
TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

THESIS NO: 075MSCSK010

POI Recommendations with the Use of Knowledge Graph Neural

Networks

by

Nabin Paudyal

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND

COMPUTER ENGINEERING IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN

COMPUTER SYSTEM AND KNOWLEDGE ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

LALITPUR, NEPAL

August, 2021

POI Recommendations with the Use of Knowledge Graph Neural

Networks

by

Nabin Paudyal

075MSCSK010

Thesis Supervisor

Assoc. Prof. Dr. Arun Kumar Timalsina

A thesis submitted in partial fulfillment of the requirements for the

degree of Masters of Science in Computer System and Knowledge

Engineering

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Tribhuvan University

Lalitpur, Nepal

August, 2021

COPYRIGHT©

The author has agreed that the library, Department of Electronics and Computer

Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis

freely available for inspection. Moreover the author has agreed that the permission

for extensive copying of this thesis work for scholarly purpose may be granted

by the professor(s), who supervised the thesis work recorded herein or, in their

absence, by the Head of the Department, wherein this thesis was done. It is

understood that the recognition will be given to the author of this thesis and to

the Department of Electronics and Computer Engineering, Pulchowk Campus in

any use of the material of this thesis. Copying of publication or other use of this

thesis for financial gain without approval of the Department of Electronics and

Computer Engineering, Institute of Engineering, Pulchowk Campus and author’s

written permission is prohibited.

Request for permission to copy or to make any use of the material in this thesis in

whole or part should be addressed to:

Head

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Pulchowk, Lalitpur, Nepal

iii

DECLARATION

I declare that the work hereby submitted for Master of Science in Computer System

and Knowledge Engineering (MSCSKE) at IOE, Pulchowk Campus entitled “POI

Recommendations with the Use of Knowledge Graph Neural Networks”

is my own work and has not been previously submitted by me at any university

for any academic award.

I authorize IOE, Pulchowk Campus to lend this thesis to other institution or

individuals for the purpose of scholarly research.

Nabin Paudyal

075MSCSK010

Date: August, 2021

iv

RECOMMENDATION

The undersigned certify that they have read and recommended to the Depart-

ment of Electronics and Computer Engineering for acceptance, a thesis entitled

“POI Recommendations with the Use of Knowledge Graph Neural Net-

works”, submitted by Nabin Paudyal in partial fulfillment of the requirement

for the award of the degree of “Master of Science in Computer System and

Knowledge Engineering”.

..

Supervisor:

Assoc. Prof. Dr. Arun Kumar Timalsina,

Department of Electronics and Computer Engineering,

Institute of Engineering, Tribhuvan University

..

External Examiner: Kumar Pudashine,

Senior Section Chief, Network and Security,

Agricultural Development Bank Ltd

..

Committee Chairperson:

Assoc. Prof. Dr. Nanda Bikram Adhikari,

Department of Electronics and Computer Engineering,

Institute of Engineering, Tribhuvan University

Date: August, 2021

v

DEPARTMENTAL ACCEPTANCE

The thesis entitled “POI Recommendations with the Use of Knowledge

Graph Neural Networks”, submitted by Nabin Paudyal in partial fulfillment

of the requirement for the award of the degree of “Master of Science in Com-

puter System and Knowledge Engineering” has been accepted as a bonafide

record of work independently carried out by him in the department.

..

Prof. Dr. Ram Krishna Maharjan

Head of the Department

Department of Electronics and Computer Engineering

Pulchowk Campus

Institute of Engineering,

Tribhuvan University,

Nepal.

vi

ACKNOWLEDGEMENT

First and foremost, I want to express my appreciation to the Department of Elec-

tronics and Computer Engineering, IOE, Pulchowk Campus, for allowing me to

work on the thesis as part of our Masters of Science in Computer System and

Knowledge Engineering (MSCSKE) program.

I’d like to express my heartfelt gratitude to my thesis supervisor, Assoc. Prof.

Dr. Arun Kumar Timalsina, for his invaluable guidance, timely feedback and

continuous encouragement during the course of this thesis work. I appreciate his

direction and assistance throughout the thesis, as well as during the period we

collaborated on the project prior to thesis.

I am also grateful to Assoc. Prof. Dr. Nanda Bikram Adhikari sir, our

program coordinator, for his general assistance throughout the thesis lifetime,

beginning with proposal submission all the way to final defense.

I’d also like to extend my sincerest of gratitudes towards external examiner Kumar

Pudashine sir for his invaluable suggestions and feedback which has helped a lot

in improving the quality of this thesis work.

I’m also grateful to my classmates for their continuous encouragement and helpful

suggestions over the course of the thesis.

vii

ABSTRACT

Recommendation of the most relevant travel attractions for travellers when they

are visiting a new place is a very important problem. The ability to recommend

the most relevant tourist attractions that would be of most interest to the visitors

can help increase the profits for the business and also provide a better traveler

experience on the visitor’s part. Some of the most common techniques used

for recommending travel attractions are collaborative filtering based ones which

rely on the information such as places visited by groups of other travelers that

share maximum similarity to the visitor. For the purpose of this thesis work,

the goal was to devise a method to generate the most relevant travel attraction

recommendations for users drawing upon other models that produced excellent

results in recommendation for other items like movies and books in the past. In

that regard, Knowledge Graphs were combined with Graph Neural Networks in the

ensuing KGNN. Knowledge Graphs represent the relationship between entities in

the form of a graph while Graph Neural Networks are the form of Neural Networks

that apply over data structured as graphs. The experiments were carried out using

the three different KGNN approaches - KGCN, KGNN-LS and KGAT, on the

publicly available location based social network check-in datasets for Foursquare

and Gowalla. The performance improvement of 24.19%, 14.51% and 22.58%

were achieved respectively for the three methods for top 5 recommendations on

Foursquare in terms of F1-score when compared to the best performing baseline of

Rank-GeoFM. Similarly, the improvements were 13.20%, 14.86% and 28.30% and

18.27%, 25.58% and 30.23% respectively for top 10 and 20 recommendations for

Foursquare. The performance improvement on Gowalla meanwhile was of 19.35%,

29.03% and 43.54% respectively for top 5 recommendations, 10.29%, 129.41% and

29.41% for top 10 recommendations and 6.77%, 15.25% and 25.42% respectively

for top 20 recommendations.

Keywords: Recommender Systems, Knowledge Graphs, Travel Attractions Rec-

ommendation, Graph Neural Neworks

viii

TABLE OF CONTENTS

COPYRIGHT iii

DECLARATION iv

RECOMMENDATION v

DEPARTMENTAL ACCEPTANCE vi

ACKNOWLEDGEMENT vii

ABSTRACT viii

TABLE OF CONTENTS ix

LIST OF FIGURES xii

LIST OF TABLES xiv

LIST OF ABBREVIATIONS xv

1 INTRODUCTION 1

1.1 Background and Motivation . 1

1.2 Problem Definition . 4

1.3 Objectives . 4

1.4 Scope of the Work . 4

1.5 Originality of this Work . 5

1.6 Organisation of thesis work . 5

2 LITERATURE REVIEW 6

3 METHODOLOGY 12

3.1 Machine Learning on Graphs . 12

3.1.1 Graphs . 12

3.1.2 Knowledge Graphs (KG) . 13

3.1.3 Graph Neural Networks (GNN) 14

ix

3.2 Problem Formulation . 21

3.3 Knowledge Graph Convolutional Networks (KGCN) 22

3.4 Knowledge aware Graph Neural Networks with Label Smoothness

Regularization (KGNN-LS) . 23

3.5 Knowledge Graph Attention Network (KGAT) 24

3.6 System Architecture . 25

3.7 Learning Algorithm . 27

4 EXPERIMENTAL SETUP 29

4.1 Dataset . 29

4.1.1 Foursquare . 29

4.1.2 Gowalla . 29

4.2 Environment and Tools . 30

4.2.1 Google’s Knowledge Graph Search API 30

4.2.2 Pytorch . 30

4.2.3 Pytorch Geometric . 30

4.2.4 Matplotlib . 30

4.2.5 Networkx . 31

4.3 Baselines . 31

4.3.1 PMF . 31

4.3.2 GeoMF . 32

4.3.3 Rank-GeoFM . 32

4.4 Parameters . 32

4.4.1 Neighbour sampling size (K) 33

4.4.2 Embedding dimension (d) 33

4.4.3 Depth of receptive field (H) 33

x

4.4.4 Aggregation function (σ) . 33

4.5 AUC Results . 34

4.5.1 AUC Results for KGCN . 34

4.5.2 AUC Results for KGNN-LS 35

4.5.3 AUC Results for KGAT . 36

5 RESULTS 38

5.1 Loss Plot . 38

5.1.1 Foursquare . 39

5.1.2 Gowalla . 40

5.2 Visualizations . 42

5.3 Top 5 Results . 45

5.4 Top 10 Results . 46

5.5 Top 20 Results . 47

6 EVALUATION 51

6.1 Evaluation Metrics . 51

6.2 Results of Evaluation . 52

6.2.1 Results on Foursquare Dataset 53

6.2.2 Results on Gowalla Dataset 54

7 CONCLUSION AND FUTURE WORK 57

7.1 Conclusion . 57

7.2 Future Work . 58

REFERENCES 62

APPENDIX A 63

xi

LIST OF FIGURES

1.1 An example of a typical knowledge graph [1] 3

3.1 An example of a typical graph [2] 13

3.2 An example of a travel knowledge graph [3] 14

3.3 Message passing in GNNs [4] . 16

3.4 Architecture of Graph Convolutional Networks (GCN) [5] 19

3.5 Attention Passing on Graph Attention Networks (GAT) [6] 21

3.6 The Framework for KGCN [7] . 23

3.7 Overview of KGNN-LS model . 24

3.8 Overview of KGAT model [8] . 25

3.9 Architecture to learn KG Embeddings [9] 26

3.10 Architecture to learn User-POI Embeddings [10] 26

5.1 Loss Plot for KGCN (Foursquare) 39

5.2 Loss Plot for KGNN-LS (Foursquare) 39

5.3 Loss Plot for KGAT (Foursquare) 40

5.4 Loss Plot for KGCN (Gowalla) . 40

5.5 Loss Plot for KGNN-LS (Gowalla) 41

5.6 Loss Plot for KGAT (Gowalla) . 41

5.7 Visualization for User checkins . 42

5.8 Initial POI Embeddings . 43

5.9 Final POI Embeddings . 44

5.10 Top 5 Recommendations for KGCN 45

5.11 Top 5 Recommendations for KGNN-LS 45

xii

5.12 Top 5 Recommendations for KGAT 45

5.13 Top 10 Recommendations for KGCN 46

5.14 Top 10 Recommendations for KGNN-LS 46

5.15 Top 10 Recommendations for KGAT 47

5.16 Top 20 Recommendations for KGCN 48

5.17 Top 20 Recommendations for KGNN-LS 49

5.18 Top 20 Recommendations for KGAT 50

6.1 Precision on Foursquare dataset . 53

6.2 Recall on Foursquare dataset . 54

6.3 F1-score on Foursquare dataset . 55

6.4 Precision on Gowalla dataset . 55

6.5 Recall on Gowalla dataset . 56

6.6 F1-score on Gowalla dataset . 56

xiii

LIST OF TABLES

4.1 Foursquare metrics . 29

4.2 Gowalla metrics . 30

4.3 AUC Results for different K for KGCN 34

4.4 AUC Results for different d for KGCN 34

4.5 AUC Results for different H for KGCN 34

4.6 AUC Results for different σ for KGCN 35

4.7 AUC Results for different K for KGNN-LS 35

4.8 AUC Results for different d for KGNN-LS 35

4.9 AUC Results for different H for KGNN-LS 36

4.10 AUC Results for different σ for KGNN-LS 36

4.11 AUC Results for different K for KGAT 36

4.12 AUC Results for different d for KGAT 37

4.13 AUC Results for different H for KGAT 37

4.14 AUC Results for different σ for KGAT 37

xiv

LIST OF ABBREVIATIONS

API Application Programming Interface

CNN Convolutional Neural Network

GeoMF Geographical Matrix Factorization

GAT Graph Attention Network

GCN Graph Convolutional Network

GDL Graph Deep Learning

GNN Graph Neural Network

KGNN-LS Knowledge aware Graph Neural Networks with Label Smoothness

Regularization

KG Knowledge Graph

KGAT Knowledge Graph Attention Network

KGCN Knowledge Graph Convolutional Network

LSBN Location Based Social Network

POI Point of Interest

PMF Probabilistic Matrix Factorization

Rank-GeoFM Ranking based Geographical Factorization Method

RNN Recurrent Neutal Network

xv

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Today, the internet is the chief source to find ideas for vacation and purchase

appropriate travel packages. Selecting places to visit is a frequently encountered

issue by users. From the viewpoint of a traveler, “What to do in [destination]” is

one of the most frequently searched travel related question. Before deciding the

place/s to visit, a significant amount of time and work is required. Meanwhile,

finding the best places of visit for travelers is a big source of business for travel

service providers. Expedia and TripAdvisor, two major travel and tourism websites,

provide visitors with information on tourist attractions which is their core business.

Some of the most critical challenges for travel business owners are what to market

to end customers and how to sell to them [11].

With the rise of platforms like Youtube, Amazon, and Netflix over the last few

decades, recommender systems have become more relevant in our lives day by

day. Recommender systems have become practically omnipresent in our lives, from

e-commerce platforms that indicate things that would interest customers to online

advertisements that advise the relevant contents to users based on their tastes.

Recommender systems, to put it simply, are algorithms that propose relevant

goods to consumers. Depending on the use case, the things could be anything from

movies to books to products to anything else.

In some industries, recommender systems are critical because their effective im-

plementations have the ability to produce significant revenue and give businesses

a competitive advantage. Consider the fact that Netflix conducted a contest

a few years ago with the purpose of building a recommender system that was

superior to its own algorithm, and the winner received a prize of $1 million USD. [12]

1

The ultimate goal of any recommendation system is to predict a user’s interest in

a new product based on the user’s past preferences, personalized needs, and the

product’s specific properties and traits, in order to recommend the most appropri-

ate product to use for the user, increase the user’s level of satisfaction, and enable

the user to make efficient decisions. The key utility of a recommender system is

its capacity to generate the most appropriate decision for users without requiring

them to express their requirements explicitly.

In today’s world of big data, the use of traditional recommendation systems to

handle data mining-related problems is quite limited. The use of knowledge graphs,

based on the assumption of huge data, is a considerably more efficient method for

creating recommender systems.

A knowledge graph is essentially a directed labeled graph with clearly defined labels.

Nodes, edges and labels make up a directed labeled graph. People, companies,

departments, books, cars, and other entities can all operate as nodes. An edge

connects two nodes, and captures the relationship of interest between the nodes.

Friendship between two individuals, network connection between two computers,

and employee-employer relationship between a firm and an employee are all in-

stances of such connections. The labels capture the meaning of the relationship. A

friendship between two persons is an example of this type of relationship.

A knowledge graph can be thought of as a model reflecting an area of knowledge

that has been created by subject matter experts using various machine techniques.

It gives all of the data a clear structure and a generic interface, as well as the ability

to construct smart and multilateral relationships between all of our databases. The

knowledge graph sits on top of our existing popular databases and connects all

of our available data – both structured and unstructured – at scale. Knowledge

graphs are organized as a virtual data layer on top of the main data layer.

Multiple databases may be required in practice to generate knowledge graphs in

2

Figure 1.1: An example of a typical knowledge graph [1]

the industry. The building and management of knowledge graphs can be secured

by the use of components such as ontology editors and taxonomies, graph mappers,

validation, entity extractors, visualization and search tools, and so on. Despite the

fact that graph databases are normally managed by data engineers in collabora-

tion with highly qualified semantic web professionals, the Semantic Middleware

interfaces assist individuals in interacting with the knowledge graph. As a result,

those with less technical skills, in addition to business and knowledge professionals,

can profit from the system’s utilization [3].

Links inside the graph can be used to uncover the relationship between objects

and users as a path, which can give rich and relevant information for interactions

between people and items. Such connectivity is capable of not only revealing the

semantics of relations and entities, but also of understanding a user’s interests.

The use of knowledge graphs to improve recommender system performance [13]

is an active area of research. Several hybrid systems were developed in the past

to increase performance by combining content-based and collaborative filtering

methods in a blended approach. Recently, research has emphasized on the use of

external knowledge graphs (KGs) for recommendations in order to improve the

suggestive capabilities.

3

1.2 Problem Definition

The problem dealt with in this thesis work is the problem of POI recommendation.

In this thesis work, POI recommendation has been treated as a supervised machine

learning problem. As with any supervised machine learning problem, real valued

output is required for inputs in the past observed data. This information in this

case is available in the form of user’s checkin to specific POIs. Based on the

information which is available for a user’s preference to POIs in the past, the goal

is to learn the preference for POIs in the future. The POIs might be the ones the

user interacted with in the past or entirely new ones as well. The user’s preference

for POIs is available as their checkin information on publicly available location

based social network datasets. With this information available, the goal is to learn

the probability of checkin to any other POIs for the user in the future.

1.3 Objectives

The objectives of this thesis work are:

1. To combine Knowledge Graphs (KG) and Graph Neural Networks (GNN) to

alleviate data sparsity problems and devise a better approach for the next

POI recommendation problem.

2. To evaluate the performance of two GCN based methods: Knowledge Graph

Convolutional Networks (KGCN) and Knowledge aware Graph Neural Net-

works with Label Smoothness Regularization (KGNN-LS) and GAT based

approach: Knowledge Graph Attention Network (KGAT) for the next POI

recommendation problem.

1.4 Scope of the Work

Choosing the best places to visit is a common problem faced by travelers while

creating an itinerary best suited to the interest of the traveler and recommending

the places in which he/she is most interested is a very common problem for travel

4

business providers. In this thesis work, the goal is to find the most optimal method

to recommend POIs in which the travelers would be most interested in based upon

the checkin information available for the traveler while visiting other places in

the past. The methods used are KG aware and GNN based which learn the user

and POI embeddings based on user’s interests for POIs with specific relationships.

The datasets used for the thesis work are based on the two popular location based

social networks - Foursquare and Gowalla.

1.5 Originality of this Work

Knowledge Graph aware methods have been widely used in the recommendation

of other items such as movies, music and books to users with exciting results.

End-to-end graph based machine learning has also been gaining wide popularity

as an effective tool to solve the problem of recommendation for users. This thesis

is the first work that tries to use KG aware graph machine learning to solve the

problem of POI recommendation.

1.6 Organisation of thesis work

The thesis is divided into seven different sections. A brief introduction along

with problem definition, as well as the motivation behind carrying out research

in this sector, is discussed in chapter one. The next chapter explores the past

efforts in the field of POI recommendation and also in domain of recommendation

in general. The overall architecture of the system along with discussion around

the fundamental principles of the underlying technology is discussed in the third

section i.e. the methodology section. The fourth chapter discusses the experimental

setup covering the different tools and datasets used. The fifth chapter presents

the different sets of results obtained from our experiments. In the sixth chapter,

evaluation is performed by comparing our methodology with existing baseline

methods. In the seventh and final chapter, conclusions drawn from this thesis work

along with some avenues to carry out further work in this domain are presented.

5

CHAPTER 2

LITERATURE REVIEW

In 2012, Google presented the idea of knowledge graphs [14]. The purpose of

knowledge graphs is to define different concepts and entities that exist in the

physical world, as well as to represent the relationships that exist between them.

In a knowledge graph, each idea and entity has a universally unique ID, the

intrinsic properties of the entity are represented by each of the attribute-value

pairs, and the two entities are connected and their relationship is specified by a label.

Knowledge graphs were quickly adopted by prominent researchers in the domain of

recommendation systems in a variety of fields, yielding impressive results. Oramas

et al. [15] used the knowledge graph to make recommendations in the field of

sound and music. Lu [16] et al. built a knowledge tree consisting of international

tourism attractions using data from DBpedia, Geonames, and Wikidata in order

to recommend tourist attractions. Noia et al. [17] used a knowledge graph to

generate book recommendations.

The primary idea behind using knowledge graphs to address recommendation

problems is to identify the features included in a knowledge graph as quickly as

possible. Network representation learning has lately been a major area of study

in the field of machine learning. Learning a low-dimensional representation for

each network node while keeping the original structural information is the goal of

network representation learning. This method has proven to be a very successful

means of learning the features of the graph.

Handmade feature vectors and learned representations, both types of vector repre-

sentations for graphs and relational structures, enable the use of traditional data

analysis tools as well as machine learning approaches for the structures. Various

ways for constructing embeddings have been researched in the disciplines of machine

6

learning and knowledge representation [18]. Vector embeddings, on the other hand,

have gained virtually little theoretical interest. As a result of its capacity to bridge

the gap between the ”discrete” world of relational data and the ”differentiable”

world of machine learning, vector embeddings offer a lot of research promise. Apart

from the binary relations in knowledge graphs, very little work has been done on

relational data embeddings.

The majority of present research focuses on the suggestion of point of interests

(POIs) through the usage of social networks based on location. This area has seen

a lot of research [19]. Existing works have used variety of data types, including

contextual data, social information, classifications, and tags. Using social infor-

mation essentially entails making use of information about places frequented by

a user’s friends. It has been shown that there is a relatively minimal overlap of

destinations among friends, and that leveraging this social information to improve

the performance of suggestions is of little use.

Contextual data is useful in the same way as spatial information because people

tend to visit sites that are close to each other [20]. Because many people visit

several locations at different times and frequently visit the same locations within

the same time period, temporal information can also be useful. The utilization

of various context-based data, such as weather and travel speed, has also been

extensively studied [21].

Tags and categories can be used to collect semantic data about POIs as well. By

mining tags and categories connected to POIs, the authors of [22] address the usage

of an aggregated latent Dirichlet allocation model to learn about the topics that

users are interested in. It should be observed, however, that in the vast majority

of situations, the tags are either absent, inaccurate, or of little use for the intended

purpose. “Me and Ann, Easter 2012 trip to Europe” [23] is one such example.

The most popular dataset in the Linked Open Data cloud is DBPedia. DBPedia

7

contains a wealth of information on tourism attractions. On the other hand,

extracting a travel knowledge graph is a challenging operation. To begin with,

the DBpedia ontology lacks an ontology class that encompasses all of the cities

that exist, albeit there is the dbo:City class. However, a large number of cities

lack the requisite data for this category. dbr:Paris is an excellent example of this.

On the other hand, there is also lack of an ontology class that has information of

all of the tourist attractions. Even the most common types of travel attractions,

such as dbo: Museum, dbo:Park, and dbo:Monument, are dispersed throughout

the ontology and are not instances of a larger class like ”Travel attraction”. An-

other issue is that the aforementioned classes could not be identified as a tourist

attraction. For example, dbr:Parc Montsouris, one of Paris’ most well-known parks,

lacks the type information dbo:Park as well as any information about its subclasses.

Due to the rise of social networks that rely on users’ geolocation, recommendation

for POIs has emerged as a major research challenge. However, due to a lack of

checkin data, a form of data for implicit feedback, there is a significant problem

among popular methodologies that have been adopted for POI suggestion. Li, Xu-

tao, and colleagues presented Rank-GeoFM, a geographical factorization approach

based on ranking, for the purpose of suggesting POIs in [24], which addresses these

two issues. POIs with and without checkins both played a role in learning the

ranking, and so the problem of data sparsity was addressed. Furthermore, their

model was able to incorporate different contextual information, such as temporal

and geographical influence. A stochastic gradient descent based method was used

for learning. Experiments on public datasets were conducted extensively to validate

the suggested technique for user-POI and user-time-POI settings. In both scenarios,

the experimental findings showed that the proposed strategy outperformed exisiting

state-of-the-art methods.

Knowledge graphs in recommender system applications have a lot of potential

for improving explainability and accuracy. However, the majority of commonly

used methods consider the complete knowledge network. Because graphs are rarely

complete in real-world environments, and often miss entities, facts, and relations,

8

this can lead to poor performance. As a result, it’s vital to account for incomplete

graphs when utilizing recommender systems. In [25], Yixin, Cao, and colleagues

suggested a hybrid technique for knowledge graph completion and recommendation.

They provided information about graph relations in order to comprehend why a

user would love them, unlike previous graph-based recommendation algorithms.

The authors’ technical contribution was a new translation-based recommendation

model that took various user preferences into account when translating a user to

an item, and then jointly trained the model with the completion model by mixing

different types of transfer schemes. Their solution surpassed existing graph-based

state-of-the-art recommendation systems in extensive testing on two publicly avail-

able benchmark datasets.

In [26], Song et. al, explored the use of recommender systems along with knowledge

graphs, for the purpose of effectively addressing the problems of cold start and

data sparsity. The authors explored generation of recommendations by discovering

most important paths between users and items. To be precise, the problem was

formulated as a decision process in sequence, where the initial state is the user, and

the actions are the walks on the level of graphs. The rewards were then shaped

using the prevalent state-of-the-art techniques and the policy gradient methods

were used to train the policy function. By performing experiments on publicly

available datasets, the authors showed that their method was not only able to

provide better recommendations but also offer reasonable explanations.

In [27], Zhang et al. investigated the use of heterogeneous knowledge base infor-

mation to improve recommender systems. By utilizing the knowledge base, three

different components were built to extract semantic representations for things from

structural content, textual content and visual content, respectively. TransR, a

heterogeneous approach of network embedding, was used to extract structural

representations of items while accounting for the heterogeneity of nodes as well as

relationships. To acquire textual and visual representations for the items, two sep-

arate deep learning-based embedding algorithms, stacked denoising auto-encoders

in combination with stacked convolutional auto-encoders, were used. Finally, the

9

Collaborative Knowledge Base Embedding (CKE) integrated framework was uti-

lized to build latent collaborative filtering representations as well as semantic item

representations from the knowledge base. The authors’ strategy outperformed

numerous widely accepted state-of-the-art methods for suggestion.

To address the problem of cold start and data sparsity in CF-based recommender

systems, researchers typically collect attributes for users and objects and create

complicated algorithms to make the best use of this side information. The quali-

ties are generally linked to one another, establishing a knowledge network (KG).

Hongwei et al. introduced Knowledge Graph Convolutional Networks (KGCN)

in their research [7], a framework for efficiently capturing relatedness between

items by understanding their relationships on the KG in an end-to-end way. To

identify high-order structural and logical information in the KG, neighbourhood

sampling was carried out for each KG entity as the receptive field. The neigh-

borhood information was then combined together with bias while computing the

entity’s representation. The model was used to generate recommendations for three

separate datasets of music, books, and movies, and the findings revealed that their

approach outperformed existing state-of-the-art baselines in recommendation.

The power of knowledge graphs lies in their inherent ability in capturing structural

information and relatedness between entities because of which they are a powerful

source of side information for improving recommendations. However, a major issue

with popular strategies is that they rely on explicit feature engineering and aren’t

suitable for end-to-end training. Hongwei et al. proposed using Knowledge-aware

Graph Neural Networks with Label Smoothness regularization (KGNN-LS) to

deliver optimal suggestions in their paper [28]. Their method computed item

embeddings for specific users first by using a trainable function that could capture

the most essential linkages in the user’s knowledge network. After that, the graph

was converted into a weighted graph for a particular user and then a GNN was

used in order to compute item embeddings with personalization. To incorporate

better bias for induction, their method used the label smoothness assumption

which assumes that two things in the KG that appear together are substantially

10

more likely to have equal user relevance scores than items that do not appear

together. In cold-start scenarios with minimal user-item interactions, the technique

was found to provide outstanding outcomes.

Moving beyond the trivial simulation of user-object interactions, taking contextual

knowledge into account is critical for more precise, diversified, and explicable sug-

gestions. Traditional techniques, such as the factorization machine (FM), represent

this as a supervised learning problem, assuming that each interaction is a single

instance with stored side information. Because they don’t evaluate the relationship

between things, these strategies aren’t very good at handling collaboration between

diverse users. In their paper [8], Xiang et al. investigated the use of a knowledge

graph (KG), which combines items and attributes to break down the interaction

assumption independently. In a hybrid KG and user-item graph structure, higher-

order relations — those that link things to one or more attributes — play a key

role in recommendation. They proposed the Knowledge Graph Attention Network

(KGAT), a technique that can describe high-order relationships in a KG in an

end-to-end manner.

11

CHAPTER 3

METHODOLOGY

3.1 Machine Learning on Graphs

Machine learning on graphs has recently gained a lot of traction in a variety of

fields, including social networks, knowledge graphs, recommender systems, and

even life science. The ability of graphs to model the dependencies between nodes

in a graph allows for a breakthrough in graph analysis research.

End-to-end deep learning paradigms like CNN, RNN, and autoencoders have given

fresh life to machine learning applications including object detection, machine

translation, and speech recognition. Deep Learning is effective at detecting hidden

patterns in Euclidean data (images, text, videos).

However, applications based on data collected from non-Euclidean domains, which

are represented as graphs with intricate interactions and interdependencies between

items, have yet to be fully explored. That’s where graph-based machine learning

comes in. Graph Deep Learning (GDL) is a new field of research with a lot of

promise for learning and interpreting graph data.

3.1.1 Graphs

The graph is the fundamental part of a GNN. A graph is a data structure that is

made up of two kinds of elements: nodes and edges. G = (V, E), where V represents

the set of nodes and E represents the edges between them, is the formal definition

of a graph G. The edges are directed when there are directional dependencies

between nodes. They are undirected if such directional relationships do not exist.

A graph is usually associated with an adjacency matrix A. A is a square matrix

12

that represents connectivity between nodes in a network. The dimension of A is

(n x n) for a network with n nodes. In some cases, a feature set, such as a user

profile, is used to represent the nodes. The feature matrix X for each node in the

graph has a dimension of (n x f) when each node in the graph is represented by f

features.

Figure 3.1: An example of a typical graph [2]

3.1.2 Knowledge Graphs (KG)

A knowledge graph is composed of triples of entity-relation-entity (h,r,t). The head

and tail are defined by h and t, respectively, while the relationship between the

head and tail is represented by r. The link between the things represented in the

network is described by a knowledge graph. A triple (Big Ben, location.location.city,

London), for example, illustrates the relationship that Big Ben is one of the places

in London.

In this thesis work, the travel knowledge graph has been constructed using Google’s

Knowledge Graph Search API. We make use of the following relationships for a

POI in the KG.

1. containsPlace

13

2. address

3. aggregateRating

4. type

5. isAccessibleForFree

Figure 3.2: An example of a travel knowledge graph [3]

3.1.3 Graph Neural Networks (GNN)

A Graph Neural Network is a form of Neural Network that works with the graph

structure directly. Node classification is a typical use of GNN. Every node in the

graph has a label, and our goal is to predict node labels lacking ground-truth data.

Each node v in the node classification issue is specified by its feature xv and

connected with a ground-truth label tv. The purpose for graph G, which is partially

14

labeled, is to use the nodes with labels to forecast the nodes without labels. Each

node is indicated by a d-dimensional hv vector containing neighborhood information,

as learned by the learning method. Specifically,

hv = f(xv, xco[v], hne[v], xne[v]) (3.1)

where xco[v] denotes the features of the edges that are connected with v, hne[v]

denotes the embedding of the nodes that form the neighbourhood of v, and xne[v]

denotes the neighbouring node features for v. The transition function f is used to

project these inputs onto a d-dimensional space. The Banach fixed point theorem

can be used to write the preceding equation as an iteratively update process because

hv requires a unique solution. Message forwarding or neighborhood aggregation

are terms used to describe this activity.

H t+1 = F (H t, X) (3.2)

H and X stand for the aggregation of all the h and x, respectively.

To calculate the output of the GNN, the state hv as well as the feature xv is passed

to an output function g.

ov = g(hv, xv) (3.3)

Both f and g are fully connected feed-forward neural networks.

The loss L1 can be formulated as:

loss =
∑
i=1

(ti − oi) (3.4)

which can be optimized via gradient descent.

15

Figure 3.3: Message passing in GNNs [4]

3.1.3.1 Graph Convolutional Networks (GCN)

Images can be interpreted as graphs of pixels with connection to other pixels, but

they maintain a fixed structure at all times. A Convolutional Neural Network

(CNN) shares weights across neighbours based upon certain assumptions. For

example, a 3 x 3 area of pixels can be evaluated as a “neighborhood”. The assump-

tions upon which the CNNs are based depend on 2-dimensional data of regular

nature, which is also referred to as Euclidean data.

But social media networks, molecular structure representations, or map addresses

aren’t of two-dimensional nature. They neither have a fixed size nor any structure.

There are several issues while cramming non-Euclidean data into CNN’s, because

their usefulness ends just right about there.

In effect, the main problem involved in the embedding of features represented as

vertices and edges is the problem of arbitrary usage of space, and an absence of

any Euclidean distance separating the neighbors. Because of these factors, the

problem needs to be approached with different sets of assumptions.

The convolution operation in neural networks is a way of sharing weights among

neighbors. First, in order to determine the neighbors, some data needs to be

provided.

16

In a typical neural network architecture, the evaluation of weights determines the

feature representation for the next hidden layer using the forward propagation and

feature representation of the current layer along with its bias. However, in the

context of graph convolutional networks, the adjacency matrix also comes along in

the equation. A non-linear activation is used as well, similar to classical neural

network models.

The majority of graph neural network models in use today follow a standard

and widely understood architecture. The name given to these models is Graph

Convolutional Networks (GCNs); convolutional because the filter parameters are

generally shared across all sites in the graph.

The purpose of these models is to learn a feature function on a graph G = (V, E)

that accepts the following as input:

• Every node I has a feature description xi, which can be represented as an N

x D feature matrix X. (The number of nodes is N, while the total number of

input characteristics is D.)

• The graph structure is represented as a matrix, commonly in the form of an

adjacency matrix A.

and producing a node-level output Z (an N x F feature matrix, where F is the

total number of output features for each node). With the addition of some form of

pooling mechanism, the outputs at the graph level may then be represented.

After that, each layer of the neural network may be expressed as a nonlinear

function.

H l+1 = f(H l, A) (3.5)

with H0 =X and HL = Z (or z for graph-level outputs), and L the number of

layers. The only difference between the models is how f is chosen and specified.

17

As an example, consider the following simple layer-wise propagation rule:

f(H l, A) = σ(A(H l,W l)) (3.6)

where W l is a weight matrix for the l-th neural network layer and σ is a non-linear

activation function similar to ReLU.

However, there are two major flaws in this straightforward model: For each node,

multiplication with A means adding all the feature vectors of all neighboring nodes

together, but not the node itself (as long as there are no self-loops in the graph).

This can be solved by ensuring that the graph contains no self-loops, which can be

done by simply adding the identity matrix to A.

The second big disadvantage is that A is rarely normalized, therefore multiplying

with it completely affects the scale of the feature vectors. The solution to this

problem is to normalize A so that all of the rows add up to one, i.e. to use D−1A,

where D is the diagonal node degree matrix. Taking the average of surrounding

node features now equates to multiplying with D−1A.

In practice, symmetric normalization, i.e. D−1/2AD−1/2, makes dynamics more

interesting (because it’s no longer just averaging neighboring nodes). In their study,

Kipf & Welling [29] developed the following propagation rule:

f(H l, A) = σ(D̄−1/2ĀD̄−1/2H lW l) (3.7)

with Ā = A+ I, where D̄ refers to A’s diagonal node degree matrix, and I is the

identity matrix.

18

Figure 3.4: Architecture of Graph Convolutional Networks (GCN) [5]

3.1.3.2 Graph Attention Networks (GAT)

Let’s look at a network with n nodes and a set of features for the node (~h1, ~h2,

. . . , ~hn), along with an adjacency matrix A, where Aij = 1 if i and j are linked;

else, 0. A graph convolutional layer computes a set of new node features (~h
′
1,
~h

′
2,

. . . , ~h
′
n) based on the input attributes as well as the graph topology.

A weight matrix W specifies a shared node-wise feature transformation for each

graph convolutional layer (such that a higher-level representation can be created).

The vectors ~gi are normally recombined in some fashion at each node after that,

resulting in the vectors ~gi = W~hi as a result.

A graph convolutional operator can be considered as an aggregate of characteristics

across neighbourhoods in general to meet the localisation property. The attributes

of node i’s output are as follows: Given the neighborhood of node i is called Ni

(usually consists of all of i’s first-order neighbors, including i),

~hi = σ(
∑
jεNi

αij~gj) (3.8)

where αij is the weighting factor (importance) of node j’s attributes to node i and

σ is an activation function.

19

The GAT layer improves on the GCN layer’s basic aggregation function by using

attention coefficients to assign different priority to each edge.

zli = W lhli (3.9)

The lower layer embedding hi is transformed linearly in the preceding equation, and

W is the learnable weight matrix. This transformation aids in the transformation of

input features into high-level and dense features by providing appropriate expressive

power.

elij = LeakyReLU((~al)T (zli||zlj)) (3.10)

A pair-wise unnormalized attention score between two neighbors is computed using

the aforementioned technique. It initially concatenates the two nodes’ z embeddings,

where || signifies concatenation. The dot product of such concatenation and a

learnable weight vector is then computed. Finally, a LeakyReLU is applied to the

dot product result.

αl
ij =

exp(elij)∑
kεNi

exp(elik)
(3.11)

The attention scores on each node’s incoming edges must then be normalized using

a softmax function. In a probability distribution, the softmax encodes the outcome

of the previous step. As a result, the attention scores across different nodes are

much more comparable.

hl+1
i = σ(

∑
jεNi

αl
ijz

l
j) (3.12)

The GCN aggregation, in which neighbor embeddings are aggregated together

and scaled by attention scores, is comparable to the preceding equation. The

fundamental result of this scaling process is that each neighbor node learns a

different contribution.

20

To let αij be implicitly specified, self-attention is applied over the node features.

This is prompted by the fact that, as the Transformer architecture has demon-

strated, self-attention is sufficient for state-of-the-art machine translation outcomes.

In general, αij is generated as a consequence of the attentional mechanism

a:RN×RN→R, which calculates unnormalized coefficients eij across node pairs i,j

taking into account their characteristics:

eij = (~hi,~hj) (3.13)

Figure 3.5: Attention Passing on Graph Attention Networks (GAT) [6]

3.2 Problem Formulation

In this thesis, the goal is to tackle the issue of a knowledge-graph-aware POI

recommendation problem. A set of M users represented by U = {u1, u2, ..., uM}

and a set of N POIs represented by V = {v1, v2, ..., vN} are provided in a standard

POI recommendation situation. A user-POI interaction matrix Y εRMxN is also

supplied, which is defined by user’s feedback, check-in information in the context

of our work. Given a knowledge graph G = (h, r, t), where h ε E, r ε R and r

21

ε E, where E denotes the collection of entities and R denotes the collection of

relationships, the goal is to learn ȳuv = F(u, v : Y, G), where ȳuv indicates the

likelihood that user u will be interested in POI v.

3.3 Knowledge Graph Convolutional Networks (KGCN)

KGCN is a mechanism to capture high-order structural relatedness between entities

in a knowledge graph. A potential pair of user u and POI (entity) v is given.

The set of entities directly connected to v is denoted by N (v), while the relation

between entities ei and ej is denoted by rei,ej . To calculate the score between a

user and a relation, the function g : Rd x Rd→R (e.g., inner product) is utilized:

πu
r = g(u, r) (3.14)

where d is the dimension of representations, while u ε Rd and r ε Rd are the

representations of user u and relation r, respectively. In general, ur denotes the

relevance of the relationship r to the user u. One visitor might be more interested

in the free POIs, while another would be more concerned with the POI’s ”category.”

To characterize the topological closeness structure of item v, we compute the linear

combination of v’s neighborhood:

vuN(v) =
∑

eεN(v)

π̄u
rv,ee (3.15)

where π̄u
r is the user-relation score normalized.

π̄u
rv,e =

exp(πu
rv,e)∑

eεN(v) exp(π
u
rv,e)

(3.16)

and e is the entity e’s representation. User-relation scores act as personalized filters

when computing an entity’s neighborhood representation since we aggregate the

neighbors with bias with respect to these user-specific scores.

22

Figure 3.6: The Framework for KGCN [7]

3.4 Knowledge aware Graph Neural Networks with Label Smoothness

Regularization (KGNN-LS)

In traditional GNNs, the edge weights of the input graph are fixed, but in KGNN-

LS (which contains possible function g parameters and feature vectors of users

and relations), they are learnable and require supervised training like W. Because

user-item interactions are the primary source of supervised signal outside of GNN

layers, enhancing the model’s fitting ability will ultimately lead to overfitting.

In addition, edge weights are important in graph representation learning. As a

result, more edge weight regularization is needed to aid in the learning of entity

representations and to generalize to unseen interactions more successfully.

Let’s consider what an ideal set of edge weights might be. Consider a function of

labels with a real value lu : E → R on G, which is compelled to take a particular

value lu(v) = yuv at node v ε V ⊆ E. In our context, lu(v) = 1 if the user u

considers the item v interesting and interacts with it, otherwise lu(v) = 0. The

label smoothness assumption states that we should expect close items in the KG to

23

have comparable relevance labels. This is why the energy function E was chosen:

E(lu, Au) =
1

2

∑
eiεE,ejεE

Aij
u (lu(ei)− lu(ej))

2 (3.17)

Figure 3.7: Overview of KGNN-LS model

3.5 Knowledge Graph Attention Network (KGAT)

Entities and relations can be parameterized as vector representations while the

graph structure is preserved using knowledge graph embedding. TransR is used on

CKG in KGAT. To be precise, each entity is embedded and relation is optimized

by the principle of translation i.e. erh + er ≈ ert , if a triplet (h, r , t) exists in

the graph. Herein, eh, et ε Rd and er ε R
k are the embeddings for h, t, and r

respectively; and erh, ert are the representations that are projected for eh and et in

the relation r’s space. As a result, for a given triplet (h, r, t), the plausibility score

(or energy score) is calculated as follows:

g(h, r, t) = ||Wreh + er −Wret||22 (3.18)

where Wr ε R
kxd is the relation r matrix for transformation, that projects entities

from the d-dimensional entity space into the k-dimensional space of relations. g(h,

r, t) with a lower score indicates that the triplet has a higher chance of being

correct, and vice versa.

24

(h, r, t) is implemented using a mechanism of relational attention, which can be

defined in the following manner:

π(h, r, t) = (Wret)
T tanh(Wreh + er) (3.19)

where tanh is the nonlinear activation function we’ve chosen. As a result, the

distance between eh and et in the relation r’s space influences the attention score,

with closer entities propagating more information.

Following that, we use the softmax function to normalize the coefficients across all

triplets related to h:

π(h, r, t) =
exp(π(h, r, t)∑

(h,r′ ,t′)εNh
exp(π(h, r′ , t′))

(3.20)

As a result, the final attention score can be used to determine which neighbor nodes

should be given more attention to capture collaborative signals. The attention flow

shows which areas of the data to focus on when propagation forward is employed,

which can be thought of as arguments for the recommendation.

Figure 3.8: Overview of KGAT model [8]

3.6 System Architecture

The goal of this thesis work is to combine user-POI interaction matrix with knowl-

edge graph constructed for the POIs to learn user and POI embeddings that are

25

Figure 3.9: Architecture to learn KG Embeddings [9]

Figure 3.10: Architecture to learn User-POI Embeddings [10]

enriched with contextual information in order to generate effective POI recommen-

dations for the users. As illustrated in the two diagrams above, the overall system

involves learning of relevant KG embeddings for the POIs for a particular user and

passing those through multiple layers atypical of an end-to-end deep learning archi-

tecture to learn user and POI embeddings. A simple approach like cosine similarity

can then be used to obtain the POIs with nearest embeddings with the user em-

beddings in order to obtain the most relevant recommendations for a particular user.

An end-to-end deep learning pipeline is used to learn the user and POI embeddings.

26

The embeddings are then used to predict the probability of the user actually being

interested in the POI visit. The real value is obtained with the user’s actual

checkin information for the POI in the past. The loss is computed by comparing

the actual and calculated values. The loss is then propagated backwards in the

deep learning model. The weights and biases for the model are updated in every

iteration until the loss is minimized. When the loss is relatively small and has

more or less stabilized when comparing the values between two successive epochs,

the final result is obtained for the model. The model is then used to make POI

recommendations for specific users in the future.

The number of hidden layers in our architecture is based on the depth of receptive

field (H) which is discussed in subsequent sections. Binary Cross Entropy (BCE)

Loss has been used as the loss function while Adaptive Moment (Adam) has been

used as the optimizer in our training pipeline.

3.7 Learning Algorithm

The following points describe the stages involved in training for the knowledge

graph aware recommender system.

1. Get all of the neighbors’ incoming messages. The incoming messages for

neighbours are computed in the form of embeddings using the POI knowledge

graph which calculates the embeddings based on an user’s preferences for

specific relationships of the POI in the KG.

2. By performing the necessary aggregation function, combine those messages

into a single message.

3. With a learnable weight matrix, perform matrix multiplication for the neigh-

borhood message.

4. With a learnable weight matrix, multiply the initial node message by a

matrix.

27

5. Combine steps 3 and 4.

6. Apply a ReLU activation function to the aggregation.

7. Repeat for as many levels as necessary until convergence is achieved. The

output of the last layer is the outcome.

28

CHAPTER 4

EXPERIMENTAL SETUP

4.1 Dataset

The datasets used in this thesis work for testing and training purposes in this thesis

work are the two location based social network based datasets from the platforms:

Foursquare and Gowalla.

4.1.1 Foursquare

This dataset [30] comprises global-scale Foursquare check-in data gathered over a

long period of time (in between the time period of 18 months from April 2012 to

September 2013). User checkins from 415 cities in 77 countries are included. The

415 cities with the most Foursquare check-ins, each with at least 10,000 check-ins

are included in the dataset.

Table 4.1: Foursquare metrics

Entities Count
Checkins 1,94,108

Users 2,321
POIs 5,596

Sparsity 99.18%

4.1.2 Gowalla

Users check-in to report their presence on Gowalla, a location-based social network-

ing site. The friendship network is undirected and the data was acquired using

their public API [31]. It comprises 196,591 nodes and 950,327 edges. The user

check-ins from February 2009 to October 2010 are included in the data.

29

Table 4.2: Gowalla metrics

Entities Count
Checkins 4,56,967

Users 10,162
POIs 24,237

Sparsity 99.88%

4.2 Environment and Tools

The experiments were carried out on the Google Colab GPU runtime on the cloud.

The tools that were used for our experiments are listed below.

4.2.1 Google’s Knowledge Graph Search API

Google’s Knowledge Graph Search API was used for the construction of the POI

Knowledge Graph.

4.2.2 Pytorch

Pytorch was used as the end-to-end machine learning framework for storing the

user and POI data as tensors and using a series of layers to compute losses and

optimize gradients to obtain the best performing model across several epochs.

4.2.3 Pytorch Geometric

Pytorch Geometric, which is developed based on Pytorch, was used as the library

for graph deep learning, to create and train our Knowledge Graph Neural Networks

in an optimal manner.

4.2.4 Matplotlib

Matplotlib was used for certain visualizations such as showing loss plots, user and

POI embeddings, etc.

30

4.2.5 Networkx

Networkx was used as the visualization tool for showing connectivity between

nodes and connection maps for user-POI interaction.

4.3 Baselines

The performance of our proposed methodology was evaluated by comparing the

results obtained with the three methods against the results produced by the existing

baseline methods in identical setup. The model training and evaluation was carried

out in the identical environment for baselines as well as existing methodologies

using the same location based social network datasets for Foursquare and Gowalla.

The performance of the methodologies proposed in this work was compared with

existing state-of-the-art baselines to assess their effectiveness. Below is a brief

overview of the three baseline approaches used to compare performance.

4.3.1 PMF

PMF [32], i.e. Probabilistic Matrix Factorization, is a widely used factorization

method common for other user-item recommendation problems as well.

Many present approaches to collaborative filtering are incapable of dealing with

huge datasets or users with few feedbacks. The PMF model grows linearly with the

amount of observations and, more crucially, works well on datasets that are huge,

sparse, and highly unbalanced. The PMF model can be expanded to incorporate

an adaptive prior on model parameters, demonstrating how model capacity can be

adjusted automatically. For consumers who have only a few POI interactions, the

model generalizes much better.

31

4.3.2 GeoMF

GeoMF [33], i.e. Geographical Matrix Factorization, is an established method used

in POI recommendation.

For POI recommendation, this method uses weighted matrix factorization, which

is more suited to collaborative filtering with implicit feedback. Furthermore,

researchers on the LBSNs have observed a spatial clustering phenomena in human

mobility behavior, i.e individual visiting places tend to cluster together, and shown

its efficiency in POI suggestion, therefore the method adds it into the factorization

model. In particular, activity area vectors of users and impact area vectors of

POIs are used to supplement the latent components of users and POIs in the

factorization model.

4.3.3 Rank-GeoFM

Rank-GeoFM, i.e. Ranking based Geographical Factorization Method, is the cur-

rent state-of-art for POI ecommendation.

The method assumes that check-in frequency reflects consumers’ visiting preferences

and the factorization is learnt by accurately ranking the POIs. POIs with and

without check-ins will both contribute to learning the ranking in this model, allevi-

ating the data sparsity problem. Furthermore, the model may easily incorporate

many forms of background information, such as spatial and temporal influences.

The factorization is learned using a stochastic gradient descent approach.

4.4 Parameters

There are different parameters, the choice of value for which highly impacts the

overall performance of the system. They are listed below.

32

4.4.1 Neighbour sampling size (K)

This refers to the number of neighbours that are used when information from the

neighbouring nodes are aggregated. Since most of the nodes have a very large

number of neighbours, aggregating all the neighbours is neither feasible nor effective

since it leads to the problem of overfitting. So the value of K needs to be chosen

such that it both captures essential neighbourhood information as well as prevents

the problem of noise.

4.4.2 Embedding dimension (d)

This refers to the dimension of the vector that represents a node. The vector

representation for the node is obtained by performing convolution operations on

graphs like GraphConv to generate the representation for the node without actually

having to perform feature engineering. The dimensions are generated in such a

manner that the original topological structure of the graph is preserved.

4.4.3 Depth of receptive field (H)

The depth represents the ability of the model to capture long term relationships in

the KG. When this value is set to 1, only the relationship between the entities that

are directly connected is captured. When this value is set to a greater number, the

model can also capture distant interests of the user. This also needs to be chosen

very carefully as too large values might capture even the relationships that are of

no interest to the user.

4.4.4 Aggregation function (σ)

Aggregation function is the approach taken while combining information coming

from the neighbouring nodes. One approach is to simply add the neighbourhood

information onto the receiving node. The other approach is to concatenate this

information together. Another approach is to directly take a representation for the

neighbourhood such as maximum value among neighbouring nodes.

33

4.5 AUC Results

Area Under Curve (AUC) represents the probability that the model will rank a

randomly drawn positive sample (i.e. POI recommendation on which the visitor

was actually interested) higher than a randomly drawn negative sample (i.e. POI

recommendation on which the visitor was not interested). We computed AUC

scores for different combinations of the parameters to decide upon the right values

to take while performing the final set of experiments.

4.5.1 AUC Results for KGCN

Table 4.3: AUC Results for different K for KGCN

K Foursquare Gowalla
2 0.791 0.782
3 0.794 0.786
4 0.795 0.788
5 0.798 0.792
6 0.794 0.789

Table 4.4: AUC Results for different d for KGCN

d Foursquare Gowalla
4 0.789 0.775
8 0.793 0.780
16 0.797 0.782
32 0.793 0.796
64 0.790 0.784
128 0.789 0.778

Table 4.5: AUC Results for different H for KGCN

H Foursquare Gowalla
1 0.724 0.682
2 0.746 0.713
3 0.738 0.724
4 0.724 0.712

34

Table 4.6: AUC Results for different σ for KGCN

σ Foursquare Gowalla
sum 0.794 0.672

concat 0.790 0.654
neighbour 0.682 0.642

Based on the AUC results obtained, the optimal values for Foursquare were found

to be K = 5, d = 16, H = 2 and σ = sum(). On the other hand, the optimal values

for Gowalla based on the AUC results are K = 5, d = 32, H = 3 and σ = sum().

4.5.2 AUC Results for KGNN-LS

Table 4.7: AUC Results for different K for KGNN-LS

K Foursquare Gowalla
2 0.823 0.812
3 0.842 0.822
4 0.848 0.834
5 0.852 0.842
6 0.846 0.832

Table 4.8: AUC Results for different d for KGNN-LS

d Foursquare Gowalla
4 0.812 0.782
8 0.816 0.792
16 0.824 0.812
32 0.832 0.824
64 0.848 0.842
128 0.826 0.836

35

Table 4.9: AUC Results for different H for KGNN-LS

H Foursquare Gowalla
1 0.742 0.721
2 0.752 0.732
3 0.782 0.724
4 0.767 0.713

Table 4.10: AUC Results for different σ for KGNN-LS

σ Foursquare Gowalla
sum 0.812 0.724

concat 0.798 0.782
neighbour 0.712 0.722

Based on the AUC results obtained, the optimal values for Foursquare were found

to be K = 5, d = 64, H = 3 and σ = sum(). On the other hand, the optimal values

for Gowalla based on the AUC results are K = 5, d = 64, H = 2 and σ = sum().

4.5.3 AUC Results for KGAT

Table 4.11: AUC Results for different K for KGAT

K Foursquare Gowalla
2 0.813 0.792
3 0.825 0.798
4 0.832 0.813
5 0.834 0.816
6 0.823 0.814

36

Table 4.12: AUC Results for different d for KGAT

d Foursquare Gowalla
4 0.823 0.792
8 0.826 0.806
16 0.832 0.814
32 0.831 0.812
64 0.827 0.808
128 0.816 0.802

Table 4.13: AUC Results for different H for KGAT

H Foursquare Gowalla
1 0.702 0.708
2 0.712 0.711
3 0.724 0.717
4 0.718 0.713

Table 4.14: AUC Results for different σ for KGAT

σ Foursquare Gowalla
sum 0.813 0.792

concat 0.802 0.786
neighbour 0.791 0.712

Based on the AUC results obtained, the optimal values for Foursquare were found

to be K = 5, d = 16, H = 3 and σ = sum(). On the other hand, the optimal values

for Gowalla based on the AUC results are K = 5, d = 16, H = 3 and σ = sum().

37

CHAPTER 5

RESULTS

As the topic of our thesis is the next POI recommendation for a traveller, the

results are in the form of top-N attraction recommendations for the user. The

results are obtained by sorting attractions on the basis of their interest scores for a

user. The top N recommendations are generated for the varying values of N set at

5, 10 and 20. For the purpose of this thesis work, top attractions are recommended

for users within the radius of 1 square kilometers of the place they are currently

located in.

The results obtained for different values of N for the three different graph learning

algorithms used in this work are discussed in the sections below.

5.1 Loss Plot

As in any typical deep learning based system, the training of our pipeline was

carried out until the losses were reasonably low. The changes in the value of losses

with epochs are illustrated in the loss plots below.

38

5.1.1 Foursquare

Figure 5.1: Loss Plot for KGCN (Foursquare)

Figure 5.2: Loss Plot for KGNN-LS (Foursquare)

39

Figure 5.3: Loss Plot for KGAT (Foursquare)

From the loss plots presented above, we can see that the loss convergence for

Foursquare is much quicker while training for KGAT compared to training for

KGCN and KGNN-LS methods.

5.1.2 Gowalla

Figure 5.4: Loss Plot for KGCN (Gowalla)

40

Figure 5.5: Loss Plot for KGNN-LS (Gowalla)

Figure 5.6: Loss Plot for KGAT (Gowalla)

From the loss plots presented above, we can see that the loss convergence for

Gowalla is much quicker while training using the KGAT when compared to training

using the KGCN and KGNN-LS approaches.

41

5.2 Visualizations

Figure 5.7: Visualization for User checkins

The above map shows the visualization for a random user’s check in information

on Foursquare on Google maps. The two places which are both visited by the user

are connected in the graph for the user. This means for two POIs i and j, the

corresponding value of Aij = 0 given the adjacency matrix A, if both of them have

been visited by the user. However, this value is 0 if the user hasn’t visited both

places. This is an important attribute as common checkin information determines

the adjacency of the POIs in the graph which is ultimately exploited while training

the Graph Neural Network.

42

Figure 5.8: Initial POI Embeddings

The above scatter plot for POI embeddings shows the low level embeddings for

potential POIs for visit for a randomly selected user within a city. The POIs are

illustrated using different colors based on their category. The above plot shows

seven different types of POIs which are scattered in the TSNE plot. The results

are obtained when applying a single GCN layer directly without any training

mechanism in place.

43

Figure 5.9: Final POI Embeddings

The above scatter plot is the final result for embeddings of potential POIs that

the random user can visit in a city at the end of the training pipeline. As seen

in the above diagram, POIs of similar categories are clustered together with each

other in the TSNE plot. The basic idea behind using KG aware GNNs for POI

recommendation is to obtain optimal user and POI embeddings which lie together

in the embedding space based on their similarity, which is exactly evident from

the above TSNE plot.

44

5.3 Top 5 Results

The top 5 recommendations for a visitor currently at Amsterdam Avenue, New

York (40°48’40.3”N 73°57’28.0”W) while using the three different methods are

presented below.

User id: 156391

Top 5 Recommendations:

Riverlink Park (0.234)

Guy Park (0.213)

Schoharie Crossing State Historic Site (0.202)

Our Lady of Matyrs Shrine (0.187)

Renaissance Harlem (0.172)

Figure 5.10: Top 5 Recommendations for KGCN

User id: 156391

Top 5 Recommendations:

Schoharie Crossing State Historic Site (0.284)

Our Lady of Matyrs Shrine (0.272)

Kirk Douglas Park (0.246)

Shuttleworth Park (0.237)

Old Fort Johnson (0.218)

Figure 5.11: Top 5 Recommendations for KGNN-LS

User id: 156391

Top 5 Recommendations:

Guy Park (0.263)

Old Fort Johnson (0.247)

General Grant National Memorial (0.238)

Riverlink Park (0.226)

Carmansville Playground (0.218)

Figure 5.12: Top 5 Recommendations for KGAT

45

5.4 Top 10 Results

The top 10 recommendations for a visitor currently at Central Park, New York

(40.7831° N, 73.9712° W) while using the three methods are presented below.

User id: 127026

Top 10 Recommendations:

American Museum of Natural History (0.272)

Theodore Roosevelt Park (0.252)

The Obelisk (0.237)

The Mall and Literary Walk (0.232)

Belvedere Castle (0.218)

Wagner Cove (0.205)

Cherry Hill (0.201)

Delacarte Theater (0.198)

The Great Lawn (0.195)

The Ramble (0.192)

Figure 5.13: Top 10 Recommendations for KGCN

User id: 127026

Top 10 Recommendations:

The Ramble Cave (0.324)

Belvedere Castle (0.308)

Shakespeare Garden (0.293)

Theodore Roosevelt Park (0.272)

The Mall and Literary Walk (0.271)

Arthur Ross Pinetum (0.241)

Bethesda Terrace (0.230)

The Great Lawn (0.228)

The Ramble (0.226)

The Metropolitan Museum of Art (0.218)

Figure 5.14: Top 10 Recommendations for KGNN-LS

46

User id: 127026

Top 10 Recommendations:

Bow Bridge (0.308)

Belvedere Castle (0.298)

Alice in Wonderland (0.287)

Delacarte Theater (0.276)

The Obelisk (0.267)

The Great Lawn (0.262)

American Museum of Natural History (0.253)

Arthur Ross Pinetum (0.241)

Sheep Meadow (0.237)

Ladies Pavilion (0.231)

Figure 5.15: Top 10 Recommendations for KGAT

5.5 Top 20 Results

The top 20 recommendations for a visitor currently at Tokyo Tower, Tokyo (35.6586°

N, 139.7454° E) with the three methods are presented below.

47

User id: 117325

Top 20 Recommendations:

Imperial Palace (0.272)

Statue of Admiral Perry (0.268)

Tower Daijingu Shrine (0.262)

Konchi-in (0.257)

Prince Shiba Park (0.252)

Megaweb Toyota City Showcase (0.247)

Zojoji Hall (0.245)

Toufuya Ukai (0.242)

Shinko-in (0.237)

Odaiba Marine Park (0.231)

Franciscan Chapel Center (0.226)

Nyoirin Kannon (0.218)

Iikura Park (0.217)

Cafe La Tout (0.211)

Tokyo Joypolis (0.208)

Seiryu-ji Temple (0.197)

Atago Shrine (0.192)

Shiba Toshogu Shrine (0.191)

Place in the Sun (0.185)

Sumida Park (0.181)

Figure 5.16: Top 20 Recommendations for KGCN

48

User id: 117325

Top 20 Recommendations:

Imperial Palace (0.312)

Shiba Toshogu Shrine (0.289)

Terrace Dining TANGO (0.282)

Mori Art Museum (0.275)

Franciscan Chapel Center (0.272)

Momiji Waterfall (0.268)

Meiji Jingu (0.263)

Seiryu-ji Temple (0.261)

Kodo-in (0.257)

Shinko-in (0.252)

Jirozaemon Inari Shrine (0.249)

Rikugien Gardens (0.244)

Nyoirin Kannon (0.241)

Cafe La Tout (0.237)

Maxell Aqua Park (0.234)

Tokugawa Estate Mausoleum (0.232)

Odaiba Marine Park (0.226)

Place in the Sun (0.218)

Prince Shiba Park (0.207)

Watarium Art Museum (0.198)

Figure 5.17: Top 20 Recommendations for KGNN-LS

49

User id: 117325

Top 20 Recommendations:

Imperial Palace (0.284)

Mori Art Museum (0.278)

Statue of Admiral Perry (0.272)

Momiji Waterfall (0.271)

Konchi-in (0.268)

Meiji Jingu (0.265)

The Land of Gas Founder (0.262)

Franciscan Chapel Center (0.258)

Megaweb Toyota City Showcase (0.252)

Kodo-in (0.221)

Zojoji Hall (0.219)

Toufuya Ukai (0.214)

Jirozaemon Inari Shrine (0.212)

Cafe La Tout (0.211)

Sky Lounge Stellar Garden (0.208)

Terrace Dining TANGO (0.202)

MOS Burger Tokyo Tower (0.198)

Atago Shrine (0.192)

XEX Atago Green Hills (0.191)

Place in the Sun (0.185)

Figure 5.18: Top 20 Recommendations for KGAT

50

CHAPTER 6

EVALUATION

6.1 Evaluation Metrics

Our evaluation of the results is done by computing the Precision, Recall and

F1-scores for Top-N recommendations with different values of N at 5, 10 and 20.

The scores are computed by comparing whether the attraction recommended by

our model would have been actually visited by the traveler at a given instance in

the past.

The different types of scenarios for a recommendation by our model are elaborated

below.

True Positive (TP):

These are the attractions that were recommended by the model and also actually

visited by the travelers.

True Negative (TN):

These are the attractions that were not recommended by the model and also not

visited by the travelers in reality.

False Positive (TP):

These are the attractions that were recommended by the model but actually not

visited by the travelers.

False Negative (FN):

These are the attractions that were visited by the travelers which were not actually

recommended by our model.

51

The calculations for different scores are then carried out as:

Precision:

Precision is the measure of the rate at which the model was able to recommend

places that were actually visited by the travelers. It measures how often trav-

elers actually visited the places recommended by our model compared to the

recommendations generated by the model. It is calculated with the following

formula.

Precision(P) =
TP

TP + FP
(6.1)

Recall:

Recall is the measure of the rate at which travelers actually visited the places

recommended by the model. It measures how often travelers actually visited the

places recommended by our model compared to their overall visits. It is calculated

with the following formula.

Recall(R) =
TP

TP + FN
(6.2)

F1-Score:

F1-Score is the harmonic mean of Precision and Recall values.

F1−Score(F1) =
2 ∗ Precision ∗Recall
Precision+Recall

(6.3)

6.2 Results of Evaluation

The comparison between the results obtained by our model along with the results

obtained from the current existing baselines is presented in the sections below. For

this comparison, both the results for existing baselines, reported by authors in [24]

as well as the results obtained while running the experiments using the baselines

on our environment are included. The legends in the following charts appended

by (R) denote reported results while those appended by (O) represent the results

52

obtained on our own environment.

6.2.1 Results on Foursquare Dataset

Figure 6.1: Precision on Foursquare dataset

From the experiments carried out on Foursquare dataset, it’s observed that in

general, KG aware recommender systems perform better than the ones that don’t

use KG information. While all three approaches perform better than existing

baselines, KGAT was seen to provide better results.

As illustrated in the graphs, KGCN outperformed all other methods in terms of

Precision and F1-score for top-5 recommendations but apart from that, KGAT

was the best performer across all evaluation categories.

53

Figure 6.2: Recall on Foursquare dataset

6.2.2 Results on Gowalla Dataset

From the experiments carried out on Gowalla, it’s observed that in general, KG

aware recommender systems perform better than the ones that don’t use KG

information. While all three approaches perform better than existing baselines,

KGAT was seen to provide better results.

As illustrated in the graphs, KGNN-LS yielded better results compared to all other

methods in terms of Precision and F1-score for top-10 recommendations but apart

from that, KGAT was the best performer across all other evaluation categories.

54

Figure 6.3: F1-score on Foursquare dataset

Figure 6.4: Precision on Gowalla dataset

55

Figure 6.5: Recall on Gowalla dataset

Figure 6.6: F1-score on Gowalla dataset

56

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Based on the experiments and results obtained in this work, it can be seen that

all the three knowledge graph aware recommendation methods used in general

outperform the existing baselines in the field of travel recommendation. Although

the other two methods i.e. KGCN and KGNN-LS have also performed better than

KGAT in some instances, mostly KGAT is better at generating recommendations

as per our experimental results.

Compared to the best performing baseline of Rank-GeoFM, performance im-

provement of 24.19%, 14.51% and 22.58% was observed respectively for KGCN,

KGNN-LS and KGAT on the Foursquare dataset for top 5 results in terms of

F1-score. The performance improvement observed for top 10 results meanwhile

was 13.20%, 14.86% and 28.30% respectively. Finally, the improvement observed

was respectively 18.27%, 25.58% and 30.23% respectively in the case of top 20

results. The performance improvement achieved seemed to improve considerably

with the increasing number of recommendations generated.

Similarly, when compared to the best performing baseline of Rank-GeoFM, perfor-

mance improvement of 19.35%, 29.03% and 43.54% was observed respectively for

KGCN, KGNN-LS and KGAT on the Gowalla dataset for top 5 results in terms of

F1-score. The performance improvement observed for top 10 results meanwhile was

10.29%, 29.41% and 29.41% respectively. Finally, the improvement observed was

respectively 6.77%, 15.25% and 25.42% respectively in the case of top 20 results.

Just opposite to the Foursquare dataset, the performance improvement noticeably

decreased when the number of recommendations generated was increased in the

case of Gowalla dataset. However, the performance improvement achieved on

57

Gowalla was in general better than the Foursquare dataset. Considering the fact

that Gowalla dataset was much sparse when compared with Foursquare, we can

deduce that our model provides much better performance improvement on sparse

datasets compared to the existing baseline methods.

7.2 Future Work

Several avenues have been identified as well to improve upon the findings of this

work.

1. The focus in this thesis as well as most of the existing research has centred on

extracting contextual information for items (POIs in our work) from the KG.

Extraction of such information for users can be an area of work to explore

upon.

2. Extraction of contextual information for both users and items from a hetero-

geneous KG representing both users and items in an end-to-end manner can

be an area of work for further investigation.

3. The model proposed in this paper is universal and can be applied to generate

recommendations on the local context of Nepal as well by preparing appro-

priate user-POI interaction dataset and corresponding knowledge graph with

rich POI related information. So construction of user-POI interaction matrix

along with KG for Nepal’s local context can also be a promising area for

exploration.

58

REFERENCES

[1] Yashu Seth. Introduction to question answering over knowledge graphs,

2019. https://yashuseth.blog/2019/10/08/introduction-question-answering-

knowledge-graphs-kgqa/.

[2] Igor Belykh, Martin Hasler, M. Lauret, and Henk Nijmeijer. Synchronization

and graph topology. International Journal of Bifurcation and Chaos, 15, 11

2005.

[3] Chun Lu, Philippe Laublet, and Milan Stankovic. Travel attractions recommen-

dation with knowledge graphs. In Eva Blomqvist, Paolo Ciancarini, Francesco

Poggi, and Fabio Vitali, editors, Knowledge Engineering and Knowledge Man-

agement, pages 416–431, Cham, 2016. Springer International Publishing.

[4] Nikita Sharma. Introduction to graph neural networks, 2020.

https://yashuseth.blog/2019/10/08/introduction-question-answering-

knowledge-graphs-kgqa/.

[5] Thomas Kipf. Graph convolutional networks, 2016.

https://tkipf.github.io/graph-convolutional-networks/.

[6] Yuexin Huang and Hailong Sun. Best Answerers Prediction With Topic Based

GAT In Q & A Sites, page 156–164. Association for Computing Machinery,

New York, NY, USA, 2020.

[7] Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, and Minyi Guo. Knowledge

graph convolutional networks for recommender systems. In The World Wide

Web Conference, WWW ’19, page 3307–3313, New York, NY, USA, 2019.

Association for Computing Machinery.

[8] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua.

KGAT: knowledge graph attention network for recommendation. CoRR,

abs/1905.07854, 2019.

59

[9] Wikipedia contributors. Knowledge graph embedding, 2021.

https://commons.wikimedia.org/wiki/File:Knowledge Graph Embedding.pdf.

[10] Shuai Zhang, Lina Yao, and Aixin Sun. Deep learning based recommender

system: A survey and new perspectives. CoRR, abs/1707.07435, 2017.

[11] Duan Hong Liu Qiao, Li Yang. Knowledge graph construction techniques.

Journal of Computer Research and Development, 53(3):582, 2016.

[12] Andreas Töscher and Michael Jahrer. The bigchaos solution to the netflix

grand prize. 01 2009.

[13] Tommaso Di Noia, Vito Claudio Ostuni, Paolo Tomeo, and Eugenio Di Sciascio.

Sprank: Semantic path-based ranking for top-n recommendations using linked

open data. ACM Trans. Intell. Syst. Technol., 8(1), September 2016.

[14] Amit Singhal. Introducing the knowledge graph: things, not strings.

2012. https://blog.google/products/search/introducing-knowledge-graph-

things-not/.

[15] Sergio Oramas, Vito Claudio Ostuni, Tommaso Di Noia, Xavier Serra, and

Eugenio Di Sciascio. Sound and music recommendation with knowledge graphs.

ACM Trans. Intell. Syst. Technol., 8(2), October 2016.

[16] Cunchao TU, Cheng YANG, Zhiyuan Liu, and Maosong SUN. Network

representation learning: an overview. SCIENTIA SINICA Informationis,

47:980–996, 08 2017.

[17] Tomas Mikolov, Kai Chen, G.s Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. Proceedings of Workshop at ICLR,

2013, 01 2013.

[18] Enrico Palumbo, Giuseppe Rizzo, and Raphaël Troncy. Entity2rec: Learning

user-item relatedness from knowledge graphs for top-n item recommendation.

In Proceedings of the Eleventh ACM Conference on Recommender Systems,

RecSys ’17, page 32–36, New York, NY, USA, 2017. Association for Computing

Machinery.

60

[19] Jie Bao, Yu Zheng, David Wilkie, and Mohamed Mokbel. Recommendations

in location-based social networks: A survey. GeoInformatica, 19, 07 2015.

[20] Chen Cheng, Haiqin Yang, Irwin King, and Michael R. Lyu. Fused matrix

factorization with geographical and social influence in location-based social

networks. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial

Intelligence, AAAI’12, page 17–23. AAAI Press, 2012.

[21] Matthias Braunhofer, Mehdi Elahi, Francesco Ricci, and Thomas Schievenin.

Context-Aware Points of Interest Suggestion with Dynamic Weather Data

Management, volume 2014, pages 87–100. 01 2014.

[22] Bin Liu and Hui Xiong. Point-of-Interest Recommendation in Location Based

Social Networks with Topic and Location Awareness, pages 396–404. 05 2013.

[23] Igo Ramalho Brilhante, Jose Antonio Macedo, Franco Maria Nardini, Raffaele

Perego, and Chiara Renso. On planning sightseeing tours with tripbuilder.

Information Processing & Management, 51(2):1–15, 2015.

[24] Xutao Li, Gao Cong, Xiao-Li Li, Tuan-Anh Nguyen Pham, and Shonali Krish-

naswamy. Rank-geofm: A ranking based geographical factorization method

for point of interest recommendation. In Proceedings of the 38th International

ACM SIGIR Conference on Research and Development in Information Re-

trieval, SIGIR ’15, page 433–442, New York, NY, USA, 2015. Association for

Computing Machinery.

[25] Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua. Unifying

knowledge graph learning and recommendation: Towards a better understand-

ing of user preferences. In The World Wide Web Conference, WWW ’19, page

151–161, New York, NY, USA, 2019. Association for Computing Machinery.

[26] Weiping Song, Zhijian Duan, Ziqing Yang, Hao Zhu, Ming Zhang, and Jian

Tang. Explainable knowledge graph-based recommendation via deep reinforce-

ment learning. CoRR, abs/1906.09506, 2019.

[27] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying

Ma. Collaborative knowledge base embedding for recommender systems. In

61

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’16, page 353–362, New York, NY, USA,

2016. Association for Computing Machinery.

[28] Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao,

Wenjie Li, and Zhongyuan Wang. Knowledge-aware graph neural networks

with label smoothness regularization for recommender systems. In Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, KDD ’19, page 968–977, New York, NY, USA, 2019. Association

for Computing Machinery.

[29] Thomas Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. 09 2016.

[30] Dingqi Yang. Foursquare dataset. https://sites.google.com/site/yangdingqi/ho

me/foursquare-dataset, [Online; accessed September 5, 2021].

[31] Jure Leskovec. Gowalla dataset. https://snap.stanford.edu/data/loc-

gowalla.html, [Online; accessed September 5, 2021].

[32] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization.

In Proceedings of the 20th International Conference on Neural Information

Processing Systems, NIPS’07, page 1257–1264, Red Hook, NY, USA, 2007.

Curran Associates Inc.

[33] Defu Lian, Cong Zhao, Xing Xie, Guangzhong Sun, Enhong Chen, and

Yong Rui. Geomf: Joint geographical modeling and matrix factorization for

point-of-interest recommendation. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD

’14, page 831–840, New York, NY, USA, 2014. Association for Computing

Machinery.

62

APPENDIX A

Turnitin Similarity Index

63

