case, the error is mostly around zero to few thousands value.  

Figure 4.7(a) Active case prediction on test set 
 

 
Figure 4.7(b) Error graph for active case (validation set) 
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Figure 4.8(a) Recovered case prediction on test set 

 

 

 
Figure 4.8(b) Error graph for recovered case (validation set) 
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Figure 4.9(a) Deaths case prediction on test set 

 

 
Figure 4.9(b) Error graph for deaths case (validation set) 

 

 



34 
 

4.4.2 MAE, MSE and MSLE compared to reference paper: 

The MAE, MSE and MSLE has been calculated for the validation. The MAE, MSE and 

MSLE of SEIR-ETS-ARIMA model and SEIRD-ARIMA model for each case is shown in the 

table 4.8, 4.9 and 4.10. All the quality measures have been improved using SEIR-ETS-ARIMA 

model as compared to SEIRD-ARIMA model, except MSE of recovered case. 

The MAE for active, recovered and deaths case are improved by 68.96%, 12.78% and 

79.597% respectively. The MSE for active and deaths case are improved by 96.79% and 

99.82% respectively. However, the MSE for recovered case using SEIR-ETS-ARIMA model 

is greater than of SEIRD-ARIMA model. The MSLE for active, recovered and deaths case are 

improved by 99.40%, 52.51% and 99.94% respectively. This shows that the new model largely 

improve the quality measures for active and deaths cases than the SEIRD-ARIMA model. 

 

Table 4.8: The MAE of SEIR-ETS-ARIMA model and SEIRD-ARIMA model 

 
Table 4.9: The MSE of SEIR-ETS-ARIMA model and SEIRD-ARIMA model 

 

Table 4.10: The MSLE of SEIR-ETS-ARIMA model and SEIRD-ARIMA model 

 

  

Cases Active Improve

ment % 

Recovered     Improve

ment % 

Deaths Improve

ment % 

MAE  

(SEIR-ETS-ARIMA) 

6.3*10-5  

68.96% 

7.38*10-5  

12.78% 

1.96*10-6  

79.597 % 

MAE 

(SEIRD-ARIMA) 

2.03*10-4 8.46*10-5 8.07*10-6 

Cases Active Improve

ment % 

Recovered     Improve

ment % 

Deaths Improve

ment % 

MSE  

(SEIR-ETS-ARIMA) 

8.89*10-9  

96.79% 

6.68*10-8  

-157.05

% 

7.49*10-12  

99.82% 

MSE  

(SEIRD-ARIMA) 

2.77*10-7 2.64*10-8 2.76*10-9 

Cases Active Improve

ment % 

Recovered     Improve

ment % 

Deaths Improve

ment % 

MSLE 

(SEIR-ETS-ARIMA) 

1.64*10-9  

99.40% 

1.24*10-8  

52.51% 

1.41*10-12  

99.94% 

MSLE 

(SEIRD -ARIMA) 

2.75*10-7 2.62*10-8 2.76*10-9 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

 Seasonal period for active, recovered and deaths cases are found to be 30, 50 and 15 days 

respectively. Appropriate ETS model for active, recovered and deaths cases are found to 

be (M,M,M), (M,M,M) and (M,A,M) respectively, where M stands for multiplicative and 

A for Additive model. The appropriate ARIMA model for active and recovered case are 

found to be (2,0,0) and (3,1,2) respectively, while, from ACF and PACF plot, no 

appropriate model for death case is determined. 

 On comparing SEIR-ETS-ARIMA model with SEIRD-ARIMA model by calculating 

quality measures such as MAE, MSE and MSLE (Table 4.8, 4.9 and 4.10), it is found that 

the new model largely improve the quality measures for active and deaths cases than the 

SEIRD-ARIMA model. For recovered case, all quality measures are improved except the 

MSE. 

 The error graph of active and recovered cases in case of Nepal shows error generally resides 

near zero and fluctuate to few thousands, and there are irregular spikes in the graph, which 

shows the model is not biased for active and recovered cases. 

 The error of the model is the difference between original time series (reported) data and the 

prediction made by the SEIR-ETS-ARIMA model. The error graph of deaths cases shows 

that the error generally resides near zero, but it shows decreasing trend, hence, we cannot 

claim the un-biasness of the model for death case.  

 

5.2 Recommendation 

 Other machine learning models like LSTM, Genetic Algorithm, Neural Network, etc. may 

also be used in combination with epidemiological model, or the combination of time series, 

epidemiological and other model can be used instead of two time series model for precise 

prediction than using any single model.  

 The generalized SEIR model can be further modified to incorporate the new variant case, 

effect of vaccination over time, and other aspect which may affect the spread of the virus. 

 The generalized SEIR model can be modified to include natural birth and natural deaths. 
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APPENDIX (1): RESULT OF ETS MODEL 

Seasonal decomposition of Residual_1 to select appropriate ETS model: 

The error after applying generalized SEIR model is the input for ETS model. To select 

appropriate ETS model, decomposition is done for each of the cases.  

The error (Residual_1) is the input data, which is then decomposed into three 

components: Seasonal component, Trend component and the error (Remainder) component. 

The irregularity and seasonal nature in any of the above mention components represent the 

multiplicative mode (M) in ETS model. However, if there is upward or downward trend line in 

any components, additive mode (A) is chosen. For example, in the decomposition of 

Residual_1 of active case, we see that the seasonal component clearly has seasonal nature, the 

error component is irregular in nature, and the trend component also has repeating nature after 

a period of time. Hence, the E, T and S in ETS model is in multiplicative mode (M). Therefore, 

ETS model for active case is (M, M, M). 

The decomposition of Residual_1 for active, recovered and cases are shown in figure 

4, figure 2 and figure 3 respectively.  

The seasonal period is chosen by observing the seasonal component in the 

decomposition. For active case, it is clear that the cycle is repeating on around 30 days, for 

recovered case, the cycle is repeating on around 50 days and for deaths case it is around 15 

days. Hence, the seasonal period for active, recovered and deaths case is 30, 50 and 15 days 

respectively.  
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Figure 1: Seasonal decomposition for active case 

 

Figure 2: Seasonal decomposition for Recovered case 
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Figure 3: Seasonal decomposition for Deaths case 
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Prediction of SEIR-ETS model: 

The prediction of each cases using generalized SEIR model and ETS model is shown as below: 

 

Figure 4: SEIR-ETS prediction for active cases 

 

Figure 5: SEIR-ETS prediction for recovered cases 
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Figure 6: SEIR-ETS prediction for deaths cases 
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APPENDIX (2): RESULTS OF ARIMA MODEL 

Selection of appropriate ARIMA (p,d,q) model using ACF and PACF plot: 

The error of SEIR-ETS (Residual_2) is then fed to ARIMA model. The non-stationary 

data will be made stationary. The p – value of the data (Residual_2) is calculated using Akaike 

Information Criterion (AIC). If the p-value is less than 0.05 (the significance level), the data is 

said to be stationary. The p – value for Residual_2 of active and deaths cases are 0.03531017 

and 2.172609*10-05 respectively. Hence, the order of integration (d) of the ARIMA model for 

active and deaths case is 0. The p-value for Residual_2 of recovered case is 0.3589365897 

which is greater than 0.05. Hence, the differencing is required. After the first differencing, the 

p – value is 3.946795*10-11 which is less than 0.05. Therefore, the order of integration (d) of 

the ARIMA model for recovered case is 1.  

The order of auto-regression (p) and moving average (q) are determined using ACF and 

PACF plot as shown in figure 7, 8 and 9. The plots is observed up to 50 lags. 

Table 2: Nature of ACF and PACF plot for choosing appropriate model 

Model ACF ρ(k) plot PACF ɸkk  plot 

AR (p) Damped exponential and/or sine 

functions 

ɸkk = 0 for k > p, where, ɸkk is value of 

partial auto correlation function at lag k  

MA (q) ρ(k) = 0 for k > q, where, ρ(k) is value 

of autocorrelation function at lag k 

Dominated by damped exponential and/or 

sine functions 

ARMA 

(p, q) 

Damped exponential and/or sine 

functions after lag max (0, q-p) 

Dominated by damped exponential and/or 

sine functions after lag max (0, p-q) 

 

The ACF and PACF of Residual_2 of active case is shown in figure 7. The value at lag 

0 is the correlation of the present data with itself, so, it is not significant for the analysis, hence, 

is ignored. The ACF plot is exponentially decaying. The PACF plot has sharp cut-off, at lag = 

3, the value of partial auto correlation is 0 and at lag > 3, the value of partial auto correlation 

is below the significant value. Hence, according to the table above, the AR model with p-value 

2 is chosen. Therefore, ARIMA model for active case is (2,0,0).  

 The ACF and PACF of Residual_2 of recovered case after first differencing is shown 

in figure 8. The ACF plot is oscillating while the PACF plot is exponential. Hence, according 

to the table 2, the ARMA model is chosen. There are 2 and 3 spikes in ACF and PACF plot 

respectively. Hence, ARMA model of order (3,2) is chosen. Therefore, ARIMA model for 

recovered case is (3,1,2). 
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 The ACF and PACF of Residual_2 of deaths case is shown in figure 9. Both of the ACF 

and PACF plot shows no significant correlation between lags. Also, the value of d is 0. 

Therefore, ARIMA model is not applied in the Residual_2 of deaths case. 

 

 

Figure 7: The ACF and PACF plot for active case 
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Figure 8: The ACF and PACF plot for recovered case 

 
Figure 9: The ACF and PACF plot for deaths case 
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APPENDIX (3): PLAGIARISM REPORT 
 



  

 

REFERENCES 

  

  
 

[1]  "Statement on the second meeting of the International Health Regulations (2005) 

Emergency Committee regarding the outbreak of novel coronavirus (2019-nCov)," 

World Health Organization, 2020. 

[2]  D. S. Hui, E. I. Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar, G. Ippolito, T. D. 

Mchugh, Z. A. Memish, C. Drosten, A. Zumla and E. Petersen, "The continuing 2019-

nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel 

coronavirus outbreak in Wuhan, China," International journal of infectious diseases: 

IJID, vol. 91, p. 264–266, 2020.  

[3]  "Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19)," 

World Health Organization, 2020. 

[4]  W. O. Kermack and A. McKendrick, "A Contribution to the Mathematical Theory of 

epidemics," Society for Mathematical Biology, vol. 115, pp. 700-721, 1927.  

[5]  I. Syahrini, Sriwahyuni, V. Halfiani, S. Yuni, T. Iskandar, Rasudin and M. Ramli, "The 

epidemic of Tuberculosis on vaccinated population," Journal of Physics: Conference 

Series, no. 012017, 2017.  

[6]  P. E. Lekone and B. F. Finkenstadt, "Statistical inference in a stochastic epidemic SEIR 

model with control intervention: Ebola as a case study," Biometrics, vol. 62(4), p. 

1170–1177, 2006.  

[7]  T. Yoneyama, S. Das and M. Krishnamoorthy, "A Hybrid Model for Disease Spread 

and an Application to the SARS Pandemic," Journal of Artificial Societies and Social 

Simulation, vol. 15, 2012.  

[8]  J. M. Carcione, J. E. Santos, C. Bagaini and J. Ba, "A Simulation of a COVID-19 

Epidemic Based on a Deterministic SEIR Model," Frontiers in public health, vol. 8, p. 

230, 2020.  

[9]  Z. Tang, X. Li and H. Li, "Prediction of New Coronavirus Infection Based on a 

Modified SEIR Model," Preprint, 2020.  

[10]  K. Pandey, A. Subedee, B. Khanal and B. Koirala, "COVID-19 Control Strategies and 

Intervention Effects in Resource Limited Settings: A Modeling Study," Preprint, 2020.  



  

 

[11]  S. He, Y. Peng and K. Sun, "SEIR modeling of the COVID-19 and its dynamics," 

Springer Nature B.V., 2020.  

[12]  A. Godio, F. Pace and A. Vergnano, "SEIR modeling of the Italian epidemic of SARS-

CoV-2," International Journal of Environmental Research and Public Health, 2020.  

[13]  O. Ostashchuk, "Time Series Data Prediction and Analysis," Czech Technical 

University in Prague, 2017.  

[14]  C. Jofipasi, M. Miftahuddin and H. Sofyan, "Selection for the best ETS (error, trend, 

seasonal) model to forecast weather in the Aceh Besar District," IOP Conference 

Series: Materials Science and Engineering 352(1):012055, 2018.  

[15]  Y. Peng, B. Yu, P. Wang, D.-G. Kong, B.-H. Chen and X.-B. Yang, "Application of 

seasonal auto-regressive integrated moving average model in forecasting the incidence 

of hand-foot-mouth disease in Wuhan, China," Journal of Huazhong University of 

Science and Technology, vol. 37, pp. 842-848, 2017.  

[16]  O. Olayemi, O. Oluwatosin and O. Segun, "Time Series Analysis on Reported Cases 

of Tuberculosis in Minna Niger State Nigeria," Open Journal of Statistics, vol. 10, pp. 

412-430, 2020.  

[17]  M. Nayak and N. K. A., "Forecasting Dengue Fever Incidence Using ARIMA 

Analysis," International Journal of Collaborative Research on Internal Medicine and 

Public Health, vol. 11, pp. 924-932, 2019.  

[18]  L. Ismail, H. Materwala, T. Znati, S. Turaev and A. M. Khan, "Tailoring time series 

models for forecasting coronavirus spread: Case studies of 187 countries," 

Computational and Structural Biotechnology Journal, vol. 18, no. 2001-0370, pp. 

2972-3206, 2020.  

[19]  O. Ilie, R.-O. Cojocariu, A. Ciobica, S. Timofte, I. Mavroudis and B. Doroftei, 

"Forecasting the Spreading of COVID-19 across Nine Countries from Europe, Asia, 

and the American Continents Using the ARIMA Models," Microorganisms, vol. 8, no. 

1158, 2020.  

[20]  R. K. Singh, M. Rani, A. S. Bhagavathula, R. Sah, A. J. Rodriguez-Morales, H. Kalita, 

C. Nanda, S. Sharma, Y. D. Sharma, A. A. Rabaan, J. Rahmani and P. Kumar, 

"Prediction of the COVID-19 Pandemic for the Top 15 Affected Countries: Advanced 

Autoregressive Integrated Moving Average (ARIMA) Model," JMIR public health and 

surveillance, vol. 6(2), no. e19115, 2020.  



  

 

[21]  X. Duan and X. Zhang, "ARIMA modelling and forecasting of irregularly patterned 

COVID-19 outbreaks using Japanese and South Korean data," Xingde Duan, Xiaolei 

Zhang, ARIMA modelling and forecasting of irregularly patterned COVID-Data in 

Brief, vol. 31, no. 105779, pp. 2352-3409, 2020.  

[22]  ArunKumar K. E., D. V. Kalaga, C. M. S. Kumar, G. Chilkoor, M. Kawaji and T. M. 

Brenza, "Forecasting the dynamics of cumulative COVID-19 cases (confirmed, 

recovered and deaths) for top-16 countries using statistical machine learning models: 

Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal ARIMA 

(SARIMA)," Applied Soft Computing, vol. 103, no. 107161, pp. 1568-4946, 2021.  

[23]  M. Spyros, S. Evangelos and A. Vassilis, "Statistical and Machine Learning 

forecasting methods: Concerns and ways forward," PLoS ONE, 2018.  

[24]  P. Zhang and G. Zhang, "Time Series Forecasting Using a Hybrid ARIMA and Neural 

Network Model," Neurocomputing, vol. 50, pp. 159-175, 2003.  

[25]  A. Aslanargun, M. Mammadov, B. Yazici and S. Asma, "Comparison of ARIMA, 

neural networks and hybrid models in time series: Tourist arrival forecasting," Journal 

of Statistical Computation and Simulation, vol. 77, pp. 29-53, 2007.  

[26]  L. Yu, L. Zhou, L. Tan, H. Jiang, Y. Wang, S. Wei and S. Nie, "Application of a New 

Hybrid Model with Seasonal Auto-Regressive Integrated Moving Average (ARIMA) 

and Nonlinear Auto-Regressive Neural Network (NARNN) in Forecasting Incidence 

Cases of HFMD in Shenzhen, China," PloS one, vol. 9, no. e98241, 2014.  

[27]  A. Swaraj, A. Kaur, K. Verma, G. Singh, A. Kumar and L. Sales, "Implementation of 

Stacking Based ARIMA Model for Prediction of Covid-19 Cases in India," Preprint, 

2020.  

[28]  M. Ala'raj, M. Majdalawieh and N. Nizamuddin, "Ala'raj, Maher & 

Majdalawieh,Modeling and forecasting of COVID-19 using a hybrid dynamic model 

based on SEIRD with ARIMA corrections," Infectious Disease Modelling, 2020.  

 
 
 

 


