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ABSTRACT 

 

With mass urbanization, culturally diversified country with many cultural and religious gatherings 

happening time and again, the need of crowd estimation from single image and information on the 

distribution of crowd in the same is deemed necessary. The old-fashioned way of keeping records, 

sensor-based counting fails when the crowd movement is dynamic and/or random. Task is 

challenging due to geometric distortion, perspective distortion, severe occlusion, illumination 

condition in the image. The forementioned challenges has been addressed by Deep Learning 

Convolutional Neural Network where in CNN is employed as a feature extractor and Smoothed 

Dilated CNN is used in the backend, that facilitates aggregation of multi-scale contextual 

information by increasing the receptive field with same resolution removing the gridding artifacts. 

Model is end-to-end trainable since it employs pure convolutional structure and can accept 

arbitrary size and resolution of input image for conversion into density map which is used for 

crowd counting. Training of the model begins with the generation of ground-truth density map 

which is computed based on geometry-adaptive kernel to account for perspective effect on the 

denser crowd and fixed kernel on the sparse crowd. ShanghaiTech dataset is been used which 

comprises of 1198 tagged images with a total amount of 330,165 persons. Comparison between 

dilation rate 2 and 4 for both Part_A and Part_B of ShanghaiTech dataset is made. Upon evaluation 

of the model with the Csrnet where smoothing of the dilated convolution is not implemented, the 

counting accuracy and quality of the density map for both Part_A and Part_B of the dataset has 

been significantly increased. 

 

Keywords: crowd counting, density map, atrous convolution, smoothed dilated CNN 
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1. INTRODUCTION 

1.1 Background 

With the increased population and urbanization, the information on the number of people attending 

an event, political rallies, protest, festival celebration, sports events, musical concerts etc. helps in 

a great deal. In most occasion, we need to monitor the public places and make sure it is not crowded 

or the density of people in public places is sparse so as to maintain public safety. The density of 

population waiting for a bus, metro, aircraft or subway train helps to manage our public 

transportation hub. In the history of mankind, several people have lost their lives in massive 

stampede at public events. Similarly, there could be instances when the behavior of people in the 

crowd needs to be studied. This all needs efficient crowd counting and visualizing mechanism. 

From the beginning of mankind, attempts are continuously being made to reduce human labor 

leading numerous inventions. Manually counting the total number of people for every image is 

impossible because the world is moving towards automation. Moreover, manual counting bars the 

use in Real Time system of crowd counting and fails when the crowd is random and dynamic. 

Crowd counting can be taken as Computer Vision application and it has a great scope because of 

the practical usage in real-world applications as in crowd analysis, traffic crowd, urban 

management, public surveillance, queue management, monitoring and dispersing dense crowd to 

ensure public safety, etc. It helps mitigate possible accidents in the public areas, actively monitor 

the crowd size in public events like rallies and sports, departure-arrival time-table of public 

transportation. It thus aids traffic control and in private surveillance in firms. It can further be 

extended for vehicle counting system to build a smart traffic light system on a junction or highway. 

It can be used to analyze the animal migration, thus aiding wildlife study. More application like 

this requires the counting of commuters or herd, however, manually counting particular items from 

any image is a tedious task. Severe occlusion, geometric distortion, illumination condition and 

overlapping region imposes challenge on crowd counting. Moreover, the density and distribution 

of crowd also impose challenge on the task.  

Digital images are made up of image pixels that are ordered in rectangular array. This rectangular 

array of pixels with individual pixel values do not carry meaningful information by themselves. 

Human beings picture the image as a whole and gain insight from it which is an easy task for 

humans. However, to understand object from the numerical data in the pixel is troublesome for 

computers. Similar to every kind of images, if we have an image of crowd and counting the number 

of objects present in the image requires understanding the image by the computer for which the 
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image features need to be identified. This system uses Deep Learning technique for “crowd 

counting by density map estimation”. The density map is first generated and then estimate crowd 

count by deploying a Deep Learning CNN, specifically, CNN as a feature extractor and smoothed 

dilated CNN at the backend to enlarge the receptive field. The flexible architecture of CNN aids 

in concatenation of backend for the density map generation. Architecture uses the VGG-16 

classifier front-end because of its numerous advantages. To mitigate the gridding artifacts 

introduced by the dilated CNN, smoothing is done by extracting deeper information of saliency. 

Dilated convolution/atrous convolution, is widely used method that increase the size of the 

receptive field but doesn’t increase the kernel size. In this way, the number of required parameters 

is vastly decreased making the model lighter and efficient in terms of computation; however, 

introduces gridding artifacts. Taking into account the gridding artifacts, smoothing block is added 

to the system. 

 

1.2 Problem Statement 

Crowd counting begins with the feature extraction from the image. Had it been a prefect picture 

with no distortion, perfect lighting, no shades and no overlaps then feature extraction would not 

be much of a concern.  However, severe occlusion, geometric distortion, illumination condition 

and overlapping region imposes challenge on crowd counting. Therefore, crowd counting model 

needs to take in account the forementioned imperfections in the image and accurately model the 

problem with an effective feature extracting and generalizing capability. Unlike normal image 

processing, crowd counting requires dense prediction by capturing multiscale information. To 

address this issue a different kind of CNN, called the Dilated CNN is used that uses sparse kernel 

by interpolating with zeros so as to alternate the pooling and convolution layer. However, the 

DCNN introduces gridding artifacts because in the process of getting wider receptive field of view, 

wherein the dilation rate > 1, for computation of the output, adjacent units are computed from 

entirely separate set of units in the input. The local information becomes inconsistent and such 

information can become irrelevant across larger distance. Smoothing the dilated CNN mitigate 

gridding artifacts. SS convolution layer will be added before the dilated layer. SS convolution adds 

the dependencies among the nearby units producing smoothed feature maps. This helps preserve 

the local information and improve dense prediction. Even though we add a new layer, particularly 

SS convolution, only a few hundred parameters will be added. [14] 
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1.3 Objectives 

The main objectives of this thesis work are as follows:  

• To estimate the number of people in a crowd image 

• To visualize crowd image by generating high-quality density map 

 

1.4 Scope of the work 

This work is the design of an automatic crowd visualization and counting system that can be used 

for public surveillance. It will help the respective authorities to monitor the public places and take 

necessary action so as to minimize accident or avoid massive stampede or disperse crowd in the 

crowded areas by knowing the crowd density. It can as well be beneficial in disaster management 

and emergency evacuation in case of fire outbreaks and calamitous events. Crowd analysis, queue 

management, traffic control, etc. can be its application and the applicable areas are almost every 

public area because of urbanization.  
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2. LITERATURE REVIEW 

Crowd counting is one of the hot topics in the few succeeding years as a number of research has 

been going on. It has a great scope in computer vision with real world applications as in crowd 

analysis, traffic crowd, public surveillance, queue management and ensuring public safety, etc. 

The method employed for crowd counting has been changing with the availability of technology 

and newer algorithm.  

Earlier crowd counting mechanism relied on counting by detection.[1] This method of detecting 

individual head and counting suffered in a very crowded scene wherein occlusion posed difficulty. 

Counting started with detection-based algorithm using moving-window-like detector. It first 

detects people and the counts them [2]. These methods employ well-trained classifiers like Haar 

wavelets [3] and HOG [4] to extract low-level features. Detection-based approach can be sub-

divided into monolithic detection, part-based detection and multi-sensor detection. Monolithic 

detection performs satisfactorily only in sparse crowd. Crowded scene with occlusion and clutter 

can’t be addressed by this approach. Part-based detection aims to provide solution that can tackle 

partial occlusion. Multi-sensor-based detection captures image from more than one source placed 

at different geometric positions so as to handle the partial occlusion and region of overlaps. 

However, in a highly dense image with severe occlusion, distortion and varied illumination 

condition, where most of the targeted objects are concealed, these models perform poorly.  

Direct regression-based method overcomes the problem of occlusion and high background clutter. 

Direct regression-based method usually crops the image patches first and generates features from 

them. Low-level features were generated from foreground and texture features. The relations 

among extracted features are learnt to calculate the number of particular objects. Regarding the 

target of regression, it could be the object counts or the object density. Basically, it has two 

components; low level feature extraction and regression modelling. Idrees et al. [5] introduced 

Fourier analysis and SIFT in feature extraction. Crowd density is then regressed from interest-

point based counting, head detection and frequency analysis. Direct regression-based approach 

does not take into account the spatial distribution of the crowd i.e., saliency. Instead of tedious 

detection and object localization for counting, Lempitsky et al. [8] estimated an image density. 

Count of image in a specific region is achieved by integrating over the image region. It employs 

MESA distance as the distance metric and linear mapping of local patch features. Regression is 

then used to obtain corresponding density map. Comparing to two approaches object counting and 

object density estimation, the object density provides more insight as it maintains the object 

location. Object density, rather than just counting objects, provides a general approximation of 
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their positions, which aids in understanding crowd behavior. Pham et al. [6], realizing difficulty in 

linear mapping to map local patch features, employed non-linear mapping and random forest 

regression for density map. 

Density map approach uses density map as the intermediate representation of the input image, 

followed by summing up over a region to obtain the count. Unlike the direct regression-based 

estimation which does not consider the spatial distribution of the crowd, density map generation 

achieves better performance. The density map estimation methods need density map generation 

which is done either from dot-map annotation or deep learning models. The most popular method 

is by convolving the head annotated dot-map with a Gaussian Kernel [7].  

In recent years deep learning has evolved with the digital era. Tasks related to computer vision, 

AI, natural language processing, etc. are dominated by Deep Learning. Walch and Wolf [9] 

estimated density map directly from input image and provided improvement in terms of layered 

boosting and selective sampling. Multiple network scales image variedly; trains the model and 

concatenates the output of multiple networks to obtain the final density map. Karianakis et al. [10] 

proposed hybrid method based on boosting. CNN extracts low-level features based on which the 

object candidates are determined. It is followed by AdaBoost to build a final classifier. In [11], 

CNN is used to count the dense crowd directly without estimating the density function. Previous 

state-of-the-art technique multi-column CNN (MCNN) [20] is based on the multiscale architecture 

however the network is very deep and require large amount of model training time. Later 

experiment showed that its branch structure is not significantly effective. Babu et. al. [21] proposed 

a switching CNN architecture based on patch to address the variation in local crowd density in a 

scene. Three different independent regressor network having varied receptive field is used and 

each patch is sent to one of these three specified networks to compute density map. Fisher Yu et 

al. [24] developed a newer approach in convolutional network for dense prediction. They proposed 

dilated CNN to aggregate multi-scale information systematically. This was done without losing 

the resolution that too by expansion of receptive field in exponential scale. This designed network 

increased the accuracy in dense prediction, when incorporated to existing systems for semantic 

segmentation. It paved the path of semantic segmentation differently with that of image 

classification. 

Yuhong et al. [13] employs CNN for extracting features from the input image and backend 

architecture that generated density map. Architecture uses the VGG-16 layers in the front-end that 

serves as the density level classifier. Dilated CNN is employed in the backend architecture that has 
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larger receptive field to capture multiscale information without significant increase in the 

parameters. It is end-to-end trainable model. Dilated convolution can be used in pixel-to-pixel 

prediction task for images providing wider application in the areas of semantic image 

segmentation, machine translation, video detection and audio generation [14]. Dilated filters insert 

the holes in the process of enlarging the receptive field. [15] However, the DCNN introduces 

gridding artifacts because in the process of getting wider receptive field of view, adjacent units are 

calculated from completely different set of input units. This brings inconsistency of local 

information and the information can get irrelevant across larger distance. In recent approaches, 

methods have been developed to remove gridding artifacts by introducing stacked dilated CNN. 

In [16], [17] additional blocks of dilated CNN were added to avoid the gridding problem. But this 

method introduced millions of extra training parameters which ultimately makes the model 

inefficient in terms of computation. Wang and Ji [14], proposed two different approaches namely 

Group Interaction Layer and Separable and Shared Convolution for smoothing. Unlike introducing 

block of stacked dilated convolution layers, this approach required negligible number of extra 

parameters to be learnt. This helps make the model lighter. Yasarla et. al. [25] proposed multi-

stream architecture for pixelwise semantic segmentation which employed the use of smoothed 

dilated convolution for removing griding artifacts. Chollet [26] changed the popular model of 

Inception to “extreme” Inception called Xception where pointwise convolution and depth-wise 

convolution is used so that the cross-channel correlation and the spatial correlation are separated. 

This led to improved performance.  

Image quality assessment is done by measuring the quality of the generated output. The quality of 

image with respect to Human Visual System and by computing one of the most popular metric 

Peak Signal-to-Noise Ratio (PSNR) is contradicting. MSE and PSNR although simple to calculate 

in terms of mathematics do not quite relate to visual quality. The pixels of every highly structured 

natural image have strong dependencies among themselves. Zhou et. al. [30] proposes three 

components namely: luminance, contrast and structure to combinedly yield SSIM measure for 

image quality assessment. Hang et. al [28] used SSIM and MS-SSIM for performance evaluation 

for Image Restoration. Cao et. al. [29] used a Euclidean Loss and SSIM Loss function to account 

for the local correlation in the density map. The model used Inception architecture as the encoder 

and set of convolutions and transposed convolution as the decoder. The use of Local Pattern 

Consistency Loss helped enhance the performance of the model. 
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3. RESEARCH METHODOLOGY 

3.1 Convolutional Neural Network 

CNN belongs to the class of ANN that captures features form the image, from basic to high level 

features at the deeper level. Feature extraction is achieved, when CNN convolves the input data 

with a kernel producing a transformed feature map. Here, kernel is also referred as filter. In ML, 

weights are learnable parameters and the kernel weight are modified so as to extract features from 

the image. CNN is widely used and the most popular, since it adjusts weights automatically to find 

the most promising feature. [18] 

Typical CNN consists of input layer, output layer, and single or stacked hidden layers that consists 

of a number of neurons. Arrangement of neurons is in 3-D (width, height, and depth) and the input 

volume is transformed to an output volume. Apparently, hidden layers are the ones where most of 

the magic happens. They are combination of convolution, normalization, pooling and fully 

connected layers. CNNs use multiple convolution layers to transform input volumes to higher 

levels of abstraction. CNN is widely popular since it preserves spatial information. Figure 1 shows 

the typical CNN model. 

 

Figure 1: Convolution Neural Network 

The convolution operation requires operands to have same dimensionality. In CNN, convolution 

operation is the sum of the dot product between input and filter. To access over the full spatial 

dimension of input, kernel is stride using the sliding window technique. This results in the convolved 

features. Most real-world problems are highly complex and non-liner that is why, we need non-linear 

activation in the neural network. In fact, a feed forward NN with any number of hidden layers but just 

the linear activation is same as the linear NN with no hidden layer. So, to add non-linearity in the 

model, the convolved features are passed through the activation function. 



8 

 

2D convolutional operation is denoted by Equation 1 and Equation 2.  

 
(𝑚 ∗ 𝑛)(𝑡) =  ∫ 𝑚(𝜏) 𝑛(𝑡 − 𝜏)𝑑𝜏

∞

−∞

 (1) 

 
(𝑚 ∗ 𝑛)(𝑡) =  ∫ 𝑚(𝑡 − 𝜏) 𝑛(𝜏)𝑑𝜏

∞

−∞

 (2) 

Figure 2 helps to visualize the feature map generated from CNN. With an input image in Pascal 

VOC, it represents the feature map of conv5 filter. The arrow represents the strongest response and 

their corresponding position in the image. Green rectangle indicates receptive field with strongest 

response. 

 

Figure 2: Feature map of CNN 

CNN provides generalization which is not achieved with linear mapping. Activation Layer 

squashes the value into a range to bring non-linearity in the output. Nonlinearity makes the training 

faster and more accurate. Activation determines which node to fire among a bunch of different 

nodes. TanH, Rectified Linear Unit (ReLU), ArcTan, Sigmoid, Exponential Linear Unit (ELU), 

etc. are some of the most used activation functions. 

Convolution Layer is followed by the Pooling Layer. In order to avoid overfitting, pooling layer 

is used to summarize the feature map. Summarized, in the sense that it does not precisely position 

the features from CNN, rather forwards a summarized features for further operation. The first step 

in pooling is to partition the input image into subregions such that there is a set of non-overlapping 

rectangles. Then for each of the subregion, pooling operation summarizes a value. Spatial 

resolution is thus reduced by pooling layer thereby reduction in the parameters count and 

avoidance of overfitting. It is essential to note that pooling reduces the spatial dimension but the 

channel dimension/depth dimension is unchanged. The two of the most widely used layers are: 
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max and average-pooling. The maximum value of the sub-region is output for further operation by 

max-pooling; whereas the average value of the sub-region is output by average-pooling. 

The extracted feature map is pooled; followed by flattening that transform the entire pooled feature 

matrix to a single column. Here, spatial dimension of input is collapsed to channel dimension. The 

output is called a feature matrix which is one-dimensional array. This helps the succeeding fully 

connected layer to fully process the pooled feature map. Fully Connected Layer is somewhat 

similar to the hidden layer in ANN and is used to optimize the objective (like class scores). FC 

layer works upon flattened input. Consider a classification task, where we get the predicted class 

in output layer. Error prediction is done then backpropagated to improve the prediction. In 

addition, soft-max layer is used to classify an object with probabilistic values between 0 and 1.  

 

3.2 VGG16 network  

VGG16 is a CNN model used by Simonyan and Zisserman in ILSVR competition in 2014 [19]. 

The neurons of 16-layered VGG16 covers the receptive field with larger size. Convolution layers: 

3 x 3 filter, stride = 1; same padding and max pool layer:  2 x 2 filter; stride = 2 followed by FC 

layers and a soft-max resulting output is the architecture. Even though it is slow to train, it has 

better accuracy and is easy to implement. 

 

3.3 Depth-wise Separable and Shared convolution 

If we consider 2 spatial dimension (width and height) and depth dimension (channel), standard 

convolution layer learns filters in a 3D space. This is to say, a single convolving kernel performs 

two tasks simultaneously 

• Mapping cross-channel correlations 

• Mapping spatial correlations 

Depth-wise Separable Convolution [22] factors the same operation so that it can independently 

operate for cross-channel correlation and spatial correlation. i.e., separates depth and spatial 

dimension of a filter. This avoids convolution across all the channel thereby; few numbers of 

connections hence less parameter and lighter model. Reduced parameter also means 

computationally cheaper and reduced overfitting. In order to achieve this, we perform depth-wise 

convolution and then pointwise convolution. Depth-wise convolution refers to the channel-wise n 
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X n spatial convolution applied to a single channel at all the times unlike standard convolution. 

For a C channel, we have C, n X n spatial convolution. Similarly, pointwise convolution is 

convolution with filter 1 X 1so as to change the dimension.  

Assume we have input data with the dimensions: Df x Df x M, where Df x Df is the image size and 

M is the number of channels. Assume there are N filters/kernels, with the dimensions: Dk x Dk x 

M. If we perform a standard convolution, the output size will be: Dp x Dp x N. [22,23] 

Following Figure 3 illustrates standard convolution where:  

Total number of multiplications required= N x 𝐷𝑝
2 x 𝐷𝑘

2 x M. 

 

Figure 3: Standard Convolution operation 

Following Figure 4 illustrates Depth-wise Separable Convolution [23] where:  

Total number of multiplications required = Depth-wise multiplication + Point-wise multiplication 

            = M * 𝐷𝑘
2 * 𝐷𝑝

2 + M * 𝐷𝑝
2 * N 

             = M X 𝐷𝑝
2 X (𝐷𝑘

2 + N) 

 

Figure 4: Depth-wise Separable Convolution  
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For each block in the input feature maps, SS convolution can add neighboring information. With 

respect to the number of connections across channels, Separable and Shared (SS) Convolution is 

more efficient than Standard Convolution. C2 filters connect all C channels present in the input to 

all C channels in the output in a conventional convolution. For the same operation, Separable 

Convolution require C number of filters as it only connect the ith channel in the output to the ith 

channel in the input. SS is the one where only one filter is shared across all the channels.  ‘Shared’ 

term in SS convolution means on the Depth-wise Separable convolution, same C filters are utilized 

by all input and output channels-pairs. Separable Convolution and SS convolution is shown in 

Figure 5.  

 

Figure 5: Separable Convolution and SS convolution 

 

3.4 Dilated Convolutional Neural Network 

DCNN, also known as atrous convolution, is a variation of CNN that increase the receptive field 

without increase in the parameters. It does so without increasing the kernel size but by filling the 

empty position with holes. Dilation is achieved by expanding the size of the filter. With dilated 

stride r, small-sized kernel k, filter is extended to [k + (k-1) (r-1)]. The distance to where the filter 

elements are matched in the input matrix is determined by the Dilation Coefficient D. If D = 1, it 

is standard convolution. Enlarged receptive field by Dilated CNN helps us in context assimilation. 

It provides broader view of the image hence, capturing more contextual and multi-scale 

information from the image. However, it doesn’t change the spatial resolution. It requires less 

parameters, so, is computationally efficient. It is used in semantic segmentation, WaveNets 

(Conversion of text to audio). Figure 6 shows dilated convolution with kernel size 3 X 3, leftmost 

section has dilation rate 1, center has dilation rate 2 and rightmost section has dilation rate 4. It can 

be seen that the receptive field is enlarged by filling the empty position with holes. This clearly 

shows that the number of parameters does not increase significantly.[14] 
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Figure 6: Dilated convolution with varied dilation rates 

 

3.4.1 Decomposition view of DCNN 

A dilated convolution operation can be illustrated by its decomposition as shown in Figure 7. 

Following 3 steps decomposes the operation: 

Step 1: If r be the dilation rate and d be the spatial dimension, then input feature maps undergo 

periodical subsampling with a factor of r. Consequently, the inputs are deinterlaced to rd separate 

sets of feature maps. These feature maps are of reduced resolution.  

Step 2: The intermediate feature maps obtained from step 1, are fed into a standard convolution 

with same weighted filter as of original dilated convolution. The filter is shared for all the groups.  

Step 3: After obtaining different rd sets of feature maps, re-interlace them to the former original 

resolution. 

 

Figure 7: Decomposition View of DCNN 

If we have a 10 × 10 feature map, kernel size of 3 × 3 and r = 2, dilated convolutions will generate 

a 6 × 6 feature map. During decomposition, periodical subsampling is done to the input feature 
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map to produce 22 = 4 sets of 5 × 5 feature maps. These 4 sets of feature maps undergo shared 

standard conv to produce 4 sets of 3 × 3 feature maps. Lastly, the sets of feature maps are re-

interlaced that generate 6 × 6 output feature map. This generated dimension is same as the original 

dilated CNN. [14] 

 

3.4.2 Smoothed DCNN 

If the dilation rate > 1, gridding artifacts are produced in DCNN because adjacent units in the 

output are calculated from the input using entirely different set in the input units. This brings 

inconsistency of local information and the information can get irrelevant across larger distance.  

Wang and Ji [14], smoothed the dilated convolution itself, unlike the earlier models that smoothed 

by introducing a block of cascaded DCNN. If we add dependencies among rd groups of 

intermediate feature maps then smoothing can be achieved. Two different approaches for 

smoothing are provided: 

• Group Interaction Layer 

• Separable and Shared Convolution 

The first approach is shown in Figure 8, where we add a group interaction layer before re-

interlacing such that the intermediate group’s dependency is established. This is equivalent to 

perform pixel-by-pixel fully-connected operation on the feature output using convolution or 

insertion of a SS block-wise FC layer after the dilated convolutional layer. In this approach, r2d 

extra parameters are added while training. As shown in Figure 8, we need 22*2 =16 connections 

and feature map after de-gridding operation is represented by grey color. 

 

Figure 8: De-gridding method by adding Group Interaction Layer 
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Second approach involves insertion of a SS convolution before deinterlacing, to add dependency 

as shown in Figure 9. Kernel of (2r − 1) d size is used for SS convolution that involves sharing of 

the filter. i.e., same filter is used/shared by all channel pairs of input-output. In Figure 9, (2*2-1) 2 

(= 3 X 3) kernel size is used for SS operation. 

 

Figure 9: De-gridding method by adding SS convolutional layer 

 

3.5 Object counting by Density Map Estimation 

The trend of object counting has been changed to the density map estimation method. Deep 

Learning techniques uses point like annotation to remedy the problems introduced by earlier 

bounding box approach. With the estimation of the density map, objects can be indirectly counted. 

A density map is obtained by convolving with a Gaussian Kernel and normalizing it so that 

integrating it gives the number of objects. In the process, the number of persons per unit pixel is 

represented by spatial values. In the dataset, heads of the people are annotated later these head-

point annotations are convolved with Gaussian Kernel to obtain density map as in Figure 10. The 

spatial summation in the density map gives the count. 

 
 

Figure 10: Ground Truth and Density Map Prediction on a crowded image 
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3.6 System Flowchart 

The flowchart of the network is as shown in Figure 11. 

 

 

 

 

 

 

 

 

 

 

Figure 11: System Flowchart 

3.7 System Block Diagram 

Network employs CNN as a feature extractor using VGG16 fusing with the backend for the 

generation of density map. It contains contains two different configuration with same front end 

structure but different backend structure. To make the network more efficient, more number of 

conv layers with small kernels are employed. Since the output of the front-end is already reduced 

in spatial dimension, downsampling and pooling operation is replaced with the dilated CNN in the 

backend. This helps acquire multi-scale features from its dilated kernels. Similarly, Separable and 

Shared (SS) convolution technique to smooth the DCNN will be applied in order to remove the 

gridding artifacts. Shared filter is used in the depth-wise separable convolution. 

Overall block diaram is shown in Figure 12. 

Input Image 

Label to get 

annotated image 

Smooth Dilated CNN to 

generate Feature Map 

Computation of Ground 

Truth density map (GT) 

Estimation of 

density map (EST) 

Compare 

GT & EST 

Compute Weight 

Counting 

Count 
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Figure 12: System Block Diagram 

Two different backend architecture with dilation rate 2 and 4 has been evaluated in order to 

determine the one with the better result i.e., better accuracy. Introduction of SS convolution layer 

with shared layer is used to remove the gridding artifacts that is introduced by the Dilated CNN. 

Since the dataset comprises of two parts: Part_A and Part B consisting of images with dense and 

sparse crowd respectively, model is developed with respect to dilation rate 2 and dilation rate 4 for 

both Part_A and Part B. 

Overall network configuration is depicted in Table 1. 

Table 1: Network Configuration 

Network Configuration 

Dilation Rate = 2 Dilation Rate = 4 

Arbitrary sized input color image 

conv k = 3, n = 64, d = 1 

conv k = 3, n = 64, d = 1 

Max - Pool 2 x 2, s = 2 

conv k = 3, n = 128, d = 1 

conv k = 3, n = 128, d = 1 

Max - Pool 2 x 2, s = 2 

conv k = 3, n = 256, d = 1 

conv k = 3, n = 256, d = 1 

conv k = 3, n = 256, d = 1 

Max - Pool 2 x 2, s = 2 

conv k = 3, n = 512, d = 1 

conv k = 3, n = 512, d = 1 

conv k = 3, n = 512, d = 1 

SS-conv k = 3, n = 512, p =1 SS-conv k = 7, n = 512, p =3 
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conv k = 3, n = 512, d = 2 conv k = 3, n = 512, d = 4 

SS-conv k = 3, n = 512, p =1 SS-conv k = 7, n = 512, p =3 

conv k = 3, n = 512, d = 2 conv k = 3, n = 512, d = 4 

SS-conv k = 3, n = 512, p =1 SS-conv k = 7, n = 512, p =3 

conv k = 3, n = 512, d = 2 conv k = 3, n = 512, d = 4 

SS-conv k = 3, n = 256, p =1 SS-conv k = 7, n = 256, p =3 

conv k = 3, n = 256, d = 2 conv k = 3, n = 256, d = 4 

SS-conv k = 3, n = 128, p =1 SS-conv k = 7, n = 128, p =3 

conv k = 3, n = 128, d = 2 conv k = 3, n = 128, d = 4 

SS-conv k = 3, n = 64, p =1 SS-conv k = 7, n = 64, p =3 

conv k = 3, n = 64, d = 2 conv k = 3, n = 64, d = 4 

conv k = 1, n = 1, d = 1 

 

3.8 Dataset 

ShanghaiTech Dataset is one of the mostly used crowd dataset containing 1198 annotated images 

with 330165 persons. Part_A and Part_B contains 482 and 716 images respectively. Part_A is 

divided into train set of 300 images and test set of 182 images, collected from the internet. 

Following Figure 13consists of sample images from ShanghaiTech Part_A. 

 

Figure 13: Sample images from Part_A of ShanghaiTech dataset 

Part_A is divided into train set of 400 images and test set of 316 images, collected on the streets 

of Shanghai City. Following Figure 14 consists of sample images from ShanghaiTech Part_B. 
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Figure 14: Sample images from Part_B of ShanghaiTech dataset 

There is a MATLAB file associated in the dataset containing head annotation i.e., tagged by a dot 

near to the center of the person’s head. Total of 330,165 annotated people with (x, y) coordinates 

for the head position is in the mat file. Following Figure 15 is a sample of head annotation for a 

sample image. 

 

Figure 15: Head annotation of sample image from MAT file 

 

3.9 Ground Truth generation 

Density map needs to be generated from the annotation file by blurring each head annotations. In 

order to address perspective distortion on the human head, varying blur radii according to different 

head size is needed. However, it is impossible for varying blur radii in each image in each head 

position. The average distance between the head of neighboring “k” people can be used to control 

the radial range of the Gaussian Kernel function.  
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If xi be the position of each person’s head annotation with total N heads then H(X) can be defined 

as: 

 𝐻(𝑥) =  ∑ 𝛿(𝑥 − 𝑥𝑖)

𝑁

𝑖=1

 (3) 

X is 2D coordinate position of pixel in the image and xi is the targeted object. 

Density function is then computed by convolving H(x) function with Gaussian Kernel Function 

G(x). 

 𝐹(𝑥) =  ∑ 𝛿(𝑥 − 𝑥𝑖) ∗  𝐺𝜎𝑖
(𝑥),    𝑤𝑖𝑡ℎ 𝜎𝑖 =  𝛽�̅�𝑖

𝑁

𝑖=1
 (4) 

Here, the input is the two-dimensional coordinate (x, y) and σ parameter controls the radial range 

of the function. �̅�𝒊 is the average distance of k-nearest neighbors.  

 

3.10 Radius Nearest Algorithm and Ball Tree 

Radius Nearest Algorithm finds all the neighbor within a distance from the query vector. It is 

useful for range searches and nearest neighbor searches. We can first create the tree and later the 

same tree can be used to query the nearest points. In this way Nearest Neighbors from any data 

points can be determined. Specifically, from the root node the algorithm will move down 

recursively computing whether the point is lesser or greater than the current node. Storing partial 

results, pruning and traversal order (visit the most promising subtree first) are the techniques for 

better search.  

Like KD-Tree, Ball tree (metric tree) is another binary algorithm of building tree that partitions 

the data points to two clusters which is contained by a circle (in case of 2D) or sphere (in case of 

3D). It partitions data recursively into nodes described by a centroid ‘p’ and radius ‘r’, with each 

node's point falling well within hyper-sphere that is described by ‘p’ and ‘r’. These hyperspheres 

are also called “balls” hence the name ball tree. Each tree's internal node divides the data points 

into two distinct groupings, each connected with a separate ball. Each point in the partition is 

assigned to one of the two balls and the assignment is solely based on its distance from the ball's 

center.  
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Figure 16: Ball Tree Data Structure 

Figure 16 left side shows the ball tree data structure and right shows the ball tree. The range 

search/query procedure is a recursive one that uses the triangle inequality property. For a query 

point q, using triangle inequality, we first compute the similarity with top nodes a and b. If the 

distance to the node center minus the node radius is less than the query radius, i.e., if the query 

ball meets with the node ball, the search is resumed. The search is extended to include all children 

nodes that cross the query ball. The number of tree levels, node radii, and query radius all influence 

the query speed. Compared to KD-tree, computation time is larger since the dimensionality is 

increased, however with improved performance. [27] 

 

3.11 Loss Function 

A loss function is used by machines to learn. It's a way of determining how well a certain algorithm 

models the data. If the predictions are too far off from the actual results, the loss function will 

return a very large number. Loss function learns to lower prediction error over time with the help 

of some optimization function. Broadly, loss function is divided into: 

• Regression Loss and 

• Classification Loss 

To account for the local correlation in the density map, model uses a combination of Euclidean 

Loss and SSIM Loss function.  

3.11.1 Mean Square Loss/Quadratic Loss/L2 Loss 

It is the average squared distance computed between model predictions and Ground Truth 

observations. Because it is squared, far off predictions from actual values are penalized heavily 

than the less deviated ones.  
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This particular problem can be thought of as a regression problem. We need to measure the 

difference of ground-truth with estimated density map that is output by the model. For this 

measurement of differences, we employ Euclidean distance like the previous papers [20, 21]. The 

Euclidean Loss Function is defined as: 

 𝐿𝑞(Ɵ) =  √
1

2𝑁
  ∑   |𝑍(𝑋𝑖, Ɵ) −  𝑍𝑖

𝐺𝑇|

𝑁

𝑖=1

 
2

 (5) 

Where N = size of training batch 

𝑍(𝑋𝑖, Ɵ) = output by the model with parameters Ɵ.  

Xi = input image and  

𝑍𝑖
𝐺𝑇 = ground-truth of input image Xi. 

 

3.11.2 Local Pattern Consistency Loss 

Along with the Euclidean Loss, SSIM index has been employed to include local correlation in the 

density map. The SSIM index is commonly used to assess image quality. It uses three local 

statistics, namely mean, variance, and covariance, to calculate similarity between two images. 

With respect to [30], a normalized Gaussian Kernel of size 11 x 11 having standard deviation 1.5 

is employed to compute the local statistics. If W represent the weight in D containing all positions 

of kernel, d represent offset from the center, then W is given by: 

 𝑊 = {𝑊(𝑑) | 𝑑 𝜖 𝐷, 𝐷 = {(−5, −5), . . . . . . . . . . . . , (5, 5)}} (6) 

If F be the predicted density map of the model with its corresponding Ground Truth Y, we can 

calculate the local statistics as follows: 

 𝜇𝐹(𝑥)  =  ∑ 𝑊(𝑑). 𝐹(𝑥 + 𝑑),

𝑑 𝜖 𝐷

 (7) 

 𝜎𝐹
2(𝑥)  =  ∑ 𝑊(𝑑) . [𝐹(𝑥 + 𝑑) − 𝜇𝐹(𝑥)]2,

𝑑 𝜖 𝐷

 (8) 

 𝜎𝐹𝑌(𝑥)  =  ∑ 𝑊(𝑑) . [𝐹(𝑥 + 𝑑) − 𝜇𝐹(𝑥)] . [𝑌(𝑥 + 𝑑) − 𝜇𝑌(𝑥)]

𝑑 𝜖 𝐷

, (9) 

 𝜇𝑌(𝑥)  =  ∑ 𝑊(𝑑). 𝐹(𝑥 + 𝑑),

𝑑 𝜖 𝐷

 
(10) 
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 𝜎𝑌
2(𝑥)  =  ∑ 𝑊(𝑑) . [𝐹(𝑥 + 𝑑) − 𝜇𝑌(𝑥)]2,

𝑑 𝜖 𝐷

 
(11) 

Where: 

𝜇𝐹  = Local Mean estimation of F 

𝜎𝐹
2 = Local Variance estimation of F 

𝜎𝐹𝑌 = Local Covariance estimation 

𝜇𝑌  = Local Mean estimation of Y 

𝜎𝑌
2 = Local Variance estimation of Y 

Finally, SSIM index is calculated as in Equation (12). 

 𝑆𝑆𝐼𝑀 =  
(2𝜇𝐹𝜇𝑌 + 𝐶1)(2𝜎𝐹𝑌 + 𝐶2)

(𝜇𝐹
2 + 𝜇𝑌

2 + 𝐶1)(𝜎𝐹
2 + 𝜎𝑌

2 + 𝐶2)
 (12) 

Small constant values C1 and C2 prevent division by zero and are assigned as in [28]. 

Equation (13) defines the local pattern consistency loss. 

 𝐿𝑆𝑆𝐼𝑀 =  1 −  
1

𝑁
∑ 𝑆𝑆𝐼𝑀(𝑥),

𝑥

 (13) 

Where: 

N = No. of pixels 

𝐿𝑆𝑆𝐼𝑀 = Local pattern consistency loss 

 

3.11.3 Compositional Loss 

With respective to Equation (5) and Equation (13), the objective function is defined as: 

 L =  Lq + αcLSSIM (14) 

𝛼𝑐 controls the pixel-wise loss and local pattern consistency loss. It is set to 0.001 as in [30] 

 

3.12 Evaluation Metric  

MAE and MSE are used as the metric for performance comparison. MAE is a measure of how 

accurate the predicted crowd count is throughout the test sequence. 

[13] For a test sequence with N images, MAE is computed as in Equation (15).  
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 𝑀𝐴𝐸 =  
1

𝑁
 ∑ | 𝐶𝑖 − 𝐶𝑖

𝐺𝑇 |

𝑁

𝑖=1

 (15) 

Where:  

Ci is crowd count estimate from the model  

𝐶𝑖
𝐺𝑇 is the crowd count from Ground Truth.  

The MSE represents the predictability of the count. MSE is defined as in Equation (16), for a test 

sequence with N images. 

 𝑀𝑆𝐸 =  √
1

𝑁
 ∑ | 𝐶𝑖 − 𝐶𝑖

𝐺𝑇  |2

𝑁

𝑖=1

 (16) 

The crowd count estimate as predicted by the model, Ci is given by Equation (17). 

 𝐶𝑖 =  ∑ ∑ 𝑧𝑙,𝑤

𝑊

𝑤=1

𝐿

𝑙=1

 (17) 

Where:  

L = length of the density-map 

W = width of the density-map 

Such that in the so obtained density-map, 𝑧𝑙,𝑤 is the pixel at position (l, w). 

 

3.13 Tools  

Programming is done in Python using PyTorch library and executed in Google Colaboratory GPU. 

ShanghaiTech dataset is used during this work wherein both Part_A and Part_B are used to develop 

separate models. 
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4. RESULT ANALYSIS AND COMPARISON 

4.1 Setup 

ShanghaiTech dataset has been used in this work, which is one of the mostly used crowd counting 

dataset. It is divided into two parts namely A and B whereby Part_A consists of dense crowd and 

Part_B consists of sparse crowd. Since model working on a dense crowded prediction might not 

accurately model sparse crowd so two parts are provided. All the images have been used in the 

experiment. The crowd count distribution for Part_A and Part_B is shown in Figure 17. 

   

Figure 17: Crowd count distribution 

Observation:  The dataset is severely unbalanced. 

Dataset contains head annotation in MATLAB file. Figure 18 is a sample of head annotation and 

in the zoomed portion on the right, we can see red colored dot marking in the head of each person, 

this is achieved from the annotation file. 

       

Figure 18: Head annotation for head of each person in the dataset 

Regarding density map generation, for Part_A adaptive Gaussian Kernel is employed since the 

crowd density is large. This means low degree of burring for the region of dense crowd and high 

degree for the region of sparse crowd. For adaptive Gaussian Kernel, Ball Tree with dimensionality 

4 and leaf-size 2048 has been used because there are many head counts in Part_A dataset. 3 
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neighbors are computed in order to compute the location information from the current node. β 

value is set to 0.3 [20]. Gaussian Kernel is normalized with sum 1 to generate density map. 

Following Figure 19 is the Ground Truth and count generated for the Part_A dataset so that we 

can begin the training process. 

 

Figure 19: Ground Truth and count for Part_A 

Apart from that, for Part_B, dataset that contains sparse crowd, fixed size kernel (σ = 15) is 

employed for the average head size in order to blur all the annotations. σ is the spread parameter 

of the Gaussian Kernel. It signifies the extent of blurring in the so obtained density map. Since we 

are using Gaussian distribution to incorporate the size of the human head and it can’t be set to 1 

because the head in the image does not contain one pixel for head size. It undoubtedly covers a 

certain pixel in terms of area. The geometry of the image plane is not provided in the dataset. So, 

an assumption needs to be made on the spread parameter to proceed for the Ground Truth 

generation. Following Figure 20 shows the Ground Truth generation of sample image in Part_B 

using various σ values. It can be seen that if σ is set to 1 then it represents a very tiny dot for head 

position. However, the head size is bigger and it will be further difficult to visualize the density 

map. Similar is the case for σ value set to 50 where every head is represented by a huge spread 

Gaussian Kernel that leads to insignificant density map. Apart from arbitrary setting, if the spread 

parameter is set in the range [13,18], clear visualization of density map can be seen. Since the 

motive of this research work is to analyze and compare whether use of Smooth Dilated CNN will 

improve the dense prediction compared to Dilated CNN as in Li et. al. [13], same environmental 

value leads to the better comparison than tweaking everything. Keeping this in mind σ is set to 15 

as in [13] to analyze better in terms of varied model employing Dilated CNN and Smooth Dilated 

CNN. 



26 

 

 

 

 

Figure 20: Analysis for varied σ values 

Following Figure 21 is the Ground Truth and count generated for the Part_B dataset so that we 

can begin the training process. 

 

Figure 21: Ground Truth and count for Part_B 
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4.2 Comparison of adaptive vs fixed Gaussian Kernel 

4.2.1 Comparison of adaptive vs fixed Gaussian Kernel for Part_A 

The original image and the generated Ground Truth from Part_A are depicted in Figure 22. Left 

column represents original image, middle column represents Ground Truth obtained using 

adaptive Gaussian Kernel and right column represents the Ground Truth obtained using fixed sized 

Gaussian Kernel. 

 

 

 

Figure 22: Comparison of adaptive vs fixed Gaussian Kernel – Part_A 

Observation: In this Part_A dataset density map is more suitable if we adopt adaptive Gaussian 

Kernel due to blur adaptation for denser and sparse region. 

 

4.2.2 Comparison of adaptive vs fixed Gaussian Kernel for Part_B 

The original image and the generated Ground Truth from Part_A are depicted in Figure 23. Left 

column represents original image, middle column represents Ground Truth obtained using 
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adaptive Gaussian Kernel and right column represents the Ground Truth obtained using fixed-

sized Gaussian Kernel. 

 

 

 

Figure 23: Comparison of adaptive vs fixed Gaussian Kernel – Part_B 

Observation: If we use adaptive Gaussian Kernel for sparse crowd then density map can’t address 

well in the region of sparse crowd. However, if we use fixed-sized Gaussian Kernel then we can 

see head position on the sparse region as well. 

 

4.3 Comparison of the developed models for Part_A 

4.3.1 Training Loss 

Model is end-to-end trainable, initial values for the layers are assigned by Gaussian initialization 

with standard deviation 0.01. Model has been trained with starting learning rate of 1e-6, SGD 

optimizer with momentum 0.9 subject to combinational loss, up to 435 epochs. Hyper parameter 

tuning and learning rate decrement was done in accordance with the learning graph. Batch size of 

the training is set to 1 because pre-processing the images (crop, resize) has been avoided so as to 
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capture the essence of image and thereby generate high quality ground truth for training. In order 

to measure the Ground Truth and predicted density map, Euclidean distance metric is used along 

with SSIM. To compute the SSIM, Ground Truth is resized to 1/8 so as to match the size with the 

predicted density map. Finally, objective function is computed for the optimizer. Two different 

models are created with dilation rate 2 and 4 as shown in Table 1. Figure 24 shows the comparison 

between the two models. 

 

Figure 24: Training Loss for Part_A 

Observation: Training Loss is decreasing with the number of epochs. Few spikes are seen because 

batch size is set to 1. 

 

4.3.2 Validation Loss 

Figure 25 shows the validation loss comparison for dilation rate 2 and 4. 

 

Figure 25: Validation Loss for Part_A 

Observation: It can be observed that the loss is decreasing with the number of epochs thereby 

increased accuracy. 
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4.4 Testing Accuracy - Part_A 

Ground Truth vs the count estimated by the model for Part_A is shown in Figure 26. In the dataset 

there are 182 test images, index of which are shown in x-axis of the chart. Y-axis represents the 

total count of people. Orange color represents “Ground Truth” and blue color represents “Predicted 

Count”. 

 

Figure 26: Ground Truth vs Predicted Count Part_A 

Observation: The overall MAE is 67.64 for the test set of Part_A. 

 

4.5 Evaluation of Part_A 

MAE, MSE, PSNR and SSIM has been used as evaluation metric for the model. Table 1 shows 

the performance of different architecture with respect to base paper. The main base paper is 

CSRNET which use CNN for feature extraction and dilated CNN in the backend for the density 

map generation. MCNN and CP-CNN also does dense prediction but by employing multi-column 

and multi-level architecture. Basically, they use the same density map generation process using 

adaptive and fixed Gaussian Kernel. 

Table 2: Evaluation of Part_A 

ShanghaiTech Part_A 

Metric Dilation = 2 Dilation = 4 CSRNET MCNN CP-CNN 

MAE 67.64 67.89 68.2 110.2 73.6 

MSE 103.39 103.48 115 173.2 106.4 

PSNR 24.1 24 23.79 N/A N/A 

SSIM 0.77 0.71 0.76 N/A N/A 
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Observation: Model has increased both the counting accuracy and the quality of density map. 

When dilation rate = 2 was applied MAE and MSE increased by 0.82% and 10.09% respectively. 

Similarly, the PSNR and SSIM increased by 1.3%. when compared to the approach in Li et. al. 

[13] that used dilated convolution in their network. When compared to Zhang et. al. [20], that used 

multi column CNN for the same but with the same Ground Truth generation process, we can see 

that the counting accuracy is vastly improved. Since we avoid the multi column, the model is very 

lighter and computationally cheaper than [20]. Apart from that Sindagi et. al. [31], used contextual 

pyramid that can capture local and global information for generation of density map. Counting 

accuracy is significantly increased by this approach as compared to [31]. 

Some of the results for Part_A is shown in Figure 27. The image index is shown along with the 

predicted count, the original count, the difference in the count. Similarly, image quality metrics 

SSIM and PSNR of the image is also shown. 

 

 

Figure 27: Samples of Part_A 
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4.6 Results from Part_A 

Following are results obtained using dilation rate = 2. 

4.6.1 Some high accuracy result for Part_A dataset 

Some of the good predictions in terms of counting accuracy are shown in Figure 28. 

 

 

 

Figure 28: Some good prediction from Part_A 
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4.6.2 Some low accuracy result for Part_A dataset 

Predictions have comparatively lower counting accuracy are shown in Figure 29. 

 

 

 

 

Figure 29: Less accurate crowd estimation from Part_A 
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4.6.3 Some good SSIM result for Part_A 

Some of the prediction with best SSIM are shown in Figure 30. 

 

 

 

Figure 30: Good SSIM prediction for Part_A 
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4.6.4 Some low SSIM results for Part_A 

Some of the prediction with comparatively low SSIM are shown in Figure 31. 

 

 

 

Figure 31: Some low SSIM prediction for Part_A 
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4.7 Comparison of the developed models for Part_B 

4.7.1 Training Loss 

Here also, initial values for the layers are assigned by Gaussian initialization with standard 

deviation 0.01. Model has been trained with starting learning rate of 1e-6, SGD optimizer with 

momentum 0.85 subject to combinational loss, up to 230 epochs. Hyper parameter tuning and 

learning rate decrement was done in accordance with the learning graph. Batch size of the training 

is set to 1. Two different models are created with dilation rate 2 and 4 as shown in Table 1. Figure 

32 shows the comparison between the two models. 

 

Figure 32: Training loss for Part_B 

Observation: Training Loss is decreasing with the number of epochs. Few spikes are seen because 

batch size is set to 1. 

4.7.2 Validation Loss 

The validation loss chart is shown in Figure 33. 

 

Figure 33: Validation Loss for Part_B 
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Observation: It can be observed that the loss is decreasing with the number of epochs thereby 

increased accuracy. 

4.8 Testing Accuracy Part_B 

Ground Truth vs the count estimated by the model for Part_B is shown in Figure 34. In the dataset 

there are 316 test images which is shown in x-axis of the chart. Y-axis represents the total count 

of people. Orange color represents “Ground Truth” and blue color represents “Predicted Count”. 

 

Figure 34: Ground Truth vs Predicted Count Part_B 

Observation: The overall MAE is 9.6 for the test set of Part_B. 

 

4.9 Evaluation of Part_B 

MAE, MSE, PSNR and SSIM has been used as evaluation metric for the model. Following Table 

3 shows the performance of different architecture with respect to base paper.  

Table 3: Evaluation of Part_B 

ShanghaiTech Part_B 

Metric Dilation = 2 Dilation = 4 CSRNET MCNN CP-CNN 

MAE 9.6 9.87 10.6 26.4 20.1 

MSE 15.41 15.48 16 41.3 30 

PSNR 27.88 27.86 27.02 N/A N/A 

SSIM 0.927 0.926 0.89 N/A N/A 

Observation: Model has increased both the counting accuracy and the quality of density map. 

When dilation rate = 2 was applied, MAE and MSE increased by 9.4% and 3.6% respectively. 
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Similarly, the PSNR and SSIM increased by 3.18% and 4.16% when compared to CSRNET. 

Moreover, the accuracy is significantly increased compared to MCNN and CP-CNN. 

Some of the results are illustrated in Figure 35. Predicted count, Ground Truth count, difference 

in count along with the image quality metrics SSIM and PSNR is shown in figure. 

 

 

Figure 35: Samples of Part_B 

 

 



39 

 

4.10 Results from Part_B 

4.10.1 Some high accuracy result for Part_B dataset 

Some of the good predictions in terms of counting accuracy are shown in Figure 36. 

 

 

 

 

Figure 36: Some good prediction from Part_B 
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4.10.2 Some low accuracy result for Part_B dataset 

Predictions have comparatively lower counting accuracy are shown in Figure 37. 

 

 

 

 

Figure 37: Less accurate crowd estimation from Part_B 
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4.10.3 Some good SSIM result for Part_B 

Some of the prediction with best SSIM are shown in Figure 38. 

 

 

Figure 38: Good SSIM prediction for Part_B 
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4.10.4 Some low SSIM results for Part_B dataset 

Some of the prediction with comparatively low SSIM are shown in Figure 39. 

 

 

 

Figure 39: Some low SSIM prediction for Part_B 
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4.11 Test of model in local data 

Following Figure 40 shows the model estimate in context of crowd data in Nepal. 

 

 

 

Figure 40: Crowd estimate on local data 
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4.12 Computation time 

The computation time for two instances is shown in Figure 41. Left figure represents the 

computation time for crowd estimation which is 0.405 seconds and the right figure represents the 

time for obtaining the density map which is 0.598 seconds. 

                  

Figure 41: Computation Time 
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5. CONCLUSION AND FUTURE ENHANCEMENT 

In this work, smoothed dilated CNN is used for generation of the density map form single image 

and estimate the count of people. Compared to the base paper, smoothing operation using 

Separable and Shared convolution has increased both the counting accuracy and the quality of 

density map when dilation rate 2 was applied for both Part_A and Part_B of ShanghaiTech dataset. 

MAE and MSE of Part_A dataset have increased by 0.82% and 10.09% respectively. Similarly, 

the PSNR and SSIM of Part_A dataset both has increased by 1.3%. Apart from that, MAE and 

MSE of Part_B dataset has increased by 9.4% and 3.6% respectively. Similarly, the PSNR and 

SSIM of Part_B dataset has increased by 3.18% and 4.16%. We can see a significant increase in 

all the evaluation metrics. 

This work can be extended to crowd counting and visualization in videos. Moreover, if vehicle 

detection and counting is employed then it can be used to develop smart traffic control system and 

to monitor accidents in highways. It can be extended to study animal migrations as well. Wan et. 

al [32] suggests the use of attention mechanism using refinement network. 
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APPENDICES 

Following is the snapshot of Turnitin Report. 

 


